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Review Article

Post-translational modification of nucleoid-
associated proteins: an extra layer of functional
modulation in bacteria?
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Post-translational modification (PTM) of histones has been investigated in eukaryotes for
years, revealing its widespread occurrence and functional importance. Many PTMs affect
chromatin folding and gene activity. Only recently the occurrence of such modifications
has been recognized in bacteria. However, it is unclear whether PTM of the bacterial
counterparts of eukaryotic histones, nucleoid-associated proteins (NAPs), bears a com-
parable significance. Here, we scrutinize proteome mass spectrometry data for PTMs of
the four most abundantly present NAPs in Escherichia coli (H-NS, HU, IHF and FIS). This
approach allowed us to identify a total of 101 unique PTMs in the 11 independent prote-
omic studies covered in this review. Combined with structural and genetic information on
these proteins, we describe potential effects of these modifications (perturbed DNA-
binding, structural integrity or interaction with other proteins) on their function.

Introduction
In eukaryotes, the importance of post-translational modification (PTM) has been firmly established.
Such modifications provide an extra layer of flexibility and thus, complexity on the function of a
protein. They regulate vast networks of cellular mechanisms, determine the retention or degradation
of proteins and activate or inhibit enzymatic activity [1–5]. Among the most impactful PTMs in
eukaryotes are those of histones, which are extensively and diversely modified at numerous residues
[6–8]. Whether specific histone residues are for instance acetylated, methylated or ubiquitylated influ-
ences DNA replication, the stability of the chromatin fibre, the degree of DNA compaction and thus
the level of DNA transcription [9–11]. Nucleoid-associated proteins (NAPs) are functionally similar
proteins in bacteria forming the compactly organized bacterial nucleoid, by bridging, bending and
aggregation of genomic DNA [12]. Until recently, PTMs were believed to occur primarily in eukar-
yotes. However, recent studies using newly developed mass spectrometry-based proteomic methods
have increased the rate at which PTMs can be discovered and identified [13,14]. These approaches
resulted in the demonstration that PTMs abundantly occur in bacteria as well [15–19]. Extensive
modification occurs also in the case of NAPs, which may have — currently unappreciated — func-
tional significance.
The four most abundant and best-characterized NAPs in Escherichia coli are H-NS, HU, IHF and

FIS [20]. H-NS is a global regulator of transcription, genomic binding of which results in repression
of 5–10% of genes [21]. Its C-terminal helix-turn-helix domain binds (preferentially AT-rich) DNA
[22], while its N-terminal domain functions as oligomerization domain (yielding dimerization, as well
as higher-order dimer–dimer interactions). The ability to multimerize is essential for genome compac-
tion and gene silencing [23–25]. Owing to dimer–dimer interactions, the protein forms filaments
along DNA [26]; its multivalency also facilitates bridging of two DNA duplexes [27,28], potentially
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yielding loops in vivo [29]. The DNA-binding properties of H-NS and its various roles are modulated by inter-
action with a paralogue, StpA, association partners (such as Hha and YdgT) and changes in physicochemical
conditions (such as osmolarity) [24,30–32].
Different from H-NS, HU does not preferentially target specific regions of the bacterial genome, but is found

scattered, binding DNA in a sequence-independent manner, but with a high affinity for structurally aberrant
DNA [33–35] and RNA [36,37]. It exists primarily as a heterodimer of two homologous subunits HUα and
HUβ, but homodimers may form as well [38]. The relative amounts of HU homo- and heteromers depend on
growth phase [38]. Whether HUαα, HUαβ or HUββ multimerizes along DNA, determines if either
HU-mediated stiffening, bridging or supercoiling of DNA occurs [39,40]. HU may also bend DNA and is
thereby involved in genome compaction, as well as in stabilizing or facilitating regulatory DNA loops [40]. HU
plays an additional role in genome folding due to its effects on DNA topology via genetic cross-talk with DNA
gyrase and DNA topoisomerase I [41].
IHF, a homologue of HU, consists of α- and β-subunits. In addition to sequence-unspecific binding and

