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Abstract

This paper focuses on the performance of runners in official races. Based on

extensive public data from participants of races organized by the Boston Ath-

letic Association, we demonstrate how different pacing profiles can affect the

performance in a race. An athlete’s pacing profile refers to its running speed at

various stages of the race. We aim to provide practical, data-driven advice for

professional as well as recreational runners.

Our data collection covers three years of data made public by the race organ-

isers, and primarily concerns the times at various intermediate points, giving an

indication of the speed profile of the individual runner. We consider the 10 km,

the half marathon, and the full marathon, which leads to a dataset of 120,472

race results. Although this data was not primarily recorded for scientific anal-

ysis, we will demonstrate that valuable information can be gleaned from this

substantial data about the right way to approach a running challenge.

In this paper, we focus on the role of race distance, gender, age and the

pacing profile. Since age is a crucial, but complex determinant of performance,

we first model the age effect in a gender and distance-specific manner. We

consider polynomials of high degree and use cross-validation to select models

that are both accurate and of sufficient generalisability. After that, we perform

clustering of the race profiles, in order to identify the dominant pacing profiles

of the runners. Finally, after having compensated for age influences, we apply a

descriptive pattern mining approach in order to select reliable and informative

aspects of pacing that most determine an optimal performance. The mining

paradigm produces relatively simple and readable patterns, such that both pro-

fessionals and amateurs can use the results to their benefit.
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egy; Regression; Subgroup Discovery
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1 Introduction

Running is among the most practised sports in the world. For practical reasons,

it is hard to keep track of all runners in the world and thereby exactly quantify

the total number of runners worldwide. However, for certain parts of the world,

there are some rough estimations available. According to a survey1 of Asics,

there were around 80 million European runners in 2009, and in 2016 only in the

United States already more than 64 million people went jogging or running.2

This number includes both the people that train on a regular basis throughout

the year and the more occasional runner. Also, participating in a road race is

popular. In 2016, there were in total roughly 17 million people that finished a

running event in the United States.2

The big technological improvements in the last decades gave runners many

new opportunities. In the early days, it was very hard to keep track of informa-

tion of trainings and race results, whereas nowadays a sport watch or running

application is part of the standard equipment of most runners. Therefore, run-

ners now gather data on a lot of athletic aspects, such as distance, pacing and

cadence. For recreational runners, this opened up the possibility to follow a

more detailed training schedule. Moreover, it is also leads to a growing interest

in the information that can be extracted from the data, as it can give an athlete

valuable information about how to improve their performance in a race.

To perform in a long-distance run, multiple factors are important, such as

physically preparing for a race and knowing how to follow a specific pacing

strategy. Although data can be used to help improve an athlete’s fitness, the

age of an athlete limits the physiological basis of endurance. Despite the fact

that some of the details are still up for debate, there is general consensus that

until a certain age, performance increases and eventually as one gets older,

performance decreases, such that there must be an age-related optimum for
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physiological functional capacity.3–6 For running, it seems that the optimal age

is positively correlated with distance: the longer the distance, the older the

optimal age.7 This may be further substantiated by the finding of Wiswell et

al.8 for shorter distances (5 and 10 km).

Apart from optimizing the fitness of an athlete, one of the most important

factors for a successful long-distance run is the followed pacing strategy.9–11

The strategies can be divided into several different categories.12 The most

common pacing strategies are positive pacing (the athlete slows down during

the race), negative pacing (the athlete accelerates during the race), and even

pacing (constant pace during the race).

Many studies on pacing strategies focus on professional athletes. Although

there is no conclusive evidence for an optimal strategy, most analyses find that

professional runners perform better when they run at a constant pace or follow

a negative pacing strategy.13,14 Since there are big differences between pro-

fessional athletes and recreational runners, these findings do not automatically

transfer to the amateur runner. For recreational runners, it is found that older

runners typically follow a more constant pace than younger athletes that finish

in a similar time.15 Also, by dividing athletes into different groups according to

their final time, it is found that faster runners have a smaller variability in their

race speed.16 In addition to pacing variability, there are many other pacing

characteristics that could distinguish slower from faster runners, such as mini-

mum or maximum speed, difference between minimum and maximum speed, or

simply, say, the relative pace from 5 to 10 km.

Up to now, the main pacing property that differentiates faster from slower

runners is still unknown. To find this characteristic, we divide the athletes into

two different groups: the fast finishers and the underperformers. To make this

distinction, we use age-performance models as a baseline for the physical ca-
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pacities. If an athlete’s final time is shorter than the age-performance model

predicts for his or her age, the runner is a fast finisher. On the other hand, under-

performers are athletes that are slower than predicted by the age-performance

model.

In this work, we use a data-driven approach to investigate the effect of age,

gender, and pacing properties on the performance in long-distance running. We

consider the 10 km, half marathon, and marathon organized by the Boston Ath-

letics Association between 2015 and 2017. In these three years, a total of 120,472

race results were recorded, and for each result, we have at our disposal informa-

tion on age, gender, distance, as well as the sequence of intermediate times that

the runner clocked. First, we focus on age effects and develop gender-specific

models for the 10 km, half marathon and marathon. Subsequently, we deter-

mine on each distance the most common pacing profiles, and we look at the

relationship between the performance and the pacing profile. Finally, we con-

sider many pacing properties together and use Subgroup Discovery to find the

main characteristics that distinguish the fast finishers from the underperformers.

