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ABSTRACT 

 

Validated protein biomarkers are needed for assessing health trajectories, predicting 

and sub-classifying disease, and optimizing diagnostic and therapeutic clinical decision 

making. The sensitivity, specificity, accuracy, and precision of single or combinations of 

protein biomarkers may be altered by differences in physiological states limiting the 

ability to translate research results to clinically useful diagnostic tests. Aptamer based 

affinity assays were used to test whether low abundant serum proteins differed based 

on age, sex and fat mass in a healthy population of 94 males and 102 females from the 

MECHE cohort. The findings were replicated in 217 healthy male and 377 healthy female 

participants in the DiOGenes consortium. Of the 1129 proteins in the panel, 141, 51 and 

112 proteins (adjusted p<0.1) were identified in the MECHE cohort and significantly 

replicated in DiOGenes for sexual dimorphism, age, and fat mass, respectively. Pathway 

analysis classified a subset of proteins from the 3 phenotypes to the complement and 

coagulation cascades pathways and to immune and coagulation processes. These results 

demonstrated that specific proteins were statistically associated with dichotomous 

(male v female) and continuous phenotypes (age, fat mass) which may influence the 

identification and use of biomarkers of clinical utility for health diagnosis and 

therapeutic strategies. 

  



Chapter 4 

87 
 

INTRODUCTION 

 

The concentrations of proteins in the blood vary dynamically in the healthy state but 

may also change during the trajectory toward the onset of disease.  Robust technologies 

that accurately measure protein levels have an increasingly important role in 

investigating and advancing health research and clinical practice [1, 2]. The full promise 

of protein diagnostics has yet to be realized in the clinical setting.  The majority of 

protein diagnostic tests are based on single proteins for acute conditions (e.g., 

myocardial infarction) or cancers.  Protein signature tests consisting of multiple 

markers may be needed to achieve an optimal level of sensitivity and specificity for 

assessing complex health and disease processes [3].  

 

Variations in phenotype during aging, physiology (e.g., obesity or other physical 

conditions), or by sex dimorphism may independently affect protein levels making it 

difficult to optimize the utility of clinical diagnostics, especially in genetically and 

culturally diverse individuals. Many of the well-accepted risk factors for cardio-

metabolic disease risk have defined phenotypic cut-offs. For example, HDL cholesterol 

levels less than 40 mg/dL (1.0 mmol/L) are used to assess increased risk of heart disease 

for men but that cut-off is 50 mg/dL (1.3 mmol/L) for women.  Sex differences and other 

risk factors such as LDL cholesterol levels may independently increase risk of heart 

disease or other chronic medical conditions [4].  Previous work in the field of 

proteomics has identified 40 low-abundant proteins which differed in serum between 

12 males and 12 females [5] and more than 60 plasma proteins differed by over 2 standard 

deviations in 29 and 30 overweight and obese women and men, respectively [6].  Age, 

body mass index (BMI), body fat mass, and other physiological parameters may also 

influence the serum proteome and therefore utility and veracity of diagnostic markers.  

Serum proteomic and metabolomic approaches were combined to identify circulating 

proteins and metabolites that differed between 5 healthy lean and 5 healthy obese men 

[7].  That study, albeit small, established a link between the complement system and 

obesity and both novel and previously reported markers of alterations in body fat mass 

were identified. Considering age, physiological (such as, body fat mass), dietary, and 

other environmental variations, additional research into sex dimorphic plasma and 

serum protein modulations will be needed before sex specific medical and nutritional 

recommendations are implemented.   

 

One of the main challenges for analyzing the blood proteome is the large dynamic range 

in protein concentrations [8]. New technologies have been developed and successfully 

implemented to overcome this challenge [9]. Chemically modified single-stranded DNA 

aptamers (SOMAmers) have high specificity as affinity capture reagents for use with 
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undiluted and diluted plasma and serum samples to quantify low and high abundant 

proteins. SOMAmers are used in multiplex assays similar to DNA microarrays allowing 

for the simultaneous analysis of over 1000 proteins in small amounts (~65 ul) of serum. 

Improvements in mass spectroscopy pipelines and analysis[10] are also being made in 

blood proteomic analysis although these approaches require expensive equipment and 

expertise in the technologies.  

 

The primary aim of the research reported here was to identify the impact of sex, age and 

body fat mass on the proteomic signature and replicate the findings in an independent 

cohort. Furthermore, the identified proteins were mapped using pathway analysis 

methods to provide context and a greater understanding of the biological processes that 

differ by phenotype.  The results of this study provide a foundational understanding of 

the effect of these 3 phenotypic variables on protein markers. 

