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CONCLUSIONS 

 

The clinical nutrition practitioner, such as a registered dietitian, seeks to optimize 

nutritional therapies for the individual. Such experts rely on clinical practice 

guidelines translated from scientific publications as realistic recommendations for 

nutritional diagnosis and therapeutic recommendations. For example, the Academy 

of Nutrition and Dietetics in the U.S. has over 100 guidelines for common conditions 

(e.g., nursing) to specific diseases such as emergency medicine, allergy and 

immunology, obstetrics and gynecology, podiatry, or urology [1]. However, much of 

the scientific literature in the area of nutrition, and indeed, biomedical research, relies 

on statistical averages of selected groups (e.g., cases versus controls) which by 

definition cannot represent larger, more varied populations or an individual.  These 

averages are used to supplement disease diagnostic practices; and translating this 

corpus of literature results to personalized nutrition recommendations evidence is 

currently not possible. 

 

Two broad strategies are needed to overcome the challenges of improving population 

as well as personal health.  The first tactic is to develop n-of-1 research strategies that 

are capable not only of deeply analyzing individuals [2-4] but also aggregating data to 

expand recommendations beyond the studied population [4].  The second approach 

expands the reductionism currently used to analyze data from drug or nutrition 

studies to a more holistic analysis and interpretation of multiple biological and 

environmental scales (e.g., data from within the body plus the environment of 

individuals [5]. Systems biology [6, 7] approaches that produce data from the 

microscales within the body, such as metabolomic, proteomic, and network pathway 

analyses, hold the potential to assist the clinical nutritionist in developing a more 

personalized approach. However, the application of systems biology to nutrition in 

practice is still in its infancy. To date, these approaches rely on aggregating individual 

reductionistic analysis since the systems view of the whole metabolite-profile has not 

yet been elucidated. The integration of a systems view of nutrition with a systems view 

of metabolomics, and a systems view of proteomics, genomics, clinical, and laboratory 

metabolomics data sets has not yet been attained. Interpreting these systems 

integrations in the individual’s environmental, social, and psychological contexts is at 

the fore-front of healthcare but has not yet been initiated in academic, government, 

and all but a few isolated examples. 

 

The challenge remains…how do we integrate the various –omics technologies that are 

increasingly available from academic and industry research with nutrient 

measurements and nutrition interventions to generate the statistical evidence 
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necessary to help people become healthier and prevent disease? This thesis has 

touched on just a few elements of this challenge, using metabolomics and proteomics 

to characterize subgroups and diet response. 

 

In Chapter 2, we demonstrated it is possible to use a short-term healthy vegan diet 

to challenge metabolism and produce a metabolic signature conducive to optimal 

blood sugar, insulin and lipid control after only 48 hours. Our tightly controlled diet 

intervention resulted in strong correlations between dietary nutrients and plasma 

metabolites, supporting the notion food intake was closely linked to metabolites 

measured. Finally, we observed that nutritional biochemistries and the metabolite 

results, insulin and branched chain amino acids, were impacted by gender 

dimorphism. 

 

In Chapter 3, we continued to build the story begun with Chapter 2. We evaluated 

postprandial responses with glycemic, lipid and related metabolites on day three of 

the vegan and animal diets and demonstrated both diet types can have health 

advantages with flexitarian modifications. The vegan diet breakfast resulted in a less 

optimal metabolic signature despite apparently healthful food choices. However, the 

fiber content of the vegan diet may have reduced metabolite peaks and promoted bile 

acid concentrations that have positive health implications. The animal diet produced 

undesirable insulin and glucose peaks after lunch but a more favorable fatty acid 

profile from both mealtimes. We concluded that liberalization of the vegan meal plan 

to vegetarian; and the animal meal plan to a Nordic-based diet with increased focus 

on vegetable-based foods could result in improved metabolic signatures for both diet 

strategies. Insulin, triglyceride, amino acid and bile acid results showed gender 

dimorphic responses in these analyses. 

 

In Chapter 4, we further explored the influence of sexual dimorphism plasma profiles 

using aptamer-based proteomics combined with network analysis in a healthy cohort 

of women and men. Twenty eight percent of the total proteins analyzed were 

differentially expressed in a sexually dimorphic manner. These results were then 

successfully replicated in a larger cohort. The top eight most significant proteins 

elevated in females had known associations with sex hormone metabolism and each 

protein was involved in at least one diet- related metabolic disease. These proteins 

were all involved in glucose and insulin metabolism, metabolic rate, carbohydrate 

intake and salt sensitive hypertension. Of the top proteins more highly expressed in 

males, some were also involved in sex hormone metabolism with a focus on such areas 

as blood coagulation, inflammation and iron metabolism and overload and 

cardiovascular disease risk. Iron, total lipids, monounsaturated fatty acids, omega 3 
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polyunsaturated fatty acids, and vitamins K and A are known to play key roles in the 

proteins found to be highly expressed in males.  