2 Materials

In this section, we discuss the data collection and explain how we transform the

data into valuable characteristics for the analysis.

Data

In this research, we have used the data from the races over 10 km, half marathon

and marathon that were organised by the Boston Athletic Association from 2015

to 2017. This data is accessible online17 and we have received permission to use

this data collection for scientific purposes. For the 10 km race, we have a total

of 9,596 male and 12,313 female participants. The collection with the results of
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the half marathon consists of 8,586 male and 10,339 female participants. And

finally, for the marathon there are 43,482 male and 36,156 female participants.

For each distance, we have the athlete’s age in years and the final time of every

participant.

For the analysis, we have to account for the fact that some of the variance in

results is due to external factors. It is for example well-known that the weather

conditions have strong effects on the performance in long-distance running.18–20

Moreover, a change in the course can affect the height profile and thereby also

influence the recorded final times. Therefore, in our analysis we work with the

relative time.

Definition 1. For an athlete of gender g, the relative time trel of a race in the

year y with distance d is defined as

trel = t/tmed(d, g, y),

where tmed(d, g, y) is the median of all the recorded final times for athletes of

gender g for the race of distance d in the year y.

For our data collection, we find that the variability between different years in

the relative time is smaller than the variability in recorded final times. Hence,

the relative time is a better measure for comparing results between different

years.

The relative time is below or above 1 when the final time is faster or slower

than the median of the collection of relevant final times, respectively. We have

chosen the median over other measures, such as the mean, since it is less sen-

sitive to outliers. In principle, this definition could be used for analysing the

performances on all distances for both genders together, and finding results that

are independent of gender and race distance. However, the nature of the dis-
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tances is quite diverse and the physiological differences between male and female

athletes can be important. Therefore, we consider every distance and also men

and women separately.

In addition to the final times, we also have two intermediate times at 5 km

and 8 km in the 10 km race and for the participants of the half marathon, we

have the 8 km and 16 km intermediate times. The data of the marathon is richer

and contains intermediate times after every 5 km and halfway the marathon.

There are participants of which (some of) the intermediate times are missing

or of which the intermediate time measurements are incorrect. We were able to

check the quality of the data using some known limits. For example, we could

exclude any measurements where the time on a certain interval was negative.

Slightly more detailed, we also excluded some data points based on a maximum

feasible speed between successive intermediate points by using the distance-

specific world records. Roughly, we take a ten percent margin to allow athletes

to run slightly faster than the average world record pace on a particular interval.

Thus for men, we set speed limits of 25, 24 and 23 km/h for the 10 km, half

marathon and full marathon, respectively. For women, we use limits of 23, 22

and 21 km/h for the three distances. By removing these participants from the

data collection, we are left with 9,464 runners in the 10 km events, 8,480 athletes

in the half marathon races and 43,125 male participants for the marathon. Thus,

for the three distances, only 1.4%, 1.2% and 0.8% of the male runners have

intermediate times that are incomplete or incorrect. The number of female

participants that satisfy the speed limit criteria are 12,189 for the 10 km, 10,205

in the half marathon races and 35,906 for the marathon. Thus, for women, 1.0%,

1.3% and 0.7% of the participants are excluded on the 10 km, half marathon

and full marathon, respectively.

For each distance, there are differences in the distance between two successive
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intermediate points. Therefore, instead of taking the time difference between

two adjacent intermediate times, we consider the average speed between the two

successive intermediate points. Moreover, absolute speeds do not allow for a fair

comparison for pace variations in a race between athletes that run at different

average speeds. Therefore, we introduce the relative pace.

Definition 2. The relative pace prel between two intermediate points xa and

xb is defined as

prel(xa, xb) = v(xa, xb)/vavg,

where v(xa, xb) is the average speed between two intermediate points xa and xb

and vavg is the average speed during the race.

If the average speed of an athlete between two intermediate points is smaller

than 1, the runner is slower than his average pace during the entire race. The

relative pace is larger than 1 if the athlete is faster than the average speed in the

entire race. This definition is especially useful in our analysis, since the relative

pace is a proper measure for comparing pacing profiles of athletes that run at a

different average speed.

Note that in the data collection there are athletes that participated in mul-

tiple races. Therefore, in the collected data we would obtain results that are

slightly biased towards these athletes if we consider all entries together. There

are mulitple options to circumvent this issue. Participants that ran a particular

distance more than once may have altered their pacing based on their previous

experience. To compare a runner that runs the marathon for the first time

with an athlete that is more experienced is arguably unfair. Therefore, we only

consider a runner’s first result on a particular distance that falls within the pre-

viously mentioned speed limits. Although it still might be that runners from
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the 2015 marathon ran the marathon in previous years, we consider this the

solution with the least known bias. Therefore, we are left with 7,793 male and

10,493 female particpants on the 10 km. On the half marathon, we have 7,292

male and 9,078 female particpants and there are 36,107 male and 30,884 female

particpants on the marathon.

Feature Construction

To investigate the pacing properties that can affect the performance in a race,

we engineer meaningful features from the raw data. In this section, we will

discuss the different features that are constructed.

