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GENERAL INTRODUCTION 

 

Personalized nutrition, which originated from gene and nutrient interaction research 

[1], has received much attention in health-oriented marketplaces due to increased 

technological capabilities to sensitively measure unique differences between 

individuals. Public interest in individualizing health has grown as various sectors in 

society offered more and improved technologies and capabilities to empower 

individuals to move from one-size-fits-all to the ability to quantify and control their 

personal lives.  Consequently, new research must be designed to assess individualized 

health trajectories and optimize individualized diagnostic and therapeutic decision-

making [2, 3]. In order to realize the power of personalized nutrition, research needs to 

be conducted on healthy people with highly sensitive metabolic markers capable of 

diagnosing the impact of environmental stressors, such as diet, and physiologic 

stressors, such as changing sex hormones and the menstrual cycle. Obvious phenotypic 

differences, such as sex and gender, should be evaluated as they represent easily 

targeted subtypes with unique physiologies for which personalized nutrition can be 

prescribed. 

 

The power of personalized health diagnosis from which personalized nutrition 

therapies can be prescribed, relies not only on individual variations in genotype, but the 

environmental and physiologic responses manifested through transcriptomic, 

metabolomic and proteomic measurements, as well as personal psycho-social factors, 

that can be measured and modified. The aim of this thesis was to study healthy women 

and men and their metabolic response to nutrition and/or natural hormone dynamics, 

monitored by clinical and metabolomics biomarkers, as a way to better understand 

human metabolic health. 

 

What is metabolic health? 

Metabolism is the sum of all biochemical processes in the body mediated by cells that 

maintain life. It includes the transformation of foods to energy, so that cellular processes 

can be fueled; and waste elimination. The energy comes from the digestion and 

transformation of the food we eat. Optimal health is the resilient capacity to adapt when 

presented with physiological and environmental (social and emotional) challenges to 

the body’s homeostatic state [4]. Thus, metabolic health can be defined as a state of 

resilient physical and chemical cellular physiologic functioning adequately supported 

by the digestion and transformation of food into energy. Health must be expansive and 

systemic and not fixated on singular aspects of cellular function. Naturally, by ingesting 

a variable multitude of nutrients and cofactors, we feed all aspects of the body’s cellular 



 General introduction and aim of the thesis 

3 
 

function concurrently; supporting the body’s metabolic physiologic needs on a systemic 

level to maintain health. 

 

An individual’s metabolic health status is determined by the levels of certain biomarkers 

such as high cholesterol or high fasting glucose that are compared to clinically accepted 

“normal” value ranges. The concept of health was codified by the World Health 

Organization in 1948 as the complete physical, mental, and social well-being and not 

merely the absence of disease or infirmity [5]. Virtually no human could meet the 

definition of being completely healthy and objective measures of health status are 

lacking. Indeed, abnormal levels of disease biomarkers may not adequately define 

health or disease states because:  

1)  processes involved in disease are not the same as those involved in health 

optimization or disease prevention,  

2) homeostasis acts to maintain levels of many conventionally accepted clinical 

biomarkers within a limited range, masking early predispositions and indications 

of disease initiation under “normal” or “resting” conditions,  

3) large inter-individual differences in “normal” values exist [6, 7]  and  

4) disease threshold values are based on population risk factors which may not 

apply to the individual [2, 3, 8-11]. 

 

Unbalanced nutrition decreases metabolic flexibility and leads to disease process 

induction. A high fat, high calorie meal challenge has been used to demonstrate subtle 

improvements in vasculature, systemic stress and metabolic flexibility. The ingestion of 

the meal challenge temporarily disturbs the body’s homeostasis and the human system’s 

capacity to restore that homeostasis is monitored during the hours post-ingestion. The 

degree to which the body is able to return to homeostasis determines the degree of 

flexibility [12]. Using this meal challenge, metabolomics differences have been identified 

between glucose, lipid, amino acid, vitamin and metabolic stress markers and young 

lean subjects versus elderly subjects with higher adiposity; increased body fat and 

degree of metabolic flexibility; and healthy versus type 2 diabetic subjects [13, 14]. 

 

Can healthy diet challenges lead to knowledge for personalized nutrition and reduction of 

disease incidence? 

Since homeostatic measurements are of limited value in defining the health state, Huber 

and colleagues suggested the ability to adapt to the physical, emotional, and social 

challenges of life may provide a more reasonable and useful definition of health.  Others 

extended this concept to Earth’s environmental health and healthy diets  [4]. 

Physiologists and nutritionists had previously developed flexibility or adaptability 

concepts to define metabolic health [15, 16].  The research in this thesis uses the 
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definition of metabolic health as a state of resilient physiological functioning supporting 

digestion and transformation of food into energy and substrates for biological processes. 

These interlinked processes are a system of interacting pathways and networks rather 

than reductionistic, singular, necessary and important steps in pathways involved in 

cellular or organ function. These systems’ processes and the energy necessary to drive 

metabolism are derived from the many and varied chemicals, nutrients, and cofactors 

used in all aspects of the body’s processes. 

 

The physiological diagnosis of adaptable metabolic health relies on the ability to 

examine changes in endogenous small-molecule metabolites and proteins in response 

to a perturbation. The simplest and most straightforward perturbation is an acute intake 

of nutrients whose effect can be measured by differences in levels of certain biomarkers 

from the homeostatic state (e.g., fasting levels) compared to the levels of those markers 

following a dietary challenge. The ingestion of the meal challenge temporarily disturbs 

the homeostasis and the capacity to restore that homeostasis is monitored during the 

hours post-ingestion. The degree to which the body is able to return to homeostasis 

determines the degree of flexibility [12].   

 

Metabolomics analysis following a mixed-nutrient (e.g., protein, lipid, carbohydrate) 

meal challenge identified differences between levels of glucose, lipid, amino acid, 

vitamin and metabolic stress markers in young lean subjects versus elderly subjects with 

higher adiposity; increased body fat, and healthy versus type 2 diabetic subjects [13, 14]. 

These differences led to the conclusion that metabolic flexibility was decreased in 

individuals with diabetes and presumably other chronic conditions (IBD).  Gestational 

diabetes (GDM) is diagnosed using the oral glucose tolerance test (OGTT) and presents 

an example of using acute food challenges to predict long-term health. Women who 

acquire GDM during pregnancy have between a 5- and 10-fold greater risk of developing 

T2DM within 5 years of the pregnancy depending upon ancestral background [17]. The 

stress of the pregnancy reveals an underlying susceptibility to metabolic imbalances 

that may result in disease.  

 

Understanding the trajectory of flexibility to inflexibility for each individual may permit 

development of a range of nutritional solutions to abate the progress to disease.  

However, the efficacy of a habitual diet for an individual based on the responses to acute 

challenges of homeostasis has not been experimentally proven even though such a 

conclusion is conceptually consistent with the effect of long-term diets on health.  For 

example, a lifestyle modification program that included a healthy, low fat diet and 

exercise with a 7 percent weight loss goal was shown to be more effective than the 

pharmaceutical, metformin, for reduction of diabetes incidence [18].  In addition,  
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advances in analytical technologies over the past decade have extended the 

quantification from scores to hundreds or thousands of metabolites and proteins in 

biofluids which could lead to a deeper understanding of metabolic processes.  

 

Metabolomics and proteomics sensitively identify these additional markers of processes 

involved in health and disease and hold the potential to play an important role in 

developing personalized diagnosis, disease susceptibility assessment, health monitoring 

and preventive healthcare [19-21]. The correlation between novel proteomic- and 

metabolomics-based biomarkers to established clinical biomarkers, such as glucose and 

lipids, is of relevance to determine degrees of metabolic adaptation at a higher 

granularity.  

 

Which healthy diet strategy is best for the individual? 

 However, how do we know the best diet to choose for an individual? Many different 

diets have been associated with health including the Mediterranean, Nordic, Okinawan, 

vegan, vegetarian, and DASH diets [22-27] and considered by the World Health 

Organization to be responsible for metabolic disease prevention and treatment [28]. 

These diet recommendations are based on statistical averages from population based 

data. Individual differences in genotypes, environments, and their interactions may 

affect health outcomes even among those complying with these dietary 

recommendations [11]. As an example, unique postprandial blood glucose responses 

were found between different individuals who ate identical carbohydrate based meals 

[29]. By extension, a Nordic diet with 50% kilocalories from carbohydrates [30] may be 

the right choice for one individual and the Mediterranean diet with 40% kilocalories 

from carbohydrates [31] may be ideal for another. With so many healthy diet options to 

choose from, developing a facile and rapid method to measure metabolic flexibility and 

create a personalized nutrition plan is needed. 

 

Stratifying individuals based on molecular biomarker profiling is a key step toward 

evaluating response and non-response to diet therapies. For example, metabolic 

responses to short-term diet challenges [32] that are considered “healthier” (i.e., 

improved nutrient density or balance) can be used to identify approaches that optimize 

health response. Metabolomics analyses can measure responses to diet so that a 

nutrition therapeutic strategy can be developed consistent with acute challenge results. 

For example, changes in the levels of metabolites linked to specific organ functions may 

identify the “primary” cause of metabolic dysfunction and thus may lead to improved 

personalization of diets. Furthermore, insulin resistance caused by liver dysfunction 

may require diets for glucose and insulin control that differ in macronutrient 

composition from dysfunction caused by muscle processes. For example, low amounts 
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of carbohydrates with a low glycemic index may improve muscle metabolism while 

carbohydrates in high fiber foods may preferentially improve liver function without the 

need to reduce intake of total carbohydrates [11, 33].  

 

Personalized medicine and nutrition therapies will ultimately require the integration of 

genomic data with frequent monitoring of transcriptomic, proteomic, metabolomic and 

clinical biomarker profiles (e.g., bloods sugar, insulin, triglycerides). These approaches 

are being refined through novel study methods, such as n-of-1 clinical trials that are 

non-population-based and designed to collect enough information on any one 

individual over time to draw conclusions about individual response [2, 29, 32, 34]. The 

most detailed n-of-1 analysis used high-throughput -omic measurement methods as 

well as autoantibody profiles monitored almost daily in a single individual over a 14-

month period. Type II diabetes risk was identified and dynamic changes in molecular 

and biological pathways, such as infection and stress response, were elucidated over 

healthy and diseased conditions of a single individual [35]. Such exhaustive phenotypic 

profiling that relies on interdependency and interconnectedness of markers that are 

multileveled (e.g., clinical, metabolite, transcript) in  nonlinear relationships will 

become part of the baseline reference for health monitoring, diagnosis and treatment 

of the individual [34].   

 

Of note, these biological systems analyses (that is, within the body measurements) also 

require inclusion of improved measures of not only nutritional intakes, but also built 

environment, and social determinants of health [36]. Population growth and climate 

change will threaten the development of sustainable, healthy diets and intensify the 

need for faster and improved nutrition research studies and their application to society 

[37]. 

 

Why are sex and gender differences important? 

Sex and gender based variations may alter the population averages of age of onset, 

symptoms and disease severity [38, 39].  Sex differences are ultimately due to differences 

in chromosomal content and gene expression (e.g., gene x sex interactions) between 

males and females [40] although differences in epigenetic (in this case DNA 

methylation) regulation may also contribute [41]. These structural differences cascade 

through gene regulatory mechanisms and hence expression of genetic information 

causing not only dimorphic sexual traits but also differences in many physiological 

processes and outcomes [40].  These include differences in gut microbe-brain axis [42], 

immune function [43], lipid kinetics [44], and food related neuronal responses to foods 

[44].  Gender is often interchangeably used with sex in basic science literature although 

it increasingly is reserved for behavioral, cultural, and or psychological traits that can 



 General introduction and aim of the thesis 

7 
 

be expressed by either biological sex.  Gender in the social sense has been linked to 

alterations in physiological outcomes [45]. Gender and sex in this thesis are used 

interchangeably based primarily on the historical use in the literature. 

 

The genomic and genome x environment interactions that often result in differences in 

metabolites and proteins are dimorphic between the sexes [46]. Proton NMR analysis 

of the lipid region of plasma metabolites was thought to be a strong predictor of 

coronary artery disease subphenotypes but was not replicated due to confounders 

including gender, not previously contemplated [34, 47, 48].  One hundred and two of 

131 metabolites including phosphatidlycholines, sphingomyelines, acylcarnitines and 

C6-sugars had concentration differences that differed by sex [38]. Elevated 

concentrations of glycine were observed in females and a single nucleotide 

polymorphism in the carbamoyl-phosphate synthase 1 (CPS1) locus impacted glycine 

concentrations in a sexually dimorphic manner, an example of gene x sex interactions. 

Although metabolism and outcomes result from the complexity of interactions between 

genetic and environmental factors, sex hormones are perhaps the central regulators of 

structural and metabolic dimorphisms.  For example, women homozygous for the 43 

base pair insertion (LL) polymorphism in the serotonin transporter-linked polymorphic 

region (5-HTTLPR) had responses to anti-depressant medication that were influenced 

by levels of their sex hormones. Non-menopausal women with the LL genotype showed 

significant improvement in depression scores from anti-depressive medication 

measured by the HAMD Hamilton Depression Rating Scale, whereas menopausal 

women with the same genotype showed the opposite response. An age effect was also 

observed in the women that was not observed in the men [49]. 

 

Drug response also differs between sexes: of the top 10 pharmaceutical drugs taken off 

the market due to life threatening drug reactions between 1997 and 2000, 8 were more 

harmful for women [50, 51]. In 2013, the FDA called for reduced doses of immediate-

release zopidem products (Ambien and Edluar) due to slower metabolism of the 

products and increased risks to women [52]. Inclusion of females and more effective 

research strategies are necessary to understand dimorphic differences in response that 

would have increased the safety of these pharmaceuticals in advance of 

commercialization.  

 

Many human clinical research studies were done either on males only, or both males 

and females, controlling for sex differences by averaging data as opposed to determining 

differences between sexes or genders. While a “convenience factor” (controlling for the 

menstrual cycle is challenging) for using only one sex cannot be discounted, U.S. 

legislation in the early 1970s to improve human research ethics guidelines codified the 
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concept of vulnerable populations.  Women were included as vulnerable because of 

adverse effects of certain drugs [53] taken during pregnancy and therefore to protect 

against fetal injury when pregnancy status was unknown [54].  The U.S. National 

Institute of Health Revitalization Act was passed in 1993 required that each NIH-funded 

study include a representative of subpopulations (ancestral populations and women) 

unless their exclusion could be justified [55].  

 

Although these policies have been in place for over 25 years, women are still under-

represented in clinical studies which may be due, at least in part, to a patriarchal culture 

of some scientists and administrators [56]. Some progress in transitioning to more 

inclusive research has started.  For example, Stanford University developed a Gendered 

Innovations program to assist scientists with practical methods for sex and gendered 

analysis and innovation [51]. The Food and Drug Administration (FDA) Office of 

Women’s Health promotes research to facilitate FDA regulatory decisions related to 

advancing knowledge of sex and gender differences and unique health conditions to 

women [57]. The National Institutes of Health (NIH) has also taken a role to provide 

education on methods and techniques for sex and gender research at the cellular level 

as well as in animals and humans and offers an online course on sex and gender 

differences [58]. 

 

Why is a broad perspective on women’s hormonal health and nutrition important? 

Women’s health research programs focused mainly on pregnancy, lactation and infant 

nutrition and dietary guidelines are published for these areas. However, research in 

adolescent and nonpregnant, premenopausal women has been sparse. For example, a 

review of PubMed literature 25 June 2018 revealed a total of 5741 published research 

articles on pregnancy and lactation since 1941; and a total of 583 published research 

articles on menstrual hormonal health and nutrition, the first of which was in 1972 [59].  

Sex hormone rhythmicity and dysrhythmicity may be associated with premenstrual 

syndrome of various severities including abdominal bloating, menstrual cramps, 

mastalgia, acne, food cravings, constipation, diarrhea, or headache, among others [60].  

However, these symptoms and underlying physiology occur in specific phases of the 

cycle. For example, premenstrual syndrome and mastalgia occur during the luteal 

phase, followed by menorrhagia and cramping during the menstrual phase. 

Dysmenorrhea [61], infertility [62, 63] and polycystic ovarian syndrome [63] are all 

associated with a loss of rhythmicity. The transition to menopause, a 10-year timeframe 

on average, is characterized by a loss of rhythmicity manifested by varying menstrual 

cycle lengths and reduction of sex hormone concentrations leading to hot flashes, 

abdominal weight gain, headaches, forgetfulness, fatigue and depression [64]. Limited 

dietary guidelines and accepted nutrition therapies have been published for Western 
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medicine and nutrition practices. A PubMed search (accessed 25 June 2018) revealed a 

total of 9 publications on this topic between 2002 and 2018 with an emphasis on the use 

of soy for symptom relief and dietary prevention of osteoporosis [59]. Early research in 

small pilot studies suggests vitamin B6 and magnesium supplementation decrease the 

symptoms of premenstrual syndrome [65, 66]. Nutrient requirements, such as lysine 

[67], and protein [68] may vary throughout the menstrual cycle indicating it is 

important to examine how supporting the nutrient x hormone connection in women 

could be a remedy for the uncomfortable and sometimes debilitating symptoms that 

coincide with natural physiological hormone changes. 

 

The hormonal changes that occur during the normal menstrual cycle alter biomarkers 

of health and disease [69] demonstrating that knowledge of hormonal phase is crucial 

in developing diagnostics. Standards and recommended methods for determining the 

menstrual phase have been published [70]. For example, one study showed twice as 

many women had elevated cholesterol in the follicular versus luteal phases. This same 

study demonstrated C-reactive protein, a marker associated with inflammation and 

cardiovascular disease risk, to be most elevated during the menstrual phase [71].  

 

The luteal phase of the menstrual cycle may be a normal stress during which 

physiological imbalances are easier to detect and these imbalances may be a predictor 

of long term health trajectories. For example, women with type 1 diabetes experience an 

increased risk of hyperglycemia during the luteal phase which is associated with 

decreased insulin sensitivity [72]. As noted previously, gestational diabetes is diagnosed 

with oral glucose tests and associated with future risk for T2D. The luteal phase also 

represents a time when women are more likely to overeat and crave unhealthy foods 

with excess fat [73] and added sugars [74, 75], increasing risk of excess body fatness or 

decreasing success with healthful diet modifications [76]. In fact, a weight loss program 

adapted to the menstrual cycle and tailored to counteract food cravings and metabolic 

changes has been shown to increase weight loss success [77].  

 

Scope and outline of this thesis 

Using clinical biomarkers, metabolomics, and diet interventions with intake analyses, 

we evaluate the metabolic impact of vegan and diet interventions in a new research 

study using fasting plasma samples after 48 hours and using postprandial plasma 

samples after meals and snacks. Sex and gender differences in response are evaluated 

using proteomics and pathway analyses in two larger, sex-balanced cohorts. Finally, 

clinical biomarker and metabolomics are assessed across the menstrual cycle phases 

using samples from a previously published study [69]. This fundamental information 
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may provide a foundation for future novel personalized nutrition strategies for women 

and men. 

 

Like the OGTT and the meal challenges described, it is also possible to perform a diet 

challenge with the purpose of challenging metabolism with healthy foods not typically 

consumed.  In Chapters 2 and 3, we describe diet intervention research in which we 

designed vegan and animal diets personalized to the energy needs of each individual 

with the same percentage of macronutrients from energy and the same food choices. 

Meals and snacks are provided on a short-term (3 days) basis to participants in a semi-

controlled environment, compliance recorded, and nutrient composition intake 

calculated. Daily menus are repeated each day to strengthen the intensity of the 

response to those foods. The small size of our pilot study maked it possible to have a 

great deal of control over food intake. We provide results from standard clinical 

biochemistry and molecular phenotyping using liquid chromatography-mass 

spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). 

 

In Chapter 2, the concept of a healthful diet challenge is introduced in a healthy, 

gender-balanced population. A vegan diet regimen is evaluated for its 48-hour impact 

on modulating metabolic signatures. The comparison diet is an animal based diet 

regimen mimicking the foods typically eaten. A cross-over strategy is employed so the 

same individual phenotypes are exposed to both diet types.  

 

In Chapter 3, the results build on Chapter 2, by comparing the impact of both vegan 

and animal meals on postprandial response. Glycemic, lipid and related metabolites 

demonstrate the nutritional advantages of both diet types.  

 

In Chapter 4, a proteomic and network analysis strategy is used to evaluate baseline 

metabolic gender dimorphic differences. Aptamer-based affinity assays are used to 

assess the presence of low abundant serum proteins in a healthy cohort of Irish women 

and men. Pathway over-representation and functional pathway enrichment analyses are 

performed using WikiPathways, Kyoto Encyclopedia of Genes and Genomics (KEGG) 

and Reactome databases. The findings are then evaluated in a larger, pan-European 

cohort.  

 

In Chapter 5, metabolomics is used to evaluate menstrual phase variations linked to 

hormone physiology in healthy menstruating women. A wide panel of small molecules 

meaurements are included, such as clinical chemistry, metabolomics, lipidomics and 

vitamin levels. Contrast comparisons are made across 5 menstrual phases to identify 

metabolic phase signatures. 
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ABSTRACT 

 

Research is limited on diet challenges to improve health. A short-term, vegan protein 

diet regimen nutritionally balanced in macronutrient composition compared to an 

omnivorous diet was hypothesized to improve metabolic measurements of blood sugar 

regulation, blood lipids, and amino acid metabolism. This randomized, cross-over, 

controlled vegan versus animal diet challenge was conducted on 21 (11 female,10 male) 

healthy participants. Fasting plasma was measured during a 3 day diet intervention for 

clinical biochemistry and metabonomics. Intervention diet plans met individual caloric 

needs. Meals were provided and supervised. Diet compliance was monitored. The vegan 

diet lowered triglycerides, insulin and homeostatic model assessment of insulin 

resistance (HOMA-IR), bile acids, elevated magnesium levels, and changed branched-

chain amino acids (BCAAs) metabolism (p < 0.05), potentiating insulin and blood sugar 

control after 48 h. Cholesterol control improved significantly in the vegan versus 

omnivorous diets. Plasma amino acid and magnesium concentrations positively 

correlated with dietary concentrations. Polyunsaturated fatty acids and dietary fiber 

inversely correlated with insulin, HOMA-IR, and triglycerides. Nutritional 

biochemistries, BCAAs, insulin, and HOMA-IR were impacted by sexual dimorphism. A 

health-promoting, BCAA-associated metabolic signature was produced from a short-

term, healthy, controlled, vegan diet challenge when compared with a healthy, 

controlled, omnivorous diet. 
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INTRODUCTION 

 

Vegan diets are plant-based regimens that exclude meat, eggs, dairy products, and any 

other animal-derived foods and ingredients. In contrast, a vegetarian diet emphasizes 

plant-based foods but can also include dairy, eggs, honey, and fish.  Populations who 

lack access to animal protein or cultures with historical or religious traditions have a 

higher percentage of vegetarians:  about 35% of the Indian population eats strictly plant-

based diets.  Approximately 10% of all vegetarians are vegan but an increasing number 

of people are adopting a non-animal product diet [1]. 

 

While epidemiologic evidence published in the 1980s and 1990s supports the benefits of 

vegetarian diets, skepticism remains largely because of concerns about specific nutrient 

deficiencies of plant-based foods. Both vegan and vegetarian diets can be healthful for 

all life stages with appropriate selection of plant-based foods that adequately meet 

requirements for protein, iron, n-3 fatty acids, iodine, zinc, calcium, and vitamin B12 [2]. 

An intermittent vegan diet regimen that is alternated within a habitual, balanced 

omnivorous diet can also meet these nutritional requirements.  

 

The growing demand for unsustainable animal-based products by an expanding and 

wealthier global population is negatively effecting the planet [3]. Plant-based food 

production requires less energy and has less of an impact on non-renewable 

environmental resources. Policies that promote adoption of plant-based diets may help 

protect the planet while improving the health of individuals [4].  

 

The health benefits of nutrients or foods are typically analyzed after weeks or months 

of consuming experimental diets. Epidemiological evidence suggests habitual intake of 

plant-based diets (vegan and vegetarian) reduces risk of diabetes, lipid disorders, and 

metabolic syndrome [5]. For example, the prevalence of type 2 diabetes mellitus (T2DM) 

in Seventh-Day Adventists who respect a strict vegan diet is 45% of the incidence in the 

general population [6]. Meta-analysis of vegan diet studies show improved glycemic 

control compared to American Diabetes Association (ADA)’s dietary recommendations 

in T2DM individuals [7].  A dietary portfolio (a vegan regimen with specific amounts of 

plant sterols, viscous fibers, soy protein, and nuts) reduced blood lipids more than the 

National Cholesterol Education Program (NCEP) in individuals with 

hypercholesterolemia [7] using plant-based interventions that ranged from 2 to 104 

weeks. Consistency in nutrient content and participant compliance are difficult to 

maintain in long-term studies, which may be confounded by unmeasured 

environmental variables that differ between participants.  
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Our study measured metabolic changes associated with consumption of vegan- 

compared to animal-based diets in the short time period of 48 hours. Diets were 

rigorously planned, intake compliance monitored, and clinical parameters as well as a 

diverse panel of plasma metabolites analyzed. The results indicated significant health-

promoting benefits of a short-term, healthy vegan diet exposure.  

  

MATERIALS AND METHODS 

 

Study population and ethical approval 

This study was conducted in accordance with the ethical principles of Good Clinical 

Practice and the Declaration of Helsinki, approved by the Ethical Committee of 

Lausanne University School of Medicine (CER-VD, ref no. 222/14), and registered on 

ClinicalTrials.gov with the identifier NCT02223585. All participants provided written 

informed consent for study participation and were offered financial compensation 

agreed by the ethical committee (3,200 CHF) for time spent and schedule 

inconveniences. 

 

A total of 56 healthy male and female volunteers were pre-screened at information 

sessions held at the Metabolic Unit, Nestlé Research Center (Lausanne, Switzerland). 

Out of the 32 participants who signed informed consent, 26 were enrolled in the study 

(6 screening failures), 5 dropped out and 21 healthy participants (10 men, 11 women) 

completed this pilot study. Two participants dropped out because of non-serious 

adverse events, and another 3 decided not to proceed with the study. All participants 

habitually ate a heterogeneous diet including animal and vegan proteins before 

entrance into the study.  

 

Study inclusion criteria were age (from 18 to 55 years), regular bowel movement (at least 

once every 1-2 days), body mass index (BMI, from 18.5 to 27 kg.m-2). Health status was 

assessed by a physician during a screening visit as a standard medical visit with blood 

chemistry analysis. Exclusion criteria included special diets (vegetarian, high protein, 

and low cholesterol or weight loss program), pregnancy, food allergy, smoking, high 

alcohol consumption (more than 2 drinks per day), and excessive physical exercise 

(more than 5 moderate physical exercises per week).  

 

Animal and vegan dietary interventions 

The energy provided by vegan and animal meals was personalized for each participant 

according to their calculated resting energy requirements and level of physical activity. 

Energy requirements were calculated as a function of height, weight, age, and activity 

level, based on the Harris Benedict Equation [8]. Eighteen (9 animal and 9 vegan) meal 
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plans were designed with different caloric values, ranging from 1600 to 3000 calories 

(Supplementary Figure 1). Macronutrient composition was matched between animal 

and vegan-based meals, and was calculated based on 20% protein, 50% carbohydrate 

and 30% fat of total calories within ±5% of calculated needs of each participant.  

 

Clinical trial design 

The clinical trial was a randomized, open label, cross-over, controlled study. Study 

participants were randomly assigned to the animal and plant protein challenges using 

Medidata Balance with dynamic allocation [9].The study lasted five weeks (Figure 1) 

following a one week run-in phase (Week 1 = W1) that defines baseline of the 

participant’s normal diet and lifestyle. Participants were then randomly assigned to 

either animal or vegan meals for 3 consecutive days (Tuesday, Wednesday and 

Thursday). Fasting blood samples were obtained after an overnight fast on each of the 

3 days (days 0,1,2) of the intervention diets as indicated in Figure 1.  The third week 

(W3) was a washout period during which participants resumed their usual diets. The 

cross-over intervention occurred during the 4th week and lasted three consecutive days 

also during the middle of the week. Participants were monitored during week 5 (W5) to 

determine if they returned to their usual health and dietary status. During each 3-day 

intervention, participants ate the same meals on each day, including breakfast, morning 

snack, lunch, afternoon snack, and dinner. All meals and snacks were prepared and 

provided to study participants under supervision by the Metabolic Unit staff with the 

exception of the dinner meal, which was packaged for home consumption. During the 

study period, the participants were told to avoid consumption of alcoholic beverages 

and limit caffeinated and sugary beverages (no more than 2 cups of coffee, black or green 

tea per day). Fasting blood samples were obtained after an overnight fast as indicated 

in Figure 1.   