 

METHODS 

 

Study population 

The research described here extended the Metabolic Challenge (MECHE) study which 

is part of a national research program by the Joint Irish Nutrigenomics Organisation[11]. 

Briefly, the MECHE study enrolled 214 participants aged 18-60 y who underwent an oral 

glucose tolerance test (OGTT) and/or oral lipid tolerance test (OLTT). Clinical 

measures, body composition, and dietary habits were assessed in the fasted state 

(baseline) and at multiple time points following each challenge[11]. Demographic 

parameters obtained at baseline were used for analysis. Height was obtained using a 

wall mounted Harpenden stadiometer (Holtain Limited, UK) and weight was measured 

using a calibrated beam balance platform scale (SECA 888, Germany). Total fat mass 

was determined using DXA scanning (Lunar iDXA, GE Healthcare, UK). Individuals 

were informed about the purpose of the study and the experimental procedures, prior 

to giving written consent.  Good health was defined as the absence of any known chronic 

or infectious disease and this was verified by a number of fasting blood tests. Individuals 

with a BMI below 18.5 kg/m2, a low blood haemoglobin concentration (<12 g/dL), an 

elevated fasting plasma glucose (≥7 mM), an elevated cholesterol concentration (>7.5 

mM), an elevated triglyceride concentration (>3.8 mM) and elevated enzyme indicators 

of liver or kidney function, any of which warranted pharmaceutical intervention, were 

excluded. Details of the study have been published elsewhere[11-13]. The study was 

registered at clinicaltrials.gov under NCT01172951. Ethical approval was obtained from 

the Research Ethics Committee at University College Dublin (LS-08-43-Gibney-Ryan) 

and the study was performed according to the Declaration of Helsinki. For the present 
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study, participants from the MECHE study who had proteomic data were included 

(n=200) (Table 1).  

 

Table 1. Clinical characteristics of study participants 

 

 MECHE (n=196) DiOGenes (n=594) 

Sex (m/f) 94/102 217/377 

Age( y) 31 ± 10* 42 ± 6 ** 

Weight (kg) 74.42 ± 15.99 99.87 ± 17.8 

BMI (kg/m2) 24.7 ± 4.8 34.2 ± 4.8 

WHR 0.84 ± 0.1 - 

BP SYS (mm/Hg) 122.93 ± 12.37 - 

BP DIA (mm/Hg) 73.69 ± 10.52 - 

Glucose (mmol/L) 5.21 ± 0.58 - 

HDL-c (mmol/L) 1.35 ± 0.35 1.2 ± 0.33 

TAG (mmol/L) 1.04 ± 0.62 1.37 ± 0.65 

Insulin (µIU/mL) 8.71 ± 6.93 - 

HOMA-IR 1.87 ± 1.51 3.16 ± 2.56 

Body fat % 25.76 ± 10.92 - 

DEXA fat mass (kg) 28.28 ± 9.72 39.72 ± 11.1 

 
Data are presented as means ± standard deviation (SD); BMI: body mass index; WHR: waist to hip ratio; 
HDL-c: high-density lipoprotein cholesterol; TAG: triacylglycerol; HOMA: homeostasis model 
assessment.*18-60 y **23-58 y. 

 

Proteomics analysis 

1,129 proteins were quantified in fasting (at least 12 hours) serum samples of 200 MECHE 

participants using the proteomic platform SOMAmer™ (Slow Off-rate Modified 

Aptamer) as previously described [9]. Dataset is available upon request. This technology 

has a dynamic range of more than 8 logs, allowing quantification of both low and high 

abundant proteins which might otherwise be missed. Pre-processing of the proteomic 

data included log transformation of the abundance of each protein. Principal 

component analysis (PCA) did not reveal any significant batch effect across the proteins 

analyzed. PCA identified four individuals as outliers whose data were removed. 

Therefore, the final proteomic dataset included 196 individuals and 1,129 proteins. 

Proteins measured by SOMAmers are found in the blood as secreted (431), external 

membrane origin (275), and intracellular proteins (423). Proteins are often shed from 

membranes by proteolytical cleavage and intracellular proteins may be released from 

cells as a part of normal or abnormal physiological cell turnover.  

 

Replication cohort 

Participants were recruited from 8 cities in 8 European counties that were healthy, 

overweight/obese with a BMI between 27 and 45 kg/m2 and aged <65 y. Informed 

consent was obtained from all participants and the study was approved by the local 
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Medical Ethical Committees in the respective research centers, in accordance with the 

Helsinki Declaration [14]. The DiOGenes intervention study was registered on Clingov 

(NCT00390637). The DiOGenes cohort were selected as a suitable replication cohort for 

this analysis due to the availability of SOMAlogic data and a large sample size. 