Paces

As discussed in the previous section, the data consists of the age, the final time

and a collection of intermediate times for every participant. The first class

of features that we construct are the relative paces on the different intervals.

Instead of considering the relative pace on all possible intervals, we restrict

ourself to the ones that are connected to each other. Hence, in the marathon

we consider for example the relative pace on the intervals 0 – 5 km and 10 – 30

km, but an interval that consists of the 0 – 5 km and 15 – 20 km intervals is

not considered. For the two shortest distances, there are two intermediate times

and therefore this approach only gives 5 features. However, for the marathon

there are 9 intermediate time points and since

10∑
i=2

i =
10 · (10 + 1)

2
− 1 = 54,

we have 54 features for the relative paces.

We are also interested in measures that quantify the distribution of the

relative paces. Therefore, for every athlete we collect the relative paces between
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two successive intermediate points. Of this collection, we then consider the

following measures of the distribution of the relative paces:21

1. Minimum

2. Maximum

3. Difference between maximum and minimum

4. Median

5. Standard deviation

6. First quartile

7. Third quartile

8. Interquartile range

9. Skewness

10. Kurtosis

In principle, also other properties can be considered, but we believe that these

quantities capture the most valuable information of the distribution of relative

paces. Since for the two shortest distances, the collection only consists of three

relative paces, we restrict ourselves in this case to the first five elements of this

list. In the marathon, we consider all measures that are listed above. Moreover,

in this case we have ten different relative paces and we define the first and third

quartile as the third smallest or largest relative pace, respectively.

Pace Changes

Apart from looking at the relative paces on the different intervals, we also con-

sider the changes in pace during the race. Here, we define the pace change as
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the relative drop in speed from one interval to another. Again, we only consider

all connected intervals. For the 10 km and the half marathon, this implies that

we have four different pace changes. The data of the marathon is richer. Since

we have 9 intermediate points, and

9∑
i=1

i · (10− i) = 10
9 · (9 + 1)

2
−
(

93

3
+

92

2
+

9

6

)
= 165,

we have in total 165 features for the pace changes. As with the pacing, we

also consider different measures of the distribution of the pace changes. For

the marathon, we consider the same measures as listed before, but for the two

shortest distances, we only have a distribution of two pace changes and therefore,

we only consider the first three elements of the list.

Pacing Profiles

As mentioned in the introduction, the followed pacing strategy is believed to

have an impact on the performance. Although the previous features already

capture some information about the pacing, we want to make this more explicit.

Therefore, we perform k-Means clustering based on the relative paces between

the intermediate points. In this way, we divide all participants into different

groups that follow a similar pacing.

First, we have to find a proper value for the number of clusters for men and

women on the different distances. In our case, it turns out to be difficult to find

an optimal value for this number due to the large variation among runners. This

can be seen in Fig. 1, where we display the relative sum of squared errors (SSE)

as a function of the number of clusters. Ideally, such a graph has a sharp angle

that determines the optimal value for the number of clusters.22 For our data

collection, the behaviour is rather continuous and therefore it is not possible to

unambiguously identify this so-called ‘elbow’ point.
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Figure 1: The relative sum of squared errors (SSE) as a function of the number of

clusters for men on the three different distances. For every cluster, we calculate

the distances between the pacing of an athlete and the centroid of the cluster

to which it belongs. The relative SSE is defined as the sum of all these values

and to facilitate comparison, we normalized this value with respect to the value

of the SSE assuming only a single centroid over the entire data.

In this research, we have opted for a consistent number of clusters among all

distances. At some point, adding another cluster will not identify a substantially

different pacing profile, or a profile that consists of only a small fraction of the

athletes. Therefore, we have decided to take three different clusters for both

men and women on all three distances. For all athletes, we then determine

the distance between their paces and the values for the pace of the centroid of

the clusters. Therefore, for every athlete, we construct three additional features

that capture the distance between their pacing and the three most characteristic

pacing profiles.

10



3 Methods

In our multi-step approach, we perform two different types of analysis. First,

we perform regression to model the dependence between the performance and

the age of an athlete. In the second part, we use Subgroup Discovery23–26 to

find informative characteristics of fast finishers and underperformers. In this

section, we discuss both methods separately.

Regression

As mentioned in the introduction, the relationship between age and performance

is parabolically shaped. However, the exact details of this relationship can be

rather complicated. Therefore, to obtain the model that is the best description

of this dependence, it is beneficial to also consider more complicated models

than a quadratic function.

In this research, we start with the assumption that the relationship between

the output variable, i.e., running time, and the regressors, i.e., age, can be

described by an analytic function. For all practical purposes this is a valid

assumption, since this implies that the function itself and all its derivatives are

smooth. Moreover, analytic functions can be represented by a Taylor series.

Assuming regression with only a single regressor (in our case, age), we can

represent the output variable by the following Taylor polynomial,

y =

k∑
i=0

aix
i,

where y is the output variable, x the independent variable, ai are coefficients

and k is the degree of the polynomial. The regression task is therefore finding

the degree k and the corresponding values for the coefficients that gives the best

estimate for the relationship between x and the dependent variable y. However,
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we still need to consider the risk of overfitting. Namely, an exact relationship

between the output variable and the regressor can be obtained if the number

of coefficients is equal to the number of datapoints. However, in this case the

obtained model is too specific to this sample of data and would not generalise

to future data.