 

Descriptions of the materials and methods used for the diet diaries, compliance 

questionnaires and diet intake analysis; anthropometric, clinical data, and blood sample 

collection; amino acid analysis, bile acid analysis, and metabonomics analysis are found 

in Chapter 2. 

 

Statistical analysis 

Statistical significance of observed differences across groups was calculated using a 

Wilcoxon Rank-Sum test.  A Wilcoxon Signed rank test was used for paired comparison. 

To determine if dietary intake was correlated with plasma metabolite levels we 

calculated the Spearman correlation coefficients and Spearman's rho statistic to test the 

significance of the association. All p-values were corrected for multiple testing using 

false discovery rate, and values < 0.10 are reported.  
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Figure 1. Overview of the experimental design and the analytical strategy.  A) The clinical trial was a randomized, open label, cross-over, controlled study that lasted five weeks. 
Study participants were randomly assigned to the animal and plant protein diets to which they were challenged for three consecutive days. B) Dietary intake was assessed using 
three day food diaries each week during run-in periods, before, and after dietary interventions. During intervention periods, accurate dietary intake and metabolic status were 
monitored. Extensive metabolic phenotyping covered standard biochemical and nutritional measures, as well as amino acid, bile acid and targeted metabolic profiling. C Impact of 
vegan diets on individual metabolic and nutritional status was investigated in comparison to the animal dietary intervention as well as to subjects’ free living dietary habits.  
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However, due to the small sample size, and exploratory nature of the study, the non-

corrected statistical significance was used for interpretation of results 

 

The crossover nature of this study required assessing potential carryover effects of each 

diet.  A model was fit to assess the interaction between each metabolite and the diet 

sequence. A p-value below 0.05 was interpreted as a significant carry-over. To test the 

association between the type of diet and the changes in metabolite levels a linear mixed 

effect models (Model 1) was fit for each metabolite separately. 

Further description of statistical methods can be found in Chapter 2.  

 
Table 1.  Baseline anthropometric and clinical parameters by gender 
  

Clinical marker 
Females (n=11) Males (n=10) p-Value 

Mean SD Mean SD  

Age (years) 34.0 9.1 35.0 9.9 6.72E-01 
Height (cm) 162.3 4.9 179.6 5.6 1.56E-04 

Weight (kg) 58.9 8.3 75.7 10.9 3.08E-03 

BMI (kg/m2) 22.4 3.0 23.4 2.82  4.60E-01 
HDL (mmol/L) 1.6 0.3 1.5 0.2 8.05E-01 

Albumin (Kg/m3) 39.7 3.8 43.7 2.9 1.51E-02 

Alanine aminotranferase (U/L) 20.5 4.5 31.3 9.0 1.36E-03 

Aspartate aminotransferase (U/L) 18.7 2.7 24.5 8.7 2.19E-02 

Total cholesterol (mmol/L) 4.5 0.7 4.3 0.9 4.60E-01 

Chol/HDL 2.8 0.5 3.0 1.0 6.99E-01 

Creatine kinase inhibitor (mmol/L) 71.9 20.9 223.4 186.4 6.37E-04 

Chloride (mmol/L) 105.0 1.3 104.5 2.0 7.20E-01 

Creatinine (µmol/L) 67.0 11.4 93.4 10.9 3.26E-04 

Ferritin (µg/L) 66.6 49.4 178.3 75.3 1.06E-03 

Glucagon (pM/L) 6.2 3.1 9.3 5.4 2.18E-01 

Glucose (mmol/L) 5.2 0.5 5.5 0.4 9.80E-02 

Insulin (µU/mL) 17.5 6.6 13.5 5.5 2.31E-01 

Iron (µmol/L) 13.8 4.2 16.9 4.3 2.18E-01 

Potassium (mmol/L) 4.1 0.2 4.2 0.3 5.02E-01 

LDL (mmol/L) 2.6 0.6 2.8 0.9 4.38E-01 

Magnesium (mmol/L) 0.8 0.1 0.8 0.0 2.20E-02 

Sodium (mmol/L) 141.4 1.1 142.6 1.2 4.67E-02 

Pre-albumin (g/m3) 288.0 39.9 369.1 69.4 6.71E-03 

Phosphate (mmol/L) 1.1 0.2 1.2 0.2 7.51E-01 

c-reactive protein (g/m3) 1.6 1.6 1.9 3.4 2.18E-01 

Total bilirubin (µmol/L) 7.2 3.2 17.0 7.0 2.76E-03 

Triglycerides (mmol/L) 0.8 0.2 0.9 0.6 3.07E-01 

Total protein (Kg/m3) 72.7 4.9 75.2 3.7 2.91E-01 

Tranferrin (Kg/m3) 2.5 0.5 2.2 0.2 1.05E-01 

Non-esterified fatty acids (µmol/L) 385.1 191.1 390.5 194.1 9.16E-01 

  
The p-values are calculated by performing a Wilcoxon rank sum test. SD = standard deviation.  

 

RESULTS 

 

Population characteristics 

A total of 21 (11 females, 10 males) healthy participants completed the clinical trial (Table 

1). Individuals were similar in age and BMI . Several clinical parameters showed strong 
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gender specificities, including plasma clinical biochemistries (albumin, pre-albumin, 

ferritin, Mg, Na), hepatic functions (ALAT, ASAT, total bilirubin), and others 

(creatinine, creatine kinase inhibitor), as reported in Table 1. 

 

Diet intervention 

Forty-three nutrients were analyzed from the diet records from each 2-day intervention 

for the vegan and animal intervention diets (Table 2). Statistical analysis was performed 

using the average nutrient intakes from all participants over 2 days using Wilcoxon 

signed rank test. The 2 controlled-intervention diets were matched for macronutrient 

(carbohydrate, protein and fat) intakes within a pre-determined 5% variation since 

different food sources have unique nutrient compositions (Supplementary Figure 1). 

Menus were not matched for micronutrient intakes. Since diet intake may be altered by 

individual preferences, appetite, and satiety, diet intake compliance was monitored to 

quantify actual intake differences across the 2 intervention diets. Total carbohydrate 

and fat density (percentage of total calories) intakes were not significantly different 

between diets.  Protein intake in the animal diet was 3% higher compared to vegan diet 

for females, and 1.3% higher for males. Intake of total calories, saturated fat, B2, B6, 

sodium, phosphorus, selenium, and potassium was higher on the animal diet.  Intake of 

polyunsaturated fat, fiber, magnesium, iron, copper, vitamin A, vitamin C, vitamin B1 

and folate was higher on the vegan diet. Non-heme iron, which is less easily absorbed 

than the heme-iron found in red meat, was also higher on the vegan diet. Although 

vitamin B12 was not consumed in the vegan diet, its absence is unlikely to alter the 

results since the half-life of this vitamin is 6 days in plasma [10]. Overall, nutrient intakes 

were higher in males compared to females (Table 2). 

 

Diet intervention and habitual diet intake 

Three-day diet diaries were used to assess habitual diet intake for comparison with the 

2 controlled diet interventions (Supplementary Table 1). Habitual diet intakes were 

significantly higher in vitamin C, fat, % calories from fat, and sodium compared to mean 

intakes in both the animal and vegan diets. Participants demonstrated full compliance 

with intake of vegan and animal meals and snacks, although there were some intake 

differences when satiety was reached before meal completion. Participants on the vegan 

diet increased their intake of vitamin A, vitamin E, iron, folate, magnesium, relative 

calorie intake from protein, polyunsaturated fats, and total dietary fiber; and decreased 

their intake of vitamin B12, carbohydrates, calories, and monounsaturated and saturated 

fats compared to their habitual diets. Participants on the animal diet also significantly 

increased intakes of vitamins B2 and B6 and decreased intakes of vitamin E, potassium, 

protein, relative calorie intake from protein, polyunsaturated fatty acids, and total 

dietary fiber compared to their habitual diets. The direction of these differences was 
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consistent across genders. No significant differences in intake were noted between the 

vegan/animal or animal/vegan washout periods (Supplementary Table 2). 

 

Table 2. Significant diet intake differences between vegan and animal intervention diets  

          
   

  Animal diet means Vegan diet means   Gender differences**   
   

Diet Variable F M F M P-value* Vegan P-
value 

Animal P-value   
   

Kilocalories (Kcal) 1758.00 2619.75 1508.91 2255.47 1.32E-05 2.86E-04 2.18E-04   
   

Alanine (mg) 4168.60 6214.95 2585.01 4098.12 6.40E-05 2.86E-04 2.86E-04   
   

Cysteine (mg) 1339.82 1935.35 706.64 1194.12 6.40E-05 2.17E-04 2.86E-04   
   

Glycine (mg) 3827.37 5628.07 2324.53 3706.53 6.40E-05 2.86E-04 2.86E-04   
   

Histidine (mg) 2476.30 3661.50 1493.30 2368.32 6.40E-05 2.86E-04 2.86E-04   
   

Isoleucine (mg) 4278.14 6398.27 2382.80 3873.30 6.40E-05 2.86E-04 2.17E-04   
   

Leucine (mg) 6880.82 10366.10 3468.68 6072.80 6.40E-05 1.64E-04 2.17E-04   
   

Lysine (mg) 5618.20 8634.38 3060.98 4908.35 6.40E-05 2.86E-04 2.86E-04   
   

Methionine (mg) 1984.23 3029.90 793.07 1298.65 6.40E-05 2.17E-04 2.86E-04   
   

Phenylalanine (mg) 3820.75 5816.07 2625.02 4257.70 6.40E-05 2.17E-04 2.17E-04   
   

Proline (mg) 17998.58 24831.60 2116.40 3689.31 6.40E-05 1.64E-04 2.86E-04   
   

Threonine (mg) 3418.18 5190.48 2184.59 3549.60 6.40E-05 2.17E-04 2.86E-04   
   

Tryptophan (mg) 1157.75 1689.03 570.14 873.45 6.40E-05 3.75E-04 2.86E-04   
   

Tyrosine (mg) 2870.95 4404.55 1773.75 2872.97 6.40E-05 2.86E-04 2.17E-04   
   

Valine (mg) 4444.27 6769.45 2750.23 4454.65 6.40E-05 2.17E-04 2.17E-04   
   

Polyunsaturated fat (g) 13.29 17.52 22.42 36.71 6.41E-05 1.64E-04 5.40E-03   
   

Protein (g) 85.60 128.27 62.54 102.91 6.41E-05 2.17E-04 2.87E-04   
   

Saturated fat (g) 21.89 37.44 9.48 13.92 6.41E-05 5.55E-04 1.65E-04   
   

Total fiber (g) 14.67 20.32 30.52 49.02 6.41E-05 2.14E-04 3.76E-04   
   

Iron (mg) 7.39 10.45 12.71 19.00 7.41E-05 9.23E-04 2.86E-04   
   

Protein % 19.50 19.58 16.47 18.26 7.42E-05 4.89E-04 9.16E-01   
   

Vitamin B12 (ug) 3.48 5.38 0.00 0.00 1.41E-04 NA 1.58E-03   
   

Selenium (ug) 46.33 57.75 13.14 11.78 1.43E-04 4.79E-01 2.14E-03   
   

Copper (ug) 927.11 1015.05 1872.39 2528.43 1.43E-04 3.43E-03 5.48E-02   
   

Potassium (mg) 4.42 6.49 1.80 2.29 1.43E-04 1.65E-02 2.76E-04   
   

Vitamin E (mg) 6.39 8.33 13.38 17.48 1.43E-04 3.75E-02 3.73E-02   
   

Magnesium (mg) 202.25 290.25 424.75 589.12 1.43E-04 1.06E-03 5.20E-04   
   

Phosporus (mg) 1331.64 2054.53 801.05 1121.75 1.43E-04 2.18E-03 2.80E-04   
   

Vitamin B2 (mg) 1.06 1.70 0.60 0.81 1.43E-04 3.43E-03 9.39E-04   
   

Vitamin A (mg) 0.17 0.30 4.62 3.51 1.65E-04 5.24E-01 2.01E-04   
   

Vitamin C (mg) 40.92 49.58 61.23 80.80 1.68E-04 1.11E-02 1.63E-03   
   

Vitamin B1 (mg) 0.71 1.05 0.94 1.31 1.68E-04 4.30E-03 2.76E-04   
   

Vitamin B6 (mg) 1.60 2.27 1.20 1.42 1.68E-04 5.35E-03 7.03E-04   
   

Folate (ug) 197.83 258.32 281.98 351.43 1.97E-04 2.64E-02 3.80E-04   
   

Sodium (mg) 1899.36 2725.60 1423.84 2011.90 2.31E-04 2.18E-03 9.44E-04   
   

Carbohydrate (g) 208.48 312.80 191.23 267.18 1.23E-03 3.75E-04 2.87E-04   
   

FAT (g) 59.93 88.08 52.73 79.28 1.56E-03 6.32E-04 1.65E-04   
   

FAT % 30.71 30.32 31.31 31.51 1.01E-02 9.72E-01 1.00E+00   
   

Monounsaturated fats (g) 21.43 28.67 17.18 27.96 1.12E-02 2.82E-04 2.15E-04   
   

Serine (mg) 3236.43 4909.48 2870.00 4586.06 1.65E-02 2.86E-04 2.17E-04   
   

Vitamin D (ug) 1.30 1.67 1.15 0.86 3.11E-02 2.60E-01 5.30E-04   
   

CHO % 47.38 47.70 50.95 47.50 7.63E-02 1.35E-03 1.00E+00   
   

Arginine (mg) 4612.57 6672.82 4315.64 7102.65 8.08E-01 2.17E-04 2.17E-04   
   

 
*Conventional P-values for animal vs. vegan diets calculated using Wilcoxon signed-rank test. F, female; M, male.  
and those marked in bold were significant after False Discovery Rate  (P<0.10) Significant p values for gender are in bold. A Wilcoxon rank sum test was used to calculate gender differences.  
calculate significant gender differences. A random effect per study participant was used.  

Clinical response and nutritional status 

Subjects on the vegan and animal dietary interventions showed small but significant 

changes in several plasma biochemistry parameters related to glucose and lipid 
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metabolisms within 48 hours (Table 3, Figure 2). The most significant metabolic effect 

was a decrease in triglycerides and cholesterol/HDL ratio in participants consuming the 

vegan diet with no gender interaction. However, participants consuming the vegan diet 

had a significant decrease in insulin and HOMA-IR [11] that differed by gender. A 

marked increase in plasma magnesium, slight increase in sodium, but decreased 

phosphate occurred in individuals consuming the vegan diet (Table 3).  

 

Effect of the dietary intervention on plasma amino acid metabolic status 

Compared to the animal diet, the vegan diet intervention was associated with a decrease 

within 48 hours of 10 plasma amino acid levels, including total BCAAs (driven by leucine 

and valine), total essential amino acids (EAAs) (driven by leucine, valine, threonine, 

tryptophan, methionine, and lysine), and an increase in arginine and glycine (Table 3, 

Figure 2). The BCAA and EAA effects differed by gender with the males having 

significantly higher plasma levels of valine and leucine. The alpha-keto acid analogue of 

isoleucine (a BCAA), 3-methyl 2 oxovaleric acid, was found to be significantly increased 

during the vegan diet with no gender specific effects. Lysine, tryptophan, arginine, and 

methionine levels showed gender differences at baseline that did not carry over to the 

intervention response (See Supplementary Table 3).  

 

Effect of the dietary intervention on plasma fatty acid profiles 

Significant increases in the concentration of 3 saturated and 2 monounsaturated fatty 

acids, specifically dodecanoic acid (C12:0), myristic acid (C14:0), capric acid (C10:0), 5-

dodecenoic acid (C12:1) and myristoleic acid (C14:1) occurred in participants consuming 

the vegan diets. None of these effects were gender dependent (Table 3). 

 

Effect of the dietary intervention on plasma bile acids  

Participants consuming the vegan diet had significantly decreased bile acids at 24hrs 

(GUDCA, and GCA) and at 48 hours (GUDCA, DCA, and HDCA) (Table 3). A trend in 

decreased plasma concentrations of GUDCA occurred in males consuming the vegan 

diet relative to the animal diet at 24 and 48 hours. 

 

Relationships between dietary intake and plasma metabolites 

Spearman’s rank correlation analysis was performed to analyze changes in diet intake 

against blood biochemical and metabolite concentrations (Table 4). Strong positive 

correlations were identified between intakes of 11 dietary amino acids and their amino 

acid concentrations in the plasma. Positive correlations were also found between 

intakes of vitamins B2, B6, B12, and B1 and total plasma amino acids and between dietary 

and plasma magnesium. In addition, dietary polyunsaturated fats and total dietary fiber 

were negatively correlated with plasma insulin, HOMA-IR, and triglycerides.  
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*F=female; M=male. The model is a mixed effect model for each day and marker separately. A random effect per subject was used. A t test (null hypothesis: coeff = 0) was used. **The p-
values correspond to the coefficient of interest in the regression model. ***P-values correspond to gender main term effect.  P-values bolded if False Discovery Rate <0.10.

Table 3:  Vegan verses animal diet intervention response, clinical and metabonomic biomarkers

Panel MARKER Diet Day
Animal F* 

Mean

Animal M* 

Mean

Vegan F 

Mean

Vegan M 

Mean

Estimate 

DIET

P-value 

DIET**

P-value 

GENDER**

*

Amino Acid

Proline (nmol/ml) Day 3 133.69 157.05 87.65 102.67 -5.30E-01 1.87E-11 1.43E-01

Valine (nmol/ml) Day 3 189.44 250.42 157.50 218.91 -3.21E+01 2.20E-08 2.64E-05

EAAs (nmol/ml) Day 3 829.65 963.39 734.15 867.82 -9.52E+01 1.63E-06 8.26E-04

BCAAs (nmol/ml) Day 3 332.68 454.43 294.94 413.18 -5.58E+00 1.74E-06 5.80E-05

Lysine (nmol/ml) Day 3 154.14 175.17 136.12 150.24 -2.18E+01 2.38E-05 7.14E-01

Citrulline (nmol/ml) Day 3 23.62 29.47 20.35 26.42 -2.66E+00 3.82E-05 7.90E-02

Threonine (nmol/ml) Day 3 140.30 120.94 112.54 103.85 -1.14E-01 5.92E-04 6.48E-01

Tryptophan (nmol/ml) Day 3 52.29 56.01 46.69 48.78 -5.44E+00 7.91E-04 8.90E-01

Alanine (nmol/ml) Day 3 278.92 301.04 242.58 262.26 -3.31E+01 2.62E-03 5.15E-01

Arginine (nmol/ml) Day 3 68.76 75.00 66.50 87.34 9.38E+00 2.88E-03 5.99E-01

Methionine (nmol/ml) Day 3 23.18 25.29 19.93 22.96 -2.44E+00 3.57E-03 2.30E-01

3 methyl 2 oxovaleric acid (nmol/ml) Day 3 168.88 99.96 219.16 209.77 1.45E+02 7.71E-03 4.00E-01

Leucine (nmol/ml) Day 3 228.54 311.67 220.17 163.29 -1.63E+00 1.03E-02 4.49E-03

Tyrosine (nmol/ml) Day 3 47.42 55.06 40.62 53.44 -5.21E+00 1.80E-02 1.51E-01

Glycine (nmol/ml) Day 3 167.30 172.06 162.56 182.50 2.60E+01 3.86E-02 9.18E-01

Clinical

Magnesium (mM.L-1) Day 3 0.79 0.85 0.87 0.89 6.40E-02 5.19E-05 3.40E-01

Triglycerides (mM.L-1) Day 3 0.83 1.22 0.72 0.58 -4.01E-01 1.61E-04 7.75E-01

CHOL/HDL Day 3 2.79 3.08 2.67 2.75 -2.98E-02 3.42E-04 7.06E-01

Sodium (mM.L-1) Day 3 140.48 141.32 140.84 142.88 1.01E+00 4.76E-03 3.79E-01

Phosphate (mM.L-1) Day 3 1.11 1.17 1.02 1.05 -8.01E-02 8.56E-03 2.36E-01

Insulin (µU.mL-1) Day 3 18.56 12.48 15.40 9.18 -2.98E-01 3.04E-02 2.97E-03

HOMA-IR Day 3 4.24 3.04 3.49 2.16 -2.42E-01 3.95E-02 1.07E-02

Fatty Acids

Dodecanoic acid (C12:0) (ng/ml) Day 3 721.40 801.41 1338.69 1564.94 1.26E+02 4.08E-05 2.55E-01

5-Dodecanoic acid (C12:1) (ng/ml) Day 3 989.79 1255.54 1806.04 2234.53 8.79E+02 9.77E-04 1.79E-01

Myristic acid (C14:0) (ng/ml) Day 3 3067.98 3056.96 4357.64 4233.59 1.18E+03 2.27E-03 8.65E-01

Capric acid (C10:0) (ng/ml) Day 3 686.56 603.76 1285.24 1408.98 6.94E+02 3.09E-03 9.94E-01

Myristoleic acid (C14:1) (ng/ml) Day 3 3067.98 3056.96 4357.64 4233.59 2.14E+03 1.92E-02 2.43E-01

Bile Acids

Glycoursodeoxycholic acid (GUDCA) (nmol/L) Day 2 0.08 0.08 0.08 0.04 -0.4904 6.42E-04 3.50E-01

Glycocholate (GCA) (nmol/L) Day 2 0.21 0.16 0.07 0.08 -0.778 9.58E-04 8.77E-02

Glycoursodeoxycholic acid (GUDCA) (nmol/L) Day 3 0.09 0.12 0.09 0.06 -6.75E-01 1.46E-02 5.01E-02

Deoxycholic acid (DCA) (nmol/L) Day 3 0.26 0.38 0.31 0.21 -3.35E-01 3.63E-02 5.82E-01

Hyodeoxycholic acid (HDCA) (nmol/L) Day 3 0.05 0.06 0.09 0.10 1.57E-01 4.66E-02 4.87E-01
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Figure 2A-H. Vegan vs. animal diet metabolic response signature by diet day and diet sequence. Key metabolite 
differences are graphically depicted showing day-3 changes from baseline for both diets, both directions (animal, 
washout, then vegan and vice versa). Gender differences shown with pink (female) and blue (male) dots. A mixed 
linear model was used to evaluate significant differences. A) HOMA-IR p=3.95E-02 (diet) p=1.07E-02 gender; B) 
BCAAs p (diet)=1.74E-06 p (gender)=5.80E-05; C) EAAs p(diet)=1.63E-06 p(gender)=8.26E-04; D) Proline 
p(diet)=1.87E-11; E) TGL p(diet)=1.61E-04; Chol/HDL p(diet)=3.42E-04; F) Mg p(diet)=5.19E-05; G) Glycine 
p(diet)=3.86E-02. BCAAs=branched chain amino acids; EAA=essential amino acids; TGL=triglycerides; 
Chol/HDL=cholesterol to high density lipoprotein ratio; MG=magnesium; HOMA-IR is calculated by 
glucose*insulin/22.5.

 

Changes in HOMA_IR Changes in BCAAs 

Changes in EAAs Changes in Proline 

Changes in TGL Changes in CHOL/HDL 

Changes in MG Changes in Glycine 
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Figure 3.  Heatmap with color gradients related to the similarity between blood biochemical variables based on spearman correlation coefficients, using a statistical significant 

treshold at 95% confidence interval. A blue cell represents a positive correlation between the corresponding biochemical species with a value ranging from 0.3 to 1; red represents 

an anti-correlation between the variables, with a value ranging from -0.3 to 0.60; a white cell indicates no correlation. Variables were ordered with biochemical pathways or classes.
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Correlation analyses between blood plasma biochemical species 

In addition to the correlations identified between biochemical metabolite classes (e.g., 

correlations of an amino acid with another amino acid, or of one bile acid with another), 

strong correlations between metabolites of different molecular classes were found: 

individual bile acids, fatty acids, and lipids correlated with individual amino acids 

(Figure 3). The branched-chain amino acids were negatively correlated with myristic 

acid and magnesium but positively correlated with the Chol/HDL ratio and phosphorus. 

The essential amino acids were negatively correlated with dodecanoic acid, myristic 

acid, capric acid, HDL, glucose, and glycine and positively correlated with Chol/HDL 

ratio, phosphorus, and triglycerides. The metabolite 3-methyl-2-oxovaleric acid had an 

inverse correlation with insulin, Chol/HDL ratio, and TGs and a positive correlation 

with the myristoleic and dodecaonic acids and hyodeoxycholic acid (HDCA).  

 

DISCUSSION  

 

Vegan diet patterns have been historically associated with diabetes prevention, 

promotion of blood sugar control, improved insulin sensitivity, decreased total and LDL 

cholesterol, and higher levels of HDL [5, 12], To our knowledge, this is the first short-

term, plant-based (vegan) diet study focused on metabolic health that identified 

improvement in clinical and metabolic parameters associated with insulin resistance in 

healthy subjects. 

 

A well-balanced vegan diet improves lipid and insulin metabolic status  

Participants enrolled in this study were not vegans and habitually consumed animal 

protein-based diets typical of the Swiss culture.  The animal- and vegan-protein foods 

provided in this intervention were intentionally designed to be more nutritious than 

typical diets and were balanced in macronutrient content. The foods were consumed in 

a semi-controlled, supervised environment and intake measured to reduce uncertainty 

in nutrient consumption. Participants in our study showed statistically significant 

improvements in insulin and HOMA-IR (33% reduction vegan vs. animal), TGs, and the 

Chol/HDL ratio after only 48 hours of consuming the vegan diet. Elevated serum lipids, 

including total CHOL and TGs and a high cholesterol/HDL ratio have been associated 

with insulin resistance [13-15]. Improvements in these metabolic syndrome-associated 

risk factors were likely related to higher fiber content (39.8 g and 17.5 g from the vegan 

and animal based protein diets consecutively), micronutrient density, and non-oxidized 

polyunsaturated fats (PUFAs), and lower glycemic index food choices found in a 

healthful vegan diet pattern. Inverse correlations were also found between dietary PUFA 

intake and total dietary fiber with insulin, HOMA-IR, and TGs, consistent with higher 

PUFA and fiber intakes (Table 2, Table 4). Major contributors of PUFAs from the vegan 
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diet include cashew butter, rapeseed oil, sunflower oil, hummus, hemp protein powder, 

and soy yoghurt (Supplementary Figure 1).  

 

A significant increase in plasma magnesium from the vegan diet was found and a highly 

significant positive correlation between dietary magnesium intake and plasma 

magnesium, insulin, and HOMA-IR was detected (Tables 3 and 4), cashew butter, 

hummus, lentils, and kidney beans eaten as part of the vegan diet regimen in this study 

are rich sources of magnesium. Increased intake of magnesium has been shown to 

reduce the risk of impaired glucose tolerance and insulin metabolism [16, 17] consistent 

with the improved insulin control and decreased triglyceride levels observed in this 

study (Table 2, Figure 4).  

 

In addition to the changes in blood lipid profile, the saturated fatty acids dodecanoic, 

capric, and myristic acids were significantly elevated after the vegan diet. These 

saturated fatty acids (SFAs) likely reflect the fatty acid composition of the coconut milk 

provided at dinner each evening over the 2 days. The monounsaturated species of these 

fatty acids, 5-dodecanoic and myristoleic acids, were also significantly elevated after the 

vegan diet and reflect the digestion and metabolism of their dietary precursors. Intake 

of dodecanoic acid may decrease the ratio of total to HDL cholesterol ratio by raising 

HDL [18], [19]. Although only a trend between dodecanoic acid HDL was seen in the 

present study, a positive correlation between capric acid and HDL and an inverse 

correlation between Chol/HDL ratio and myristoleic acid was found, suggesting that 

these fatty acids may improve the lipoprotein profile (Figure 3). 