SOMAlogic proteomic data were analyzed in serum of 594 participants: 377 females and 

217 males of the DiOGenes consortium, age 16-63 y, mean BMI 34 ± 4.8 kg/m2 (0 

individuals with BMI<25, 122 individuals with BMI 25-30, and 472 individuals with 

BMI>30 [15].  

 

Statistical methodology 

Analysis for study population characteristics was carried out using IBM SPSS Statistics 

20. Data are expressed as means ± standard deviation. Multivariate statistical analysis 

was performed using Simca-P+ software (version 14.0; Umetrics, Umea, Sweden). Prior 

to data analyses the MECHE dataset was scaled using UV scaling. PCA and PLS-DA was 

carried out to explore differences in protein levels between males and females.  

Orthogonal partial last-squares discriminant analysis (OPLS-DA) was performed which 

improves interpretation and separation between classes on a scores plot by filtering 

unwanted variation. A S-plot was generated from which potential proteins of interest 

were extracted. A value for p (corr) > 0.15 was used to select proteins that differed 

significantly between males and females to enhance identification of pathways. 

 

Robust regression (R package limma) [16] was used to identify proteins that were 

significantly associated with either age or total body fat measured by DEXA (fat mass in 

kg). Robust regression was chosen over linear regression since it is less sensitive to 

outliers. Proteins levels were first transformed to the residuals from a linear regression 

on sex to correct for this covariate.  The threshold of significance of Benjamini Hochberg 

(BH) adjusted p-values was 0.1. Baseline serum samples from DiOGenes were analyzed 

to test replication of the effect of sex, age and fat mass on protein levels. Robust 

regressions corrected for the collection center and sex, when analyzing age and fat mass.  

 

Pathway annotation 

Pathway over-representation analysis was performed with the human pathway 

collection from WikiPathways (curated collection with 276 pathways downloaded on 26 

January 2016) using PathVisio (version 3.2.4) [17]. Permuted p-value is calculated by 

performing a permutation test. The data is permuted 1000 times and a rank is calculated 

of the actual Z score compared to the permuted Z Scores. The Z scores are calculated 

based on the changed proteins in a pathway out of the total proteins in the pathway 

that have been measured in the uploaded dataset. Pathways with a Z-score of >1.96 and 

a permuted p-value < 0.05 are considered important. Functional pathway enrichment 
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analyses were also performed with KEGG and Reactome databases with the R packages 

HTSAnalyzer [18] and ReactomePA, [19] respectively. The analyses were conducted with 

all ENTREZ proteins/genes as background and with an adjusted p-value threshold of 

0.05. Pathway analyses were conducted only with proteins found to vary significantly in 

the same direction in both cohorts.  

 

 
Figure 1. OPLS-DA of males vs females derived from proteomic data of MECHE participants (n = 196). (■) Males, 
(□) Females, R2Y = 0.945; Q2 =0.765. 
 

 

RESULTS/DISCUSSION 

 

Sexual Dimorphism 

The 317 differentially expressed proteins between male and female in the MECHE cohort 

account for 28% of the total proteins analyzed (Table 2 and 3, Figure 1).  From there 141 

proteins were replicated in the DiOGenes cohort (Table S5a and S5b). The top 10 most 

statistically significant over-expressed proteins for each sex were compared for known 

physiological functions and associations with sex hormones, metabolic disease, diet, 

and previously characterized sex dimorphism (Table S1 and S2).  

 

The 8 most significant secreted proteins elevated in females have known associations 

with sex hormone metabolism (SHBG, leptin, thyroxin-binding globulin, adiponectin, 

angiotensinogen, fetuin B, immunoglobulin M, trefoil factor 3) (Table 3) [20-25]. Each 

of these proteins is involved in at least one diet related metabolic disease (except 
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immunoglobulin M) (Table S1). These proteins were affected by or affect glucose and 

insulin metabolism (SHBG, leptin, adiponectin, fetuin B, trefoil factor 3), metabolic rate 

(thyroxin binding globulin), and dietary carbohydrate intake (SHBG, leptin, 

adiponectin), and salt sensitive hypertension (angiotensinogen) [21, 22, 26-30]. 

Increased immunoglobulin M expression has been associated with gluten and dietary 

protein intakes [31, 32]. Recent studies suggest SHBG, adiponectin, angiotensinogen, 

and fetuin B may be involved in diabetes development [28, 33-35]. The cell-membrane 

located immune proteins, LAMP, and collectin placenta 1 were upregulated in females. 

These proteins stimulate neural growth and provide host defense with no previously 

described difference by sex or metabolic disease associations [36, 37]. Of note, collectin 

placenta 1 is the only protein within this group that was not replicated in the DiOGenes 

data.  