 

In Chapter 5, we analyzed vitamins, metabolomics and clinical chemistries during 

the five menstrual cycle phases in women to uncover the sex hormone related 

metabolic differences, which influence the sexual dimorphism seen in Chapter 4. 

Fifty percent of the metabolites tested showed significant differences in rhythmicity 

across cycle phases and were enriched in neurotransmitter, glutathione (oxidative 

stress), urea cycle (nitrogen), vitamin B6 and vitamin D metabolism. Thus, we 

demonstrated the importance of accounting for menstrual cycle phase and sex 

hormone concentration differences in performing routine health diagnosis. 

Additionally, the luteal phase demonstrated the most significant decreases in amino 

acids and lipids, which may be caused by the anabolic effect of the progesterone peak.  

The changes in level of these metabolites could be linked to current biochemical and 

physiologic knowledge on biomarker changes in menstrual conditions such as 

premenstrual syndrome (PMS) and premenstrual dysphoric disorder (PMDD). Since 

individuals differ genetically, socially, and in environmental exposures, a larger 

population sample might identify those susceptible to PMDD and PMS and allow for 

strategic dietary interventions to alleviate symptoms. 

 

FUTURE PERSPECTIVES 

 

Innovative research designs, such as n-of-1 research [8] approaches that capture 

individual variability, need to be combined with controlled diet interventions to 

effectively translate –omics results to diet prescriptions. Challenge studies can be 

conducted alongside diet interventions to examine short-term changes in phenotypic 

flexibility.  

 

As a part of this thesis project, Figure 1 depicts a conceptual experimental framework 

that was developed to analyze utilization of a combinatorial glucose and fructose (e.g., 

disaccharides in sugar) tolerance challenge test during different phases of the 

menstrual cycle.  Specifically, this model experiment may determine how a sugar 

bolus (often consumed in excess in the luteal phase) alters carbohydrate, lipid, and 

protein metabolic effects, over a 10-hour time period in pre-diabetic and diabetic 

women. Introducing a protein shake, supplemented with essential fatty acids, may 

alter metabolism during the luteal phase to compensate for the increased protein and 

lipid requirements that may be relevant to the cell regeneration and recycling 

described in Chapter 5.   
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Figure 1: Hypothetical diet challenge study to evaluate the metabolic impact of an increase in protein intake 
during the luteal phase of the menstrual cycle. 

 

The challenge test would be done during the follicular and luteal phases when the 

participants are ingesting a usual diet; and then repeated after the daily ingestion of 

a high protein shake during the luteal phase. The results of the tolerance test would 

be compared between the follicular phase, which is the more stable phase for blood 

sugar control, and the luteal phase to examine the differences in the individual’s blood 

sugar control during this more vulnerable timeperiod. Finally, the luteal phase 

response of the individual to the luteal phase protein shake would be compared to 

examine the utility of this type of periodic intervention.  

 

Multiple plasma samples would be collected for clinical biomarker and metabolomics 

assessments. Creatinine clearance from 24-hour urine may be used to evaluate 

differences in protein utilization during these 3 phase specific timepoints. Dietary 

intake data would also be collected and evaluated for differences in habitual intake 

across individuals that are known to influence blood sugar control (Figure 1). This 

type of research strategy may create opportunities to use sex hormone subtyping for 

diet design that is translatable to practice and deserves further exploration. 

 

Hence, menstrual phase subgroups and sexually dimorphic data, may launch 

personalized nutrition into future healthcare practice.  Metabotypes, which are 

identified through cluster analysis of individuals based on similar metabolic 

phenotypes that can be identified using clinical and metabolomic markers [9], 

provide the conceptual basis to differentiate dietary intervention response. 
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Metabotype response then translates to targeted diet prescriptions. This type of 

analysis on the data generated in Chapters 1 and 2 in response to the vegan and 

animal test diets would have been appropriate. However, a sample size of 21 was too 

small to locate significant metabotype clusters.   