 

In relation to observed lipid changes, some bile acid species were higher after 

consuming the animal protein relative to the vegan diets, consistent with their role in 

the digestion and absorption of dietary fat and cholesterol; and their synthesis in the 

liver from cholesterol. This effect may be explained by the higher saturated fat and 

cholesterol content in the animal diet (red meat) and the higher fiber in the vegan diet 

may have resulted in a relative decrease in bile acid absorption.  Furthermore, bile acids 

are also essential metabolic integrators and signalling factors, far beyond their role as 

lipid solubilizers and simple regulators of bile-acid homeostasis[20]. In particular, it is 

now well established how glucose and insulin can enlarge bile acid pool size and their 

blood circulating levels, by modulating Cholesterol 7 alpha-hydroxylase, a rate limiting 

enzyme in bile acid synthesis[21].  Blood bile acid concentrations have been associated 

with fasting and postprandial insulin and glucose, with further implication in diabetes 

and obesity research [22, 23].The higher circulating levels of certain bile acids (and 

secondary bile acid DCA) and insulin observed in individuals on the animal diet 

compared to the vegan diet may therefore be directly related. It may be envisioned that   
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a vegan diet strategy may offer protective benefits against insulin resistance, as noted 

here with improved HOMA-IR, and lowered circulating insulin and specific bile acid 

species [24]. Future evaluation of the alternating plant – animal protein diet in insulin 

resistant individuals is warranted to determine if this strategy is beneficial for improving 

metabolic control. 

 
Table 4: Spearman's rank correlations between plasma concentrations and dietary nutrient intakes  
 

 
  

Diet Plasma  r P-value*  
Amino acids (AAs)   

 
PRO PRO 0.74 2.42E-08  
VAL VAL 0.73 5.35E-08  
LYS LYS 0.62 1.05E-05  
LEU LEU 0.59 3.94E-05  
TYR TYR 0.52 4.04E-04  
MET MET 0.52 4.82E-04  
PHE PHE 0.47 1.74E-03  
ARG ARG 0.46 2.27E-03  
ILE ILE 0.42 5.61E-03  
TRP TRP 0.42 6.01E-03  
ALA ALA 0.36 1.77E-02  
 
B vitamins 

   
 

B2 Total AAs 0.71 3.28E-07  
B6 Total AAs 0.71 3.54E-07  
B12 Total AAs 0.60 4.22E-05  
B1 Total AAs 0.34 3.23E-02  
 
Minerals 

   
 

Mg Mg 0.54 3.48E-04  
 
Polyunsaturated fats (PUFA) 

 
 

PUFA Insulin -0.55 1.56E-04  
PUFA HOMA-IR -0.54 2.07E-04  
PUFA TG -0.49 8.76E-04  
 
Saturated Fat 

   
 

Saturated Fat TG 0.30 4.80E-02  
 
Total dietary fiber (TDF) 

  
 

TDF Insulin -0.51 5.55E-04  
TDF HOMA-IR -0.50 7.38E-04  
TDF TG -0.49 1.10E-03  

     
*Conventional p-values are shown and those marked in bold were significant after False Discovery 
Rate (P<0.10). 

 

 

A vegan diet may improve insulin sensitivity by modulating AA bioavailability  

Elevated fasting BCAA and aromatic amino acids have been associated with higher 

metabolic risk of insulin resistance and obesity (21-29). The vegan diet induced a strong 

modulatory effect within 48 hours on the circulating levels of EAAs and BCAAs (Figure 

2). In addition, blood concentrations of EAAs were directly correlated with intake of 

these amino acids suggesting this improved metabolic health status was associated with 

dietary protein (Table 4, Figure 4). Several studies captured specific AA signatures 

related to HOMA-IR conditions in lean and obese subjects [25], Chinese and Asian-

Indian males [26], and in a weight loss cohort study of 500 men and women [27]. These 

reports showed a similar elevated AA signature in high versus low HOMA-IR status 
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including BCAAs (valine, leucine, isoleucine), aromatic (phenylalanine, tyrosine), 

alanine, glutamine, asparagine, and arginine which were positively associated with 

insulin resistance. The same AA differences from the animal vs vegan diets were found 

in this study with the exception of phenylalanine and asparagine. In a 6-month weight 

loss intervention study of 500 men and women, change in HOMA-IR was not strongly 

associated with amount of weight lost but rather with an AAs signature that included 

alanine, proline, BCAAs (valine leucine/isoleucine), methionine, aromatic amino acids 

(ArAAs) (phenylalanine, tyrosine), glutamine and ornithine [27]. The association of this 

AAs profile and HOMA-IR in different populations is consistent with the associations 

found in our participants consuming the vegan diet. Increased concentrations of the 

circulating essential BCAAs resulted from diet intake and protein catabolism. However, 

BCAA may increase insulin resistance when consumed with high fat diets, at least in 

rats [25]. The animal protein diet in the study reported here was slightly higher in overall 

fat content and significantly higher in saturated fat and BCAAs, which may potentiate 

an increase in HOMA-IR (Table 3). The vegan diet produced reductions in, but not 

strong statistical correlations between HOMA-IR, BCAAs, and ArAAs, which may be 

related to the short duration of our study (Table 3, Figure 3).  Longer term (1 and 6 

week) vegetarian plus fish diets significantly reduced and showed strong correlations 

between HOMA-IR, BCAAs, and ArAAs [28]. Plasma concentrations of 3-methyl-2-

oxovaleric acid, a keto-acid product of isoleucine metabolism, decreased on the animal 

protein diet which may be due to increased activity of branched-chain keto acid 

dehydrogenase (BCKDH) [29].  

 

Gender dimorphism may influence the impact of dietary modulation of glucose and insulin 

metabolism  

Twelve amino acids, including the BCAAs, showed significant gender differences at 

baseline (Supplementary Table 3). The BCAAs, insulin and HOMA-IR showed gender 

differences post intervention (Table 3). Recent studies found that males had 

significantly higher BCAAs, phenylalanine, tyrosine, alanine, proline, methionine, 

glutamine and ornithine [30]. In contrast, insulin and HOMA-IR showed gender 

differences in intervention response with plasma concentrations slightly higher in 

females in the study presented here (Table 3).  These results were inconsistent with 

published literature on correlations between gender dimorphism and insulin resistance 

[31, 32]. However, gender differences in insulin concentrations and calculated HOMA-

IR may be augmented by consuming defined short-term or long-term diets or by 

differences in estrogen levels between studies based on age or unknown menstrual cycle 

status, or any other difference in study conditions.  Males were also found to have 

slightly higher magnesium levels (Table 3), consistent with published literature [33].  
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Flexitarian dieting for metabolic health improvement?  

Intermittent or periodic fasting has been proposed as a novel approach to weight 

management and modulation of markers of metabolic syndrome.  A similar flexitarian 

approach of alternating between animal and vegan protein choices requires only 

periodic alteration of an individual’s dietary habits.  Reducing the amount of habitual 

change on a frequent basis may increase adherence to dietary lifestyle change which has 

been shown to be the most important factor for diet success [34]. Additionally, a 

flexitarian diet optimizes nutrient intake from all protein sources and prevents potential 

micronutrient deficiencies from an exclusively vegan diet. Based on the results shown 

here, an intermittent vegan diet with healthful macronutrient and micronutrient 

balance may beneficially modulate blood insulin, lipids, and amino acids (Figure 4A).  

 

Study limitations & opportunities  

This was a small, pilot study of 21 participants with concomitant limitations of sample 

size and risk of false positives. Even though vegan meals appeared to have a higher 

volume of food, caloric intake was less on this diet compared to animal protein diet due 

to the satiating effect of the high fiber containing plant foods and despite efforts to 

match calories and macronutrient contents (Table 2). We did not distinguish between 

the different types of fiber (soluble, insoluble, inulin) and phytosterols such as plant 

stanols and sterols that are known to have an effect on lipids/cholesterol, bile acids, and 

glucose.  However, the complexity of metabolite-metabolite and varying genotype-

metabolite interactions challenge simplistic single metabolite interpretations of the 

phenotypic response to the diet interventions. Even though many nutrient parameters 

were recorded, this study relied on food diaries with manual database entry for analysis 

which highlights the lack of availability of high quality, reliable nutrition data capture 

and measurement technologies. This was a study of non-obese healthy participants 

without insulin resistance. However, the results presented here suggest that this diet 

strategy be tested in a non-healthy population to examine its beneficial effects on 

insulin and AA metabolism. 

 

The strength of the study was the development and testing of a specific diet strategy 

that more closely resembled habitual animal protein-based diets compared to a vegan 

diet comprised of easily accessible food choices in a controlled, cross-over design. These 

results can be translated more easily to a diet strategy to promote health improvement 

compared to single food ingredient interventions. Moreover, the small size of the study 

permitted a focused, quality controlled measurement and analysis of dietary intake.An 

intermittent, high protein vegan diet may not only impact weight control but may be 

more environmentally sustainable than current animal-based protein diets.
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Figure 4A - The vegan diet decreased plasma AA ,HOMA-IR, Chol/HDL, and bile acids while increasing Mg; with the animal diet having opposing effects. Dietary SFAs increased 
TGs in the animal diet; high dietary PUFA and fiber intakes from the vegan diet reduced HOMA-IR and TGs. Dietary AA increased 11 plasma AA. Solid lines and arrows depict 
significant Spearman’s correlations between diet and plasma variables and between plasma metabolites; dotted lines depict known associations. Biomarkers that showed significant 
gender dimorphic responses to the diet interventions are circled. AA=amino acid; BCAA=branched chain amino acids; TGs=triglycerides; Chol/HDL=cholesterol to high density 
lipoprotein ratio; Mg=magnesium; HOMA-IR is calculated by glucose*insulin/22.  
 
 

A 
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Figure 4B-J - Dietary intake differences across diet interventions for correlated nutrients. Nutrient intake differences in animal vs. vegan diets using a Wilcoxon signed-rank test. A 
subset of nutrients also found to be correlated with significant metabolites is shown here. B) VAL (valine) p=6.40E-05; C) LEU (leucine) p=6.40E-05; D) ILE (Isoleucine) p=6.40E-
05; E) PUFA (polyunsaturated fatty acids) p=6.41E-05; F) SFA (saturated fatty acids) p=6.41E-05; G) TDF (total dietary fiber) p=6.41E-05; H) MG (magnesium) p=1.43E-04; I) PRO 
(protein) p=6.41E-05; J) TRP (tryptophan) p=6.40E-05. All nutrient intakes were significantly higher in males vs. females (p<0.05). 
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CONCLUSION 

 

We analyzed the effects of vegan- versus animal protein-based diets on metabolic health 

parameters.  A slightly higher than average protein intake was chosen for both diets to 

optimize metabolic health impact. We produced a branched-chain amino acid-

associated metabolic signature from a short term, healthy, vegan diet challenge (Figure 

4).  These results suggest an improvement in the ability to adapt to changes in intake of 

different nutrients or levels of nutrients while maintaining a healthy metabolism [35]. 

Intermittently substituting vegan meals in otherwise animal-based diets may decrease 

the unsustainable environmental impact of animal-based diets. Future research should 

be conducted to evaluate the benefits of this diet strategy in an obese, insulin-resistant 

population.   
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SUPPLEMENTARY INFORMATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S1. The animal and vegan diet menu plans were the same each day for 2 days. Food portions were provided based on 8 personalized calorie plans in 

accordance with the caloric needs of the individual participants. Hemp protein powder was used for the vegan diet to boost total protein. 
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Supplementary Table S1. Mean diet intake differences between baseline and intervention diets 

    
Diet Variable Baseline vs. vegan P-value* Baseline vs. animal P-value*  
Vitamin B12 (ug) 6.41E-05 NS  
Sodium (mg) 6.41E-05 1.68E-04  
Polyunsaturated fat (g) 6.41E-05 2.29E-04  
Saturated fat (g) 6.41E-05 NS  
Magnesium (mg) 7.42E-05 NS  
Fat (g) 8.56E-05 3.01E-04  
Folate (ug) 8.57E-05 NS  
Kilocalories (Kcal) 8.58E-05 NS  
Protein (%) 1.14E-04 6.41E-05  
Vitamin C (mg) 2.29E-04 1.68E-04  
Vitamin A (mg) 3.01E-04 NS  
Carbohydrate (g) 4.77E-04 NS  
Vitamin B2 (mg) 6.58E-04 1.38E-03  
Fat% 1.56E-03 6.59E-04  
Vitamin E (mg) 1.76E-03 6.73E-04  
Monounsaturated fats (g) 3.92E-03 NS  
Total fiber (g) 3.92E-03 8.48E-04  
Iron (mg) 4.87E-03 NS  
Protein (%) NS NS  
Phosporus (mg) NS 1.43E-04  
Protein (g) NS 1.52E-04  
Vitamin C (mg) NS NS  
Sodium (mg) NS NS  
Polyunsaturated fat (g) NS NS  
Fat (g) NS NS  
Vitamin B6 (mg) NS 5.00E-04  
Vitamin E (mg) NS NS  
Fat% NS NS  
Total fiber (g) NS NS  
Vitamin B2 (mg) NS NS  

    
 *Wilcoxon signed-rank test comparing paired average animal and vegan diet intakes with corresponding baseline 

averages and all comparisons are bolded as they also met a false discovery rate of P<0.10. 

  

 

 

 
Supplementary Table S2. Comparison of baseline and washout diet intakes 

  
Diet Variable P-value* 

Carbohydrate 6.36E-03 
Total fiber 1.23E-02 

Magnesium 1.65E-02 

Kilocalories 1.99E-02 

Sodium 2.85E-02 

  
*Wilcoxon signed-rank test comparing paired average washout food diaries 
 with corresponding baseline average and those marked in bold were 
significant   after False Discovery Rate (P<0.10). 
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Supplementary Table S3. Baseline plasma amino acid status by gender 

 

Amino Acid (nmol/ml) Female SD Male SD P-value 

BCAAs  322.879 43.869 457.996 42.248 1.65E-04 
Leucine  94.528 12.853 141.503 11.265 1.65E-04 

Valine  174.545 25.471 244.347 30.226 2.18E-04 

Isoleucine*  53.806 9.205 72.146 7.75 4.91E-04 

EAAs  786.518 80.857 962.85 88.423 1.36E-03 

Ornithine* 32.559 10.591 45.087 6.989 4.35E-03 

Phenylalanine* 45.7 6.158 55.726 5.765 4.35E-03 

Methionine 22.111 3.387 26.377 4.035 5.41E-03 

Lysine 137.13 30.114 174.895 29.075 1.24E-02 

Glutamic acid* 16.452 8.07 33.702 19.751 1.83E-02 

Glutamine* 471.3 59.72 562.596 81.189 1.83E-02 

Tyrosine 47.073 11.555 59.167 8.034 2.65E-02 

Arginine 67.603 19.984 82.202 14.837 4.48E-02 

Tryptophan 52.314 7.933 59.029 7.642 4.48E-02 

Alanine 302.367 37.867 337.712 65.431 5.28E-02 

Proline 137.206 28.536 168.398 42.841 8.45E-02 

Citrulline 23.213 5.957 29.073 6.732 9.80E-02 

Glycine 187.707 100.015 213.71 68.119 1.30E-01 

Asparagine 41.154 6.475 46.753 10.575 1.93E-01 

Threonine 128.34 41.449 110.838 23.28 5.50E-01 

Serine 91.633 15.776 95.653 19.314 7.51E-01 

Histidine 78.044 8.474 77.989 7.283 9.16E-01 

Cystine 49.772 21.201 53.412 11.122 1.00E+00 

      
Conventional P-values calculated using Wilcoxon signed-rank test.  
*Amino acids with gender difference at baseline but no significant post-intervention 
change BCAAs=branched chain amino acids, EAAs=essential amino acids  
Significant P-values <0.05 in bold    
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ABSTRACT 

 

Flexitarian dieting is increasingly associated with health benefits. The study of 

postprandial metabolic response to vegan and animal diets is essential to decipher how 

specific diet components may mediate metabolic changes. Therefore, a randomized, 

cross-over, controlled vegan versus animal diet challenge was conducted on 21 healthy 

participants. Postprandial metabolic measurements were conducted at six timepoints 

during breakfast and lunch. Area under the curve analysis of the vegan diet response 

demonstrated higher glucose (EE 0.35), insulin (EE 0.38), triglycerides (EE 0.72) and 9 

amino acids at breakfast (EE 4.72 to 209.32); and 6 lower health-promoting fatty acids 

at lunch (EE -0.1035 to -0.13) (p < 0.05). Glycemic and lipid parameters varied 

irrespective of diet type, demonstrating vegan and animal meals contained both health 

promoting and suboptimal nutrient combinations. The vegan breakfast produced the 

same elevated branched chain amino acid-associated metabolic signature as the animal 

diet from our fasting results, reflecting the low protein load in the animal and the higher 

branched chain amino acid load of the vegan breakfasts. Liberalization of the vegan 

menu to vegetarian and the animal menu to a Nordic-based diet could result in optimal 

metabolic signatures for both flexitarian diet strategies in future research.  
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INTRODUCTION 

 

Vegan, vegetarian and animal-based omnivorous diets are naturally health promoting 

if they are well-balanced with sufficient macro and micronutrients to meet dietary 

requirements [1-6]. Mediterranean, Nordic and flexitarian (semi-vegetarian) diets are 

omnivorous diets with an emphasis on plant-based foods and have been shown to 

correlate with reduced risk of diabetes and cardiovascular disease onset and promote 

glucose and lipid control [7-13].  Healthful and macronutrient balanced vegan diets are 

naturally high in dietary soluble fibers, well- known for a multitude of health 

promoting benefits, such as glucose and lipid control [14-16]. Similarly, animal-based 

diets that include a high intake of soluble fiber containing fruits and vegetables, while 

minimizing red meat intake can also be health promoting. We previously studied the 

metabolic non-equivalence between balanced vegan and animal diets in healthy 

subjects that mediated an insulin, lipid and amino acid signature at fasting known to 

be associated with diabetes risk after 48 hours [17]. 

 

Postprandial studies permit the comprehensive examination of complex interactions 

between the food matrices, components and human metabolism after meal ingestion 

to shed light on metabolic response and adaptation [18]. Such research is fundamental 

to substantiate personalized nutritional approaches. For example, postprandial 

lipaemia (hypertriglyceridemia) from a high fat meal, known to worsen in individuals 

with type 2 diabetes, is associated with cardiovascular disease risk and acute 

cardiovascular events [19-21]. Postprandial lipaemia can be lowered with higher intake 

of dietary fiber, polyphenols, medium chain fatty acids and long-chain n-3 

polyunsaturated fatty acids [22-25]. Postprandial dysmetabolism is distinguished by 

elevated glucose and lipids and associated with the onset of cardiovascular events [26].  

In fact, postprandial dysmetabolic responses are useful to demonstrate individual 

resilience to high fat and high glucose challenges, known as phenotypic flexibility [27-

29] .  

 

Comparison of postprandial responses to vegan and animal meals holds the potential 

to provide a deeper understanding of the cumulative impact of meals, snacks and 

timing on fasting results. For the present analysis, we investigated the quantitative and 

correlative impact of meal nutrient composition in vegan and animal diets on 

postprandial metabolic response as a follow-on analysis from the same study 

represented in our first publication. This was achieved by evaluating clinical variables, 

such as insulin, glucose, triglycerides, amino acid, fatty acid and bile acid responses to 

meals and snacks from each diet type. This investigation was conducted to describe 

which meal compositions contributed optimal clinical and metabolomic biomarker 
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results in order to make recommendations for nutrient composition improvement 

using either vegan or animal based diets. 

 

EXPERIMENTAL SECTION 

 

This study is a follow on analysis of postprandial results from a study previously 

published which evaluated the fasting results from the vegan and animal diet 

interventions on day 3 [17]. Further description of the methods can be found in 

Chapter 2. 

 

Study Population and Ethical Approval 

This study was conducted in accordance with the ethical principles of Good Clinical 

Practice and the Declaration of Helsinki, approved by the Ethical Committee of 

Lausanne University School of Medicine, Switzerland (CER-VD, ref no. 222/14), and 

registered on ClinicalTrials.gov with the identifier NCT02223585. All participants 

provided written informed consent for study participation and were offered financial 

compensation agreed by the ethical committee for time spent and schedule 

inconveniences. 

 

A total of 56 healthy male and female volunteers were pre-screened at information 

sessions held at the Metabolic Unit, Nestlé Research Center (Lausanne, Switzerland). 

Out of the 32 participants who signed informed consent, 26 were enrolled in the study 

(6 screening failures), 5 dropped out and 21 healthy participants (10 men, 11 women) 

completed this pilot study (Figure S1). Two participants dropped out because of non-

serious adverse events, and another three decided not to proceed with the study. All 

participants habitually ate a heterogeneous diet including animal and vegan proteins 

before entrance into the study.  

 

Study inclusion criteria were age (from 18 to 55 years), regular bowel movement (at least 

once every 1-2 days), and body mass index (BMI, from 18.5 to 27 kg.m-2). Health status 

was assessed by a physician during a screening visit as a standard medical visit with 

blood chemistry analysis. Exclusion criteria included special diets (vegetarian, high 

protein, and low cholesterol or weight loss program), pregnancy, food allergy, smoking, 

high alcohol consumption (more than 2 drinks per day), and excessive physical exercise 

(more than 5 moderate physical exercises per week).  

 

Diet Interventions 

All meals and snacks were provided by the Metabolic Unit (MU). Participant 

compliance with breakfast, lunch, morning and afternoon snacks were supervised by 
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the MU. The energy provided by vegan and animal meals was personalized for each 

participant according to their calculated resting energy requirements from 

anthropometrics, gender and level of physical activity [30]. Macronutrient composition 

was matched for the day between animal and vegan-based menus, and was calculated 

based on 20% protein, 50% carbohydrate and 30% fat of total calories within ±5% of 

calculated needs of each participant. However, the macronutrient composition for the 

individual meals and snacks differed within and across diets even though total 

compositions were matched (Table S1). 

 

Clinical Trial Design 

The clinical trial was a randomized, open label, cross-over, controlled study. Study 

participants were randomly assigned to the animal and plant protein challenges using 

Medidata Balance with dynamic allocation [31].The study lasted five weeks following a 

one week run-in phase (Week 1 = W1) that defines baseline of the participant’s normal 

diet and lifestyle. Participants were randomly assigned to either animal or vegan meals 

for three consecutive days (Tuesday, Wednesday and Thursday). During each 3-day 

intervention, participants ate the same meals on each day, including breakfast, 

morning snack, lunch, afternoon snack, and dinner (Figure S2). All meals and snacks 

were prepared and provided on site (MU) to study participants under supervision by 

the MU staff with the exception of the dinner meal, which was packaged for home 

consumption. Fasting analysis results of the 3 day interventions have been previously 

published [17]. This study analyzes the results from plasma drawn at 7 time-points on 

day 3 after breakfast and lunch, to evaluate post-prandial response of each diet type. 

The timeframes between meals and snacks were approximately 2 ½ hours between 

breakfast and the morning snack, 2 hours between the morning snack and lunch, and 

4 hours between lunch and the afternoon snack. As indicated in Figure 1, the 

considered timepoints are: breakfast minus 15 minutes [T0], breakfast plus 1 hour [T1], 

breakfast plus 2 hours [T2], lunch minus 15 minutes [T3], lunch plus 1 hour [T4], lunch 

plus 2 hours [T5], lunch plus 4 hours [T6], and lunch plus 6 hours [T7].  

 

Amino acids, bile acids, clinical biomarkers and metabonomics analyses  

Small molecule analysis (amino acids, clinical biomarkers, and metabonomics) of 

plasma samples was conducted using the same methodologies previously reported [29] 

(see Methods Supplement). For bile acids analysis, a method providing a broader 

coverage of targeted biochemical species was employed, differing from the 

quantification of 18 major bile acids used for the fasting plasma sample analyses. Plasma 

samples were extracted and prepared according to previously published methods [32, 

33]. Briefly, all standards were obtained from Steraloids Inc. (Newport, RI, USA) and 

TRC Chemicals (Toronto, ON, Canada), and 9 stable isotope-labeled bile acid standards 
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were used as internal standards. An ultra-performance liquid chromatography coupled 

to tandem mass spectrometry (UPLC-MS/MS) system (ACQUITY UPLC-Xevo TQ-S, 

Waters Corp., Milford, MA, USA) was used to quantitate bile acids in the human plasma 

Data acquisition was performed using MassLynx version 4.1 and quantification was 

performed using TargetLynx version 4.1 (Waters, Milford, MA, USA). 

 

STATISTICAL ANALYSIS 

 

Study of differences in diet intake at breakfast, lunch and dinner 

Statistical significance of observed nutrient composition differences across meals and 

snacks was calculated using a Wilcoxon signed rank-test using the p value <0.05 as an 

initial threshold of significance.  False Discovery Rate (FDR) <0.10 was used to further 

assess the statistical significance of the results. 

 

Study of post-breakfast and post-lunch time diet effects in plasma using the AUC model 

A linear mixed effect model was used to assess the association between genders, diet 

type and diet sequence with the total changes in metabolites before and after lunch. 

The model was fit separately for each metabolite and for each time-period. The total 

metabolite changes between post-breakfast (breakfast, morning snack) and post-lunch 

(lunch, afternoon snack) periods were assessed with Area Under the Curve (AUC). AUCs 

were computed using the trapezoidal rule and their normality was assessed with the 

Shapiro-Wilk test: those showing a Shapiro-Wilk p-value ≤ 0.05 were transformed using 

the Box-Cox method, prior to fitting the model. The carry-over effect was assessed, as 

done previously [29].  

 

Study of time specific diet effects post-breakfast, post-lunch and fasting day 3 post-dinner 

day 2 in plasma using ANOVA 

To compare the metabolic effects of the diet type at specific timepoints, the interaction 

between time and diet was fit for each metabolite with a linear mixed effect model. With 

an ANOVA test, gender, diet and diet sequence affected metabolic measurements at 

fasting. Thus, the mixed model was applied to concentration values previously corrected 

for the baseline (fasting visit at day 3 of diet). For metabolites showing a significant 

time/diet interaction term (p-value≤0.05), a post-hoc analysis was performed. Least 

squares means were used to determine the difference between the vegan and the animal 

(baseline) diet at each time point. False Discovery Rate (FDR) <0.10 was used to assess 

the statistical significance of the results. 
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Figure 1. Schema. This randomized, controlled, cross-over pilot study compared 21 (10 men, 11 women) participants. Vegan and animal diets were tailored to individual kilocalorie 

needs and matched over the day for macronutrient composition but not between meals and snacks. Each diet type was fed for 3 days with 7 postprandial measurements on day 3 

during breakfast and lunch. Clinical, amino acid, fatty acid and bile acid metabolic biomarkers were measured and compared at each timepoint and correlated with dietary intake. 

T0 Fasting = breakfast minus 15 min? T1 Breakfast +1 hour,T2 Breakfast +2 hours, T3 Lunch minus 15 minutes ,T4 Lunch + 1 hour, T5 Lunch + 2hours, T6 Lunch + 4 hours, T7 Lunch 

+ 6 hours Note: post breakfast and post lunch snacks outside of 2 hour sampling timepoints. Post lunch snack generally 3-4 hours after lunch. 
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Correlation between dietary intake and metabolite levels 

A paired Wilcoxon signed-rank test was used to investigate the relationships between 

the nutrient intakes on the concentration of plasma metabolites. For each meal, intakes 

were compared across diets, with results providing FDR q-value <0.10 considered 

significant. To better explore the results obtained with the AUC analysis, also the 

intakes of “combined meals” (breakfast+morning snack, lunch+afternoon snack, 

dinner+emergency snack) were compared across diets. The correlation between dietary 

intake and plasma metabolite levels was calculated with the Spearman correlation. 

Spearman's rho statistic was used to test the significance of the association. P-values 

were corrected for multiple testing using FDR <0.10.  

 

RESULTS 

 

Population Characteristics 

A total of 21 (11 females, 10 males) healthy participants completed the clinical trial. 

Individuals were similar in age and BMI. Baseline characteristics have been described 

previously [29].  