 

Nine of the top 10 most significant proteins more abundant in males are secreted 

(exception is myoglobin located in the exosome - Table 2). Of these 10, several are 

associated with sex hormone metabolism (myoglobin, matrix metalloproteinase 3, 

serum amyloid P, tissue factor pathway inhibitor, protein S, interleukin 1 receptor like 

1, LEAP) [38-46]. These top 10 proteins function in connective tissue development and 

growth, amyloid deposit development, blood coagulation, inflammation modulation, 

anti-microbial immunity and iron metabolism, as well as, immune cell migration and 

adhesiveness. These proteins are involved in processes contributing to metabolic 

diseases, specifically myocardial infarction (myoglobin), cardiovascular disease (matrix 

metalloproteinase), atherosclerosis (serum amyloid P, tissue factor pathway inhibitor, 

protein S), diabetes (ficolin-3), and iron overload (LEAP-1) [47-52]. Certain nutrients 

alter the abundances of some of these proteins: iron (myoglobin, LEAP), lipids 

(myoglobin), monounsaturated fatty acids, and n-3 PUFA (tissue factor pathway 

inhibitor), vitamin K (protein S), and vitamin A (LEAP) although the effect of diet was 

not analyzed in the MECHE cohort. The liver expressed chemokine (HCC-4) may be 

induced by total fat and calorie intake [53-60]. All 10 significant proteins found in 

MECHE were replicated in the same direction with robust regression in the DiOGenes 

data (Table S5a). 

 

Interpreting the role of a protein by its activity, association to a disease process, or 

association to an individual provides information on physiological states.  However, our 

results suggest a more holistic difference between males and females since the 

coagulation pathway cross-talks with and cross-regulates the immune system to 

maintain homeostasis [61].  Serpin Family D Member 1, a1-antitrypsin and plasminogen 

mapped to the complement and coagulation cascades pathway (Figure 3) in females.   
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Table 2: Proteomics results depict sexual dimorphism – proteins higher in males 
 

Full Protein Name UniProt ID Protein OPLS-DA 

scorec 

p (corr) Cellular 

Location Myoglobin P02144 MB 0.118 0.613 Exosome 

Matrix metalloproteinase 3    

   (Stromelysin 1) 

P08254 MMP3 0.110 0.574 Secreted 

Bone morphogenetic protein-1 P13497 BMP-1 0.105 0.549 Secreted 

Serum amyloid P P02743 SAP 0.100 0.522 Secreted 

Tissue factor pathway inhibitor P10646 TFPI 0.099 0.516 Secreted 

Protein S P07225 Protein S 0.096 0.501 Secreted 

Ficolin-3 O75636 Ficolin-3 0.094 0.491 Secreted 

Interleukin-1 receptor-like 1   

   (ST2) Interleukin-1 receptor 4 

Q01638 IL-1 R4 0.093 0.483 Secreted 

LEAP-1 (Hepcidin) P81172 LEAP-1 0.090 0.470 Secreted 

Liver-expressed chemokine HCC-4 O15467 HCC-4 0.088 0.459 Secreted 
 

a Data presented as first 10 significant proteins out of 173 total in males using OPLS-DA with a 0.15 cut-off. c describes the 
direction of the difference in males vs. females. 

 

Table 3: Proteomics results depict sexual dimorphism – proteins higher in females 
 

Full Name Uniprot ID Protein OPLS-DA 

valuec 

p (corr) Cellular 

Location Sex hormone-binding  

   globulin 

P04278 SHBG -0.102 -0.531 Secreted 

Leptin (OB) P41159 Leptin -0.098 -0.513 Secreted 

Thyroxine-binding  

   globulin 

P05543 Thyroxine Binding 

Globulin 

-0.097 -0.507 Secreted 

Adiponectin Q15848 Adiponectin -0.089 -0.466 Secreted 

Angiotensinogen P01019 Angiotensinogen -0.079 -0.414 Secreted 

Fetuin B Q9UGM5 FETUB -0.073 -0.381 Secreted 

Immunoglobulin M P01871 IgM -0.072 -0.378 Secreted 

Trefoil factor 3 -  Intestinal trefoil 

factor (hITF) 

Q07654 TFF3 -0.071 -0.369 Secreted 

Limbic system-associated  

   membrane protein (LAMP) 

Q13449 LSAMP -0.069 -0.362 Membrane 

Collectin Placenta 1b Q5KU26 COLEC12 -0.067 -0.351 Membrane 
 

a Data presented as first 10 significant proteins out of 144 total in females using OPLS-DA with a 0.15 cut-off. b Only protein 
not replicated in DiOGenes data set. c Describes the direction of the difference in males vs. females. 