A common approach to obtain a model that can be generalised to an in-

dependent data set is using cross-validation.27 In this research, we use 10-fold

cross-validation and perform the following steps. For a choice of k,

1. Split the dataset into 10 distinct parts that each have a similar distribution

for the independent variable. We apply stratified sampling by sorting the

data based on the value of the regressor and randomly distributing every

10 successive datapoints over 10 different sets

2. Train the model on 90% of the complete data set and obtain values for

the k coefficients by using least squares regression

3. Calculate the mean squared error of the model on the remaining 10% of

the data

4. Repeat the two previous steps in total 10 times such that each of the

10 sets is used as a validation set once. Add all 10 values of the mean

squared error to obtain the total mean squared error for the model with

a polynomial of degree k

For small degrees of the polynomial, the sum of the squares of the errors will de-

crease if the degree of the polynomial increases. Namely, adding new coefficients

leads to a model that is a better fit to the data. However, after a certain point,

increasing the degree gives a larger total mean squared error. If the degree is

too large, the model is too specific for the training set and therefore it will give a

large error when validating the model on the remaining 10% of the data. Hence,
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there is a certain degree that has the minimal value for the sum of squares of

errors on the validation set and this is the degree of the polynomial that we

select for our model. Finally, the value of the corresponding coefficients is then

obtained by using ordinary least squares regression on the complete dataset.

Subgroup Discovery

In data mining, the goal is finding patterns in the data. It is also interesting

to find specific subsets of the data that are characterized by properties that are

different than in the entire data collection. A method for finding these subsets

is Subgroup Discovery.

To explain Subgroup Discovery, we consider a tabular dataset, where the

columns represent the variables, or in SD-terminology attributes. As Subgroup

Discovery is a so-called supervised technique, every row in the table also contains

information about a specified target variable. The target variable t can be either

binary, where t can have two different values, or numeric where it can take any

value. The goal in Subgroup Discovery is to find a collection of rows, i.e. a

subgroup of the entire dataset, for which the distribution of this target variable

is significantly different from the distribution of t in the entire data collection.

The interesting part is then to look into the description of the subgroup, which

basically restricts the values of one or multiple attributes.

There are two important technical aspects when using Subgroup Discovery.

First, it is important to specify a so-called quality measure that determines

when exactly the distribution of the target variable in a subgroup is surprisingly

different. Quality measures typically take into account the unusualness of the

distribution of the target variable and also the size of the subgroup. Depending

on the quality measure at hand, there is more emphasis on either of the two

aspects. The literature offers many suggestions for quality measures for both
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Figure 2: Typical behaviour of the relative mean squared error (MSE) for dif-

ferent values of the degree of the polynomial. The relative MSE is obtained by

normalizing the values with the minimum value of the MSE and this example

corresponds to the results of the 10 km races of men. We observe that the MSE

first decreases until there is a large plateau where the MSE barely changes. For

high polynomial degrees, the MSE rapidly increases. In this case the minimum

score is achieved for a polynomial of degree 6. The starting and end points of

this plateau depend on the distance and whether we consider male or female

athletes.

numeric and binary target variables.28–30 Most of the quality measures that

are described in these surveys are included in the Cortana Subgroup Discovery

tool,31 which is the tool used in this project.

The second important part of Subgroup Discovery is to specify the search

strategy for finding the interesting subgroups. If the dataset is too large, it is
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namely no longer possible to investigate all possible subgroups in a reasonable

time span and we have to use a heuristic technique. For the experiments in

this research, we use beam search. In this method, we start from the simple

subgroups that are described by a single condition. The quality of each of the

subgroups is then evaluated by using the quality measure. We only keep the

promising subgroups in the beam, i.e., the subgroup with a value for the quality

measure that is a higher than a certain default value, and subsequently the

search is extended by adding new conditions to these subgroups. Then, we again

calculate the quality of these subgroups and only keep the high quality subsets.

This procedure is repeated until a certain depth dmax is reached, where dmax is

equal to the maximum number of restrictions that can be set on the values of the

attributes. After a certain point, when we increase the number of conditions,

the quality of the obtained subgroups will barely increase. Hence, it is usually

sufficient to take a small value for the search depth. In our experiments, this is

already the case for small values of d and we limited the search depth to d = 2.

In addition to setting a value for the depth of the search, we also have to

specify the beam width w. The beam width determines the number of the

subgroups that are stored during the search. If the value of w is very small,

only very few subgroups are extended if the depth of the search is increased

by one. For very large widths, many more subgroups are stored at the costs of

increasing the computational time. For an infinite width, even the entire space

of possible subgroups is considered. Therefore, there is a balance between the

computational time and the extensiveness of the search. In the experiments, we

will specify the value of this parameter.
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4 Results

In this section, we discuss the results of the experimental results. First, we

focus on the regression task of modelling the dependence between age and per-

formance.

4.1 Age-performance dependence

As explained in the methods section, the first task is to find the degree of the

polynomial. The typical profile for the mean squared error (MSE) as a function

of the degree of the polynomial of the model is shown in Fig. 2. In this figure,

we observe that the MSE is parabolically shaped with a large range where the

MSE barely changes.