 

Meal and Snack Compositions 

Supervised meal and snack nutrient compositions were analyzed from participant 

compliance records to quantify actual intake differences due to individual preferences, 

appetite and satiety. Of the 43 nutrients analyzed from the diet intervention intakes 

during dinner day 2, and breakfast and lunch day 3; we have highlighted 24 nutrient 

compositions for each meal and snack due to their significant influence on the 

postprandial metabolite response (Table S1). Statistical analysis was completed using 

mean nutrient intakes for: i) breakfast and morning snacks from day 3; ii) lunch and 

afternoon snacks from day 3; and, ii) dinner and emergency snacks from day 2 (Table 

1). 

 

All mean dinner and evening snack intakes from day 2 were statistically significantly 

greater from the animal diet with the exception of percent kilocalories (kcal) from 

protein (PROT %), total dietary fiber (TDF), percent kilocalories from carbohydrate 

(CHO %), percent kilocalories from fat (Fat %) and polyunsaturated fatty acids (PUFA). 

Particularly notable was the large difference in kcal (915.24 vs. 400.10 kcals in animal vs. 

vegan diets) and protein (PROT) (63.18 vs. 21.74 g in the animal vs. vegan diets). The 

vegan diet maintained statistically significantly higher TDF and PUFA contents (Table 

1, Table S1).  
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Breakfast and morning snack intakes from day 3 (e.g. Kcals, CHO, PROT, AA, fat) were 

statistically significantly greater for the vegan diet with the exception of saturated fatty 

acids (SFA) which were statistically significantly greater in the animal diet (FDR<0.10). 

Lysine (LYS), methionine (MET), proline (PRO) and CHO % differences did not reach 

statistical significance (Table 1, Table S1). 

 

Lunch and afternoon snack intakes were statistically significantly higher from the 

animal diet for Kcal, fat, fat %, MUFA, PUFA, PROT, PROT % and 9 amino acids (AA). 

Total dietary fiber and methionine contents were higher from the vegan diet and 

statistically significant (Table 1, Table S1). 

 

Clinical Response to Meal and Snack Compositions 

Out of the 24 metabolic parameters analyzed, statistically significant differences were 

observed in insulin, triglycerides and glucose AUCs between diets. Insulin, triglycerides 

and glucose AUCs were significantly elevated from the vegan diet during the post-

breakfast timeperiod. Insulin decreased on the vegan diet and became elevated from 

the animal diet during the lunch period. Glucose remained significantly elevated from 

the vegan diet during the post-lunch timeperiod (Figure 2, Table S2). Temporal 

analysis using ANOVA (timepoints T0-T7) revealed statistically significant differences 

at T1, T2 and T7 for triglycerides (TGs) with the elevated TGs from the vegan diet being 

most notable at T1 and T2. A part from T1, all the timepoints were statistically significant 

for insulin, with T4 most notable for an elevated peak from the animal diet. Timepoint 

T3 was statistically significant for glucose and the elevation between T3 and T4 is most 

notable (Table S3). Insulin and TG responses showed gender dimorphism (see gender 

dimorphism supplement, Table S4).  

 

The elevated TG and insulin from the vegan breakfast demonstrated a strong 

statistically significant correlation between the TG and insulin AUCs, and CHO intake, 

elevated from the vegan diet (Table 2, Figure S4).  

 

The prolonged elevated glucose from the vegan diet at lunch correlated significantly 

with TDF, suggesting a correlation with slowed absorption of glucose over time. Fasting 

plasma day 3 insulin was significantly inversely correlated with TDF intake from dinner 

day 2. In this case, insulin had been elevated from the animal diet and fiber intake was 

higher from the vegan diet [29] (Table 2, Figure S5).  

 

Elevated triglycerides and insulin from the vegan breakfast demonstrated a significant 

correlation with their respective AUCs for total fat intake, consistent with the higher fat 

intake from the vegan breakfast (Table 1, Table 2, Figure S4).   
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Table 1. Significant diet intake differences between AUC timeperiods. 

 
 

  Means     Significance     
Nutrient PB 

Animal 
PB Vegan PL Animal PL 

Vegan 
PD 

Animal 
PD 

Vegan 
P value 

PB 
FDR PB P value 

PL 
FDR PL P value 

PD 
FDR PD 

Kilocalories Kcal 598.35 895.51 674.21 556.26 915.24 400.10 1.91E-06 5.15E-05 1.22E-03 3.30E-02 6.40E-05 1.73E-03 
Protein (g)  PROT 15.89 36.80 27.92 22.23 63.18 21.74 6.40E-05 1.73E-03 3.42E-04 9.23E-03 6.40E-05 1.73E-03 

Percent protein PROT % 23.07 33.32 28.60 31.10 26.51 21.25 1.91E-06 5.15E-05 1.37E-03 3.70E-02 1.81E-02 4.89E-01 

Alanine (mg) ALA 665.18 1389.77 1230.18 1004.30 3294.94 870.64 6.40E-05 1.73E-03 7.44E-04 2.01E-02 6.40E-05 1.73E-03 

Arginine (mg) ARG 689.86 2392.93 1271.14 1501.08 3674.33 1681.07 6.40E-05 1.73E-03 7.81E-03 2.11E-01 6.40E-05 1.73E-03 

Cysteine (mg) CYS 206.14 472.50 437.60 213.29 992.49 240.14 6.40E-05 1.73E-03 6.37E-05 1.72E-03 6.40E-05 1.73E-03 

Glycine (mg) GLY 442.16 1185.10 1250.76 949.95 3026.74 807.36 6.40E-05 1.73E-03 1.51E-04 4.07E-03 6.40E-05 1.73E-03 

Histidine (mg) HIS 403.89 754.92 718.19 635.98 1945.85 497.95 6.40E-05 1.73E-03 2.61E-02 7.04E-01 6.40E-05 1.73E-03 

Isoleucine (mg) ILE 862.68 1259.65 1110.30 932.10 3372.88 854.80 3.43E-04 9.27E-03 3.12E-03 8.43E-02 6.40E-05 1.73E-03 

Leucine (mg) LEU 1582.60 2221.90 1921.19 1173.86 5139.06 1220.38 2.62E-04 7.09E-03 6.37E-05 1.72E-03 6.40E-05 1.73E-03 

Lysine (mg) LYS 1164.13 1372.62 1359.37 1334.99 4604.08 1169.70 2.39E-02 6.44E-01 6.76E-01 1.00E+00 6.40E-05 1.73E-03 

Methionine (mg) MET 422.46 475.89 491.77 299.85 1593.38 244.21 4.38E-02 1.00E+00 6.37E-05 1.72E-03 6.39E-05 1.72E-03 

Phenylalanine (mg) PHE 844.86 1337.51 1049.30 1056.30 2932.96 957.98 9.90E-05 2.67E-03 8.62E-01 1.00E+00 6.40E-05 1.73E-03 

Proline (mg) PRO 1747.60 1454.31 1540.73 626.24 4356.06 734.66 4.37E-03 1.18E-01 6.37E-05 1.72E-03 6.40E-05 1.73E-03 

Serine (mg) SER 966.74 1435.11 1180.25 1175.40 1948.72 1027.00 1.74E-04 4.70E-03 8.35E-01 1.00E+00 6.40E-05 1.73E-03 

Threonine (mg) THR 685.98 1124.94 907.19 866.57 2713.07 803.98 8.57E-05 2.31E-03 3.66E-01 1.00E+00 6.40E-05 1.73E-03 

Tryptophan (mg) TRP 193.17 267.54 335.40 255.04 894.69 184.07 3.92E-04 1.06E-02 1.51E-04 4.07E-03 6.40E-05 1.73E-03 

Tyrosine (mg) TYR 746.24 940.77 822.38 650.39 2081.37 677.18 3.50E-03 9.46E-02 3.41E-04 9.22E-03 6.40E-05 1.73E-03 

Valine (mg) VAL 1065.40 1436.82 1221.48 1056.06 3336.85 1022.83 5.09E-04 1.37E-02 6.69E-03 1.81E-01 6.40E-05 1.73E-03 

Carbohydrate (g) CHO 68.57 97.64 73.31 81.83 119.14 47.10 6.40E-05 1.73E-03 7.62E-02 1.00E+00 6.40E-05 1.73E-03 

Percent carbohydrate CHO % 92.40 92.45 115.98 120.46 50.80 47.70 6.09E-01 1.00E+00 3.44E-01 1.00E+00 3.66E-01 1.00E+00 

Total fiber (g) TDF 4.65 15.14 6.80 14.72 6.03 8.80 6.37E-05 1.72E-03 6.37E-05 1.72E-03 1.38E-03 3.74E-02 

Fat (g) Fat 27.31 36.90 29.15 14.63 17.10 13.30 1.99E-04 5.38E-03 6.36E-05 1.72E-03 2.79E-03 7.54E-02 

Percent fat Fat % 79.45 66.83 54.41 45.44 19.10 30.13 6.68E-06 1.80E-04 1.81E-03 4.88E-02 2.18E-02 5.88E-01 

Polyunsaturated 
fatty acids(g) 

PUFA 1.02 13.20 9.16 8.12 5.03 7.45 6.40E-05 1.73E-03 1.80E-01 1.00E+00 1.08E-03 2.93E-02 

Monounsaturated 
fatty acids (g) 

MUFA 5.99 15.98 11.83 4.35 6.94 1.98 7.37E-05 1.99E-03 6.35E-05 1.72E-03 6.35E-05 1.71E-03 

Saturated fatty acids 
(g) 

SFA 18.32 6.81 7.84 2.14 3.56 2.59 6.40E-05 1.73E-03 6.37E-05 1.72E-03 1.72E-02 4.65E-01 

 

The p values were calculated by performing a Wilcoxon signed rank-test. PB, post-breakfast; PL, post-lunch; PD, post-dinner. Significant p values in bold (p<0.05). Significant values in bold that 

meet false discovery rate FDR<0.1
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Figure 2. Clinical biomarkers TG, insulin, glucose changes according to meal composition timing. Amino acids 

changes according to meal composition timing. Figures on the left represent AUC changes across diets and meal 

period. Gender differences are shown with red (female) and blue (male) dots. Figures on the right display timepoint 

changes, with blue and red lines represent respectively the vegan and the animal diet. T0 Fasting = breakfast minus 

15 min? T1 Breakfast +1 hour T2 Breakfast +2 hours T3 Lunch minus 15 minutes T4 Lunch + 1 hour T5 Lunch + 2hours 

T6 Lunch + 4 hours T7 Lunch + 6 hours Note: post breakfast and post lunch snacks outside of 2 hour sampling 

timepoints. Post lunch snack generally 3-4 hours after lunch. PB, post breakfast; PL, post lunch. A) glucose PB 

FDR=1.29E-02, PL FDR=5.60E-02; B) glucose T3 FDR<0.10; C) insulin PB FDR=6.54E-03, PL FDR<=5.60E-02; D) 

insulin T2-T7 FDR<0.10; E) triglycerides PB FDR=8.70E-03, PL FDR=3.75E-01; F) triglycerides T1-T2,T7 FDR<0.10; G) 

BCAAs (branch chain amino acids) PB FDR=2.09E-03, PL FDR=3.46E-01; H) branch chain amino acids T2-T3,T7; I) 

EAAs (essential amino acids) PB FDR=1.69E-04, PL FDR=9.48E-01; J) essential amino acids T2-T5,T7; K) arginine PB 

FDR=2.98E-09, PL FDR=1.57E-02; L) arginine T1-T5,T7; M) valine PB FDR=1.65E-04, PL FDR<=1.38E-03; N) valine T1-

T5,T7. 
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Elevated glucose from the vegan lunch demonstrated a significant inverse correlation 

with the lunch AUC for total fat intake, consistent with the significantly lower fat intake 

from the vegan lunch (Table 1, Figure S4). Elevated triglycerides, insulin and glucose 

from the vegan breakfast demonstrated significant positive correlations with the 

breakfast AUC for total PUFA intake, found to be significantly elevated in the vegan 

breakfast (Table 2, Figure S4). Insulin and TG, elevated in plasma fasting day 3 from 

the animal dinner day 2 [29], inversely correlated with PUFA intake, consistent with the 

higher PUFA intake from the vegan dinner (Table 1, Table 2). 

 

Plasma Amino Acid Response to differences in sources and Timing of Dietary Protein 

From a targeted quantification of 21 amino acids (AA), a total of 14 individual amino 

acids (arginine, ornithine, phenylalanine, asparagine, valine, tryptophan methionine, 

proline, citrulline, lysine, leucine, isoleucine, threonine, histidine), including the 

branched chain amino acids (BCAAs) and essential amino acids (EAA), demonstrated 

statistically significant higher AUCs from the vegan diet during the breakfast 

timeperiod. This result reflects the higher intake of BCAAs from the vegan protein hemp 

supplement and the extremely low intake of foods rich in protein on the animal diet. 

Proline demonstrated significantly higher AUCs at breakfast and lunch from the 

naturally high proline animal diet. Valine) continued with a statistically significantly 

higher AUC from the vegan breakfast to lunch timeperiods despite the high protein 

animal lunch. Three AAs (lysine, methionine and proline) demonstrated significantly 

higher AUCs from the animal lunch timeperiod reflecting the differences in AA protein 

compositions between the two diet types (Figure 2, Figure S3, Table S2). All 21 amino 

acids demonstrated statistically significant timepoint interactions. Significant peaks can 

be easily visualized in Figure 2, especially between T4 and T5 for the animal diet. These 

same types of peaks were not visualized in the vegan diet in which the AAs, particularly 

the EAAs, appear more stable (Figure 2, Table S3, Figure S3). Amino acid responses 

showed gender dimorphism (See gender dimorphism supplement, Table S4).  

 

A total of 11 plasma AA (arginine, proline, alanine, phenylalanine, valine, leucine, 

tryptophan, isoleucine, lysine, threonine, methionine) demonstrated statistically 

significant correlations with breakfast and lunch amino acid intakes. Protein intake was 

strongly and statistically significantly correlated with elevated total  plasma BCAA and 

EAA AUCs from the high protein, vegan breakfast (FDR<0.10) (Table 2, Figure S4) Of 

the plasma AAs found to be statistically significant in a previous publication [29], EAAs 

and BCAAs showed a strong, statistically significant correlation with the high protein 

intake from the animal dinner on day 2 and seven individual plasma AAs significantly 

correlated with their respective AA intakes, from the animal diet dinner (Table 2, Table 

1). 
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Table 2. Spearman’s rank correlations (r) between plasma concentrations and dietary nutrient intakes for breakfast  
and lunch AUC timeperiods, and fasting plasma day 3.   
 
 
Plasma  Diet r PB P value 

PB* 
r PL P value 

PL* 
r FD3 P value 

FD3* Amino acids          

ARG ARG 0.75 8.46E-09 0.42 5.94E-03 0.09 5.75E-01 

BCAAs PROT % 0.70 2.94E-07 0.67 2.72E-06 0.28 6.93E-02 

EAAs PROT % 0.66 1.81E-06 0.69 7.33E-07 0.32 4.04E-02 

EAAs PROT 0.68 9.04E-07 -0.31 4.47E-02 0.72 8.61E-08 

BCAAs PROT 0.65 3.34E-06 -0.30 4.99E-02 0.62 1.05E-05 

PRO PRO 0.67 1.51E-06 0.11 4.75E-01 0.74 2.60E-08 

ALA ALA 0.54 2.52E-04 0.19 2.20E-01 0.38 1.22E-02 

PHE PHE 0.50 8.60E-04 -0.01 9.28E-01 0.33 3.48E-02 

VAL VAL 0.49 9.31E-04 -0.27 8.93E-02 0.67 1.06E-06 

LEU LEU 0.41 6.29E-03 -0.54 2.51E-04 0.54 2.34E-04 

TRP TRP 0.42 6.13E-03 -0.18 2.41E-01 0.44 3.28E-03 

ILE ILE 0.41 7.32E-03 -0.18 2.43E-01 0.36 1.85E-02 

LYS LYS 0.35 2.33E-02 0.05 7.76E-01 0.58 6.51E-05 

THR THR 0.33 3.55E-02 -0.09 5.50E-01 0.22 1.65E-01 

MET MET 0.33 3.40E-02 0.09 5.74E-01 0.46 2.33E-03 

CYS CYS 0.26 1.00E-01 0.43 5.02E-03 0.06 7.17E-01 

GLY GLY -0.14 3.84E-01 -0.38 1.44E-02 0.06 7.07E-01 

Fatty acids        
Capric acid (C10:0) PUFA -0.77 2.26E-09 0.16 3.09E-01 0.27 8.44E-02 

Dodecanoic acid (C12:0)  PUFA -0.74 2.81E-08 0.11 4.78E-01 0.50 7.37E-04 

Myristic acid (C14:0) PUFA -0.67 1.55E-06 -0.01 9.68E-01 0.22 1.59E-01 

Caprylic acid (C8:0) PUFA -0.52 4.05E-04 0.28 6.79E-02 0.10 5.41E-01 

Pentadecanoic acid (C15:0) PUFA -0.59 3.78E-05 -0.17 2.85E-01 0.15 3.52E-01 

5-dodecanoic acid (C12:1) PUFA -0.47 1.48E-03 0.06 7.23E-01 0.45 2.59E-03 

Myristoleic acid (C14:1) PUFA -0.38 1.20E-02 -0.02 8.89E-01 0.29 5.79E-02 

Heptadecanoic acid (C17:1) PUFA -0.32 4.20E-02 -0.20 2.13E-01 0.20 1.99E-01 

Capric acid (C10:0) SFA 0.73 3.47E-08 0.62 1.10E-05 -0.20 1.99E-01 

Dodecanoic acid (C12:0)  SFA 0.61 1.50E-05 0.63 9.28E-06 -0.17 2.85E-01 

Myristic acid (C14:0) SFA 0.55 1.78E-04 0.56 1.20E-04 -0.16 3.07E-01 

Caprylic acid (C8:0) SFA 0.60 2.94E-05 0.48 1.38E-03 -0.08 6.25E-01 

Pentadecanoic acid (C15:0) SFA 0.36 1.87E-02 0.37 1.47E-02 -0.06 6.94E-01 

5-dodecanoic acid (C12:1) SFA 0.32 4.16E-02 0.51 4.84E-04 -0.01 9.38E-01 

Clinical biomarkers        
Insulin CHO 0.45 2.60E-03 0.23 1.35E-01 0.11 4.82E-01 

TG CHO 0.74 1.84E-08 0.42 5.26E-03 0.34 2.83E-02 

TG CHO % -0.32 3.81E-02 0.28 7.87E-02 0.24 1.31E-01 

TG FAT 0.72 7.12E-08 -0.01 9.33E-01 0.04 7.81E-01 

Glucose FAT 0.16 3.13E-01 -0.46 2.13E-03 0.16 3.00E-01 

Insulin FAT 0.41 7.31E-03 -0.13 4.06E-01 -0.21 1.78E-01 

Insulin FAT % -0.32 3.92E-02 -0.21 2.02E-01 -0.18 2.62E-01 

TG PUFA 0.62 1.42E-05 0.13 3.98E-01 -0.33 3.33E-02 

Insulin PUFA 0.44 3.16E-03 0.06 7.09E-01 -0.50 7.10E-04 

Glucose PUFA 0.32 3.89E-02 -0.06 7.13E-01 0.03 8.42E-01 

Glucose SFA -0.26 1.02E-01 -0.51 5.65E-04 0.18 2.60E-01 

 

Table 2. Spearman's rho statistic was used to test the significance of the association PB, post-breakfast; PL, post-

lunch; FD3, fasting day 3; r, correlation coefficient. Conventional p values are shown and significant false discovery 

rates in bold (FDR<0.10). Kcal, kilocalories; PROT, protein, PROT%, percent kilocalories from protein;  ARG, arginine; 

BCAAs, branched chain amino acids; EAAs, essential amino acids; PRO, proline; ALA, alanine; PHE, phenylalanine; 

VAL, valine; LEU, leucine; TRP, tryptophan; ILE, isoleucine; LYS, lysine; THR, threonine; MET,  methionine; CYS, 

cysteine; GLY, glycine; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids; TG, triglycerides; CHO, 

carbohydrates; CHO%, percent kilocalories from carbohydrates; TDF, total dietary fiber. 

Plasma Bile Acid Response to Composition Differences and Timing of Meals and Snacks 
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We analyzed 38 plasma bile acids for a comprehensive view of the postprandial phase 

response [29]. From this analysis, three primary bile acids demonstrated statistically 

significant AUC changes during the breakfast and lunch periods. Cholic acid (CA) 

demonstrated statistically significantly higher AUCs and -Chenodeoxycholic acid 

(bCDCA) demonstrated statistically significantly lower AUCs from the vegan diet 

during breakfast and lunch. The chenodeoxycholic acid (CDCA) AUC was statistically 

significantly higher from the vegan diet during lunch only. Ten secondary bile acids 

showed statistically significant AUC changes. Four of these (12-Ketolithocholic acid [12-

ketoLCA], 7-Ketolithocholic acid [7-ketoLCA], Glycolithocholic acid-3-sulfate [GLCA-

3S] and, Lithocholic acid-3-sulfate [LCA-3S]) significantly increased from the vegan diet 

after breakfast and lunch. Four tertiary bile acids demonstrated statistically significant 

AUC changes from lunch only (Figure 3, Table S2). Analyses of timepoint results 

(ANOVA, T0-T7) revealed 5 primary, 14 secondary, and 8 tertiary bile acids with 

complex temporal profiles (Table S3, Figure S6). 

 

Of the bile acids with statistically significant AUCs, TDF was positively correlated with 

GLCA-3S at breakfast and lunch, but not dinner; The KCAL, CHO, TDF, PROT, 14 AAs, 

fat, PUFA and MUFA with positive correlations with bile acids (GLCA-3S and LCA-3S) 

at breakfast, were reversed at lunch, reflecting the change in relative concentrations of 

the vegan diet (Figure 4, Table 1). 

 

Plasma Fatty Acid Response to Sources and Timing of Dietary Fat Intake 

Out of 31 fatty acids analyzed, a total of 7 (5-dodecanoic, capric, caprylic, dodecanoic, 

1,2-methylpentanoic, myristic, and pentadecanoic acids), showed elevated AUC from 

the animal diet during the breakfast period. Of those, AUC of capric, dodecanoic, 

myristic and pentadecanoic acids remained elevated from the animal diet during the 

lunch period. 

 

AUC of eicosenoic and myristoleic acids were statistically significantly elevated from 

the animal diet during the lunch period only. Temporal analysis using ANOVA further 

revealed 8 fatty acids with statistically significant timepoint differences across the two 

diets (vegan vs. animal). Of note, caprylic acid was elevated at T2 (breakfast period) and 

myristoleic acid was higher at T5. (Figure 5, Table S3). 

 

Dietary intake of saturated fatty acids (SFA), elevated on the animal diet, demonstrated 

statistically significant correlations with 6 plasma fatty acids (capric, dodecanoic, 

myristic, caprylic, pentadecanoic, and 5-dodecenoic acids) during the breakfast and 

lunch timeperiods (Table 2, Table 1, Figure S4, Figure S5, Table 1). 
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Figure 3. Representative bile acids that showed statistically significant different AUC responses post-breakfast and post-lunch to the vegan vs. animal diets are graphically depicted. 

Gender differences are shown with red (female) and blue (male) dots. -chenodeoxycholic acid post-breakfast FDR=8.74E-02, post-lunch FDR=5.53E-04; Cholic acid post-breakfast 

FDR=8.68E-02, post-lunch FDR=5.52E-04;  Chenodeoxycholic acid post-breakfast FDR=7.4E-01, post-lunch FDR=2.85E-02;  7-ketolithocholic acid post-breakfast FDR=8.68E-02, 

post-lunch FDR=6.12E-02; Lithocholic acid 3 sulfate post-breakfast FDR=8.44E-02, post-lunch FDR=1.42E-02; Gglycholithocholic acid post-breakfast FDR=8.68E-02, post-lunch 

FDR=8.88E-01. 
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DISCUSSION 

 

The metabolic impact of vegan and animal meals and snacks was compared in a cross-

over study design. Daily intakes were matched for energy densities of CHO, PROT and 

fat (50%, 20%, and 30%). The vegan diet contained approximately twice the amount of 

TDF than the animal diet (39 and 18 grams respectively). The macronutrient and TDF 

compositions of the vegan diet were similar to the Nordic diet (51% CHO,17% PROT, 

32% fat, 41g TDF) [34]. Meals and snacks were not matched for macronutrient 

composition. This allowed us to observe the limitations, benefits and opportunities to 

improve metabolic signatures with both diet types. Comparison of postprandial 

signature responses to fasting signatures previously published on this cohort provided 

a deeper understanding of the cumulative impact of meals, snacks and timing on fasting 

results [29].  

 

Lipid and glycemic responses are elevated from both animal and vegan meal combinations 

Postprandial TG and insulin are known to be higher in individuals with coronary artery 

disease and may play a role in the development of atherosclerosis, a risk factor for 

cardiovascular disease [35, 36]. Hypertriglyceridemia is also a common abnormality 

observed in obesity, metabolic syndrome and diabetes [37]. In a previous paper on this 

same cohort, fasting results after 48 hours of following the supervised diets 

demonstrated lower TG and insulin plasma levels from the vegan diet. In the present 

study, the higher kcals, CHO and fat from the vegan breakfast produced elevated plasma 

TG, insulin and glucose AUCs (Figure 2, Table S2). The peak in TG from the vegan diet 

two hours after breakfast (T2) reflected the high CHO content of the muesli and high 

fat content of the cashew butter (Table S1).  

 

Glucose remained mildly elevated with a peak in glucose and insulin 4 hours post-

lunch (T6), reflecting the trend toward higher CHO and TDF intakes from the vegan 

beans, rice and banana snack (Figure 2, Figure S2). 
 

The continual rise in glucose from 2 hours after breakfast (T2) until 1-hour post-lunch 

(T4), may have been a remnant from the sugar contained in the drink taken during the 

morning snack on the vegan diet mixed with the slowed digestion and short chain 

fatty acid production from the soluble dietary fiber (Figure 2). This would have 

sustained glucose levels and prevented the large plasma glucose peak often seen after 

fast acting sugar intake [38-40]. Vegan diet soluble fiber sources included hemp 

protein powder, hummus, red beans, banana and lentils (Figure S2). The glucose and 

insulin peaks visualized from the animal diet at T4 (1 hour post-lunch) reflected the 

higher saturated fat intake from the hamburger known for its association with 

inflammation and insulin resistance (Figure 2, Table S3) [41]. 
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Figure 4. (A-C) Spearman correlations between significant plasma bile acids and diet intake are graphically 

represented with a heatmap for the post-breakfast, post-lunch and dinner day 2 AUC responses. KCAL, kilocalories; 

TDF, total dietary fiber; PROT, protein,; ALA, alanine; ARG, arginine; CYS, cysteine; GLY, glycine; HIS, histidine; ILE, 

isoleucine; LEU, leucine; MET, methionine; PRO, proline; TRP, tryptophan; TYR, tyrosine; VAL, valine; FAT, total 

fat; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; CHO, carbohydrate; PHE, 

phenylalanine; SER, serine; THR, threonine. 
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Together, these results demonstrated the immediate metabolic influence of alterations 

in nutrient combinations of both diet types. 

 

Postprandial amino acid plasma response varies with dietary AA composition irrespective 

of diet type  

Elevated AA concentrations are associated with higher risk of insulin resistance and 

obesity [29, 42]. In a previous publication, we demonstrated the association of a 

suboptimal BCAA associated metabolic signature at fasting after 2 days following the 

supervised animal based protein diet [29]. Additionally, postprandial BCAAs were 

previously associated with fasting glucose and insulin concentrations [43]. In the 

present study, significantly elevated plasma AAs from the vegan diet breakfast resulted 

from the hemp protein supplement and produced a similar AA signature to the 2 day 

animal diet response suggesting a large difference in protein intake from either animal 

or vegan food sources could produce the same, suboptimal metabolic signature (Figure 

2, Figure S3, Table S2).  