bending of DNA [42], implying a generic HU-like role in genome compaction, IHF interacts with a specific,
conserved nucleotide sequence [43,44], inducing a sharp, U-shaped bend, essential for its role in transcription
regulation [45,46]. FIS, a homodimeric protein, plays a role in transcription initiation, genome organization
and initiation of replication [47–49], binding to a degenerate consensus sequence [49–51]. The expression level
of FIS is elevated during phases of fast growth [52,53]. The activity of NAPs is thus, to date, known to be
modulated by changes in expression level, association with protein partners and physicochemical conditions,
altering gene expression patterns to allow for environmental adaptation.
In this review, we investigate the possibility that the activity of NAPs is additionally modulated by PTMs sig-

nalling differences in growth conditions. By scrutiny of the findings of 11 recent bacterial proteomics studies,
we detected 29, 24, 13, 14, 17 and 4 unique PTMs on E. coli H-NS, HUα, HUβ, IHFα, IHFβ and FIS, respect-
ively, which are listed in the Supplementary Material [54–64]. An overview of all modifications of these pro-
teins in context of their protein sequence is shown in Figure 1. The properties of different types of protein
modifications are summarized in Table 1. Put in a structural perspective, and correlated with genetic studies,
we predict that several of these PTMs influence (1) DNA-binding affinity, (2) oligomerization and (3) protein–
protein interactions.

Modulation of DNA binding of NAPs by PTM
H-NS
In E. coli H-NS (see Figure 2a,b), a DNA-binding motif is present at residues 112–117 [65]. No modifications
on H-NS at this particular sequence are observed. However, on two flanking lysines (Lys96 and Lys121) in
close proximity to the bound DNA [65], PTMs do occur [57,62,64]. Both these lysines can be acetylated; Lys96
can also be succinylated. The canonical lysine positive charge is probably necessary for the association with
negatively charged DNA, which would be disturbed by acetylation or succinylation, resulting in a neutral or
negative charge, respectively. Moreover, a succinylation event imposes a large carbon moiety onto the protein,
which could induce sterical hindrance. These PTMs would thus probably reduce H-NS binding affinity towards
DNA. Also, five positive residues have been identified in the unstructured H-NS linker region as required for
gene silencing by contacting DNA through electrostatic interactions [66]. Two of these residues, Lys83 and
Lys87 can be acetylated [57,64], which would obstruct such interactions, thus reducing the DNA-binding prop-
erties of H-NS.
In the DNA-binding domain of H-NS paralogue and modulator StpA, the aforementioned DNA-binding

motif is present as well. However, it harbours a lysine instead of an alanine at position 117, which could con-
tribute towards the greater DNA-binding affinity of StpA over H-NS [67]. Interestingly, this lysine is subject to
acetylation [64], which could reduce the DNA-binding affinity of StpA to resemble that of H-NS. In turn, such
a modification could reduce the extent to which StpA enhances bridging through the formation of H-NS–StpA
bridging filaments [30]. StpA outperforms H-NS in binding RNA as well, both being involved in post-
transcriptional regulation of malT and td expression [68,69]. Intriguingly, an experiment comparing td RNA
splicing by StpA and H-NS showed a 100-fold higher effectiveness of StpA over H-NS in vitro [69]. This was
reduced to an 8-fold higher effectiveness in vivo, which may imply a role for PTM. However, currently struc-
tural and functional information on StpA, for instance in the form of the effect of single-amino acid residue
mutations, is limited, complicating interpretation of these effects.

© 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society2

Biochemical Society Transactions (2018)
https://doi.org/10.1042/BST20180488



Another PTM that may influence the DNA-binding ability of H-NS targets the C-terminal hydrophobic
core. This is formed by several aliphatic and aromatic amino acid side chains and stabilizes the flanking sec-
ondary structures [70]. One of the side chains involved in this hydrophobic core, Tyr99, can be phosphorylated
[55]. Such a phosphorylation event would introduce a polar moiety, which may either prevent correct hydro-
phobic collapse, rendering a misfolded protein, or could impose structural changes in the DNA-binding loop,
potentially reducing DNA-binding activity.
Following oligomerization of H-NS along the DNA, the unbound DNA-binding domain may be either

blocked through internal interactions, or exposed to the solvent, allowing for DNA-H-NS-DNA bridges [24].
Mg2+ ions have been shown to modulate the balance between the ‘closed’ and ‘open’ state through interactions
with amino acid regions 42–45 and 98–105. Within these regions, four residues have been demonstrated to
undergo phosphorylation (Ser45, Ser98 and Tyr99) or deamidation (Asn103) [54,55,58,64]. Such PTMs gener-
ate negatively charged residues, potentially allowing for stronger interactions with the Mg2+ ion, repulsion of
the DNA-binding domain towards the solvent, and therefore more H-NS-mediated DNA bridging.