Since the differences between the MSE of the models inside this range are

so small, the polynomial degree with the minimal MSE depends on the division

of the data over the 10 different sets. As this is partly a random process, we

performed the procedure that is explained in the Methods section 1000 times

and selected the degree that occurs most often as the one with the minimal MSE.

To specify the accuracy of the models, we also determined the 95% confidence

intervals. We have calculated these intervals by using a bootstrap method by

resampling residuals.32 Thus, we determined all residuals and then randomly

added a residual to the relative time of every athlete without changing the age

of the runners. Then, we have used this new data to fit the model with the same

polynomial degree. We repeated the complete procedure 1000 times. Hence, for

every age within the domain we have 1000 different predicted values for the

relative time. The upper (lower) boundary of the 95% confidence interval is

then obtained by taking the 25th smallest (largest) value.

In Table 1, we display the three degrees with highest occurrence after per-

forming a thousand runs. We see from this table that the number of experiments
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10 km Half Marathon Marathon

degree count degree count degree count

Men

6 999 7 43 8 71

8 1 8 79 16 634

- - 9 835 18 204

Women

12 932 27 616 11 727

14 28 29 382 17 155

20 22 30 1 18 98

Table 1: Polynomial degree of the model and corresponding number of times

that this degree occurs as the one with the minimal value for the MSE after

performing 1000 experiments. Only the three most occurring polynomial degrees

are displayed. The degree that occurs most often is boldfaced.

is large enough to find a unique value for the polynomial degree of the model, by

simply selecting the degree that occurs most often in the experiments. In this

table, we observe that in most cases the degree of the models is pretty similar

and between 6 and 16. However, the half marathon for women is the exception.

In this case, the degree is very high.

Although this could give the impression that the behaviour of the model

is quite oscillatory, the model is not as extreme as this number suggest. In

Figures 3 and 4, we show the different models for men and women separately. We

observe that in most models, there are only small undulations and the oscillatory

behaviour is predominantly present at higher ages. This is a consequence of the

fact that at these ages there are fewer participants and there is a large variability

in performances. This larger variability in sport performance at higher ages has

been reported before.33 However, at these high ages, the confidence intervals

are quite large and therefore, the models are not very reliable at these ages. For

ages between roughly 20 and 60 years, the confidence intervals are small and

the models are accurate. This relatively smooth behaviour is also supported by
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Figure 3: Model for dependence between age and performance on the different

distances for men. The shaded areas denote the 95% confidence intervals.

Figure 2. Namely, this figure shows that there is only a small difference between

the MSE of the selected model and the models with a much lower polynomial

degree. However, we will work with the best models in the remainder, since we

want to be as accurate as possible and the higher complexity of the model does

not lead to additional complications.

Although the primary goal is to use this model for compensating for age

effects in the Subgroup Discovery experiments that are described in the next

section, the models itself also give already some interesting insights. First of all,

we notice that in the reliable age range from roughly 20 to 60 years, the models

on all distances are very similar for both men and women. This is in agreement

with a previous study that has used the results of the New York marathon,34

where the authors conclude that there are no physiological differences between
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Figure 4: Model for dependence between age and performance on the different

distances for women. The shaded areas denote the 95% confidence intervals.

men and women in age-related declines for marathon running.

Moreover, in the reliable age range, the difference between our models for the

10 km and the half marathon is negligible. The model for the full marathon is

mainly different for ages larger than 50, where compared to the shorter distances,

the performance of the runners decreases more rapidly. Finally, on all distances

there are mainly two different regimes. For athletes below 50, the relative time

is approximately constant for the two shortest distances and slightly increasing

for the marathon. The relative time of athletes older than 50 increases more

steeply. The distinction between the two different regimes for athletes above or

below roughly 50 years is found previously.35 However, contrary to this study,

we find that the rate of decline for men is larger than that of women.

Finally, we also performed a Lack-of-fit F test to determine the statistical
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10 km Half Marathon Marathon

Men 0.15 0.75 0.18

Women 0.44 0.88 0.50

Table 2: The p-values for the models on the different distances for male and

female athletes. These values corresponds to the probability that we have a

situation as extreme as we encountered in this articles, assuming that the model

correctly describes the relationship between age and performance.

significance of the models.36 We have tested the null hypothesis that there is

no lack of fit and thus that the model properly fits the data. Therefore, we

calculated the value of the following F-statistic,

F =
N − n

n− d− 1

SSLF

SSPE
,

where N is total number of datapoints, n is the number of distinct ages and d

is the polynomial degree of the model. Moreover, SSLF and SSPE are the sum

of squared error due to lack of fit and the sum of squared error due to the pure

error, respectively. Therefore, this F-statistic describes the fraction of the total

error that is due to the variation that is present at every age.

The sum of these two quantities is equal to the total sum of squares of errors,

i.e., the sum of squares of all residuals. More precisely,

SSE = SSLF + SSPE =

n∑
i=1

ni
(
t̄irel −

〈
tirel
〉)2

+

n∑
i=1

ni∑
j=1

(
ti,jrel − t̄

i
rel

)2
,

where ni is the number of athletes with a certain age xi, t̄
i
rel is the average

relative time of the runners with this age,
〈
tirel
〉

is the predicted relative time of

the model at age xi and ti,jrel is the relative time of an athlete.