 

Strong correlations in the data between plasma AA concentrations and dietary AA 

intake substantiate the rapid and direct impact of dietary intake on metabolism (Table 

2, Figure S4, Figure S5). Plasma lysine, methionine and proline were elevated after the 

animal diet lunch due to significant concentrations in the hamburger; and may have 

accumulated from the morning yogurt animal diet snack. Notably, the BCAAs were not 

elevated, despite their large quantity in the animal diet foods, due to the addition of 

BCAAs in the form of Hemp protein powder to the vegan diet (Figure S5, Table S2, 

Figure S2). Dietary methionine may worsen insulin sensitivity while lysine attenuates 

glucose response in the absence of any effect on insulin [44, 45]. Thus, the insulin peak 

1 hour after the animal lunch in the absence of a significant glucose peak may have been 

influenced by the lysine and methionine content of the hamburger lunch (Figure 2, 

Figure S2). 

 

Bile acids are elevated and absorption is prolonged from the TDF content of the vegan 

meals 

Bile acids facilitate postprandial lipid digestion, transport and metabolism. As nutrient 

signaling hormones, they interact with insulin to regulate nutrient metabolism in the 

liver. Elevated bile acid concentrations are associated with improved glucose 

homeostasis and lipid profiles [46-48].  

 

The majority of the bile acids were elevated after the vegan breakfast (secondary bile 

acids) and lunch timeperiods (primary and secondary bile acids) (Figure 3, Figure S6, 

Table S2). Dietary fiber intake slows CHO, AA and lipid absorption reducing the risk of 
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hyperlipidemia, hypercholesterolemia and hyperglycemia [51]. It also shifts gut 

microbial populations by facilitating bacterial fermentation [7]. Significant bile acid 

correlations were observed with TDF across these two timeperiods suggesting TDF may 

have had the biggest impact on the bile acid concentrations, particularly with GLCA-3S, 

a conjugated secondary bile acid from bacterial colonic activity (Figure 4). It is possible 

that the additional presence of the TDF, prominent in the vegan diet, facilitated GLCA-

3S colonic conjugation causing its significant elevation from the vegan diet. The 

elevated cholic acid observed at both mealtimes, with a significant peak 4 hours post-

lunch (T6), may be associated with increased energy expenditure and could be related 

to the decreased body mass index seen in vegetarians (Figure 3, Table S2, Table S3). 

Further research is needed to explore this potential effect in a postprandial state [52, 

53]. 

 

Elevated plasma fatty acid concentrations correlate with saturated fatty acid intake from 

the animal breakfast and lunch timeperiods 

Saturated fats are known to be hypercholesterolemic and insulin resistance promoting 

relative to their less saturated counterparts [41, 54]. However, certain saturated fats have 

health benefits. Capric and caprylic acid are both saturated fats and medium chain fatty 

acids that may reduce plasma cholesterol through its excretion and are inversely 

correlated with pancreatic cancer and ischemic heart disease [55-57]. Saturated fatty 

acid dietary intake was significantly greater for the animal diet and positively correlated 

with elevated plasma fatty acid concentrations for both breakfast and lunch timeperiods 

(Table 1, Table 2, Table S2).  

 

The large capric acid plasma concentration seen in participants on the animal diet is 

consistent with the high capric acid intake from animal fats, such as the butter in the 

croissant, yogurt and hamburger eaten during the breakfast and lunch periods on the 

animal diet (Figure 5, Figure S2, Table S3). Coconut milk fed to the study participants 

on the vegan diet at dinner also produced elevated fasting plasma capric acid the 

morning after, further substantiating the rapid sensitivity of plasma fatty acid response 

to a well-controlled diet [29].  

 

Caprylic acid is found in animal fats in smaller quantities than capric acid as reflected 

in the time-point fatty acid variation (Figure 5) where we can visualize a 2 hour post-

breakfast (T2) peak that reflects the butter content of the croissant and milk from the 

animal diet breakfast (Figure 5). The 5-dodecenoic acid (monounsaturated form of 

dodecanoic acid) peak reflects butter and milk in the animal diet breakfast as well 

(Figure 5, Figure S2). Coconut is also a good source as reflected in the post dinner 

fasting results previously reported [29]. Myristoleic acid, the monounsaturated form of 
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myristic acid, showed strong peaks reflecting the fat content of the animal diet at the 

breakfast and lunch meals and seemed to fall quickly in between meals. It appears the 

lunch-time hamburger meat had the largest impact on the myristoleic acid (Figure 5, 

Table S3, Figure S2). 

 

Here we highlight the significantly increased fatty acids from the animal diet and 

potential health benefits. However, in our previous publication on fasting results from 

this study, we observed elevated fatty acids from the coconut milk used in the dinner 

meal on the vegan diet [29]. The results in this paper, when combined with the former, 

suggest that optimal healthy fatty intake can be achieved from either a carefully planned 

vegan or animal diet. A combination of the two options in a flexitarian approach may 

be optimal for health maintenance to prevent the accumulation of longer chain SFAs 

that present more health challenges [41, 54].  

 

 
Figure 5. Fatty acid timepoint variation. All fatty acids with significant timepoint variations are graphically depicted. 

To compare the metabolic effects of the diet type at specific time-points, the interaction between time and diet was 

fit for each metabolite with a linear mixed effect model. 5-dodecanoic acid FDR<0.10 for T2-T7; caprylic acid FDR<0.10 

for T1-T5; dodecanoic acid FDR<0.10 for T2-T7; myristic acid FDR<0.10 T1-T7; myristoleic acid FDR<0.10 for T2-T7; 

pentadecanoic acid FDR<0.10 for T1-T5,T7; palmitoleic acid FDR<0.10 for T1-T4,T7; capric acid FDR<0.10 for T1-T7. 

 

Study limitations and Opportunities 

Carbohydrate, fat and protein macronutrient compositions were matched across diet 

types for daily intake but not between individual meals and snacks. If macronutrient 

compositions were matched at meal times, investigation of micronutrient impact on 

metabolic health signatures of different diet types may have been feasible. Thus, this 

descriptive study is mainly focused on the impact of different meal compositions that 

naturally occur from habitual intake of the different diet types. In order to match 

protein composition across diets, hemp protein was added to the vegan regimen. While 

a strict vegetarian diet has been shown to improve risk factors associated with metabolic 

diseases; it is unknown whether a high calorie high protein vegan dinner would have 

produced a similar fasting metabolic signature as the animal diet previously published 

[9, 29]. Additional research is needed to understand if a 2-day meal plan with a high 
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protein and BCAA vegan dinner, matched to the animal dinner composition, would 

produce the same fasting metabolic signature or if a lower protein animal dinner would 

produce a more optimal metabolic signature.  

 

Liberalization of the animal and vegan meal plans used in our research could improve 

the metabolic impact of the meals and snacks. The Nordic diet is characterized by a high 

content of fruits and vegetables, plants from the countryside, whole grains, nuts, 

seafood, free-range livestock and game [34].The macronutrient composition of the 

animal and vegan diets and TDF content of the vegan diet match the Nordic diet, which 

could represent the liberalization of our animal menu plan and which has been shown 

to reduce diabetes risk [13]. The flexitarian or semi-vegetarian diet represents an 

alternative approach to the liberalization of the animal diet that also emphasizes plant 

foods with only periodic animal protein intake [16]. See Diet Personalization 

Supplement.  

 

CONCLUSIONS 

 

We expected to observe a sub-optimal metabolic postprandial profile from the animal 

meals that would reflect our previous fasting findings in this same cohort. However, the 

high BCAA protein supplemented vegan breakfast produced the same elevated BCAA-

associated metabolic signature as the animal diet produced from our fasting results, 

reflecting the lower BCAA protein load in the animal breakfast. Our postprandial 

analysis demonstrated glucose, insulin, AA, TG, bile acid and fatty acid plasma 

biomarkers varied with diet nutrient composition irrespective of diet type; and that 

fasting analysis alone is not sufficient to diagnose diet impact. Additionally, our results 

suggest BCAA content, irrespective of diet type and protein source, may have a negative 

impact on metabolic health.  Liberalization of both diet strategies to optimize metabolic 

signatures should be tested in future research. 
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GENDER DIMORPHISM SUPPLEMENT 

 

Most cellular and human clinical research has been performed either on males only or 

both males and females, controlling for sex and gender differences to homogenize the 

data as opposed to differentiating between sex or gender specific responses. We feel it 

is important to acknowledge the gender and sex differences observed in our research in 

order to expose potential hypotheses for future testing, the results of which can be used 

to strengthen clinical practice. This is necessary to improve the healthcare of both 

genders. 

 

Gender dimorphic postprandial response   

Breakfast AUC results for plasma Insulin, TGs, PRO, and ALA were significantly lower 

for women whose lower calorie and nutrient needs necessitated lower intakes from 

CHO, fat and PROT. Lunch AUC results for plasma TGs were, also, significantly lower 

for women. Essential amino acids, BCAAs and 8 AAs were significantly higher for 

women at lunch which was not consistent with differences in intake (FDR<0.10). Five 

bile acids were elevated in women after breakfast and ten bile acids were higher for 

women after lunch (p <0.05, FDR>0.10) (Figure 2, Figure 4,Table S4, Table 1) .  

 

Gender dimorphic postprandial response leads to more insight on personalization 

Triglyceride and insulin responses in women at breakfast and lunch were lower, likely 

reflecting lower nutrient intakes; however, differences in physiology and metabolism 

may have played a role. For example, a lower TG response may also relate to known 

increased postprandial skeletal muscle clearance of TG in women, which leads to lower 

plasma concentrations (Figure 2,Table S4) [1]. Estrogen regulates insulin sensitivity in 

females and may have further augmented the lower plasma insulin response to the diet 

interventions seen in the premenopausal women in our study (Table S2) [2, 3]. 

Additionally, previously published research suggests females may have been more 

responsive to the triglyceride and insulin lowering effects of higher soluble fiber in the 

vegan diet (Figure S6) [4]. 

 

Analysis of gender differences in dietary intake during the breakfast, lunch and dinner 

timeperiods revealed men had significantly higher nutrient intakes, as expected. This is 

due to higher calorie and nutrient needs of men as the composition of the meals 

provided were matched to age, height, weight and sex (Table S4). This was reflected in 

significantly greater plasma AUC AA concentrations in men at breakfast, however, 

women had higher plasma AUC AA at lunch (Table S2). Elevated plasma AA in women 

despite lower protein intake may reflect an accumulation of plasma AA over time due 
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to slower female mechanisms that regulate AA utilization and protein metabolism and 

a gender specific response to the prolonged nutrient digestion effects of TDF [4, 5]. 

The trend of elevated bile acids in women after breakfast and lunch despite lower 

dietary fat intake, may be linked to the known effect of sex hormones and increased 

expression of Cypa7a1, as well as a known differential bile acid response of females to 

high TDF intake (Figure 4, Table S2, Table S3) [4, 6-8]. Thus, consideration of 

differences in gender response is an important diagnostic component of personalized 

diet assessment and therapy. 

 

CONCLUSION 

 

Gender dimorphism in metabolic signatures was observed. Lower nutrient intakes in 

women led to lower TG and insulin responses. Lower insulin and elevated bile acid 

responses may have been further augmented by estrogen. Prolonged plasma amino acid 

elevation in women may have been influenced by a gender specific response to soluble 

TDF and gender specific differences in metabolic rate. Thus, consideration of 

differences in gender response is an important diagnostic component of personalized 

diet assessment and therapy. 

 

DIET PRESCRIPTION FOR PERSONALIZATION 

 

Measurement of postprandial response creates opportunities for diet personalization. 

The results from our study suggest liberalization of the animal and vegan diet plans 

used in our research could improve the metabolic impact of the meals and snacks. The 

following are examples of recommended modifications to both strategies to personalize 

the diet prescription based on diet type and postprandial response. 

 

Modification of the vegan diet to vegetarian 

A reduction in the muesli, cashew and hemp protein portions would reduce calories and 

nutrients at breakfast to moderate TG, insulin, glucose and AA response. Inclusion of 

cheese at lunch would increase plasma fatty acid concentrations. A decrease in the 

portion of rice and beans at lunch and removal of the Kombucha drink would reduce 

CHO and blood glucose.  

 

Modification of the animal diet to include vegetarian components 

An increase in TDF at breakfast with the addition of fruit, such as berries, may increase 

bile acid concentrations. The addition of TDF at lunch obtained by replacing chips with 

cooked vegetables, apple sauce with a fresh apple, as well as the hamburger roll with a 

whole wheat variety, could help prolong the absorption of amino acids from the 
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hamburger meal, reducing the amino acid spike observed after lunchtime. A reduction 

in the portion of chicken at dinner, replacement of standard pasta with a whole wheat 

variety and replacement of the apricot tart with fresh fruit and nuts would decrease the 

high amino acid and simple sugar intakes. Indeed, those may have contributed to the 

elevated AA, insulin and TG observed from the day 3 fasting results [9]. The addition of 

cottage to cheese to the afternoon snack would replace the protein intake removed from 

dinner. 

 

CONCLUSION 

 

The Nordic diet is characterized by a high content of fruits and vegetables, plants from 

the countryside, whole grains, nuts, seafood, free-range livestock and game [10]. The 

macronutrient composition of the animal and vegan diets and TDF content of the vegan 

diet match the Nordic diet, which could represent the liberalization of our animal menu 

plan and which has been shown to reduce diabetes risk [11]. The flexitarian or semi-

vegetarian diet represents an alternative approach to the liberalization of the animal 

diet that also emphasizes plant foods with only periodic animal protein intake [12]. 
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Supplementary Figure S1. Study flow chart. 
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Supplementary Figure S2. The animal and vegan diet menu plans were the same each day for 2 days. Food portions were provided based on 8 personalized calorie plans in 

accordance with the caloric needs of the individual participants. Hemp protein powder was used for the vegan diet to boost total protein. 
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Supplementary Figure S3. (A-L) Amino acids with significant differences observed in AUC timeframes comparing vegan and animal breakfast, vegan and animal lunch, vegan vs 

animal changes from breakfast to lunch and from ANOVA timepoint analyses. Statistics can be found in Table S2. Metabolic signatures differ according to timing (AUC comparisons); 

and Table S3. Metabolic signatures differ according to timing (Timepoint comparisons).
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Supplementary Figure S4. Spearman correlations between significant plasma metabolites and diet intake are graphically represented with a heat map for the post-breakfast AUC 

response. Statistics can be found in Table 2. Plasma biomarker x diet correlations. 
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Supplementary Figure S5. Spearman correlations between significant plasma metabolites and diet intake are graphically represented with a heat map for the post-lunch AUC 

response. Statistics can be found in Table 2. Plasma biomarker x diet correlations. 
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Supplementary Figure S6. (A-F) Line graphs of the medians of representative bile and fatty acids demonstrating statistically significant changes from the vegan versus animal 

diets throughout the postprandial timeperiods. Statistical results can be found in Table S3. Metabolic signatures differ according to timing (Timepoint comparisons). 
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SUPPLEMENTARY TABLES 

 

Supplementary Table 1. Meal and snack comparisons

Nutrient

Animal 

diet means

Vegan diet 

means p -value*

Animal 

diet means

Vegan diet 

means p -value*

Animal 

diet means

Vegan diet 

means p -value*

Animal 

diet means

Vegan diet 

means p -value*

Animal 

diet means

Vegan diet 

means p -value*

Kilocalories (Kcal) 405.81 596.37 1.49E-04 192.54 299.14 5.72E-03 569.50 344.60 6.37E-05 104.71 211.67 4.04E-05 851.65 351.56 6.38E-05

Protein (g) 8.90 22.40 6.16E-05 6.99 14.40 2.22E-03 24.98 14.72 6.37E-05 2.94 7.52 4.73E-05 59.62 18.58 6.37E-05

% Kcals from protein 8.41 15.14 6.04E-05 14.66 18.18 4.37E-03 17.68 17.51 6.51E-01 11.30 13.59 1.25E-03 28.14 20.20 7.38E-05

Alanine (mg) 350.38 834.63 7.14E-05 314.80 555.14 5.42E-03 1133.65 670.47 6.36E-05 96.54 333.83 4.04E-05 3142.47 735.26 6.35E-05

Arginine (mg) 436.33 1320.26 6.24E-05 253.52 1072.67 1.31E-04 1165.76 931.25 1.08E-03 105.38 569.83 4.04E-05 3470.18 1430.94 6.35E-05

Cysteine (mg) 152.33 285.62 7.23E-05 53.81 186.88 1.50E-04 374.88 152.95 6.35E-05 62.71 60.33 1.42E-01 957.74 210.80 6.35E-05

Glycine (mg) 267.16 679.39 6.16E-05 175.00 505.71 1.51E-04 1131.40 641.36 6.36E-05 119.36 308.58 4.73E-05 2904.32 680.99 6.35E-05

Histidine (mg) 222.43 418.63 7.14E-05 181.46 336.29 2.21E-03 661.62 386.48 6.37E-05 56.57 249.50 2.95E-05 1854.68 416.13 6.35E-05

Isoleucine (mg) 432.95 632.39 2.22E-04 429.73 627.26 4.75E-02 997.77 612.43 6.37E-05 112.52 319.67 4.73E-05 3163.58 720.35 6.35E-05

Leucine (mg) 849.90 1325.48 1.46E-04 732.69 896.43 1.86E-01 1702.81 1075.52 6.37E-05 218.38 98.33 6.44E-05 4837.73 1181.73 6.35E-05

Lysine (mg) 605.90 643.88 6.26E-01 558.23 728.74 1.54E-01 1301.32 894.65 6.36E-05 58.05 440.33 3.45E-05 4373.74 983.80 6.35E-05

Methionine (mg) 244.52 298.68 2.59E-02 177.94 177.21 9.72E-01 446.77 213.35 6.35E-05 45.00 86.50 6.44E-05 1519.57 208.36 6.35E-05

Phenylalanine (mg) 468.10 742.58 1.46E-04 376.76 594.93 2.38E-02 907.87 732.30 2.21E-03 141.43 324.00 5.52E-05 2762.67 818.12 6.35E-05

Proline (mg) 936.02 915.70 9.72E-01 811.58 538.61 2.49E-03 15042.56 577.58 6.36E-05 364.77 48.67 4.73E-05 4060.44 710.22 6.35E-05

Serine (mg) 534.38 796.54 1.46E-04 432.36 638.58 4.75E-02 1029.08 769.57 3.41E-04 151.17 405.83 4.73E-05 1785.19 858.44 6.30E-05

Threonine (mg) 380.38 612.80 1.46E-04 305.60 512.14 1.23E-02 822.52 573.57 9.85E-05 84.67 293.00 4.04E-05 2584.56 680.11 6.35E-05

Tryptophan (mg) 112.43 156.23 7.26E-04 80.74 111.31 7.62E-02 301.45 159.54 1.50E-04 33.95 95.50 5.52E-05 863.38 149.21 6.35E-05

Tyrosine (mg) 392.10 492.65 2.82E-02 354.14 448.12 1.64E-01 735.05 399.39 6.35E-05 87.33 251.00 4.73E-05 1942.92 570.93 6.35E-05

Valine (mg) 528.90 834.54 1.46E-04 536.50 602.29 5.31E-01 1094.67 714.06 6.35E-05 126.81 342.00 4.04E-05 3115.46 883.45 6.35E-05

Carbohydrate (g) 45.96 62.93 2.52E-04 22.61 34.71 2.19E-03 52.69 46.83 6.36E-05 20.62 35.00 3.45E-05 111.36 41.98 6.37E-05

% Kcals from carbohydrate 45.83 42.40 1.43E-04 46.57 50.06 5.78E-01 37.08 52.82 1.14E-01 79.18 67.65 1.45E-03 51.99 48.98 7.62E-02

Total fiber (g) 2.01 7.41 6.14E-05 2.63 7.73 1.72E-04 5.86 10.47 6.36E-05 0.94 4.25 2.95E-05 5.37 7.60 2.21E-03

Total fat (g) 19.67 27.52 1.92E-04 7.64 9.38 2.81E-01 27.96 10.46 6.35E-05 1.19 4.17 1.03E-03 15.38 11.51 2.23E-04

% Kcal from fat 43.45 41.30 1.90E-04 35.99 25.53 9.90E-05 44.02 28.89 6.36E-05 9.73 16.55 1.68E-03 16.31 29.48 6.38E-05

Polyunsaturated fat (g) 0.83 7.21 6.16E-05 0.19 6.00 7.34E-05 8.73 6.02 3.90E-03 0.43 2.10 8.31E-04 4.69 6.53 3.90E-03

Monounsaturated fats (g) 3.67 14.77 6.16E-05 2.31 1.21 5.63E-04 11.58 3.43 6.35E-05 0.26 0.92 5.62E-05 5.86 1.55 6.13E-05

Saturated fat (g) 14.37 5.27 6.16E-05 3.95 1.54 8.47E-05 7.44 1.37 6.37E-05 0.40 0.77 8.31E-04 3.38 2.39 1.11E-02

*p values bolded for q<0.10

Breakfast Morning snack Lunch Afternoon snack Dinner
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Supplementary Table S2. Metabolic signatures differ according to AUC comparisons

Marker Gender P value* Diet effect**Diet P value* Gender P value* Diet effect**Diet P value*

Amino acids (nmol/ml)

Phenylalanine 8.99E-01 31.32 1.43E-06 1.16E-02 60.06 4.81E-06

Lysine 2.52E-01 36.78 9.06E-03 4.02E-02 -145.93 2.24E-05

Methionine 1.75E-01 12.40 4.56E-04 9.01E-03 -26.35 3.96E-05

Proline 7.85E-04 -1.44 6.55E-04 7.28E-01 -102.95 5.04E-05

Valine 6.32E-01 120.44 3.59E-05 2.69E-03 147.27 2.99E-04

Arginine 1.77E-01 4.76 1.29E-10 9.87E-01 0.14 4.10E-03

Citrulline 8.27E-02 -0.07 7.56E-03 7.23E-01 13.94 1.62E-02

Ornithine 1.52E-01 50.89 2.58E-09 6.70E-01 24.92 2.27E-02

Threonine 9.11E-01 31.84 1.99E-02 1.66E-02 33.94 1.80E-01

BCAAs 5.30E-01 209.32 9.08E-04 3.88E-03 91.70 1.81E-01

Leucine 3.78E-01 38.96 1.24E-02 6.21E-03 -27.68 2.21E-01

Acetyltryptophan 2.88E-02 -0.42 2.52E-01

Tyrosine 1.62E-03 11.23 3.22E-01

Glycine 3.40E-02 27.82 6.84E-01

EAAs 4.06E-01 326.33 5.14E-05 7.10E-04 7.78 9.48E-01

Asparagine 9.92E-01 0.10 7.01E-06

Tryptophan 9.28E-01 24.70 4.64E-05

Isoleucine 4.18E-01 26.77 1.34E-02

Histidine 9.93E-01 13.17 2.80E-02

Alanine 6.57E-03 47.09 1.96E-01

Fatty acids (ng/ml)

Dodecenoic acid (C12:1) 1.34E-01 -2489.25 2.94E-06 1.11E-01 -0.23 1.38E-06

Capric acid (C10:0) 7.95E-01 -0.39 1.27E-09 9.00E-01 -0.35 1.05E-05

Myristic acid (C14:0) 2.06E-01 -5854.76 2.22E-03 3.09E-01 -0.13 5.14E-05

5-Dodecenoic acid (C12:1) 2.57E-01 -2626.74 3.36E-03 3.22E-01 0.00 2.97E-04

Myristoleic acid (C14:1) 1.03E-01 -881.28 1.86E-03

Pentadecanoic acid (C15:0) 2.28E-01 -0.10 3.86E-05 2.90E-02 -0.14 6.96E-03

Eicosenoic acid (C20:1) 3.04E-02 -1035.60 3.69E-01

1,2-Methylpentanoic acid 8.01E-01 -0.45 6.77E-03

Caprylic acid (C8:0) 9.22E-01 -1872.33 2.94E-04

Heptadecanoic acid (C17:1) 9.33E-01 -0.87 2.84E-02

Docosahexaenoic acid (C22:6) 4.36E-01 -3886.31 4.15E-02

Clinical variables

Insulin (µU/mL) 4.62E-02 0.38 3.27E-03 3.98E-01 -0.45 5.11E-02

Glucose (mM/L) 8.75E-01 0.35 1.29E-02 7.15E-01 0.16 5.60E-02

TGL (mM/L) 3.96E-04 0.72 8.70E-03 6.90E-03 -0.31 3.75E-01

Metabolites       

Norleucine 2.65E-01 -10.55 5.45E-03

3-methyl-2-oxovaleric acid 3.87E-01 -0.20 7.73E-04 3.67E-01 -0.03 2.87E-02

Pimelic acid 1.56E-01 -1.96 3.62E-02

Citric acid 8.62E-01 -7.47 2.96E-02 5.01E-01 -1.13 4.15E-02

Oxoadipic acid 1.88E-01 -0.31 2.03E-02

Bile acids (nmol/L)

b-Chenodeoxycholic acid (bCDCA) 4.82E-01 -1.04 1.84E-02 3.64E-02 -1.66 2.82E-05

Cholic acid (CA) 1.09E-01 1.64 1.60E-02 7.31E-01 2.90 2.91E-05

Hyocholic acid (HCA) 5.66E-02 1.88 3.01E-02 5.52E-02 3.08 7.62E-05

b-dehydrochenodeoxycholic acid (bDHCDCA) 2.79E-02 -1.13 1.41E-03

Lithocholic acid-3-sulfate (LCA-3S) 2.40E-01 1.85 8.88E-03 6.05E-01 2.14 1.87E-03

7-Dihydrocholestanoic acid (7-DHCA) 3.73E-02 0.36 7.62E-02 4.18E-03 1.08 2.42E-03

Glycolithocholic acid-3-sulfate (GLCA-3S) 7.94E-01 2.57 1.98E-03 4.39E-01 2.99 5.59E-03

Chenodeoxycholic acid (CDCA) 3.68E-01 1.45 6.01E-03

Ursodeoxycholic acid (bUDCA) 1.52E-01 -0.99 7.53E-03

Nor deoxycholic acid (NorDCA) 9.09E-02 0.65 1.78E-02

Deoxycholic acid (DCA) 2.52E-02 0.35 3.14E-01 1.24E-01 410.43 1.96E-02

7-Ketolithocholic acid (7-ketoLCA) 6.37E-02 0.57 1.22E-02 1.26E-01 0.91 1.97E-02

b-Deoxycholic acid (bDCA) 8.47E-03 -0.27 2.09E-02

Ursodeoxycholic acid (UDCA) 3.93E-02 0.31 2.97E-01 4.41E-02 0.78 7.42E-02

Taurohyocholic acid (THCA) 4.99E-02 0.15 6.19E-01

Hyodeoxycholic acid (HDCA) 7.68E-03 0.21 8.17E-01

Taurodeoxycholic acid (TDCA) 4.75E-02 0.45 4.36E-01 3.32E-02 -0.02 9.34E-01

Tauorlithocholic acid (TLCA) 7.65E-01 1.02 6.39E-04

Isoithocholic acid (IsoLCA) 4.63E-02 -1.01 7.13E-03

7-Ketolithocholic acid (7-ketoLCA) 6.37E-02 0.57 1.22E-02

Gycolithocholic acid (GLCA) 5.01E-02 1.35 1.46E-02

AUC, Area Under the Curve. *Bolded for q<0.10. **Vegan vs. animal. Blank cells signify no significant gender or diet differences.