HU
In E. coli HU (see Figure 2c), the conserved residues HUα-Lys3 and HUβ-Lys3 form internal salt bridges with
HUα-Glu26 and HUβ-Asp26, respectively [72]. Both lysines can be either acetylated or succinylated according
to five independent proteomic studies, perturbing such interactions [56,57,61,62,64]. Interestingly, HU homolo-
gues that lack a glutamate or aspartate at this position — such as IHFβ — have their conserved lysine exposed
to the solvent [73,74], which may then contact DNA several bp downstream or upstream from the primary
bending location. This additional interaction enlarges the binding site [75], probably enhancing the
DNA-binding affinity, as well as increasing bending. In a similar fashion, the abovementioned PTMs may have
effects on HU as well.
In the HU heterodimer, several residues neighbour a charged surface consisting of several β-sheets from both

monomers. This cradle-like surface contains conserved salt bridge-forming residues, which are present in IHF
as well [44], and which are implicated in DNA binding. Since the Lys86-residues of both subunits flank this
domain and are heavily conserved, they may be involved in the bending of DNA, ‘pulling’ on both ends of the
DNA duplex, while the DNA in between rests on the cradle. HUα-Lys86 and HUβ-Lys86 can both be

Figure 1. Amino acid sequences of E. coli NAPs H-NS, HUα, HUβ, IHFα, IHFβ and FIS.

Labelled residues depict PTMs that have been discovered by any of the proteomic studies regarded in this review (A,

acetylation; S, succinylation; M, methylation; P, phosphorylation; D, deamidation; O, oxidation). Initiator methionines are shown

in italics to indicate their post-translational cleavage.
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acetylated [64], while HUα-Lys86 can also be succinylated [56]. Acetylating these residues could decrease
HU-binding affinity towards DNA and result in reduced DNA bending; succinylation would yield a similar, if
not stronger effect, due to electrostatic repulsion. This notion coincides with the severely reduced DNA-binding
capacity shown for the homodimer of a Bacillus subtilis HU K86A mutant [76].
In addition to binding DNA, HU is involved in post-transcriptional regulation through binding mRNA. For

example, it specifically recognizes and binds rpoS mRNA, thus promoting its translation [36]. Interestingly, the
affinity of HU for rpoS mRNA is comparable to its affinity for nicked DNA or 30 ssDNA overhangs, being
∼1000-fold stronger than for regular dsDNA [33,34,77]. Although concrete structural information of
HU binding RNA is lacking, Balandina et al. postulated that HU may bind dsRNA with a 30 ssRNA overhang
in a fashion comparable to analogous DNA constructs [37,78]. The proposed model requires HU β-sheet arms
to contact the double-stranded part, while the single-stranded part associates with the cradle-like surface
formed on the HU body. In this light, an interesting question to pursue is whether the residues that are subject
to PTM on the cradle (see Figure 2c) influence HU specificity for DNA versus RNA.

IHF
The sequence specificity of IHF (see Figure 3a) can be explained not only by its primary electrostatic interac-
tions with specific bases, but also by the recognition of minute differences within DNA structure. The IHF

Table 1 Properties of amino acid PTMs

Amino
acid Modification Structure

Change of charge at
physiological pH

Mass shift
(Da)

Lysine Acetylation +1 to 0 +42

Lysine Succinylation +1 to −1 +100

Lysine Methylation no change +14

Serine Phosphorylation 0 to −2 +80

Threonine Phosphorylation 0 to −2 +80

Tyrosine Phosphorylation 0 to −2 +80

Methionine Oxidation no change +16

Asparagine Deamidation 0 to −1 +1

Arginine Methylation no change +14
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Figure 2. Protein structures depicting the position of residues (in orange and red) that have been shown to undergo a

PTM event by proteomic studies regarded in this review. Part 1 of 2

Structures are based on PDB files (A) 3NR7 [71], showing the N-terminal domain (residues 1–82) from an antiparallel H-NS

dimer (green and blue depict individual monomers), in association with two other H-NS dimers (in grey) via ‘tail-to-tail’

interactions. Note that this structure represents an H-NS homodimer with identical chains, but that for the purpose of clarity

PTMs are labelled either on one or the other chain. (B) 1HNR [70], showing the C-terminal domain (residues 91–127) from an

H-NS monomer. The unstructured linker between the N-terminal and C-terminal domains of H-NS has not been resolved.