 

The same pathway was identified in males but through different proteins (tissue factor 

pathway inhibitor, thrombin activatable fibrinolysis inhibitor, plasminogen activator, 

serpin family A member 5, serpin family C member 1 and Protein S).  Tissue factor 

pathway inhibitor is present in free and lipoprotein-associated forms [62] while protein 

S is more frequently (60% of total) bound to C4B which abolishes its anticoagulant 

properties [63].  Bound and free Protein S were more abundant in males compared to 

females [64]. This protein also is involved in phagocytosis of apoptotic cells [65].  Others 

studies identified Serpin Family D Member 1, Serpin Family C Member 1, Serpin Family 

A Member 1 and protein S among 27 significant proteins that differed in the complement 

and coagulation cascades between males and females [6].  Toll- like receptors, immune- 

and adipo-cytokine proteins were more abundant in females.  
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Figure 2. Overview of KEGG pathway enrichment. Bar graph displaying KEGG pathway enrichments by classes 

(proteins significant for male,female, age and fat mass). The size of the bar graph represent the coverage of the 

pathway (number significant proteins in the pathway/number of total proteins in the pathway). The dendrogram 

groups similar pathways (pathways that include similar genes). 

 

 

These proteins mapped to pathways (Figures 2, Figure S1, Table 6, Tables S6-S8) 

previously identified as belonging to the inflammasome [1], a system of interacting 

networks regulating acute and chronic inflammatory conditions.  

 

 The individual proteins mapped to these pathways (e.g., members of the interleukin 

family) have been linked with diseases associated with chronic inflammation in (for 

example) obesity and T2DM [2], the pathogenesis for which differs between men and 

women [3, 4]. This connected complement-immune system may result from and 
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contribute to metabolic differences of sex dimorphism.  How these related systems are 

regulated will require more comprehensive analysis of components of these pathways 

in future studies. 

 

Age 

Regression analysis revealed 167 proteins (15% of 1129 proteins) significantly associated 

(adjusted p-value <0.1) with age (range: 20-60 y). Fifty-one of these protein - age 

associations were replicated in the DiOGenes data (Table S5c). Coefficients of the 

regression for age can also be found in Table S5c. The top 10 proteins associated with 

age were IL1RL2, FSHB, ADMTS5, CHIT1 (all positively correlated with age) and AGRP, 

OMD, RET, CDON, IGFBP3 and IGFBP5 (negatively correlated with age) (see Table 4), 

however OMD was not significantly associated in DiOGenes. The levels of the majority 

of these proteins, with the exception of IL1RL2 and CDON, were previously associated 

with age [5-11]. The identified proteins are involved in diseases and sub-optimal states 

of health in relation to aging including (i) inflammation (IL1RL2, CHIT1) [10-12], (ii) 

arthritis (ADAMTS5, IGFBP3) [13, 14], (iii) vertebral fractures (IGFBP3) [15] (iv)  bone 

metabolism (IGFBP5,AGRP,OMD) [16-18], (v) weight homeostasis (AGRP,CDON) [19, 

20], (vi) lean body mass (IGFBP3) [21], (vii) cancer development (RET,CDON) [22, 23] 

and prevention (IGFBP3, IGFBP5) [24, 25], and (viii) muscle metabolism (IGFBP3, 

IGFBP5, CDON) [26, 27].  Levels of FSHB and AGRP were positively influenced by caloric 

restriction and a high-fat diet, while IGFBP3 was impacted by supplementing the diet 

with n-3 PUFA [28-30]. 

 
Table 4: Proteomics results significantly associated with agea 

 

Full Protein Name UniProt ID Protein P.Value adj.P.Val Cellular 

Location Interleukin 1 receptor like 2 Q9HB29 IL1RL2 1.85E-13 2.09E-10 Membrane 

alpha polypeptide - follicle  

   stimulating hormone  

   beta subunit 

P01215 

P01225 

CGA 

FSHB 

1.12E-11 6.34E-09 Secreted 

Metallopeptidase with   

   thrombospondin type 1  

   motif 5 

Q9UNA0 ADAMTS5 1.41E-10 5.29E-08 Secreted 

Chitinase 1 Q13231 CHIT1 2.08E-10 5.88E-08 Secreted 

Agouti related neuropeptide  O00253 AGRP 4.51E-10 1.02E-07 Secreted 

Osteomodulinb Q99983 OMD 6.89E-10 1.30E-07 Secreted 

Ret proto-oncogene 2  P07949 RET 2.85E-09 4.60E-07 Membrane 

Cell adhesion associated,  

   oncogene regulated 

Q4KMG0 CDON 1.32E-07 1.86E-05 Membrane 

Insulin like growth factor  

   binding protein 3 

P17936 IGFBP3 1.83E-07 2.29E-05 Secreted  

Insulin like growth factor  

   binding protein 5 

P24593 IGFBP5 2.04E-07 2.30E-05 Secreted 
 

a Data presented as top 10 significant proteins out of 166 total using robust regression with correlations 

calculated using residuals following correction for sex. b Only protein not replicated in DiOGenes data 

set. 