AUC Post-Breakfast AUC Post-Lunch
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Supplementary Table S3. Metabolic signatures differ according to timing (Timepoint comparisons)

Marker T0 T1 T2 T3 T4 T5 T6 T7

Amino acids (nmol/ml)

Alanine 1.00E+00 9.80E-01 1.53E-04 3.60E-01 1.17E-03 1.72E-03 1.54E-01 8.74E-09

Arginine 1.00E+00 9.33E-15 0.00E+00 0.00E+00 4.07E-07 3.40E-02 5.32E-01 2.08E-08

Asparagine 1.00E+00 6.90E-03 5.48E-10 7.11E-08 1.24E-01 4.26E-01 5.56E-03 2.69E-08

BCAAs 1.00E+00 1.79E-01 3.15E-07 5.10E-07 4.60E-07 3.96E-01 7.96E-01 4.81E-04

Citrulline 1.00E+00 6.90E-03 8.36E-06 3.89E-01 3.13E-01 2.06E-04 3.83E-01 2.29E-06

Cystine 1.00E+00 2.06E-01 5.37E-02 2.99E-01 5.20E-01 2.08E-03 1.31E-01 1.02E-01

EAAs 1.00E+00 1.70E-01 7.40E-08 1.49E-06 5.27E-04 5.50E-03 5.83E-01 4.44E-06

Glutamine 1.00E+00 6.97E-01 5.37E-02 1.27E-01 3.76E-02 5.17E-01 1.35E-01 1.41E-04

Histidine 1.00E+00 9.22E-01 6.14E-04 4.91E-02 3.09E-01 4.01E-07 6.14E-01 2.08E-08

Isoleucine 1.00E+00 9.43E-01 2.96E-04 4.06E-04 3.44E-03 3.90E-03 7.99E-02 2.61E-01

Leucine 1.00E+00 9.80E-01 8.71E-05 7.39E-04 2.90E-03 4.67E-03 2.72E-01 9.00E-02

Lysine 1.00E+00 5.23E-02 8.71E-05 3.09E-01 7.18E-01 1.09E-08 1.45E-03 2.59E-02

Methionine 1.00E+00 1.49E-02 1.18E-05 2.41E-03 6.49E-01 1.43E-12 2.30E-05 7.36E-01

Ornithine 1.00E+00 2.41E-10 9.56E-14 0.00E+00 0.00E+00 5.17E-01 1.45E-03 6.77E-03

Phenylalanine 1.00E+00 1.70E-01 7.40E-08 0.00E+00 7.26E-11 1.10E-01 7.05E-05 4.65E-10

Proline 1.00E+00 1.49E-02 1.02E-01 9.67E-01 3.13E-01 1.54E-03 7.30E-01 1.21E-08

Serine 1.00E+00 4.28E-01 1.35E-01 2.24E-01 7.73E-01 3.40E-02 7.99E-02 2.29E-06

Threonine 1.00E+00 9.22E-01 1.15E-04 2.32E-02 2.16E-01 1.27E-01 3.27E-01 2.47E-06

Tryptophan 1.00E+00 9.24E-03 1.77E-10 5.75E-08 5.27E-04 5.50E-03 1.39E-01 6.88E-07

Tyrosine 1.00E+00 9.92E-01 3.48E-03 2.31E-03 2.08E-02 4.71E-01 8.18E-01 1.54E-05

Valine 1.00E+00 5.54E-03 1.77E-10 2.66E-11 8.25E-13 3.43E-02 1.54E-01 2.52E-08

Fatty acids (ng/ml)

5-Dodecanoic acid (C12:1) 1.00E+00 6.31E-01 1.68E-03 2.04E-08 1.03E-04 1.69E-02 3.05E-02 1.16E-02

Capric acid (C10:0) 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.84E-14 6.47E-03 5.38E-06

Caprylic acid  (C8:0) 1.00E+00 4.32E-05 1.50E-04 4.40E-06 1.03E-04 3.32E-02 5.29E-01 4.52E-01

Dodecanoic acid (C12:0) 1.00E+00 4.50E-01 4.75E-07 0.00E+00 6.89E-10 1.60E-02 2.09E-02 3.32E-03

Myristic acid (C14:0) 1.00E+00 1.19E-02 5.05E-08 0.00E+00 6.89E-10 9.42E-05 1.79E-02 2.64E-06

Myristoleic acid (C14:1) 1.00E+00 6.79E-01 4.39E-03 1.02E-03 2.33E-05 3.10E-04 6.47E-03 1.91E-02

Palmitoleic acid (C16:1) 1.00E+00 1.29E-02 1.68E-03 1.41E-04 4.31E-02 6.59E-01 7.34E-01 1.16E-02

Pentadecanoic acid (C15:0) 1.00E+00 5.72E-05 1.11E-03 1.03E-08 1.44E-03 3.35E-02 2.25E-01 1.98E-04

Clinical variables

Insulin (µU/mL) 1.00E+00 7.18E-01 5.06E-02 3.52E-05 3.82E-01 3.52E-01 8.20E-02 4.92E-01

Glucose (mM/L) 1.00E+00 1.78E-01 1.83E-03 1.51E-07 4.39E-04 4.44E-04 2.73E-03 3.43E-02

TGL (mM/L) 1.00E+00 5.92E-07 1.01E-07 4.91E-01 2.91E-01 9.57E-01 7.15E-01 1.31E-02

Metabolites

Citric acid 1.00E+00 4.77E-02 1.40E-01 7.46E-03 9.88E-05 2.91E-04 9.94E-01 1.16E-02

Methylsuccinic acid 1.00E+00 6.31E-01 6.68E-01 7.46E-03 5.02E-04 1.63E-01 3.05E-02 9.01E-01

Succinic acid 1.00E+00 6.18E-01 9.91E-01 9.71E-02 5.15E-05 3.35E-02 4.67E-02 8.84E-01

Bile acids (nmol/L)

12-ketoLCA_hawaii 1.00E+00 2.28E-01 4.01E-01 6.84E-01 8.15E-03 4.70E-02 7.83E-06 2.14E-01

3-Dihydrocholestanoic acid (3-DHCA) 1.00E+00 1.30E-02 8.79E-02 6.84E-01 7.85E-01 8.58E-01 1.57E-04 1.98E-02

7-Dihydrocholestanoic acid (7_DHCA) 1.00E+00 2.88E-01 3.91E-01 7.20E-01 7.85E-01 2.18E-01 5.54E-06 2.98E-03

7-Ketolithocholic acid (7-ketoLCA) 1.00E+00 4.91E-02 2.71E-02 9.11E-01 1.75E-01 2.46E-01 6.06E-06 9.00E-09

b-Chenodeoxycholic acid (bCDCA) 1.00E+00 7.16E-01 9.99E-02 6.01E-07 1.93E-05 4.47E-10 1.13E-09 1.30E-05

b-Deoxycholic acid (bDCA) 1.00E+00 9.02E-01 1.03E-01 3.71E-04 7.60E-03 2.50E-05 6.02E-02 4.56E-01

b-Dehydrochenodeoxycholic acid (bDHCDCA) 1.00E+00 2.98E-02 6.28E-01 1.57E-02 1.93E-05 3.67E-09 4.75E-01 9.79E-02

b-Ursodeoxycholic acid (bUDCA) 1.00E+00 8.13E-01 5.73E-01 1.31E-01 1.31E-01 3.85E-03 2.55E-04 3.53E-05

Cholic acid (CA) 1.00E+00 5.72E-02 6.77E-02 7.22E-02 4.41E-01 2.50E-05 0.00E+00 1.46E-07

Chenodeoxycholic acid (CDCA) 1.00E+00 4.91E-02 1.33E-01 1.18E-01 4.07E-02 4.11E-01 2.94E-06 2.14E-06

Chenodeoxycholic acid-3-glycine (CDCA-3G) 1.00E+00 8.63E-01 5.38E-01 1.38E-01 2.33E-02 6.50E-03 6.41E-01 2.20E-01

Deoxycholic acid (DCA) 1.00E+00 4.91E-02 3.81E-01 1.31E-01 6.34E-02 9.23E-01 2.98E-06 2.93E-06

Dehydrolithocholic acid (dehydroLCA) 1.00E+00 4.23E-05 3.95E-02 7.35E-01 8.38E-01 9.23E-01 9.59E-01 8.40E-01

GCA_hawaii 1.00E+00 5.95E-09 2.61E-02 2.88E-01 5.06E-01 4.24E-01 2.25E-02 1.13E-01

GHCA_hawaii 1.00E+00 8.42E-05 1.33E-01 1.31E-01 2.79E-01 6.47E-03 9.29E-01 7.85E-01

Glycolithocholic acid-3-sulfate (GLCA-3S) 1.00E+00 1.74E-01 8.34E-04 8.71E-04 1.93E-05 1.56E-06 6.64E-01 2.38E-01

Hyocholic acid (HCA) 1.00E+00 4.01E-01 1.02E-01 3.67E-01 8.38E-01 1.45E-01 6.93E-11 3.48E-09

Hyodeoxycholic acid (HDCA) 1.00E+00 1.63E-01 5.73E-01 3.85E-01 1.31E-01 3.16E-01 6.22E-02 5.45E-02

Isoithocholic acid (IsoLCA) 1.00E+00 6.66E-01 2.61E-02 5.42E-05 1.22E-02 1.04E-01 4.37E-01 9.34E-01

Lithocholic acid (LCA) 1.00E+00 4.91E-02 3.94E-01 7.35E-01 3.36E-02 9.44E-02 9.59E-01 8.71E-01

Lithocholic acid-3-sulfate (LCA-3S) 1.00E+00 4.91E-02 8.97E-03 2.76E-01 2.33E-02 3.02E-02 6.73E-06 4.06E-06

Taurocholic acid (TCA) 1.00E+00 3.20E-09 2.61E-02 6.46E-01 8.27E-01 9.23E-01 1.24E-02 1.42E-01

Taurochenodeoxycholic acid (TCDCA) 1.00E+00 4.37E-07 2.61E-02 3.79E-01 8.38E-01 8.58E-01 2.25E-02 1.91E-01

Taurodeoxycholic acid (TDCA) 1.00E+00 1.48E-08 8.97E-03 1.25E-01 1.59E-01 9.23E-01 7.87E-03 5.61E-02

Taurohyocholic acid (THCA) 1.00E+00 3.81E-04 8.79E-02 5.29E-01 9.78E-01 1.45E-01 2.57E-01 7.66E-01

Tauorlithocholic acid (TLCA) 1.00E+00 1.98E-04 1.02E-02 3.67E-01 8.38E-01 9.23E-01 3.14E-01 8.99E-01

Ursodeoxycholic acid (UDCA) 1.00E+00 5.17E-02 1.68E-01 3.67E-01 1.31E-01 6.73E-01 6.19E-05 1.54E-05

Comparison is vegan verses animal. Anova analysis. False discovery rate adjusted values shown. Bolded for q<0.10. 
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Supplementary Table S4. Diet intake analysis by gender for breakfast, lunch and dinner timeperiods

Breakfast Lunch Dinner

Diet variable Male Female Male Female Male Female

Alanine (mg) 2582.71 1575.18 2580.63 1919.80 5151.85 3268.98 4.43E-03 4.35E-03 3.32E-03

Arginine (mg) 3857.60 2378.41 3191.13 2391.41 6727.73 4107.84 1.32E-02 2.18E-02 3.32E-03

Total carbohydrate(g) 203.68 132.16 182.53 130.25 200.15 135.41 1.07E-03 7.58E-03 4.43E-03

Cysteine (mg) 846.90 525.68 736.75 572.82 1542.50 950.93 5.86E-03 3.27E-03 3.32E-03

Total fat (g) 82.00 48.05 48.88 39.16 36.88 24.50 3.32E-03 5.90E-01 2.78E-02

Glycine (mg) 2076.56 1218.81 2525.81 1905.16 4732.78 3017.12 5.86E-03 4.35E-03 3.32E-03

Histidine (mg) 1482.20 864.82 1526.78 1197.25 3028.40 1912.34 4.41E-03 1.30E-02 3.32E-03

Isoleucine (mg) 2722.85 1576.41 2308.23 1800.73 5234.50 3312.39 4.43E-03 2.18E-02 3.32E-03

Kilocalories (Kcal) 1874.80 1147.55 1421.20 1057.09 1608.60 1048.73 1.53E-04 2.18E-02 4.43E-03

Leucine (mg) 4834.95 2867.73 3561.60 2670.91 7986.05 4880.70 3.34E-03 7.58E-03 3.32E-03

Lysine (mg) 3314.45 1829.75 3102.70 2323.14 7112.85 4556.45 3.34E-03 7.58E-03 3.32E-03

Methionine (mg) 1141.75 677.09 911.45 682.68 2274.93 1440.02 3.32E-03 4.35E-03 3.32E-03

Monounsaturated fat (g) 27.04 17.35 19.17 13.47 10.44 7.53 7.55E-03 3.23E-03 1.79E-01

Phenylalanine (mg) 2787.85 1631.93 2437.10 1804.23 4839.40 3028.70 3.34E-03 9.94E-03 3.32E-03

Proline (mg) 4028.80 2450.20 18090.64 14163.50 6371.41 3926.45 3.34E-03 7.58E-03 3.32E-03

Protein (mg) 66.76 39.92 57.37 43.60 106.97 64.88 4.43E-03 1.30E-02 3.34E-03

Polyunsaturated fat (g) 18.97 9.91 19.17 15.57 16.16 9.14 4.41E-03 1.00E+00 1.71E-02

Serine (mg) 3071.08 1793.46 2703.41 2039.51 3718.66 2300.33 3.34E-03 1.30E-02 3.32E-03

Saturated fat (g) 32.89 18.07 11.23 8.85 7.40 5.02 3.32E-03 1.30E-02 3.61E-02

Total fiber (g) 24.95 15.10 25.11 18.26 19.42 10.68 7.58E-03 3.59E-02 5.86E-03

Threonine (mg) 2320.15 1347.98 2038.25 1533.32 4377.88 2734.48 4.43E-03 1.69E-02 3.32E-03

Tryptophan (mg) 590.75 342.48 664.35 523.25 1311.38 867.30 3.32E-03 2.18E-02 3.32E-03

Tyrosine (mg) 2164.45 1252.98 1687.68 1277.41 3428.85 2149.18 3.34E-03 7.58E-03 3.32E-03

Valine (mg) 3169.80 1895.34 2624.40 1962.20 5428.55 3387.98 3.34E-03 4.35E-03 3.32E-03

Mean diet intakes analyzed by gender for breakfast, lunch and dinner. *Adjusted p values bolded for q<0.10.

Mean Intake

Breakfast Lunch Dinner

Adjusted p  value Female vs. Male*
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ABSTRACT 

 

Validated protein biomarkers are needed for assessing health trajectories, predicting 

and sub-classifying disease, and optimizing diagnostic and therapeutic clinical decision 

making. The sensitivity, specificity, accuracy, and precision of single or combinations of 

protein biomarkers may be altered by differences in physiological states limiting the 

ability to translate research results to clinically useful diagnostic tests. Aptamer based 

affinity assays were used to test whether low abundant serum proteins differed based 

on age, sex and fat mass in a healthy population of 94 males and 102 females from the 

MECHE cohort. The findings were replicated in 217 healthy male and 377 healthy female 

participants in the DiOGenes consortium. Of the 1129 proteins in the panel, 141, 51 and 

112 proteins (adjusted p<0.1) were identified in the MECHE cohort and significantly 

replicated in DiOGenes for sexual dimorphism, age, and fat mass, respectively. Pathway 

analysis classified a subset of proteins from the 3 phenotypes to the complement and 

coagulation cascades pathways and to immune and coagulation processes. These results 

demonstrated that specific proteins were statistically associated with dichotomous 

(male v female) and continuous phenotypes (age, fat mass) which may influence the 

identification and use of biomarkers of clinical utility for health diagnosis and 

therapeutic strategies. 
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INTRODUCTION 

 

The concentrations of proteins in the blood vary dynamically in the healthy state but 

may also change during the trajectory toward the onset of disease.  Robust technologies 

that accurately measure protein levels have an increasingly important role in 

investigating and advancing health research and clinical practice [1, 2]. The full promise 

of protein diagnostics has yet to be realized in the clinical setting.  The majority of 

protein diagnostic tests are based on single proteins for acute conditions (e.g., 

myocardial infarction) or cancers.  Protein signature tests consisting of multiple 

markers may be needed to achieve an optimal level of sensitivity and specificity for 

assessing complex health and disease processes [3].  

 

Variations in phenotype during aging, physiology (e.g., obesity or other physical 

conditions), or by sex dimorphism may independently affect protein levels making it 

difficult to optimize the utility of clinical diagnostics, especially in genetically and 

culturally diverse individuals. Many of the well-accepted risk factors for cardio-

metabolic disease risk have defined phenotypic cut-offs. For example, HDL cholesterol 

levels less than 40 mg/dL (1.0 mmol/L) are used to assess increased risk of heart disease 

for men but that cut-off is 50 mg/dL (1.3 mmol/L) for women.  Sex differences and other 

risk factors such as LDL cholesterol levels may independently increase risk of heart 

disease or other chronic medical conditions [4].  Previous work in the field of 

proteomics has identified 40 low-abundant proteins which differed in serum between 

12 males and 12 females [5] and more than 60 plasma proteins differed by over 2 standard 

deviations in 29 and 30 overweight and obese women and men, respectively [6].  Age, 

body mass index (BMI), body fat mass, and other physiological parameters may also 

influence the serum proteome and therefore utility and veracity of diagnostic markers.  

Serum proteomic and metabolomic approaches were combined to identify circulating 

proteins and metabolites that differed between 5 healthy lean and 5 healthy obese men 

[7].  That study, albeit small, established a link between the complement system and 

obesity and both novel and previously reported markers of alterations in body fat mass 

were identified. Considering age, physiological (such as, body fat mass), dietary, and 

other environmental variations, additional research into sex dimorphic plasma and 

serum protein modulations will be needed before sex specific medical and nutritional 

recommendations are implemented.   

 

One of the main challenges for analyzing the blood proteome is the large dynamic range 

in protein concentrations [8]. New technologies have been developed and successfully 

implemented to overcome this challenge [9]. Chemically modified single-stranded DNA 

aptamers (SOMAmers) have high specificity as affinity capture reagents for use with 
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undiluted and diluted plasma and serum samples to quantify low and high abundant 

proteins. SOMAmers are used in multiplex assays similar to DNA microarrays allowing 

for the simultaneous analysis of over 1000 proteins in small amounts (~65 ul) of serum. 

Improvements in mass spectroscopy pipelines and analysis[10] are also being made in 

blood proteomic analysis although these approaches require expensive equipment and 

expertise in the technologies.  

 

The primary aim of the research reported here was to identify the impact of sex, age and 

body fat mass on the proteomic signature and replicate the findings in an independent 

cohort. Furthermore, the identified proteins were mapped using pathway analysis 

methods to provide context and a greater understanding of the biological processes that 

differ by phenotype.  The results of this study provide a foundational understanding of 

the effect of these 3 phenotypic variables on protein markers. 

 

METHODS 

 

Study population 

The research described here extended the Metabolic Challenge (MECHE) study which 

is part of a national research program by the Joint Irish Nutrigenomics Organisation[11]. 

Briefly, the MECHE study enrolled 214 participants aged 18-60 y who underwent an oral 

glucose tolerance test (OGTT) and/or oral lipid tolerance test (OLTT). Clinical 

measures, body composition, and dietary habits were assessed in the fasted state 

(baseline) and at multiple time points following each challenge[11]. Demographic 

parameters obtained at baseline were used for analysis. Height was obtained using a 

wall mounted Harpenden stadiometer (Holtain Limited, UK) and weight was measured 

using a calibrated beam balance platform scale (SECA 888, Germany). Total fat mass 

was determined using DXA scanning (Lunar iDXA, GE Healthcare, UK). Individuals 

were informed about the purpose of the study and the experimental procedures, prior 

to giving written consent.  Good health was defined as the absence of any known chronic 

or infectious disease and this was verified by a number of fasting blood tests. Individuals 

with a BMI below 18.5 kg/m2, a low blood haemoglobin concentration (<12 g/dL), an 

elevated fasting plasma glucose (≥7 mM), an elevated cholesterol concentration (>7.5 

mM), an elevated triglyceride concentration (>3.8 mM) and elevated enzyme indicators 

of liver or kidney function, any of which warranted pharmaceutical intervention, were 

excluded. Details of the study have been published elsewhere[11-13]. The study was 

registered at clinicaltrials.gov under NCT01172951. Ethical approval was obtained from 

the Research Ethics Committee at University College Dublin (LS-08-43-Gibney-Ryan) 

and the study was performed according to the Declaration of Helsinki. For the present 
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study, participants from the MECHE study who had proteomic data were included 

(n=200) (Table 1).  

 

Table 1. Clinical characteristics of study participants 

 

 MECHE (n=196) DiOGenes (n=594) 

Sex (m/f) 94/102 217/377 

Age( y) 31 ± 10* 42 ± 6 ** 

Weight (kg) 74.42 ± 15.99 99.87 ± 17.8 

BMI (kg/m2) 24.7 ± 4.8 34.2 ± 4.8 

WHR 0.84 ± 0.1 - 

BP SYS (mm/Hg) 122.93 ± 12.37 - 

BP DIA (mm/Hg) 73.69 ± 10.52 - 

Glucose (mmol/L) 5.21 ± 0.58 - 

HDL-c (mmol/L) 1.35 ± 0.35 1.2 ± 0.33 

TAG (mmol/L) 1.04 ± 0.62 1.37 ± 0.65 

Insulin (µIU/mL) 8.71 ± 6.93 - 

HOMA-IR 1.87 ± 1.51 3.16 ± 2.56 

Body fat % 25.76 ± 10.92 - 

DEXA fat mass (kg) 28.28 ± 9.72 39.72 ± 11.1 

 
Data are presented as means ± standard deviation (SD); BMI: body mass index; WHR: waist to hip ratio; 
HDL-c: high-density lipoprotein cholesterol; TAG: triacylglycerol; HOMA: homeostasis model 
assessment.*18-60 y **23-58 y. 

 

Proteomics analysis 

1,129 proteins were quantified in fasting (at least 12 hours) serum samples of 200 MECHE 

participants using the proteomic platform SOMAmer™ (Slow Off-rate Modified 

Aptamer) as previously described [9]. Dataset is available upon request. This technology 

has a dynamic range of more than 8 logs, allowing quantification of both low and high 

abundant proteins which might otherwise be missed. Pre-processing of the proteomic 

data included log transformation of the abundance of each protein. Principal 

component analysis (PCA) did not reveal any significant batch effect across the proteins 

analyzed. PCA identified four individuals as outliers whose data were removed. 

Therefore, the final proteomic dataset included 196 individuals and 1,129 proteins. 

Proteins measured by SOMAmers are found in the blood as secreted (431), external 

membrane origin (275), and intracellular proteins (423). Proteins are often shed from 

membranes by proteolytical cleavage and intracellular proteins may be released from 

cells as a part of normal or abnormal physiological cell turnover.  

 

Replication cohort 

Participants were recruited from 8 cities in 8 European counties that were healthy, 

overweight/obese with a BMI between 27 and 45 kg/m2 and aged <65 y. Informed 

consent was obtained from all participants and the study was approved by the local 
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Medical Ethical Committees in the respective research centers, in accordance with the 

Helsinki Declaration [14]. The DiOGenes intervention study was registered on Clingov 

(NCT00390637). The DiOGenes cohort were selected as a suitable replication cohort for 

this analysis due to the availability of SOMAlogic data and a large sample size. 

SOMAlogic proteomic data were analyzed in serum of 594 participants: 377 females and 

217 males of the DiOGenes consortium, age 16-63 y, mean BMI 34 ± 4.8 kg/m2 (0 

individuals with BMI<25, 122 individuals with BMI 25-30, and 472 individuals with 

BMI>30 [15].  

 

Statistical methodology 

Analysis for study population characteristics was carried out using IBM SPSS Statistics 

20. Data are expressed as means ± standard deviation. Multivariate statistical analysis 

was performed using Simca-P+ software (version 14.0; Umetrics, Umea, Sweden). Prior 

to data analyses the MECHE dataset was scaled using UV scaling. PCA and PLS-DA was 

carried out to explore differences in protein levels between males and females.  

Orthogonal partial last-squares discriminant analysis (OPLS-DA) was performed which 

improves interpretation and separation between classes on a scores plot by filtering 

unwanted variation. A S-plot was generated from which potential proteins of interest 

were extracted. A value for p (corr) > 0.15 was used to select proteins that differed 

significantly between males and females to enhance identification of pathways. 

 

Robust regression (R package limma) [16] was used to identify proteins that were 

significantly associated with either age or total body fat measured by DEXA (fat mass in 

kg). Robust regression was chosen over linear regression since it is less sensitive to 

outliers. Proteins levels were first transformed to the residuals from a linear regression 

on sex to correct for this covariate.  The threshold of significance of Benjamini Hochberg 

(BH) adjusted p-values was 0.1. Baseline serum samples from DiOGenes were analyzed 

to test replication of the effect of sex, age and fat mass on protein levels. Robust 

regressions corrected for the collection center and sex, when analyzing age and fat mass.  

 

Pathway annotation 

Pathway over-representation analysis was performed with the human pathway 

collection from WikiPathways (curated collection with 276 pathways downloaded on 26 

January 2016) using PathVisio (version 3.2.4) [17]. Permuted p-value is calculated by 

performing a permutation test. The data is permuted 1000 times and a rank is calculated 

of the actual Z score compared to the permuted Z Scores. The Z scores are calculated 

based on the changed proteins in a pathway out of the total proteins in the pathway 

that have been measured in the uploaded dataset. Pathways with a Z-score of >1.96 and 

a permuted p-value < 0.05 are considered important. Functional pathway enrichment 
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analyses were also performed with KEGG and Reactome databases with the R packages 

HTSAnalyzer [18] and ReactomePA, [19] respectively. The analyses were conducted with 

all ENTREZ proteins/genes as background and with an adjusted p-value threshold of 

0.05. Pathway analyses were conducted only with proteins found to vary significantly in 

the same direction in both cohorts.  

 

 
Figure 1. OPLS-DA of males vs females derived from proteomic data of MECHE participants (n = 196). (■) Males, 
(□) Females, R2Y = 0.945; Q2 =0.765. 
 

 

RESULTS/DISCUSSION 

 

Sexual Dimorphism 

The 317 differentially expressed proteins between male and female in the MECHE cohort 

account for 28% of the total proteins analyzed (Table 2 and 3, Figure 1).  From there 141 

proteins were replicated in the DiOGenes cohort (Table S5a and S5b). The top 10 most 

statistically significant over-expressed proteins for each sex were compared for known 

physiological functions and associations with sex hormones, metabolic disease, diet, 

and previously characterized sex dimorphism (Table S1 and S2).  

 

The 8 most significant secreted proteins elevated in females have known associations 

with sex hormone metabolism (SHBG, leptin, thyroxin-binding globulin, adiponectin, 

angiotensinogen, fetuin B, immunoglobulin M, trefoil factor 3) (Table 3) [20-25]. Each 

of these proteins is involved in at least one diet related metabolic disease (except 
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immunoglobulin M) (Table S1). These proteins were affected by or affect glucose and 

insulin metabolism (SHBG, leptin, adiponectin, fetuin B, trefoil factor 3), metabolic rate 

(thyroxin binding globulin), and dietary carbohydrate intake (SHBG, leptin, 

adiponectin), and salt sensitive hypertension (angiotensinogen) [21, 22, 26-30]. 

Increased immunoglobulin M expression has been associated with gluten and dietary 

protein intakes [31, 32]. Recent studies suggest SHBG, adiponectin, angiotensinogen, 

and fetuin B may be involved in diabetes development [28, 33-35]. The cell-membrane 

located immune proteins, LAMP, and collectin placenta 1 were upregulated in females. 

These proteins stimulate neural growth and provide host defense with no previously 

described difference by sex or metabolic disease associations [36, 37]. Of note, collectin 

placenta 1 is the only protein within this group that was not replicated in the DiOGenes 

data.  

 

Nine of the top 10 most significant proteins more abundant in males are secreted 

(exception is myoglobin located in the exosome - Table 2). Of these 10, several are 

associated with sex hormone metabolism (myoglobin, matrix metalloproteinase 3, 

serum amyloid P, tissue factor pathway inhibitor, protein S, interleukin 1 receptor like 

1, LEAP) [38-46]. These top 10 proteins function in connective tissue development and 

growth, amyloid deposit development, blood coagulation, inflammation modulation, 

anti-microbial immunity and iron metabolism, as well as, immune cell migration and 

adhesiveness. These proteins are involved in processes contributing to metabolic 

diseases, specifically myocardial infarction (myoglobin), cardiovascular disease (matrix 

metalloproteinase), atherosclerosis (serum amyloid P, tissue factor pathway inhibitor, 

protein S), diabetes (ficolin-3), and iron overload (LEAP-1) [47-52]. Certain nutrients 

alter the abundances of some of these proteins: iron (myoglobin, LEAP), lipids 

(myoglobin), monounsaturated fatty acids, and n-3 PUFA (tissue factor pathway 

inhibitor), vitamin K (protein S), and vitamin A (LEAP) although the effect of diet was 

not analyzed in the MECHE cohort. The liver expressed chemokine (HCC-4) may be 

induced by total fat and calorie intake [53-60]. All 10 significant proteins found in 

MECHE were replicated in the same direction with robust regression in the DiOGenes 

data (Table S5a). 