(C) 2O97 [72], showing HUαβ structure from the front and back (HUα, green; HUβ, blue). In this structure, HU residues 55–74
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consensus binding site is A/T-rich, which straightens DNA and narrows the minor groove [79]. As IHF inter-
acts with DNA, several water molecules are encapsulated between the A-tract and the IHF dimer, forming a
‘spine of hydration’ [73]. Among other interactions, backbone amides from amino acids flanking IHFα-Ser47
form hydrogen bonds with trapped water molecules, which undergo a similar interaction with phosphates in
the DNA backbone. Ser47 itself forms hydrogen bonds with water molecules that reside deeper within the
minor groove, stabilizing the interaction as such [73]. Two proteomic studies have shown that this Ser47 can be
phosphorylated [58,63]. Such phosphorylation would introduce a negatively charged moiety into the minor
groove, probably causing repulsion from the negatively charged DNA phosphate backbone. Similarly, Lys5,
Lys24, Lys45, Lys86 from IHFα, and Ser4 and Lys75 from IHFβ are residues that undergo modifications which

Figure 2. Protein structures depicting the position of residues (in orange and red) that have been shown to undergo a

PTM event by proteomic studies regarded in this review. Part 2 of 2

(HUα) and 56–74 (HUβ) are not resolved, but their structure has been approximated with dashed lines, based on atomistic

models generated by Hammel et al. [39].

Figure 3. Protein structures depicting the position of residues (in orange and red) that have been shown to undergo a

PTM event by proteomic studies regarded in this review.

Structures are based on PDB files (A) 1IHF [73], showing IHFαβ bound to 35 bp DNA, from the front and back (IHFα, green;

IHFβ, blue) and (B) 4IHV [80], showing FIS bound to 27 bp DNA (green and blue depict individual monomers).
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disturb electrostatic interactions with DNA [73], either directly or through hydrogen bonding with H2O asso-
ciated with the phosphate backbone. As a consequence, these modifications may relax IHF sequence specificity
and reduce DNA-binding affinity.
The flexible β-ribbon arm from IHFβ that wraps itself around the minor groove contains a lysine at position

75 that is involved in an interaction with the DNA phosphate backbone [73]. This IHFβ-Lys75 may be either
acetylated or succinylated [56,64]. Both modifications would inhibit salt bridge formation and could therefore
reduce the binding affinity of IHF. In binding DNA, both β-arms use prolines (IHFα-Pro65 and IHFβ-Pro66)
to intercalate between base pairs, which is key to the large bend angle induced by IHF. These prolines are
flanked by lysines (IHFα-Lys66 and IHFβ-Lys65) which can be acetylated [64]. These modified lysines may
restrain the protrusion of hydrophobic prolines within the negatively charged DNA and between its bases, thus
attenuating the bend angle IHF may induce.

Perturbation of oligomerization of NAPs by PTM
H-NS
H-NS Tyr61 is involved in a hydrophobic core that stabilizes tail-to-tail association of two H-NS dimers [71].
Recently, an H-NSY61DM64D mutant has been shown to be incapable of forming multimeric structures and
DNA-H-NS-DNA bridges [24]. Intriguingly, three separate proteomic studies have identified phosphorylation
events on Tyr61 [55,58,63], presenting a negative charge, comparable to the Y61D mutation. These render the
hydrophobic core more hydrophilic and could thereby perturb H-NS oligomerization. As H-NS dimers oligo-
merize along the DNA, a salt bridge between Lys57 and Asp68 from a flanking H-NS fixates the coiled-coil
formed by anti-symmetrical α-helices from both dimers [71]. According to Kuhn et al., this lysine is acetylated
[57], blocking such a salt bridge and compromising H-NS multimerization ability. Interestingly, Hong et al.
engineered an H-NS variant (K57N) which exhibited induction of cell lysis, prophage excision and reduced for-
mation of biofilms. These effects are proposed to be due to indirectly enhanced interaction with Hha, YdgT or
StpA [81]. The previously mentioned Lys57 acetylation neutralizes the residue as well, and may thus induce
similar phenotypes, enhancing association of H-NS with heterologous association partners indirectly, due to
reduced multimerization. Strikingly, Asp68 and Lys57 are present on StpA as well, and its lysine has been
shown to undergo acetylation [64]. If interaction between H-NS and StpA involves a comparable salt bridge,
such a PTM may decrease the possibility of an H-NS–StpA interaction. Modulation of oligomerization along
DNA and DNA bridging are key aspects of H-NS-mediated modulation of gene expression [24,30]. Thus, these
PTMs could allow bacteria to regulate transcription, thereby adapting to their environment.