For each distance, male and female athletes, we used the F-statistic to cal-
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culate a p-value. This p-value is the probability that we get this value for

the F-statistic given that the nul hypothesis is true, i.e., there is no lack-of-fit.

Thus, roughly speaking, the p-value is the probability that the model correctly

describes the relationship between age and the performance. In Table 2, we dis-

play the p-values for the models on the different distances. From the results in

this table, we see that for each distance, there is a substantially large probability

that we find a situation as extreme as present in this data collection. Hence, for

all distances there is no substantial evidence there is lack of fit. Therefore, we

can assume that our models are an appropriate description for the relationship

between age and performance.

4.2 Pacing Profiles

As mentioned at the end of Section 2, we used the relative paces between two

successive intermediate points to define the three most characteristic pacing

profiles. In this section, we will discuss those different profiles in more detail

and also elaborate on the relationship between the pacing profile and the per-

formance during the race. Since the qualitative behaviour is similar for men

and women, we first focus on men and then briefly mention the differences with

women.

The results about the pacing profiles are displayed in Fig. 5. First, we focus

on the three figures on the left hand side of Fig. 5. In these figures, the three

most characteristic pacing profiles are displayed. We observe that in the 10 km

race (top row), the three most common pacing profiles are negative pacing, even

pacing and positive pacing. Thus, there are runners that increase their pace,

run constant or slow down respectively. If we look at the half marathon (middle

row), we find that there is a group of athletes that slightly increase their pace

and two groups that slowed down as the race progresses.
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Figure 5: Three most characteristic pacing profiles and the relationship with the

performance for men on three different distances. The first, second and third

row are for the 10 km, half marathon and marathon, respectively. The figures

on the left hand side show the most characteristic pacing profiles and the figures

on the right display the fraction of athletes with each of the three profiles as a

function of the relative time. For the relative pace, we show the pace halfway

two successive intermediate points and the relative times are grouped in bins

with size 0.05. The shading in the figures on the right hand side represent the

fraction of athletes that have the pacing profile with the corresponding line color

in the figure to the left.
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The difference between the latter two is the amount that the runners slow down.

Moreover, runners with negative pacing only slightly increase their pace and

therefore, the athletes in this group approximately run at a constant pace. Fi-

nally, in the marathon (bottom row) all three profiles are positive pacing and the

differences are again in the level of speed drop during the race. Thus, on longer

distances there is less variation in type of pacing profiles and more runners have

a positive pacing profile.

Up to now, we have only considered male runners. For women, the informa-

tion about the pacing profiles is very similar. Only for the marathon, there are

some small quantitative differences. We obtain that the negative change in speed

for the three positive pacing profiles is larger for male runners than for women.

Hence, in the full marathon we find that women start more conservatively than

men.

It is also interesting to investigate the relationship between the pacing profile

and the performance in the race. Therefore, we now focus on the three figures of

the right hand side of Fig. 5. We find on all three distances that the profile with

the highest starting relative pace at the beginning of the race, i.e., the darkest

area in Fig. 5, is less common under athletes with a small relative time. There

is only a very small fraction of runners that have this pacing profile and end up

with a relative time below 1. Moreover, we observe that this profile becomes

more and more present for athletes with a larger relative time.

If we look more closely at the runners with relative times around 1 or smaller,

we find in the 10 km that the group is dominated by athletes that run at a

constant pace. For the half marathon, these athletes can be roughly divided

into two groups of equal size. The group that runs with a small negative split

and the runners that have a small positive split. In the marathon, the picture

is rather clear and almost all athletes with a small relative time have the most
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Distance Depth Description Size Avg R2

10 km

1 Min. pace change ≥ -5.40% 6,028 -3.61% 0.125

2
Min. pace change ≥ -5.40%
∧ Difference max. and

min. pace change ≤ 9.20%
5,605 -4.46% 0.143

1/2 mar

1 Min. pace change ≥ -8.39% 5,242 -4.28% 0.160

2
Distance slow start

pacing profile ≤ 0.191
∧ Min. pace change ≥ -8.65%

5,171 -4.44% 0.164

mar

1
Interquartile range

pace change
≤ 7.47% 24,824 -5.94% 0.254

2

Interquartile range
pace change ≤ 7.47%
∧ pace change 0 – 21 km
to 21 – 30 km ≥ -12.3%

22,497 -7.25% 0.285

Table 3: Characteristics of optimal subgroups for men on the different distances.

We give the description, the size of the subgroup and distributional properties

of the athletes that are part of this subgroup at search depth 1 and 2. Finally,

we also specify the value for the quality measure R2 in the last column.

conservative pacing profile with the smallest overal change in pace. For women,

the results are again very similar and there are only some small quantitative

differences.

4.3 Subgroup Discovery

In the previous section, we have shown that there is a strong relationship be-

tween the pacing profile and the final performance in a race. However, there are

also other factors that influence the final result in a race. Here, we will discuss

the results of the experiments with Subgroup Discovery to find the race-specific

features that have the largest impact on the race performance for the different

distances.

Since we are only interested in race-specific properties, we want to compen-

sate for age effects. We consider a regression setting, where the target variable
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is the relative difference between the relative time of an athlete and the time

that is predicted by the age-performance model. On each distance, we will treat

man and women separately.