 

As one example of how metabotyping works, in a study of 1500 individuals, 3 

metabotypes were identified: 1) high HDL (high density lipoprotein) cholesterol, low 

glucose, low triglycerides; 2) low cholesterol; 3) high trigyclerides, high total 

cholesterol, low HDL and high insulin resistance. Dietary advice was targeted to 

metabotypes 1 and 3 to lower the characteristic biomarkers. This simplified targeted 

approach showed strong agreement with the individualized dietary advice provided 

by the dietitian (2). 

 
Another study used metabotyping to further analyze metabolic syndrome marker 

reduction with Vitamin D supplementation. That study analysis demonstrated an 

increase in Vitamin D concentration but no significant metabolic syndrome marker 

changes in the responder group.  

 

However, the use of a metabotype clustering approach identified a sub-group of 

vitamin D responsive patients that demonstrated significant decreases in fasting 

insulin, homeostatic model assessment score, and C-reactive protein (3). LDL level, 

fasting glucose, and cholesterol subgroups were also identified based on response to 

a longer term (6 week) micronutrient intervention in teens and adolescents [4] further 

buttressing the use of challenges tests to identify metabotypes. This type of approach 

could be used to analyze response to semi-vegetarian (flexitarian) diets, a concept 

that emerged from the vegan diet studied in this thesis.  

 

Study approaches need to join the rapid pace of technology development in order to 

ensure new technologies can help more people sooner. For example, the research 

results represented in Chapters 1 and 2 were generated from five years of work; 

including study design, recruitment, laboratory measurements, data analysis, 

manuscript generation and publication. The cost was close to 5 million francs. 

Research takes an average of 17 years to translate evidence into practice [10, 11]. This 

is too long given the rapid pace of climate change, population growth, food systems 

changes, and healthcare crises faced by modern society [12]. 

 

Self-quantification emerged following the development of smart phones and apps 

which allow for self-monitoring, data collection, and analysis to track activities, 

nutrient intakes, and health status.  Self-quantifiers reflect on their personal health 
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data to gain a better understanding of their body, health behavior and interaction 

with their environment [13]. A worldwide community exists to leverage homemade 

tools and experiences [14]. For example, smartphone applications, such as Clue [15] 

are widely used by women to easily track related symptoms and phases of their 

menstrual cycle, fertility and perimenopausal transition. These types of easy to use 

applications provide the inputs for individuals to track the results of their own self-

experimentation, such as the impact of changing diet strategies on menstrual cycle 

symptoms. The individual is empowered by the opportunity to test the effectiveness 

for themselves of an alternate diet strategy, such as the luteal phase protein shake 

suggested in the Women’s Health Challenge future study design (Figure 1). This type 

of self-centered research can be conducted more efficiently than currently accepted 

standard approaches to human clinical research. 

 

The challenge lies in aggregating this kind of data from a variety of tools collected by 

individuals in a consistent way so that humanity can benefit. Health information 

sharing websites, such as PatientsLikeMe [16] empower individuals to share their 

health conditions, data and unique experiences and connect with other patients like 

them. Participants have the opportunity to find new ideas and solutions to their 

unique health challenges that may not be known from published scientific research. 

Their data is then aggregated and sold to companies that wish to produce new 

products and services in diagnostics and therapeutics. Other companies, such as 

Arivale [17], Human Longevity, Inc. [18], and Molecularyou [19] target big data 

diagnostics analyzing blood, saliva and urine for genomics, metabolomics, 

microbiome analysis, proteomics, and lifestyle information. Advances in machine 

learning and artificial intelligence computing are likely to uncover new therapeutic 

solutions. Health action plans and personalized coaching are provided. Participants 

pay to provide their samples and receive their analyses. Data are aggregated and 

research discoveries made on a rolling basis. An example of using public domain data 

is analysis of 9896 users who self-recorded 587,187 food diary pages of the 

MyFitnessPal app with machine learning algorithms to discover under and over-

reporting of food intake goals [20]. Thus, big data and self-quantification could 

potentiate translation of valuable nutrition research findings to advance healthcare 

more quickly by overcoming some of the timeline and cost hurdles associated with 

the more traditional approaches to clinical trials research. 

 

Challenges with integrating –omics technology and nutrition remain. This thesis has 

taken some steps in this direction by evaluating healthy women and men to obtain 

metabolomics and proteomics signatures. Personalized nutrition subtypes were 

examined using the menstrual cycle phases and gender differences. Short-term diet 
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challenges were evaluated using metabolomics technology and demonstrated short-

term health improvement. Harnessing the power of nutrition by integrating it with 

new scientific and information technologies will launch us into a new era of 

preventive healthcare in which we can more effectively use metabolism and nutrition 

to diagnose and optimize health. 
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