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A
APPENDIX

DIFFUSION OF CO ADATOMS

A1. 1D RANDOM WALK PROBABILITY DISTRIBUTION FOR CO

ON GNR

We assume that an atom makes only nearest-neighbor jumps between sites arranged

along a line, and motion to the right or to the left is equally probable and occurs at

random moments in time. The probability P of an atom, initially at position x = 0 at

time t = 0 to be at lattice site x at time t is given by 1

Px (ν) = Ae−2νt Ix (2νt ) (A.1)

where A is the prefactor, ν is the hopping rate and Ix modified Bessel function of the

first order

Ix (a) =
∞∑

i=0

1

i !(i +k)!

( a

2

)2i+x
. (A.2)

As time t we take the average duration of the voltage pulse (0.5 sec).

1J. D. Wrigley et al., Lattice walks by long jumps, J. Chem. Phys. 93, 2885 (1990)
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DIFFUSION OF CO ADATOMS

A2. 2D RANDOM WALK PROBABILITY DISTRIBUTION FOR CO

ON AU

The top image in Figure A.1 shows hollow sites on Au(111) which are presumably

preferential spots for Co adatoms. The black dot in the center indicates the initial Co

position (no displacement), red dots indicate 2nd- nearest-neighbor displacement,

brown dots indicate 4th- nearest-neighbor displacement and so on. The two nearest

hollow sites are 1.7 Å apart, which is at the limit of our resolution. In order to simplify

the description, we remove half of the hollow lattice sites (small white circles) and

introduce two non-orthogonal axes (bottom image). Each hollow site corresponds to

a displacement d and is labeled with a pair of indices, (x,y). Colors indicate category

of displacement d and shade indicates different distances from the initial position

(black dot in the center) for a given d .

For the two-dimensional random walk on a triangular grid the average number

of image-to-image diffusion steps for each of the two dimensions is νt/2, where ν is

the total hopping rate for all four directions. The probability distribution for finding

the adsorbate displaced in each of the directions by x and y lattice sites is given by2

Px y = e−N̄ Ix

( N̄

2

)
Iy

( N̄

2

)
= e−νt Ix

(νt

2

)
Iy

(νt

2

)
(A.3)

where Ix , Iy are modified Bessel functions of the first order. We calculate the prob-

ability for each L as the sum of all probabilities of the displacements d (none, 1st

nearest-neighbor, 2nd nearest-neighbor...) of that length L. For example, the expected

probability for Co to be displaced by 0.6 nm is equal to

PL=0.6(ν) = P 1,-1 +P -1,1 +P 0,2 +P 0,-2 +P 2,0 +P -2,0+
+P 1,2 +P 2,1 +P -2,-1 +P -1,-2 +P 2,2 +P -2,-2 =

= e−νt
[

2I 1
2

I 1
2
+4I 0I 1 +4I 1

2
I 1 +2I 1I 1

] (A.4)

This is also illustrated in the table in the lower panel of Figure A.1. As mentioned in

subsection 2.8.3, each L corresponds to a 0.3 nm wide set of values (e.g. L = 0.6 nm

takes all values from 0.45 to 0.75 nm). Because of the freely chosen range of data

sets, some histogram peaks might be significantly higher/lower than the neighboring

ones due to encompassing more/less data points. This explains the sudden drop of

the fitted value of probability in Figure 2.28 at 1.2 nm.

2J. D. Wrigley et al., Lattice walks by long jumps, J. Chem. Phys. 93, 2885 (1990)
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2.9A

1.7A
   d
none
2nd
4th
6th

2.9A X

Y   d             L(A)
none
1st 2.9
2nd 5.1     5.8
3rd 7.9     8.7
4th 9.8    10.2   11.6
5th 12.4  12.8   14.5
6th 14.7  15      16      17.4
7th 17.3  17.7   18.6   20.3 

Figure A.1: Possible displacements for Co on Au(111). Top image shows available hollow sites (small
circles) which form a hexagonal lattice. The colors indicate the displacement d (none, 1st, 2nd...) from the
initial position (black circle in the middle). Small white circles indicate sites that cannot be resolved with
our resolution. After removing these sites a trigonal lattice is obtained (bottom image). Different color
shades indicate different distances from the initial site (black circle) for the same displacement number.
The black dot in the center indicates the initial Co position.
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GRAPHENE ELECTRODES

B1. SIMMONS MODEL FOR SYMMETRIC BARRIER

Considering tunneling through a symmetric barrier, we can approximate the work

function φ to be the same for both electrodes. The current density in a symmetric

tunnel junction with a barrier along the z-axis (Figure B.1) is described by the Sim-

mons model 1:

J ∼ e

2πhz2

[
(φ−µL)e

−4πz
p

2m(φ−µL )
h − (φ−µR )e

−4πz
p

2m(φ−µR )
h

]
(B.1)

where z = z1 – z2 is the gap size, and µL , µR are the chemical potentials of the left and

the right electrodes, respectively.