 

Annotation of the MECHE proteins statistically significant in the DiOGenes cohort 

identified a number of associated pathways (Figure 2, Figure S1, Table 6, Tables S6-
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S8). Four proteins associated with aging emerged in the complement and coagulation 

cascade pathway, of which SERPING1 (c1 esterase inhibitor) was specific to aging. 

Increases in C1 esterase inhibitor are observed during inflammation [31]. All of these 

proteins with the exception of CCL21 were positively associated with increased age.  The 

chemokine pattern found in this study (CCL21 lower and other CCL’s higher) was 

consistent with other studies showing increased expression of CCL27 in senescent cells 

[32], levels of CCL11 and CCL7 in aged animals or humans [33], and decreased levels of 

CCL21 [34]. Further pathways of interest were identified through KEGG and Reactome 

(Tables S6-7). Collectively, these proteins and the pathways in which they act are 

processes consistent with inflammation, the interconnected processes that result from 

lifelong insults to the immune system resulting in chronic low-grade inflammation and 

immunosenescence [35].  

 

Fat Mass 

Regression analysis identified 21% of SOMAscan proteins significantly associated 

(adjusted p-value <0.1) with body fat mass (range: 8-58.2kg).  Of these 232 proteins, 112 

were replicated at an adjusted p-value <0.1 in the DiOGenes cohort, with coefficients of 

regression displayed in Table S5d. The top 10 proteins associated with body fat mass 

are LEP, PLAT and C1S (all positively correlated with fat mass) and IGFBP1, TFF3, SHBG, 

MMP2, WFIKKN2, HFE2 and TF (negatively correlated with fat mass) (Table 5). All 10 

proteins were replicated in the DiOGenes cohort. The physiologic functions of these top 

proteins include inflammation, glucose metabolism, defense response, blood 

coagulation, regulation of cell growth, along with angiogenesis and iron homeostasis 

(Table S4). Leptin was strongly associated with fat mass [36, 37] and elevated in females, 

consistent with its known role in regulation of body weight and energy balance [38, 39].  

 

Table 5: Proteomics results significantly associated with fat massa 

 

Full Protein Name UniProt 

ID 

Protein P.Value adj.P.Val Cellular 

Location Leptin  P41159 Leptin 1.57E-18 1.78E-15 Secreted 

Tissue-type plasminogen  

    activator 

P00750 PLAT 2.92E-13 1.32E-10 Secreted 

Insulin-like growth factor-binding 

protein 1 

P08833 IGFBP1 3.51E-13 1.32E-10 Secreted 

Trefoil factor 3  Q07654 TFF3 2.09E-12 5.90E-10 Secreted 

Sex hormone-binding globulin P04278 SHBG 7.32E-11 1.65E-8 Secreted  

Matrix metalloproteinase 2  P08253 MMP2 3.56E-10 6.70E-8 Secreted  

WAP, kazal, immunoglobulin,  

    kunitz and NTR domain- 

    containing protein 2  

Q8TEU8 WFIKKN2 4.80E-10 7.74E-8 Secreted  

Complement C1s P09871 C1S 9.65E-9 1.36E-6 Exosome 

Hemojuvelin  Q6ZVN8 HFE2 2.16E-8 2.71E-6 Membrane 

Transferrin P02787 TF 2.44E-8 2.75E-6 Secreted 
 

a Data presented as top 10 significant proteins out of 233 total using robust regression with correlations 
calculated using residuals following correction for sex. All proteins replicated with DiOGenes data set. 
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Increased BMI and fat mass are known risk factors for diseases such as metabolic 

syndrome and cardiovascular disease (CVD).  Three proteins associated with fat mass 

in the MECHE/DiOGenes cohorts (tPA, IGFBP-1, and TFF3) have been associated with 

metabolic conditions. High levels of tPA antigen independently predicted 

cardiovascular events both in a healthy population and in individuals with prevalent 

coronary disease [40]. Elevated plasma tPA antigens were associated with insulin 

resistance, T2D, and obesity. Decreased abundance of plasma tPA (approximately 29%) 

was observed following a 12 week energy restricted diet in overweight women with 

metabolic syndrome [41]. Insulin like growth factor binding protein 1 (IGFBP-1) is 

negatively associated with fat mass in the MECHE/DiOGenes cohorts.  Lower levels of 

IGFBP-1 at baseline was associated with the combination of increased percentage body 

fat and plasma insulin levels [42]. Trefoil factor 3 (TFF3) was negatively associated with 

fat mass but positively associated with female sex. Increased levels of TFF3 were 

observed to improve glucose tolerance in a diet-induced obesity mouse model, which 

supports previous reports that TFF3 plays a role in energy metabolism [43].  