HU
HUαα and HUαβ organize DNA differentially through co-operative multimerization along DNA [39]. Dimer–
dimer interactions between either homo- or heterodimers differ in nature as they require several, distinctive salt
bridges. HUα-Lys37-HUα-Glu34 and HUα-Lys83-HUα-Glu26 salt bridges occur between two homodimers. In
contrast, heterodimers utilize HUβ-Lys37-HUβ-Glu34 and HUα-Lys83-HUβ-Asp26 interactions. HUα-Lys37
and HUα-Lys83 can be acetylated or methylated; HUα-Lys83 can be succinylated as well [56,57,62,64]. Such
PTMs prevent formation of these salt bridges, thus impeding dimer coupling. Acetylation is more likely to
occur in the stationary phase due to increased levels of acetyl-phosphate [64]. Since association of HUαα to
DNA is proposed to play a larger role in the exponential phase, while HUαβ is more important in the station-
ary phase [39], the acetylation of HUα could shunt formation of DNA-HU complexes towards utilizing more
HUαβ as these would require only HUα-Lys83 to be unmodified. These PTMs may provide selectivity towards
HU regulons as a function of different growth phases [82,83], granting a level of regulation additional to
varying HUα and HUβ expression [38]. Mechanistically, this could be related to distinct co-operative binding
modes used by HU to organize DNA [39].

Perturbation of interactions between NAPs and other
proteins by PTM
H-NS-modulator Hha
H-NS-mediated transcriptional silencing of certain genes requires the association of two Hha-molecules with
the N-terminal dimerization domain of an H-NS dimer [84]. NMR studies revealed a moderate role for
H-NS-Lys6 in binding Hha [85]. Moreover, Lys6 resides in close proximity to an Hha-α-helix [86]. This lysine
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residue can undergo either acetylation or succinylation [56,57,61,64]. Succinylation of Lys6 could induce sterical
hindrance, reducing the strength of the interaction, while acetylation could improve a potential interaction with
the proximal hydrophobic residues in the Hha α-helix. These PTMs may thus influence H-NS-mediated silen-
cing of genes that require Hha as a cofactor associated with H-NS. A positively charged surface on Hha oppos-
ite of the Hha–H-NS interaction interface has been proposed to enhance H-NS binding to DNA [86]. This
surface harbours Hha-Lys32, which is subject to acetylation [64]; acetylation of this residue could reduce its
affinity for DNA, which would in turn reduce the impact of Hha on DNA binding and DNA bridging by
H-NS [24].

HU-looping partner GalR
HU is responsible for DNA looping in the GalR-driven repressosome, inhibiting the gal operon [87]. HU
canonically acts sequence-independently, but at the gal operon it binds at a ‘specific’ site between two gal
operators due to the co-operativity of HU-binding and GalR-looping mediated by HU–GalR interaction [88].
The HUα residues responsible for the GalR–HU interaction are Ser17, Lys18 and Thr19, of which Lys18 has
been shown to undergo acetylation [57,64]. Such a neutralizing PTM, comparable to a K18A substitution [88],
may therefore induce similar phenotypes, i.e. reduced GalR–HU interaction and therefore, derepression of the
gal operon. Conversely, alanine-substitution at Lys22, a residue that also undergoes acetylation [57,64], did not
affect HU function in the repressosome [88]. This indicates potential redundancy for this PTM, or a function
in another HU-mediated mechanism.