 

Interpreting the role of a protein by its activity, association to a disease process, or 

association to an individual provides information on physiological states.  However, our 

results suggest a more holistic difference between males and females since the 

coagulation pathway cross-talks with and cross-regulates the immune system to 

maintain homeostasis [61].  Serpin Family D Member 1, a1-antitrypsin and plasminogen 

mapped to the complement and coagulation cascades pathway (Figure 3) in females.   
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Table 2: Proteomics results depict sexual dimorphism – proteins higher in males 
 

Full Protein Name UniProt ID Protein OPLS-DA 

scorec 

p (corr) Cellular 

Location Myoglobin P02144 MB 0.118 0.613 Exosome 

Matrix metalloproteinase 3    

   (Stromelysin 1) 

P08254 MMP3 0.110 0.574 Secreted 

Bone morphogenetic protein-1 P13497 BMP-1 0.105 0.549 Secreted 

Serum amyloid P P02743 SAP 0.100 0.522 Secreted 

Tissue factor pathway inhibitor P10646 TFPI 0.099 0.516 Secreted 

Protein S P07225 Protein S 0.096 0.501 Secreted 

Ficolin-3 O75636 Ficolin-3 0.094 0.491 Secreted 

Interleukin-1 receptor-like 1   

   (ST2) Interleukin-1 receptor 4 

Q01638 IL-1 R4 0.093 0.483 Secreted 

LEAP-1 (Hepcidin) P81172 LEAP-1 0.090 0.470 Secreted 

Liver-expressed chemokine HCC-4 O15467 HCC-4 0.088 0.459 Secreted 
 

a Data presented as first 10 significant proteins out of 173 total in males using OPLS-DA with a 0.15 cut-off. c describes the 
direction of the difference in males vs. females. 

 

Table 3: Proteomics results depict sexual dimorphism – proteins higher in females 
 

Full Name Uniprot ID Protein OPLS-DA 

valuec 

p (corr) Cellular 

Location Sex hormone-binding  

   globulin 

P04278 SHBG -0.102 -0.531 Secreted 

Leptin (OB) P41159 Leptin -0.098 -0.513 Secreted 

Thyroxine-binding  

   globulin 

P05543 Thyroxine Binding 

Globulin 

-0.097 -0.507 Secreted 

Adiponectin Q15848 Adiponectin -0.089 -0.466 Secreted 

Angiotensinogen P01019 Angiotensinogen -0.079 -0.414 Secreted 

Fetuin B Q9UGM5 FETUB -0.073 -0.381 Secreted 

Immunoglobulin M P01871 IgM -0.072 -0.378 Secreted 

Trefoil factor 3 -  Intestinal trefoil 

factor (hITF) 

Q07654 TFF3 -0.071 -0.369 Secreted 

Limbic system-associated  

   membrane protein (LAMP) 

Q13449 LSAMP -0.069 -0.362 Membrane 

Collectin Placenta 1b Q5KU26 COLEC12 -0.067 -0.351 Membrane 
 

a Data presented as first 10 significant proteins out of 144 total in females using OPLS-DA with a 0.15 cut-off. b Only protein 
not replicated in DiOGenes data set. c Describes the direction of the difference in males vs. females. 

 

The same pathway was identified in males but through different proteins (tissue factor 

pathway inhibitor, thrombin activatable fibrinolysis inhibitor, plasminogen activator, 

serpin family A member 5, serpin family C member 1 and Protein S).  Tissue factor 

pathway inhibitor is present in free and lipoprotein-associated forms [62] while protein 

S is more frequently (60% of total) bound to C4B which abolishes its anticoagulant 

properties [63].  Bound and free Protein S were more abundant in males compared to 

females [64]. This protein also is involved in phagocytosis of apoptotic cells [65].  Others 

studies identified Serpin Family D Member 1, Serpin Family C Member 1, Serpin Family 

A Member 1 and protein S among 27 significant proteins that differed in the complement 

and coagulation cascades between males and females [6].  Toll- like receptors, immune- 

and adipo-cytokine proteins were more abundant in females.  
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Figure 2. Overview of KEGG pathway enrichment. Bar graph displaying KEGG pathway enrichments by classes 

(proteins significant for male,female, age and fat mass). The size of the bar graph represent the coverage of the 

pathway (number significant proteins in the pathway/number of total proteins in the pathway). The dendrogram 

groups similar pathways (pathways that include similar genes). 

 

 

These proteins mapped to pathways (Figures 2, Figure S1, Table 6, Tables S6-S8) 

previously identified as belonging to the inflammasome [1], a system of interacting 

networks regulating acute and chronic inflammatory conditions.  

 

 The individual proteins mapped to these pathways (e.g., members of the interleukin 

family) have been linked with diseases associated with chronic inflammation in (for 

example) obesity and T2DM [2], the pathogenesis for which differs between men and 

women [3, 4]. This connected complement-immune system may result from and 



Chapter 4 

95 
 

contribute to metabolic differences of sex dimorphism.  How these related systems are 

regulated will require more comprehensive analysis of components of these pathways 

in future studies. 

 

Age 

Regression analysis revealed 167 proteins (15% of 1129 proteins) significantly associated 

(adjusted p-value <0.1) with age (range: 20-60 y). Fifty-one of these protein - age 

associations were replicated in the DiOGenes data (Table S5c). Coefficients of the 

regression for age can also be found in Table S5c. The top 10 proteins associated with 

age were IL1RL2, FSHB, ADMTS5, CHIT1 (all positively correlated with age) and AGRP, 

OMD, RET, CDON, IGFBP3 and IGFBP5 (negatively correlated with age) (see Table 4), 

however OMD was not significantly associated in DiOGenes. The levels of the majority 

of these proteins, with the exception of IL1RL2 and CDON, were previously associated 

with age [5-11]. The identified proteins are involved in diseases and sub-optimal states 

of health in relation to aging including (i) inflammation (IL1RL2, CHIT1) [10-12], (ii) 

arthritis (ADAMTS5, IGFBP3) [13, 14], (iii) vertebral fractures (IGFBP3) [15] (iv)  bone 

metabolism (IGFBP5,AGRP,OMD) [16-18], (v) weight homeostasis (AGRP,CDON) [19, 

20], (vi) lean body mass (IGFBP3) [21], (vii) cancer development (RET,CDON) [22, 23] 

and prevention (IGFBP3, IGFBP5) [24, 25], and (viii) muscle metabolism (IGFBP3, 

IGFBP5, CDON) [26, 27].  Levels of FSHB and AGRP were positively influenced by caloric 

restriction and a high-fat diet, while IGFBP3 was impacted by supplementing the diet 

with n-3 PUFA [28-30]. 

 
Table 4: Proteomics results significantly associated with agea 

 

Full Protein Name UniProt ID Protein P.Value adj.P.Val Cellular 

Location Interleukin 1 receptor like 2 Q9HB29 IL1RL2 1.85E-13 2.09E-10 Membrane 

alpha polypeptide - follicle  

   stimulating hormone  

   beta subunit 

P01215 

P01225 

CGA 

FSHB 

1.12E-11 6.34E-09 Secreted 

Metallopeptidase with   

   thrombospondin type 1  

   motif 5 

Q9UNA0 ADAMTS5 1.41E-10 5.29E-08 Secreted 

Chitinase 1 Q13231 CHIT1 2.08E-10 5.88E-08 Secreted 

Agouti related neuropeptide  O00253 AGRP 4.51E-10 1.02E-07 Secreted 

Osteomodulinb Q99983 OMD 6.89E-10 1.30E-07 Secreted 

Ret proto-oncogene 2  P07949 RET 2.85E-09 4.60E-07 Membrane 

Cell adhesion associated,  

   oncogene regulated 

Q4KMG0 CDON 1.32E-07 1.86E-05 Membrane 

Insulin like growth factor  

   binding protein 3 

P17936 IGFBP3 1.83E-07 2.29E-05 Secreted  

Insulin like growth factor  

   binding protein 5 

P24593 IGFBP5 2.04E-07 2.30E-05 Secreted 
 

a Data presented as top 10 significant proteins out of 166 total using robust regression with correlations 

calculated using residuals following correction for sex. b Only protein not replicated in DiOGenes data 

set. 

 

Annotation of the MECHE proteins statistically significant in the DiOGenes cohort 

identified a number of associated pathways (Figure 2, Figure S1, Table 6, Tables S6-
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S8). Four proteins associated with aging emerged in the complement and coagulation 

cascade pathway, of which SERPING1 (c1 esterase inhibitor) was specific to aging. 

Increases in C1 esterase inhibitor are observed during inflammation [31]. All of these 

proteins with the exception of CCL21 were positively associated with increased age.  The 

chemokine pattern found in this study (CCL21 lower and other CCL’s higher) was 

consistent with other studies showing increased expression of CCL27 in senescent cells 

[32], levels of CCL11 and CCL7 in aged animals or humans [33], and decreased levels of 

CCL21 [34]. Further pathways of interest were identified through KEGG and Reactome 

(Tables S6-7). Collectively, these proteins and the pathways in which they act are 

processes consistent with inflammation, the interconnected processes that result from 

lifelong insults to the immune system resulting in chronic low-grade inflammation and 

immunosenescence [35].  

 

Fat Mass 

Regression analysis identified 21% of SOMAscan proteins significantly associated 

(adjusted p-value <0.1) with body fat mass (range: 8-58.2kg).  Of these 232 proteins, 112 

were replicated at an adjusted p-value <0.1 in the DiOGenes cohort, with coefficients of 

regression displayed in Table S5d. The top 10 proteins associated with body fat mass 

are LEP, PLAT and C1S (all positively correlated with fat mass) and IGFBP1, TFF3, SHBG, 

MMP2, WFIKKN2, HFE2 and TF (negatively correlated with fat mass) (Table 5). All 10 

proteins were replicated in the DiOGenes cohort. The physiologic functions of these top 

proteins include inflammation, glucose metabolism, defense response, blood 

coagulation, regulation of cell growth, along with angiogenesis and iron homeostasis 

(Table S4). Leptin was strongly associated with fat mass [36, 37] and elevated in females, 

consistent with its known role in regulation of body weight and energy balance [38, 39].  

 

Table 5: Proteomics results significantly associated with fat massa 

 

Full Protein Name UniProt 

ID 

Protein P.Value adj.P.Val Cellular 

Location Leptin  P41159 Leptin 1.57E-18 1.78E-15 Secreted 

Tissue-type plasminogen  

    activator 

P00750 PLAT 2.92E-13 1.32E-10 Secreted 

Insulin-like growth factor-binding 

protein 1 

P08833 IGFBP1 3.51E-13 1.32E-10 Secreted 

Trefoil factor 3  Q07654 TFF3 2.09E-12 5.90E-10 Secreted 

Sex hormone-binding globulin P04278 SHBG 7.32E-11 1.65E-8 Secreted  

Matrix metalloproteinase 2  P08253 MMP2 3.56E-10 6.70E-8 Secreted  

WAP, kazal, immunoglobulin,  

    kunitz and NTR domain- 

    containing protein 2  

Q8TEU8 WFIKKN2 4.80E-10 7.74E-8 Secreted  

Complement C1s P09871 C1S 9.65E-9 1.36E-6 Exosome 

Hemojuvelin  Q6ZVN8 HFE2 2.16E-8 2.71E-6 Membrane 

Transferrin P02787 TF 2.44E-8 2.75E-6 Secreted 
 

a Data presented as top 10 significant proteins out of 233 total using robust regression with correlations 
calculated using residuals following correction for sex. All proteins replicated with DiOGenes data set. 

 



Chapter 4 

97 
 

Increased BMI and fat mass are known risk factors for diseases such as metabolic 

syndrome and cardiovascular disease (CVD).  Three proteins associated with fat mass 

in the MECHE/DiOGenes cohorts (tPA, IGFBP-1, and TFF3) have been associated with 

metabolic conditions. High levels of tPA antigen independently predicted 

cardiovascular events both in a healthy population and in individuals with prevalent 

coronary disease [40]. Elevated plasma tPA antigens were associated with insulin 

resistance, T2D, and obesity. Decreased abundance of plasma tPA (approximately 29%) 

was observed following a 12 week energy restricted diet in overweight women with 

metabolic syndrome [41]. Insulin like growth factor binding protein 1 (IGFBP-1) is 

negatively associated with fat mass in the MECHE/DiOGenes cohorts.  Lower levels of 

IGFBP-1 at baseline was associated with the combination of increased percentage body 

fat and plasma insulin levels [42]. Trefoil factor 3 (TFF3) was negatively associated with 

fat mass but positively associated with female sex. Increased levels of TFF3 were 

observed to improve glucose tolerance in a diet-induced obesity mouse model, which 

supports previous reports that TFF3 plays a role in energy metabolism [43].  

 

The 112 differentially abundant proteins associated with fat mass were mapped to KEGG, 

WikiPathways and Reactome pathways (Figure 2, Figure S1, Table 6, Tables S6-S8). 

Seven proteins significantly associated with fat mass mapped to the complement and 

coagulation cascade pathway (Figure 3). The complement and coagulation cascade 

pathway is associated with chronic disease risk [44]. In this pathway, abundances of 

TFPI, coagulation factor IX, tPA, Factor H and C1s were higher while anti-thrombin III 

and C7 were less abundant as fat mass increased.  Although not directly tested in this 

study, enzymatic activity of thrombin would be maintained in conditions of decreased 

levels of anti-thrombin III with the result that coagulation would be increased.  The 

association between increased coagulation factor IX, which is also inhibited by anti-

thrombin III, and increased fat mass found in the MECHE/DiOGenes cohorts is 

consistent with more active coagulation processes.  Evidence from cell culture 

demonstrated that a subset of proteins expressed in the complement pathway were 

altered in adipose cells from insulin resistant humans and in animal models of obesity 

[45].  These proteins associated with fat mass and the pathways to which they belong 

suggest a link between insulin resistance, T2D, and coagulation processes. 

 

Fifteen proteins, including adiponectin, insulin, and leptin mapped to the Reactome 

development biology pathway (Figure S1, Table S7) and to KEGG cytokine - cytokine 

receptor interactions (Figure 2, Table S6).  
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Figure 3. Complement and coagulation cascades pathway obtained from WikiPathways displaying proteins differentially expressed across 
sex, age, and fat mass phenotypes.  
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Eleven other proteins, which included ECM proteins (e.g., NCAM1, MMP2, CHL1 

negative associations with FM) and growth factors (EGFR, FGFR1, negative associations 

with FM) were also assigned to the axon guidance pathway, a participant in Reactome’s 

developmental biology pathway. The axon guidance pathway was identified in a 

transcriptomic analysis of fatty hearts in miniature pigs fed a high energy diet [1] 

suggesting that dysregulation of these genes may not be specific to neuronal tissues.  

Decreased levels of axon guidance proteins (e.g., UNC5D, RGMB CHL1) may alter neuro-

adipose junctions involved in leptin regulation [2]. The mapping of individual proteins 

to multiple pathways also identified potential processes associated with increased fat 

mass.  For example, NOTCH1 was found in 11 of the 33 significantly enriched Reactome 

pathways. NOTCH1 was inversely associated with fat mass in the present study.  

Decreases in levels of endothelial NOTCH1 may be a risk factor for vascular 

inflammation and promotion of diet-induced atherosclerosis [3]. Therefore, 

examination of pathways related to fat mass provides a platform for further 

investigation of associated biological processes. 

 

Phenotypic variables have an impact on protein levels  

Examining the impact of phenotypic variables revealed the importance of considering 

sex, age and fat mass in proteomics studies.  Aptamer based binding assays were used 

to quantify low abundant serum proteins at baseline in healthy participants of the 

MECHE (11) and DiOGenes (15) cohorts based on sex, body fat, and age. Forty four 

percent of sex proteins (51% male, 35% female), 31% age proteins and 49% fat mass 

proteins identified as significant in the MECHE cohort were replicated in the DiOGenes 

cohort. The differences in replicated proteins for each phenotype group likely reflects 

known differences between the two cohorts. DiOGenes participants were older in age 

(41.6 ± 6.1 vs. 31 ± 10 y in MECHE) with a higher BMI (34.2 ± 4.8 vs. 24.7 ± 4.8 kg/m2 in 

MECHE) and more body fat (39.7 ± 11.1 vs. 25.76 ± 10.9 kg in MECHE) (Table 1). The 

difference in these parameters is considered a strength since the same proteins were 

significant in a slightly older and more obese cohort, which extends the use of these 

proteins in studies of individuals with wider age and BMI ranges. Histogram plots of age 

and sex for both cohorts are in Figures S2a-f.  Two proteins overlapped all 3 phenotype 

groups, 6 proteins between age and sex, 30 proteins between sex and fat mass and 4 

proteins between age and fat mass (Figure S3).  Scatterplots of proteins related to age 

and fat mass respectively can be found in Figure S6 and Figure S7. The present results 

highlight the need for including phenotypic parameters in proteomics studies and make 

a case for the development of phenotypic specific cut offs. Differences in sex, age and 

fat mass may independently induce quantitative changes in the proteins thought to be 

specific for a biological process or disease phenotype.  That is, underlying differences in 

phenotype (sex, age, fat mass) may confound the identification of disease-specific 
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markers. The successful identification of proteins related to gender, age and fat mass in 

this study will allow for promising biomarkers to be tested for potential confounding 

factors prior to progression into a clinical setting. In addition, findings from this analysis 

will contribute to improved statistical modelling by including the identified proteins as 

confounding factors in future biomarker discovery studies. 

 

The strengths of this study include testing whether proteins identified in the MECHE 

cohort were replicated in the larger DiOGenes cohort. Pathway analysis was also 

performed using several different pathway analysis software platforms and provided 

further insights into the functions of the proteins. While the present study represents 

an important advancement for proteomics there are a number of limitations worth 

noting.  The proteins were identified using SOMAlogic assays which are a subset of the 

total protein pool. Subsequent versions of SOMAscan or mass spectroscopic methods 

may identify additional proteins and pathways for each of the phenotypes studied here. 

In addition, mapping proteins to KEGG, Reactome, and WikiPathways to create 

meaningful interpretation of the proteomics data is constrained by the depth and 

publication biases of pathway databases.  

 

CONCLUSIONS 

 

Phenotypic characteristics such as sex, age and body fat mass have independent 

associations with the levels of certain serum proteins. Mapping these proteins to 

pathways identified biological processes differing across phenotypic measures. 

Importantly, the findings were replicated in an independent cohort. Gender and sex 

specific health care is emerging as differences in trajectories towards disease and 

therapeutic responses between males and females are identified. Many of the most 

significant proteins identified in this study had known relationships with sex hormone 

metabolism indicating sex hormones play key roles in influencing metabolic health. 

Additionally, age and fat mass are well-established risk factors for disease. These results 

are relevant to the development of diagnostic and prognostic markers of health and 

disease trajectories. The present results will be an important consideration in the 

development of protein signatures for use in the clinical setting. 
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Table 6: Overview of pathways related to sex, age and fat mass using WikiPathways 

 
Table 6. Pathways obtained from pathway statistics using PathVisio software, using the curated 
WikiPathways directory. Pathways with a Z-Score of >1.96, a p-value of <0.05 and who have 3 or more proteins 
differentially expressed are considered important. P-value is permuted. Sorted by number of differentially expressed 
proteins in pathway. 

 

  

  Pathway Positive  Measured  Z Score P ID 

Males Complement and Coagulation 
Cascades 

7 40 2.27 0.039 WP558 

Selenium Micronutrient Network 7 27 3.49 0.003 WP15 

Vitamin   B12 Metabolism 7 24 3.88 0.002 WP1533 

Folate Metabolism 6 26 2.88 0.011 WP176 

Statin Pathway 3 4 4.95 0.001 WP430 

Urea cycle and metabolism of amino 
groups 

3 4 4.95 0.001 WP497 

Females Adipogenesis 5 23 4.05 <0.01 WP236 

Aryl Hydrocarbon Receptor 3 19 2.41 0.032 WP2586 

FAS pathway and Stress induction of 
HSP regulation 

3 15 2.93 0.021 WP314 

Myometrial Relaxation and 
Contraction Pathways 

3 22 2.1 0.031 WP289 

Aging Complement and Coagulation 
Cascades 

4 40 2.01 0.044 WP558 

Senescence and Autophagy in Cancer 4 39 2.07 0.047 WP615 

Fat mass Spinal cord injury 8 47 1.78 0.052 WP2431 

 Complement and coagulation 
Cascades 

7 40 1.74 0.053 WP558 

 
Adipogenesis 6 23 2.72 0.006 WP236 

Cardiac Progenitor Differentiation 5 15 3.15 0.008 WP2406 

Neural Crest Differentiation 5 18 2.65 0.017 WP2064 

Complement Activation 4 17 1.97 0.038 WP545 

AMPK signaling 3 12 1.82 0.049 WP1403 

Differentiation of white and brown 
adipocyte    

3 3 5.33 <0.01 WP2895 

Notch Signaling Pathway 3 7 3 0.013 WP268 

NOTCH1 regulation of human 
endothelial cell calcification 

3 10 2.2 0.039 WP3413 
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ABSTRACT 

 

The menstrual cycle is an essential life rhythm governed by interacting levels of 

progesterone, estradiol, follicular stimulating, and luteinizing hormones. To study 

metabolic changes, biofluids were collected at four timepoints in the menstrual cycle 

from 34 healthy, premenopausal women. Serum hormones, urinary luteinizing 

hormone and self-reported menstrual cycle timing were used for a 5-phase cycle 

classification. Plasma and urine were analyzed using LC-MS and GC-MS for 

metabolomics and lipidomics; serum for clinical chemistries; and plasma for B vitamins 

using HPLC-FLD. Of 397 metabolites and micronutrients tested, 208 were significantly 

(p<0.05) changed and 71 reached the FDR 0.20 threshold showing rhythmicity in 

neurotransmitter precursors, glutathione metabolism, the urea cycle, 4-pyridoxic acid, 

and 25-OH vitamin D. In total, 39 amino acids and derivatives and 18 lipid species 

decreased (FDR<0.20) in the luteal phase, possibly indicative of an anabolic state during 

the progesterone peak and recovery during menstruation and the follicular phase. The 

reduced metabolite levels observed may represent a time of vulnerability to hormone 

related health issues such as PMS and PMDD, in the setting of a healthy, rhythmic state. 

These results provide a foundation for further research on cyclic differences in nutrient-

related metabolites and may form the basis of novel nutrition strategies for women. 
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INTRODUCTION 

 

The monthly menstrual cycle represents one of many physiological rhythms essential 

for life. The heartbeat and daily sleep-wake cycle represent obvious rhythms. Less 

obvious are the physiological processes inside the body such as the rhythmicity of the 

sex hormones that drive the menstrual cycle and others that regulate growth and 

metabolism [1]. These rhythms also interact with each other through synchronization 

of cellular activities with the external environment through feedback mechanisms that 

promote dynamic stability, such as the interaction between circadian rhythms, sleep 

and the menstrual cycle [2, 3]. Perturbations of the body’s rhythmic processes are 

associated with disorders[4] such as disturbed circadian rhythmicity with premenstrual 

dysphoric disorder (PMDD)[5] or abnormal expression of the circadian clock gene and 

spontaneous abortion[6].  

 

The first half of the menstrual cycle is comprised by the menstrual and follicular phases 

during which time estrogen levels are low (menstrual phase) and rise (follicular phase) 

and ends with the periovulatory phase in which follicular stimulating hormone (FSH) 

and luteinizing hormones (LH) peak. The second half of the cycle is comprised by the 

luteal (during which time estrogen level rises with a progesterone peak) and the pre-

menstrual phases during which time estrogen and progesterone levels fall (Fig. 1, 

Supplementary Fig. 1) [7-9]). However, it is during this time that women experience 

worsening of chronic diseases such as diabetes and inflammatory bowel disease, 

bloating, poor sleep quality, and premenstrual syndrome (PMS) or PMDD [10-16]. 

Moreover, the luteal phase is also accompanied by decreasing amino acid levels and 

elevated nitrogen utilization [17, 18]. Women with PMS and PMDD have an increased 

appetite, food cravings and excess calorie intake which are associated with cyclical 

changes in serotonin during this period [12, 19-21]. These biochemical changes suggest 

nutrient utilization is affected by changing sex hormones between phases. The luteal 

phase of the menstrual cycle may be considered a normally stressed physiology which 

amplifies differential responses between individuals to environmental stressors such as 

diet intake.  These differential responses might predict future chronic health issues. 

 

In order to characterize baseline metabolic rhythmicity in the menstrual cycle, 

advanced metabolomic profiling, clinical and nutrient biochemistries were analyzed for 

rhythmic variations throughout a healthy menstrual cycle in 34 healthy women. 

Samples were analysed from five different phases of the menstrual cycle obtained from 

a previously published stud y[17]. The results are interpreted in light of metabolic 

differences that may represent vulnerability to sex hormone related disorders and 
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nutritional needs, as well as diagnostic and therapeutic approaches that vary across the 

menstrual cycle (Fig. 2). 

 

METHODS 

 

Study design 

All methods were performed in accordance with the relevant guidelines and regulations. 

Ethical approval was received from both the Research Ethics Committee, University 

College Dublin (UCD) and the Commission Cantonale D’Ethique de la Recherche sur 

L’Etre Humain (CER-VD) in Switzerland. All participants provided written informed 

consent before study participation. Participants visited the clinic at 4 different 

timepoints for blood and urine collection at different menstrual cycle phases (Fig. 2). 

Participants were instructed to keep a menstrual calendar for 1 month prior to sample 

collection in order to estimate the length of their cycle. Using a guide for menstrual 

phase length [17], urine and blood samples were collected from each woman at 4 

different time points in one menstrual cycle; estimated to represent 4 stages of the 

menstrual cycle: menstrual, follicular, luteal and premenstrual (Fig. 1). Participants 

were instructed to use a luteinizing hormone (LH) urine dip strip test kit (Medimpex 

Ltd Inc) at home in order to determine the date of ovulation.  

 

Following serum hormonal analysis, classification of the phases was refined to define 5 

stages of the menstrual cycle (menstrual, follicular, periovulatory, luteal and 

premenstrual) [17].  

 

Study participants 

Thirty four healthy, premenopausal women at UCD, Dublin with a mean age of 26.6 

years, standard deviation (SD) of +/- 5.9; and a mean body mass index (BMI) (Kg/m3) of 

22.9 +/- 3.5 volunteered to participate in the study. Participants were excluded with a 

BMI <18 or >30 Kg/m3, iron deficiency anemia (hemoglobin < 11.5 g/dl), diagnosis with 

a medical condition and use of prescribed medication or hormonal contraceptives (Fig. 

2). 

   

Blood and urine collection 

Prior to blood and urine collection, participants were instructed to fast for 12 h, limit tea 

and coffee consumption and abstain from fish, alcohol and vigorous exercise for 24h. 

On the morning of collection, volunteers collected their first void urine at home in a 

chilled graduated container and then immediately delivered it to the laboratory on ice. 

Sample processing and serum hormone analyses were measured at the Biochemistry 

Department, National Maternity Hospital, Dublin, as previously described[17]. 
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Fig. 1. Hormone levels according to menstrual cycle phase. Changing concentrations of female sex hormones (progesterone, luteinizing hormone, follicular stimulating hormone, 

estradiol) that characterize the 5 phases (menstrual, follicular, periovulatory, luteal and pre-menstrual) of the menstrual cycle (adapted with permission 7). Follicular stimulating 

hormone concentration changes overlayed. Adapted with permission from Allen, A. M. et al. Determining menstrual phase in human biobehavioral research: A review with 

recommendations. Exp Clin Psychopharmacol 24, 1-11, doi:10.1037/pha0000057 (2016). 
. 
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Fig. 2. Study schema. Thirty-four women (BMI 22.9 +/-3.5 kg/m2, age 26.6+/-5.9 yrs) provided 4 blood and urine samples 

that each uniquely fit into 1 of 5 phase timepoints based on 4 sex hormone measurements (LH, FS, estradiol, and 

progesterone). A total of 401 metabolites were measured including 263 plasma, 114 urine, and 19 clinical and vitamin 

analyses. Metabolite profiling was conducted and rhythmicity is depicted for the amino acid, lipid and organic acid panels. 