Parameters fitted to the Simmons model are the pre-factor A (which contains the

cross-section of the junction), the barrier heightφ and the gap size z. The parameters

A and φ cannot be fitted completely independently, but with a suitable choice for

the pre-factor the barrier height obtained is in agreement with the range of results

found in the literature, see the main text. The gap distance d is more robust and it is

estimated with approximately 5% accuracy.

1 J. G. Simmons. Generalized formula for the electric tunnel effect between similar electrodes separated
by a thin insulating film. J. Appl. Phys., 34: 1793-1803, 1963.
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GRAPHENE ELECTRODES
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Figure B.1: Symmetric tunnel junction with barrier height φ and barrier width d = z1 – z2.

B2. GRAPHENE-GOLD TUNNEL JUNCTION

In order to identify the edge electrodes that extend to the end of their supports, we

formed a tunneling junction against a gold sample. This, in first instance, allows

easier electrical characterization of the edge electrode and secondly demonstrates

the flexibility of our system, capable of employing independent edge electrodes in

multiple systems, either symmetric or asymmetric junctions.

Figure B.2(a) illustrates the schematics of the set-up. The graphene edge elec-

trode is mounted on a holder over a piezoelectric actuator (thick grey block on the

left) which approaches a thick sample of pure gold. Figure B.2(b) shows the I(V)

tunneling characteristic of the tunnel junction at a fixed distance, sweeping the bias

voltage V between -1.5 V and + 1.5 V. The shape of the sigmoidal IV curve is char-

acteristic of an asymmetric tunneling barrier. This is a result of the different work

functions across the two terminals of the junction. Figure B.2(c) shows the tunnel-

ing current as a function of distance (black curve, I(z)) between the graphene and

the gold sample at V = 0.48 V bias voltage. We observe a clear exponential increase

(exponential fit red curve) of the current with decreased distance, characteristic of a

tunneling regime.
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Figure B.2: Gold-graphene tunnel junction. (a) Schematics of the gold – graphene tunnel junction. The
graphene electrode is mounted on a piezoelectric actuator which moves the sample along the Z axis to
approach a gold macro electrode. (b) IV characteristic of the graphene-gold junction. (c) Representative
I(z) characteristic of graphene-gold tunnel junction (black line) fitted to exponential function (red line).
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GRAPHENE ELECTRODES

B3. TUNNELING JUNCTION CONTROLLER

The two graphene sheets are mounted on sample stages at the positions of “sample”

and “tip” of an STM scanner. A description of the scanner can be found in PhD dis-

sertation of S. Otte 2. Graphene was contacted electrically by a drop of silver paint

embedding a copper wire attached to the sample stage. A RHK SPM-100 controller

was used to supply bias voltage between the samples, as well as the high voltage for

Z piezo element that is moving one of the supports. The tunneling current flowing

across the junction was amplified using a FEMTO DLPCA-200 current amplifier. The

XY motion was controlled by a second piezo element underneath the other support.

The voltage applied to the XY piezo element was kept constant during I(z) and IV

measurements.

B4. SHEET RESISTANCE AND POINT CONTACT RESISTANCE

In contrast to 3D metallic systems the point contact resistance measured here has a

large contribution from the sheet resistance of the graphene electrodes that cannot

be separated from the measurements. The total measured resistance is the quantum

point contact resistance, Rpc, in series with the classical resistance of the sheets, Rg.

The classical resistance Rg of the sheets on either side of the contact can be estimated

as

Rg = 1

πσ

∫ L

l0

1

r
dr (B.2)

where σ is the sheet conductance, L is the size of the graphene sample (2 mm), and

l0 is the electron mean free path. Using the semi-classical expression for the sheet

conductance:

σ= e2

h

2EFτ

ħ (B.3)

and the linear dispersion of the Fermi energy E f = ħνF kF , and kF = p
πn, we can

express the mean free path in terms of the conductivity and the electron density:

l0 = σ

e2

h

1

2
p
πn

(B.4)

Using the conductance of σ = (11±2) e2

h found for our samples, and the typical de-

pendence between charge density and conductance in this regime 3,4 we obtain an

estimate of l0 = 27 nm. With this we arrive at an estimated resistance for the sum of

the two graphene electrodes of 17 ± 3 kΩ. Subtracting this value from the measured

2 S. Otte. Magnetism of a single atom. PhD thesis, 2008
3 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A.

Firsov. Two-Dimensional gas of massless Dirac fermions in graphene. Nature, 438: 197-200, 2005
4 E. H. Hwang, S. Adam, S. Das Sarma. Carrier transport in two-dimensional graphene Layers. Phys. Rev.

Lett., 98:186806, 2007.
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point contact resistance of 28 kΩ, we find an estimate for the quantum point contact

resistance of:

Rqpc = R total −R2g = 11±3kΩ (B.5)