 

The 112 differentially abundant proteins associated with fat mass were mapped to KEGG, 

WikiPathways and Reactome pathways (Figure 2, Figure S1, Table 6, Tables S6-S8). 

Seven proteins significantly associated with fat mass mapped to the complement and 

coagulation cascade pathway (Figure 3). The complement and coagulation cascade 

pathway is associated with chronic disease risk [44]. In this pathway, abundances of 

TFPI, coagulation factor IX, tPA, Factor H and C1s were higher while anti-thrombin III 

and C7 were less abundant as fat mass increased.  Although not directly tested in this 

study, enzymatic activity of thrombin would be maintained in conditions of decreased 

levels of anti-thrombin III with the result that coagulation would be increased.  The 

association between increased coagulation factor IX, which is also inhibited by anti-

thrombin III, and increased fat mass found in the MECHE/DiOGenes cohorts is 

consistent with more active coagulation processes.  Evidence from cell culture 

demonstrated that a subset of proteins expressed in the complement pathway were 

altered in adipose cells from insulin resistant humans and in animal models of obesity 

[45].  These proteins associated with fat mass and the pathways to which they belong 

suggest a link between insulin resistance, T2D, and coagulation processes. 

 

Fifteen proteins, including adiponectin, insulin, and leptin mapped to the Reactome 

development biology pathway (Figure S1, Table S7) and to KEGG cytokine - cytokine 

receptor interactions (Figure 2, Table S6).  
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Figure 3. Complement and coagulation cascades pathway obtained from WikiPathways displaying proteins differentially expressed across 
sex, age, and fat mass phenotypes.  
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Eleven other proteins, which included ECM proteins (e.g., NCAM1, MMP2, CHL1 

negative associations with FM) and growth factors (EGFR, FGFR1, negative associations 

with FM) were also assigned to the axon guidance pathway, a participant in Reactome’s 

developmental biology pathway. The axon guidance pathway was identified in a 

transcriptomic analysis of fatty hearts in miniature pigs fed a high energy diet [1] 

suggesting that dysregulation of these genes may not be specific to neuronal tissues.  

Decreased levels of axon guidance proteins (e.g., UNC5D, RGMB CHL1) may alter neuro-

adipose junctions involved in leptin regulation [2]. The mapping of individual proteins 

to multiple pathways also identified potential processes associated with increased fat 

mass.  For example, NOTCH1 was found in 11 of the 33 significantly enriched Reactome 

pathways. NOTCH1 was inversely associated with fat mass in the present study.  

Decreases in levels of endothelial NOTCH1 may be a risk factor for vascular 

inflammation and promotion of diet-induced atherosclerosis [3]. Therefore, 

examination of pathways related to fat mass provides a platform for further 

investigation of associated biological processes. 

 

Phenotypic variables have an impact on protein levels  

Examining the impact of phenotypic variables revealed the importance of considering 

sex, age and fat mass in proteomics studies.  Aptamer based binding assays were used 

to quantify low abundant serum proteins at baseline in healthy participants of the 

MECHE (11) and DiOGenes (15) cohorts based on sex, body fat, and age. Forty four 

percent of sex proteins (51% male, 35% female), 31% age proteins and 49% fat mass 

proteins identified as significant in the MECHE cohort were replicated in the DiOGenes 

cohort. The differences in replicated proteins for each phenotype group likely reflects 

known differences between the two cohorts. DiOGenes participants were older in age 

(41.6 ± 6.1 vs. 31 ± 10 y in MECHE) with a higher BMI (34.2 ± 4.8 vs. 24.7 ± 4.8 kg/m2 in 