If we consider all male runners, the average difference between the model

and the actual performance is −0.00008%, −0.00002% and −0.00002% for the

10 km, half marathon and marathon respectively. For all women, this is on

average equal to −0.00002%, −0.01% and −0.00005%. The minus sign indicates

that athletes are faster than predicted. Hence, we are looking for subgroups of

substantial size, where the runners on average perform sufficiently better than

these numbers of the entire group.

In this research, we have used a beam search strategy with width 10. The

numerical search strategy setting is best-bins with 128 bins. This implies that

on each subsequent level we considered the 10 subgroups with the highest qual-

ity. Moreover, the numerical attributes were binned in 128 bins. For these

attributes, all numerical values were considered and the values that gave the

optimal split were selected. The quality measure we have used is Explained

Variance R2.37 The advantage of this measure, is that it considers both the

distribution properties of the subgroup and the complement. The value of R2

ranges between 0 and 1, where higher values correspond to subgroups of bet-

ter quality. The subgroups of highest quality for men and women are shown

in Table 3 and 4 respectively. Below, we discuss the results of depth 1 and 2

separately.

Individual features

For men, we find that on the 10 km and the half marathon, the best subgroup

consists of athletes that limit their speed drop during the race. Finally, for the

marathon, the fast finishers have small fluctuations in the acceleration through-

out the race. Note that the athletes in the best subgroups perform on average
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3.61%, 4.28% and 5.94% better than the result of the age-performance model

for the 10 km, half marathon and marathon, respectively. Thus, on average, the

athletes in these subgroups perform substantially better than all participants.

For women, we obtain similar descriptions for the best subgroups compared

to men on the 10 km and the marathon. On the half marathon, the best

subgroups are different for men and women. However, for men, the second

best subgroup on the half marathon are runners with a distance to slow start

pacing profile ≤ 0.190 (R2 = 0.153). The quality of this subgroup is almost as

high as the quality of the best subgroup (R2 = 0.160). For women, the second

best subgroup has the description that the minimum pace change ≥ −8.0%

(R2 = 0.176). Thus, also for this distance, the results are very similar for men

and women, and there are only some small quantitative differences. Note that

also for women, there is a considerable difference in the performance of the

runners in the best subgroups and all female participants.

Hence, we can conclude that rather than the pace itself, it is more important

to focus on the pace changes during the race. For shorter distances, it is enough

to limit the amount of deceleration. Whereas for the marathon, there is a bigger

restriction on the pace changes. Namely, the fluctuations in the pace changes

throughout the race should be sufficiently small.

Multiple features

Instead of considering subgroups with single conditions, we also have investi-

gated the best subgroups at depth d = 2. Therefore, we extended our search to

subgroups that are described by 2 conditions.

On the 10 km, the result are comparable for men and women. On top of the

condition that already came forward in the search at depth 1, we find that the

difference between the maximum and minimum pace change should be small.

Since for these distances the distribution of pace changes only consists of two
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Distance Depth Description Size Avg R2

10 km

1 Min. pace change ≥ -4.71% 7,050 -4.58% 0.143

2
Min. pace change ≥ -4.71%
∧ Difference max. and

min. pace change ≤ 8.69%
6,610 -5.28% 0.158

1/2 mar

1
Distance slow start

pacing profile ≤ 0.151
5,816 -4.66% 0.176

2

Distance slow start
pacing profile ≤ 0.151
∧ Difference max. and

min. pace change ≤ 11.4%

5,453 -5.19% 0.184

mar

1
Standard deviation

pace change
≤ 4.48% 19,303 -6.03% 0.271

2

Standard deviation
pace change ≤ 4.48%
∧ pace change 0 – 5 km
to 5 – 35 km ≥ -11.9%

18,399 -6.55% 0.282

Table 4: Overview of optimal subgroups for women on the different distances.

The characteristics that are shown for men in Table 3, also occur here.

pace changes, this condition is equivalent to having small fluctuations in pace

changes throughout the race.

For the two longest distances, the result for men and women is slightly

different. On the half marathon, both subgroups are described by an upper

limit on the distance to the slow start pacing profile, but the second condition

is different. The female runners have an additional restriction on the difference

between the maximum and minimum pace change. On the other hand, for

males, there is a lower bound on the pace change. On the marathon, the results

are qualitatively similar as they consist of a condition on the fluctuations in the

pace changes and a condition on the pace change between two specific intervals.

For men, there is a restriction on the interquartile range of the page changes

and the pace change from the first half of the marathon to the interval from 21

to 30 km. On the other hand, for women, the conditions are on the standard

deviation of the page changes and the change in pace from the first 5 kilometers
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Depth 10 km Half Marathon Marathon

Men
1 0.00171 0.00197 0.000497

2 0.00321 0.00316 0.000844

Women
1 0.00135 0.00145 0.000624

2 0.00229 0.00264 0.00106

Table 5: Lower bounds for the explained variance R2 for subgroups at search

depth 1 and 2 to be statistical significant at level α = 0.05.

to the interval from 5 to 35 km.