FIS-inversion partner Hin
In Salmonella sp., FIS (see Figure 3b) is involved in the initiation of DNA inversion by Hin [89]. Within the
invertasome, FIS interacts with Hin through its N-terminal β-hairpin motif. Mutational analyses have been
carried out on the ability of FIS to activate DNA inversion reactions, which suggested several crucial residues
within the flexible N-terminal domain, besides a possible role for solvent-exposed residues from α-helix A [90].
One residue within this region undergoes acetylation, Lys25 [57,64]. In an FIS dimer, this lysine engages in a
hydrogen bond with Thr15, stabilizing the β-hairpin. Acetylation of Lys25 obstructs this fixation and thereby
increases N-terminal domain flexibility. However, an analogous hydrogen bond-inhibiting K25C mutation only
showed a moderate decrease in DNA inversion activation by FIS [90]. Its acetylation is therefore also unlikely
to inhibit this reaction completely.

Discussion
This meta-analysis identified multiple PTMs of bacterial NAPs that probably influence important cellular pro-
cesses. To date, none of the NAPs discussed here are known to bind any signalling ligands, a fact that may be
compensated for by PTM. Of the four major NAPs, it is noteworthy that FIS is substantially less subject to
functional modulation by PTM than the other NAPs. This may be explained by the fact that, different from
the other three NAPs, FIS expression is much more dependent on growth phase and growth rate [53].
Moreover, extensive cross-regulation occurs between FIS, DNA topoisomerase I and gyrase, using changes in
negative supercoiling to either activate or repress fis transcription [91–93]. Such a system may render an add-
itional layer of FIS regulation, in the form of PTM, unnecessary.
Lysine acetylation contributes towards a large portion of the PTMs identified in the present study. In eukar-

yotes, various lysine acetyltransferases and deacetylases have been discovered alongside many other PTM
‘writers’ and ‘erasers’ [94]. In contrast, very few protein-modifying enzymes have been discovered in bacteria.
In E. coli, acetylation and deacetylation seem to be almost completely regulated by acetyltransferase Pat and
deacetylase CopB [64]. Therefore, the abundant occurrence of acetylation may point towards non-enzymatic
reactions. Owing to an accumulation of acetyl-phosphate, indeed overall acetylation levels in E. coli are
increased in growth-arrested cells, compared with growing cells [64]. This suggests an ancient form of protein
function modulation in which primordial organisms exploited non-enzymatic acetylation to respond to chan-
ging physicochemical circumstances and nutrient availability. It seems likely that enzymatic modification
evolved as a way to act upon the environment in a more efficient and active manner. Since PTMs within bac-
teria have only been considered for a brief time, additional prokaryotic protein-modifying enzymes may remain
to be identified.
In the mid-1980s, Spassky et al. [95] identified three isoforms of H-NS, varying in their isoelectric points in

E. coli cell lysates. However, the nature and biological function of these isoforms have remained obscure. Since
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we have shown that H-NS may undergo several biologically relevant modifications, which may affect its isoelec-
tric point, the existence of such different H-NS species in the cell is not surprising. Conversely, one could
argue that with that many possible modifications, more isoforms would be present, which either may have
carried a similar isoelectric point, or were not abundant enough to show up on the gel. Therefore, it is import-
ant to be aware that the scrutinized proteomic studies do not provide information on the relative abundance of
post-translationally modified derivatives of the described NAPs. This asks for the application of quantitative
mass spectrometry approaches [96].
Only 2 out of 12 proteomics studies covered in this meta-analysis were aimed at identifying a wide range of

PTMs, while others targeted exclusively acetylation, phosphorylation or succinylation. Therefore, data including
other PTMs are currently less substantial. Furthermore, most studies employed a single growth condition, with
samples taken at a single, fixed time point. PTMs may therefore not be consistently detected due to their occur-
rence in different conditions. To effectively assess the function of PTMs, more extensive research is required.
The effect of environmental signals can be scrutinized through systematic variation of experimental conditions.
Furthermore, modification-specific antibodies may become a valuable tool in demonstrating the presence and,
for instance, genomic distribution of modified NAPs. Moreover, constitutive NAPs carrying PTMs described in
the present study can be constructed through chemical modification or genetic code expansion, to assess their
function experimentally [97].
While the functions of NAPs are hardly set in stone, a new level of complexity makes an entrance. Owing to

insufficient tools and lack of interest, PTMs on prokaryotic proteins have, until recent years, remained unex-
plored. Now, extensive PTM shown by several proteomics studies and the widespread functionality that they
present in E. coli underline the need for the consideration of such factors within structural and functional
investigations of NAPs and other prokaryotic proteins in general.
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