MECHE) and more body fat (39.7 ± 11.1 vs. 25.76 ± 10.9 kg in MECHE) (Table 1). The 

difference in these parameters is considered a strength since the same proteins were 

significant in a slightly older and more obese cohort, which extends the use of these 

proteins in studies of individuals with wider age and BMI ranges. Histogram plots of age 

and sex for both cohorts are in Figures S2a-f.  Two proteins overlapped all 3 phenotype 

groups, 6 proteins between age and sex, 30 proteins between sex and fat mass and 4 

proteins between age and fat mass (Figure S3).  Scatterplots of proteins related to age 

and fat mass respectively can be found in Figure S6 and Figure S7. The present results 

highlight the need for including phenotypic parameters in proteomics studies and make 

a case for the development of phenotypic specific cut offs. Differences in sex, age and 

fat mass may independently induce quantitative changes in the proteins thought to be 

specific for a biological process or disease phenotype.  That is, underlying differences in 

phenotype (sex, age, fat mass) may confound the identification of disease-specific 
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markers. The successful identification of proteins related to gender, age and fat mass in 

this study will allow for promising biomarkers to be tested for potential confounding 

factors prior to progression into a clinical setting. In addition, findings from this analysis 

will contribute to improved statistical modelling by including the identified proteins as 

confounding factors in future biomarker discovery studies. 

 

The strengths of this study include testing whether proteins identified in the MECHE 

cohort were replicated in the larger DiOGenes cohort. Pathway analysis was also 

performed using several different pathway analysis software platforms and provided 

further insights into the functions of the proteins. While the present study represents 

an important advancement for proteomics there are a number of limitations worth 

noting.  The proteins were identified using SOMAlogic assays which are a subset of the 

total protein pool. Subsequent versions of SOMAscan or mass spectroscopic methods 

may identify additional proteins and pathways for each of the phenotypes studied here. 

In addition, mapping proteins to KEGG, Reactome, and WikiPathways to create 

meaningful interpretation of the proteomics data is constrained by the depth and 

publication biases of pathway databases.  

 

CONCLUSIONS 

 

Phenotypic characteristics such as sex, age and body fat mass have independent 

associations with the levels of certain serum proteins. Mapping these proteins to 

pathways identified biological processes differing across phenotypic measures. 

Importantly, the findings were replicated in an independent cohort. Gender and sex 

specific health care is emerging as differences in trajectories towards disease and 

therapeutic responses between males and females are identified. Many of the most 

significant proteins identified in this study had known relationships with sex hormone 

metabolism indicating sex hormones play key roles in influencing metabolic health. 

Additionally, age and fat mass are well-established risk factors for disease. These results 

are relevant to the development of diagnostic and prognostic markers of health and 

disease trajectories. The present results will be an important consideration in the 

development of protein signatures for use in the clinical setting. 
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Table 6: Overview of pathways related to sex, age and fat mass using WikiPathways 

 
Table 6. Pathways obtained from pathway statistics using PathVisio software, using the curated 
WikiPathways directory. Pathways with a Z-Score of >1.96, a p-value of <0.05 and who have 3 or more proteins 
differentially expressed are considered important. P-value is permuted. Sorted by number of differentially expressed 
proteins in pathway. 

 

  

  Pathway Positive  Measured  Z Score P ID 

Males Complement and Coagulation 
Cascades 

7 40 2.27 0.039 WP558 

Selenium Micronutrient Network 7 27 3.49 0.003 WP15 

Vitamin   B12 Metabolism 7 24 3.88 0.002 WP1533 

Folate Metabolism 6 26 2.88 0.011 WP176 

Statin Pathway 3 4 4.95 0.001 WP430 

Urea cycle and metabolism of amino 
groups 

3 4 4.95 0.001 WP497 

Females Adipogenesis 5 23 4.05 <0.01 WP236 

Aryl Hydrocarbon Receptor 3 19 2.41 0.032 WP2586 

FAS pathway and Stress induction of 
HSP regulation 

3 15 2.93 0.021 WP314 

Myometrial Relaxation and 
Contraction Pathways 

3 22 2.1 0.031 WP289 

Aging Complement and Coagulation 
Cascades 

4 40 2.01 0.044 WP558 

Senescence and Autophagy in Cancer 4 39 2.07 0.047 WP615 

Fat mass Spinal cord injury 8 47 1.78 0.052 WP2431 

 Complement and coagulation 
Cascades 

7 40 1.74 0.053 WP558 

 
Adipogenesis 6 23 2.72 0.006 WP236 

Cardiac Progenitor Differentiation 5 15 3.15 0.008 WP2406 

Neural Crest Differentiation 5 18 2.65 0.017 WP2064 

Complement Activation 4 17 1.97 0.038 WP545 

AMPK signaling 3 12 1.82 0.049 WP1403 

Differentiation of white and brown 
adipocyte    

3 3 5.33 <0.01 WP2895 

Notch Signaling Pathway 3 7 3 0.013 WP268 

NOTCH1 regulation of human 
endothelial cell calcification 

3 10 2.2 0.039 WP3413 
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