By extending our search to depth 2, the qualities of the best subgroups are

maximally roughly 15% higher. Thus, there is some improvement in the quality

of the optimal subgroups, but it is not very large. If we extend the search depth

even further, this improvement will become even smaller. Therefore, we do not

go beyond search depth 2.

Statistical significance

In Subgroup Discovery, a large number of candidate subgroups are considered

and therefore many hypotheses are tested. Therefore, there is a risk of finding a

result simply because such a large number of hypotheses are tested. To overcome

this problem, we validated our results by making use of a distribution of false

discoveries.38 By using swap-randomization on the target attribute, we have

calculated the threshold for finding a statistical significant result. The results

for a significance level α = 0.05 are displayed in Table 5. Hence, the qualities

of the presented subgroups are far above these thresholds and therefore we can

conclude that our results are statistical significant.
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5 Conclusions

In this article, we have used a data-driven approach to investigate several prop-

erties that affect the performance of an athlete in a long-distance running event.

We have used public data of races on the 10 km, half marathon and marathon

organised by the Boston Athletic Association in the years 2015 – 2017.

First, we have developed distance and gender-specific models for describing

the relationship between age and performance. In these models, the differences

between men and women as well as the differences between the models on the 10

km and the half marathon are negligible. However, the model for the marathon

is different. Namely, the rate of decline in performance for ages above 50 is

bigger on the marathon than on the two shorter distances.

Secondly, on every distance, we have identified the three most characteristic

pacing profiles for men and women. By looking at the fraction of athletes that

have one of these specific pacing profiles as a function of the final relative time,

we have found that only a very small part of the fast athletes have a pacing

profile with the largest decrease in pace. Furthermore, we have obtained that

even pacing is the dominant profile among the fast finishers in the 10 km. For

the half marathon, there is an equal number of good performing runners that

either have small negative or positive pacing. Finally, for the marathon, the

three most characteristic pacing profiles are all positive pacing. The profile

with the smallest speed drop throughout the race is the most dominant pacing

profile among the group of fast athletes. These results hold for both men and

women.

Finally, since the property for having the best possible performance in a

race is still unknown, we have transformed the raw data into multiple features

that characterize the pacing throughout the race. After compensating for age

effects by using the age-performance models, we have used Subgroup Discovery
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to select the pacing properties that have the largest impact on the performance.

We have found that controlling the pace changes is the most important feature

for the performance. On the 10 km, on average men perform 4.46% better

than the prediction of the age-performance model if the minimum pace change

is larger than -5.40% and the difference between the maximum and minimum

pace change is smaller than 9.20%. For women, similar conditions with slightly

different numbers hold. On the half marathon, we find that male athletes per-

form 4.44% better than predicted, if the runners roughly have a small negative

pacing profile and the minimum pace change is larger than -8.65%. The female

athletes perform 5.19% better than predicted, if the runners also approximately

have a small negative pacing profile and the difference between the maximum

and minimum pace change is smaller than 11.4%.

On the marathon, there are only quantative differences for the optimal sub-

groups for men and women. For men, we have found that they on average

perform 7.25% better than the model predicts, if the interquartile range of the

pace changes is smaller than 7.47% and the pace change from 0 – 21 km to

21 – 30 km is larger than -12.3%. For women, we have obtained that runners

on average perform 6.55% better than the prediction of the age-performance

model, if the standard deviation of the pace changes is smaller than 4.48% and

the pace change from 0 – 5 km to 5 – 35 km is larger than -11.9%. This shows

that pacing has a large impact on the result in long-distance running event, and

thus besides physiological properties, is probably one of the biggest factors in

running performances.

In comparison with most previous studies on pacing strategies in long-

distance running, we have used a data-driven approach instead of focussing

on a small set of runners or addressing pacing in an experimental setting.39–42

The big advantage of this approach is that this study concerns a much larger
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set and therefore much more different patterns can be investigated and tested

simultaneously in comparison with the more controlled setting. However, the

downside of this data-driven approach is that some important information is

unknown, such as the preparation prior to the race and the reason for running

the race, and therefore can not be taken into account. In our approach, the

only external factor we have is age, which we corrected for by using the age-

performance models. For data sets with information on other external factors,

such as the previously mentioned examples, these factors can be incorporated

by introducing additional parameters in our model. Given how easily we can

adapt or modeling approach, we can simply adopt a multidimensional regres-

sion of the relationship between the performance and all known external factors.

In this case, the model would incorporate the information about the external

factors and therefore the information about these external factors would also be

included in the definition of fast finisher and underperformers. For future re-

search, it would be interesting to perform this data-driven approach with a data

set where more external factors than age are known. In this manner, we could

compare the results and investigate the importance of the different external

factors.

We believe that the data and methods we have used in this study lead to

a good representative to generalise the results to other running events. Never-

theless, on the 10 km and half marathon there are only two intermediate times.

Therefore, the data collection is quite restricted and the information about the

pacing on these distances is limited. Including more intermediate times, would

definitely give more detailed information about the optimal pacing.

The results we have obtained in this research, give concrete and relative

simple conditions on the pacing during a race. This could be highly valuable

information for coaches that can help professional and recreational runners to
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optimize their performance. For future studies, it is worthwhile to collect data

of multiple races of individual athletes. With the methods that are used in this

research, we could give an athlete personalized advise about his or her ideal

pacing strategy.
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