Biochemical pathway interconnectivity was identified between the urea cycle, 1 carbon metabolism, glutathione 

metabolism and the citric acid cycle. M-menstrual, F-follicular, O-Periovulatory, L-luteal, P-premenstrual phases.  

 

Design 

Statistical 

Analysis 

Interpretation 
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Metabolite profiling analysis 

Metabolite profiling was done by the Biomedical Metabolomics Facility, Leiden 

University, Leiden, The Netherlands. All samples (plasma and urine) were randomized 

and analyzed in batches, which included calibration lines, quality control (QC) samples 

and blanks. QC samples were prepared from pooled plasma and urine available in the 

laboratory and were analyzed every 10 samples for data quality and instrument response 

correction. Blank samples were used to correct for background signal and in-house 

developed algorithms were applied using the pooled QC samples to compensate for 

time-dependent drifts of the sensitivity of the mass spectrometer. Data was reported as 

ratio of analyte signal to internal standard.  

 

The amine platform analyzed 74 amino acids and biogenic amines in plasma and urine 

using liquid chromatography coupled to a mass spectrometer (LC-MS) employing an 

AccQ-Tag derivatization strategy adapted from the protocol supplied by Waters (Etten-

Leur, The Netherlands) [1]. One μL of the reaction mixture was injected into the 

ACQUITY UPLC System (Waters, Etten-Leur, The Netherlands) on an AccQ-Tag Ultra 

column (Waters) for chromatographic separation coupled to a triple quadrupole mass 

spectrometer (AB SCIEX Qtrap 6500, Framingham, MA USA). Acquired data were 

evaluated using MultiQuant Software for Quantitative Analysis (AB SCIEX, Version 

3.0.2). After quality control correction [2], 54 plasma amines and 60 urine amines 

complied with the acceptance criteria of RSDqc <15%.  

 

The lipid platform analyzed 185 compounds in 9 lipid classes in plasma using LC-MS as 

described[3]. Chromatographic separation was achieved on a ACQUITY UPLC™ 

(Waters, Etten-Leur, The Netherlands) with a HSS T3 column which was coupled to a 

ESI-Q-TOF (Agilent 6530, Jose, CA, USA) using reference mass correction[3]. The raw 

data were pre-processed using Agilent MassHunter Quantitative Analysis software 

(Agilent, Version B.04.00). After QC and blank correction, 139 compounds comply with 

the acceptance criteria RSDQC <30% and blank effect <40 %. Twenty six organic acids 

were analyzed in urine by gas chromatography coupled to mass spectrometry (GC-MS). 

After QC correction and considering blank effects, 23 urinary and 16 plasma organic 

acids compounds complied with the acceptance criteria RSDQC <30% and blank effect 

<20 %. The plasma and urine metabolites were measured by gas chromatography on an 

Agilent Technologies 7890A equipped with an Agilent Technologies mass selective 

detector (MSD 5975C) and MultiPurpose Sampler (MPS, MXY016-02A, Gerstel, 

Germany). Chromatographic separations were performed on a HP-5MS and detected 

using a quadrupole mass spectrometer. The raw data were pre-processed using Agilent 

MassHunter Quantitative Analysis software (Agilent, Version B.05.01).  
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The endocannabinoid profiling platform analyzed 24 compounds in plasma, as 

previously described [4]. Chromatographic separation was achieved by an ACQUITY 

UPLC System (Waters, Etten-Leur, The Netherlands) on an ACQUITY UPLC HSS T3 

Column. The UPLC was coupled to electrospray ionization on a triple quadrupole mass 

spectrometer (AB SCIEX Qtrap 6500, Framingham, MA USA). Acquired data were 

evaluated using MultiQuant Software for Quantitative Analysis (AB SCIEX, Version 

3.0.2). After quality control correction 19 endocannabinoids complied with the 

acceptance criteria of RSDqc <15%.  

 

The acylcarnitine platform analyzed 45 acylcarnitines as well as trimethylamine-N-

oxide, choline, betaine, deoxycarnitine and carnitine in plasma and urine. 

Chromatographic separation was achieved by UPLC (Agilent 1290, San Jose, CA, USA) 

on an AccQ-Tag Ultra column (Waters, Etten-Leur, The Netherlands) coupled to 

electrospray ionization on a triple quadrupole mass spectrometer (Agilent 6460, San 

Jose, CA, USA). Acquired data were evaluated using Agilent MassHunter Quantitative 

Analysis software (Agilent, Version B.05.01). After QC correction, 25 urinary and 27 

plasma acylcarnitines complied with the acceptance criteria of RSDqc <15%.  

 

The method validation used for the metabolite profiling fits with the acceptance criteria 

for precision (15% RSD, 20% RSD near LLOQ and accuracy (bias within +/- 15% of the 

accepted reference value, within 20% near LLOQ) specified by the Conference Reports 

have been widely accepted in bio-analysis [5]. Recommended guidelines were followed 

for most metabolites, however, some were accepted which were close to the LOQ. 

 

Clinical and vitamin biochemistry 

Standard clinical routine analysis of human serum samples was performed by the 

Molecular Nutrition laboratory at NIHS. The applied Architect plus ci4100 platform 

from Abbott Laboratories (Lake Bluff, IL, USA), consists of a chemistry and an 

immunoassay module [6]. Glucose, insulin, vitamin B12, holotranscobalamin, folate, 25-

hydroxy vitamin D and cortisol were determined by chemiluminescent microparticle 

immunoassays (CMIA) while cholesterol, HDL, triglycerides, high sensitivity C-reactive 

protein (hsCRP), ceruloplasmin, copper and magnesium were analyzed using the 

ARCHITECT cSystems assays developed by Abbott Laboratories (Wiesbaden, Germany) 

[6].  

 

Plasma analysis was completed by Vitas Analytical Services, Oslo, Norway for B1 

(thiamin and thiamin mondphosphate), B2 (FAD, FMN), and B6 (4-pyridoxic acid, 

pyridoxal 5 phosphate). The analysis was performed with an an Agilent LC-FLD 1200 

system using a fluorescence detector (FLD). Separation of the analytes was achieved by 
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a Phenomenex Kinetex® column (2.6µm C18 100 Å 100 x 4.6 mm). Unknowns were 

calibrated against known standards from Sigma-Aldrich, and reported as nmol/l.  

 

Data analysis 

Univariate data analysis was used to evaluate changes in metabolite concentrations, 

clinical, and vitamin data (biochemical species) over five menstrual cycle phases. A 

mixed model approach was used in which all data was natural log transformed to meet 

normality assumptions.  

 

In the analysis𝑌𝑖𝑗𝑡 is the log transformed level of participant i in (1,..,34) for biochemical 

species j in (1,..,397) at menstrual phase  t in (1,…,5).  Data were analyzed using the 

following Linear Mixed Model[7]. 

𝑌𝑖𝑗𝑡 =  𝑏𝑖𝑗 +  𝜇𝑗𝑡 + 𝜀𝑖𝑗𝑡            (1) 

The random intercept, 𝑏𝑖𝑗~𝑁(0, 𝜎𝑗
𝑏), accounts for the dependence of observations from 

the same participant, 𝜇𝑗𝑡 is the (mean biochemical species j) fixed effect in phase t and 

𝜖𝑖𝑗𝑡~𝑁(0, 𝜎𝑗
𝜀) is an independent, normally distributed error term. 

Of interest are pairwise (phase-phase) differences, which we call “contrasts”, defined as  

(𝜇𝑗𝑡 − 𝜇𝑗𝑡′) where t and t’ represent two different phases, e.g. luteal and menstrual. The 

five phases yield ten unique pairwise differences per biochemical species j, delivering a 

total of 3970 (two-sided Student’s t-test) p-values, denoted 𝑝𝑗
𝑐 for contrast c in (1,…,10) 

in biochemical species j.  

 

Multiple testing adjustments were made using Bonferroni within biochemical species 

by transforming 𝑝𝑗
𝑐 to 𝑝̂𝑗

𝑐 = min (10 × 𝑝𝑗
𝑐, 1), and across biochemical species by 

controlling the false discovery rate contrast-wise using Benjamini-Hochberg (BH) [8]. 

For each contrast c we provide the BH procedure with the 𝑝̂𝑗
𝑐 values of all biochemical 

species from the same panel (amino acids, lipids, et cetera) and sample (plasma, urine, 

et cetera) resulting in a corresponding set of FDR controlled values 𝑞𝑗
𝑐. A pairwise 

difference c for metabolite j is considered significantly different from zero if 𝑞𝑗
𝑐 <  0.20. 

All biochemical species with at least one significant contrast are labeled as “entities” and 

studied further. This threshold is sufficiently liberal to ensure the consecutive pathway 

analysis is conducted on a rich set of exploratory biochemical species. All statistical 

analyses were conducted in the R programming language (version R 3.4.0 for Windows) 

using packages lme4 (1.1-13), lmtest (0.9-35) and multcomp (1.4-6) [9-11]. 

 

Metabolite reactions and subsystems analyses 

The Human Genome Scale Metabolic Model or RECON 2.2.[12-14] was used for 

overlaying the metabolite concentration data to map changes in metabolism at different 

phases to a global/systems scale. Metabolites were input into the RECON model using 
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corresponding KEGG identities[15]. Reactions in the RECON model were identified and 

filtered for those with meaningful metabolic impact. Impacted metabolic subsystems 

were then identified based on participating reactions. Interconnectivities and 

differences between menstrual cycle phases were visualized using custom 

MATLAB (Mathwork Inc.) scripts and edited using yEd (yWorks 

GmbH). (Supplementary Fig. 2a,b, and 3). 

 

RESULTS 

 

Analysis of the plasma levels of estradiol, progesterone, luteal hormone and follicular 

stimulating hormone followed the expected temporal concentration profiles of cycle 

phases, however, the estradiol concentration in the follicular phase was lower than the 

luteal phase peak (Supplementary Fig. 1 vs. Fig. 1). This variation may represent the 

small number of women in a narrow age range in this study. 

 

The 4 sampling windows of the original study were timed to capture the menstrual (M), 

follicular (F), periovular (O), luteal (L) and pre-menstrual (P) phases of the cycle. All 

participants were observed during one monthly cycle. A total of 33, 31, 15, 27, and 11 

samples were available for the M,F,O,L,P phases respectively; and 117 samples were 

available for analysis of all metabolites (Supplementary Table 1).  

 

Since the overall research goal was to investigate menstrual cycle metabolic rhythmicity, 

it is natural to assess phase dynamics of individual biochemical species. To do so, 

calculated phase means of each biochemical species were compared, while taking the 

participant-specific nature of the data into account. Each phase-phase difference, or 

contrast, is tested for statistical significance before (p<0.05) and after multiple testing 

control of the false discovery rate (q<0.20; details in the Methods section). 

Logarithmically transformed statistically significant metabolite patterns, per cycle 

phase, meeting q value threshold q<0.20 can be visualized in Fig. 3. Mean log intensity 

and individual variability of metabolites with 2 or more statistically significant contrast 

comparisons meeting q<0.20 are depicted in Fig. 4. 

 

Plasma amino acids and biogenic amines were significantly lower in the luteal phase. 

Out of the 54 amino acids and derivatives and biogenic amines detected, 48 reached 

statistical significance (p-value<0.05) in the 5 phase contrast comparisons: luteal-

follicular (L-F), luteal-menstrual (L-M), luteal-periovulatory (L-O), premenstrual-luteal 

(P-L) and peri-ovular-menstrual (O-M) (Table 1 and Supplementary Table 1.) 
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Ornithine, arginine, alanine, glycine, methionine, and proline were statistically 

significant in all 5 phase contrast comparisons, with the luteal phase showing a 

statistically significant reduction in amines relative to the other phases. After correction 

for multiple testing and using a q value threshold < 0.20, 37 amines reached statistical 

significance in the L-M contrast. Nineteen of these same amines met the q value 

threshold <0.20 for the L-F, 4 for L-O and 9 for P-L (Table 2 and Fig. 4). Total 

glutathione was statistically significant only for L-F. Threonine, ornithine, and serine 

showed significance across the 4 phase contrast comparisons; L-M, L-F, L-O, and P-L 

(q<0.20) (Table 1). 

 

Analysis of the same amino acids and biogenic amines in urine yielded data for 60 

compounds. Twenty amino acids were statistically significant (p<0.05, Table 1) between 

phases for at least 1 phase contrast (L-F, L-M, L-O, O-M) with L-O and O-M having the 

highest number of statistically significant differences (Table 1 and Supplementary 

Table 1).Threonine differed in 3 comparisons and was the only amino acid that reached 

the FDR threshold in urine (q<0.20 for L-O).  

 

Plasma phospholipids were significantly reduced in the luteal phase.  

Of the 139 lipid species with detectable plasma levels, 57 reached statistical significance, 

(p-value <0.05), for 1 to 5 phase contrast comparisons: L-F, L-M, L-O, P-L and O-M 

(specific p-values in Table 2). Thirty eight percent of the lipid species tested (53/139) 

consistently showed a statistically significant decrease in the luteal phase relative to the 

follicular and in some cases, relative to the menstrual phase (16/139) with 7 compounds 

showing a decrease in comparison to the premenstrual phase and 2 in comparison to 

the periovulatory phase.  One compound, LPE 22:6, showed a statistically significant 

difference in 4 out of the 5 phase contrasts: L-F, L-M, L-O and P-L. After multiple 

testing, at q<0.20, 17 lipid species met this threshold for L-F including 6 LPCs, 10 PCs 

and 1 LPE. One other LPC met this threshold for O-M (Table 2). 

 

Vitamin D and pyridoxic acid increased in the menstrual phase.  

Nineteen clinical parameters were tested including eight B vitamins, cofactors and 

metabolites. C reactive protein (CRP) was statistically significant in L-F (p<0.05), while 

high density lipoprotein (HDL), triglycerides and cholesterol were statistically 

significant in L-F (p<0.05). Glucose showed rhythmicity with a statistically significant 

decrease in the luteal phase in comparison to menstrual, pre-menstrual and 

periovulatory phases (p<0.05). Magnesium showed a statistically significant decrease 

in L-M and O-M and riboflavin showed a statistically significant decrease in luteal vs. 

pre-menstrual phases. However, these results were not significant when corrected for 

multiple testing (q<0.20).   
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Fig. 3. Metabolites vary across menstrual cycle phase. This heatmap with color gradients indicates rhythmicity across 

the menstrual cycle. Lower amino acid and lipid metabolite concentrations are visualized in the luteal phase. Phase 

means of logarithmically transformed metabolite data are row standardized in the heatmap to obtain Z scores. Two 

cells that are close in color represent similar Z scores, ranging from blue (Z equals minus 2) to red (Z equals plus 2). 

Amino acid, lipid, organic acid and sex hormone variables are ordered according to main biochemical pathways or 

classes and depicted at q <0.20 after contrast analyses. Menstrual (M), Follicular (F), Periovulatory (O), Luteal (L), 

Premenstrual (P) phases are depicted. LPC- Lysophosphatidylcholine, LPE- Lysophosphatidylethanolamine, PC-

phosphatidylcholine. 
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Vitamin D (25-OH vitamin D) showed significant decreases in L-F, L-M and O-M with 

L-M and O-M and met the multiple testing threshold q<0.20). Moreover, the menstrual 

phase consistently showed higher levels of vitamin D. Pyridoxic acid also showed an 

elevation in the menstrual phase compared to the periovulatory (q<0.20,  Table 2) 

 

Plasma and urine acylcarnitines showed an increase in the periovulatory phase. 

Of the 50 compounds tested in the acylcarnitine panel, 19 were statistically significant 

in the plasma and 16 statistically significant in urine (p<0.05). The majority of plasma 

and urine metabolites were altered in O-M with an increase in the periovulatory phase. 

However, only urinary malonylcarnitine reached the q<0.20 threshold for multiple 

testing (Table 2 and Supplementary Table 2). 

 

Organic acids and endocannobinoids showed different patterns between phases. 

Sixteen organic acid metabolites had concentration levels above the respective limit of 

quantification in plasma out of which 10 reached statistical significance, p<0.05. 

Inositol, pyroglutamic acid and methylmalonic acid reached the multiple testing 

threshold (q<0.20) for L-M for all 3 metabolites and L-O for inositol and pyroglutamic 

acid (Table 2). 

 

Twenty-three organic acid metabolites were analyzed in urine, of which 14 were 

statistically significant, p<0.05, in various contrasts. Uracil, succinic acid and citric acid 

reached the multiple testing threshold q<0.20 for O-M (Table 2). 

 

In plasma, 19 endocannabinoids had detectable levels, of which 5 demonstrated 

statistical significance p<0.05 across L-F, L-M, L-O, and O-M; and LEA reached 

statistical significance for L-F,L-M and L-O and met the multiple testing threshold 

(q<0.20) for L-F (Table 2). 

 

Metabolite reactions and subsystems analyses demonstrated interconnectivity and 

differentiation between menstrual cycle phases 

The KEGG database and Human RECON model were used to enrich functional 

understanding of the 71 compounds that met multiple testing q-value (<0.20). KEGG 

currently maps 18,111 metabolites to 519 pathways and RECON 2.2 uses 5324 metabolites 

and 7785 primarlly intracelluar reactions. Sixty-two of the 71 compounds in this study 

were identified in the KEGG pathways and 41 of these 62 entitites  could be mapped in 

RECON 2. These 41 metabolites participate in 1213 reactions (out of the 7440 reactions 

tabulated). We do not consider the 710 reactions for extracellular transport and the 84 

reactions for exchange/demand. Thus, 419 reactions remained for further analysis and 
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interpretation. Metabolite subsystem analyses of the 41 metabolic entities in the 419 

reactions identified showed reduced glutathione, succinate, L-histidine and glycine 

followed by L-lysine, L-alanine, L-arginine and L-serine impact or are impacted by the 

most number of metabolic reactions (Supplementary Fig. 2A). 

 

The 34 impacted sub-systems in the metabolic landscape include amino acid 

metabolism/synthesis; such as glutathione metabolism and the urea cycle; eicosanoid 

metabolism; citric acid cycle and bile acid synthesis. (Supplementary Fig. 2b) show 

the global, significant impact of changes in menstrual phase on metabolism. 

 

A deeper pathway analysis in which interconnected, amino acid phase contrasts were 

compared, revealed minor differences between the 2 significant phase contrast 

categories. The luteal menstrual contrast did not show a significant difference in 

glutathione levels like the luteal follicular contrast (Supplementary Fig. 3).  

 

DISCUSSION 

 

The present study demonstrates the rhythmic synchronicity of the menstrual cycle with 

healthy metabolism. Using deep molecular phenotyping of 5 menstrual cycle phases, 

paired with sex hormone rhythmicity, 67 biochemical species of amino acid, lipid, 

carbohydrate, energy and vitamin metabolism significantly changed between phases; 

particularly, with a decrease in the luteal relative to menstrual and follicular phases (Fig. 

3). Much fewer changes were observed in the urine in comparison to the plasma. These 

biochemical species comprise major biochemical pathways which impact physiological 

functioning and may increase vulnerability to sex-hormone related disorders, such as 

PMS, PMDD, and polycystic ovarian syndrome (PCOS).  

 

Luteal phase protein, lipid, steroid, endometrial biosynthesis and increased energy 

utilization may lead to reduced biomarkers relative to menstrual and follicular phases. 

The decrease in amino acid plasma levels observed in the luteal phase, particularly in 

comparison to the menstrual phase, may be associated with progesterone’s upregulation 

of cell cycle progression and growth and the associated protein biosynthesis required 

for endometrial thickening to prepare the uterus for pregnancy [16] ( Table 1 and Fig. 3 

and Fig. 4). The decreased amino acid concentrations that participate in the urea cycle 

(arginine, ornithine and citrulline) suggest reduced ammonia waste in the luteal phase, 

which supports progesterone’s anabolic amino acid use (Fig. 5). Sex hormone regulation 

of nitrogen utilization through nitrogen excretion fluctuation [17, 18] and reduced 

concentrations of amino acids in the luteal phase suggest the intake of a higher protein 

load might, in certain instances, be advantageous to support additional nitrogen needs.   



Chapter 5 

127 
 

 

  

Table 1. Sex hormones and amino acids

Biomarkers  L-F*  L-M  L-O P-L O-M q L-F q L-M q L-O q P-L q O-M

Sex Hormones, serum

Progesterone (ng/L) 2.88 2.80 2.30 -1.51 0.50 0 0 0 2.00E-11 7.87E-02

Estradiol (pmol/L) 0.94 1.79 -0.10 -1.19 1.89 1.32E-09 0 2.88E-08 0

Follicular stimulating hormone (FSH) (IU/L) -0.75 -0.80 -1.16 0.42 0.36 0 0 0 1.37E-03 3.52E-03

Luteneizing hormone (LH) (IU/L) -0.27 0.00 -1.40 0.04 1.39 2.72E-01 0 0

Amines, plasma

L-Threonine -0.45 -0.59 -0.46 0.43 -0.13 6.73E-09 0 2.24E-05 1.67E-03

Ornithine -0.35 -0.47 -0.31 0.31 -0.16 2.12E-05 2.10E-11 4.67E-02 9.32E-02

L-Arginine -0.34 -0.47 -0.26 0.28 -0.21 5.51E-04 1.87E-08 3.47E-01 3.62E-01

L-Alanine -0.35 -0.45 -0.24 0.35 -0.21 3.93E-04 3.29E-08 4.59E-01 9.32E-02

Glycine -0.31 -0.40 -0.23 0.34 -0.17 4.36E-04 6.16E-08 3.71E-01 9.32E-02

L-Serine -0.26 -0.37 -0.25 0.28 -0.11 2.50E-03 9.20E-08 1.93E-01 1.01E-01

L-Methionine -0.25 -0.37 -0.22 0.28 -0.15 4.95E-03 9.20E-08 3.47E-01 1.01E-01

L-Asparagine -0.27 -0.37 -0.22 0.30 -0.15 2.89E-03 5.24E-07 4.52E-01 9.32E-02

L-Proline -0.21 -0.38 -0.18 0.29 -0.20 1.30E-01 1.57E-06 2.05E-01

L-Glutamine -0.24 -0.32 -0.21 0.24 -0.11 4.21E-03 2.58E-06 3.47E-01 1.94E-01

L-Tyrosine -0.18 -0.32 -0.12 0.25 -0.20 1.74E-01 1.32E-05 3.04E-01

Gamma-L-glutamyL-L-alanine -0.49 -0.51 -0.23 0.33 -0.28 3.93E-04 1.34E-05 7.02E-01

Citrulline -0.22 -0.31 -0.23 0.26 -0.09 2.11E-02 1.34E-05 3.47E-01 1.87E-01

L-Lysine -0.18 -0.32 -0.21 0.23 -0.11 2.26E-01 1.34E-05 4.59E-01 4.63E-01

O-AcetyL-L-serine -0.31 -0.33 -0.25 0.24 -0.07 5.51E-04 2.12E-05 2.90E-01 3.82E-01

L-Alpha-aminobutyric acid -0.25 -0.37 -0.32 0.23 -0.05 4.81E-02 2.33E-05 1.74E-01 9.54E-01

Sarcosine -0.17 -0.32 -0.09 0.17 -0.23 3.69E-01 5.34E-05

Ethanolamine -0.11 -0.23 -0.07 0.11 -0.16 4.98E-04

Gamma-glutamylglutamine -0.34 -0.41 -0.28 0.22 -0.13 3.51E-02 7.35E-04

L-Isoleucine -0.14 -0.24 -0.08 0.16 -0.16 5.87E-01 1.09E-03

3-Methoxytyrosine -0.20 -0.25 -0.16 0.21 -0.09 7.40E-02 1.17E-03 6.48E-01

Serotonin -0.71 -0.57 -0.12 0.06 -0.46 1.17E-03 6.95E-03

Hydroxylysine -0.08 -0.22 -0.05 0.17 -0.17 1.53E-02

Gamma-aminobutyric acid -0.10 -0.22 -0.05 0.02 -0.17 1.58E-02

L-Valine -0.11 -0.21 -0.08 0.11 -0.13 1.66E-02

Beta-Alanine -0.05 -0.11 -0.06 0.09 -0.05 1.72E-02

L-4-hydroxy-proline -0.26 -0.32 -0.19 0.35 -0.13 2.42E-01 1.78E-02 5.12E-01

L-Histidine -0.09 -0.19 -0.06 0.14 -0.13 3.89E-02

L-Homoserine -0.23 -0.24 -0.09 0.34 -0.15 1.61E-01 4.08E-02 1.49E-01

L-Phenylalanine -0.08 -0.19 -0.01 0.14 -0.17 4.79E-02

L-Leucine -0.07 -0.18 -0.05 0.09 -0.13 4.79E-02

L-Aspartic acid -0.15 -0.28 -0.07 0.10 -0.21 1.00E-01

L-Tryptophan -0.08 -0.18 -0.05 0.10 -0.13 1.06E-01

Methionine sulfone -0.14 -0.17 -0.09 0.16 -0.08 7.41E-01 1.12E-01

DL-3-aminoisobutyric acid -0.07 -0.19 -0.21 0.11 0.02 1.74E-01

L-2-aminoadipic acid -0.06 -0.18 -0.05 0.10 -0.14 1.91E-01
Glutathione -0.33 -0.01 0.00 0.01 -0.02 1.61E-01

Assymetric dimethyl arginine (ADMA) -0.08 -0.14 -0.22 0.03 0.08 1.96E-01 2.36E-01

Amines, urine

L-Threonine -0.29 -0.40 -0.54 0.19 0.14 1 3.54E-01 1.79E-01

Effect Size** FDR q values****

Measured sex hormone (progesterone, estradiol, follicular stimulating hormone, lutenizing hormone) and 39 amino acid 
effect sizes and q values are listed for all significant phase comparison categories. *Luteal/follicular (L-F), luteal-
menstrual (L-M), luteal-periovulatory (L-O), premenstrual-luteal (P-L) and peri-ovular-menstrual (O-M); ** All results are 
based on natural log transformed data. Effect sizes are estimated phase-phase differences (“contrasts”). *** Student’s 
t-test p-values of the contrasts are controlled for multiple testing within metabolites by Bonferroni and across 
metabolites using Benjamini-Hochberg FDR, resulting in q values as listed. Significant q values are in bold. Values above 
0.50 are intentionally left blank. 
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Measured vitamins (25-OH-vitamin D, pyridoxic acid) ,lipids (7 LPC, 1 LPE, 10 PC), malonylcarnitine, plasma 
organic acids (inositol, pyroglutamic acid, methylmalonic acid), urine organic acids (uracil, succinic acid, citric 
acid) and linolenylethanolamide are listed for all significant phase comparison categories. *Luteal/follicular (L-
F), luteal-menstrual (L-M), luteal-periovulatory (L-O), premenstrual-luteal (P-L) and peri-ovular-menstrual (O-
M); ** All results are based on natural log transformed data. Effect sizes are estimated phase-phase differences 
(“contrasts”). *** Student’s t-test p-values of the contrasts are controlled for multiple testing within metabolites 
by Bonferroni and across metabolites using Benjamini-Hochberg FDR, resulting in q values as listed. Significant 
q values are in bold.Values above 0.50 are intentionally left blank. LPC, Lysophosphatidylcholine, LPE- 
Lysophosphatidylethanolamine, PC-phosphatidylcholine. 

  

Table 2.  Vitamins, lipids, acylcarnitines, organic acids, endocannabinoids

Biomarkers  L-F  L-M  L-O P-L O-M q L-F q L-M q L-O q P-L q O-M

Vitamins

25-OH-vitamin-D - serum (nmol/L) -0.06 -0.09 0.01 0.00 -0.10 4.82E-01 1.21E-02 3.85E-02

Pyridoxic acid - plasma (nmol/L) 0.05 -0.16 0.29 0.18 -0.45 1.18E-01

Lipids, plasma

LPC 18.2 -0.26 -0.17 -0.08 0.22 -0.09 4.78E-04 2.89E-01

LPC 22.6 -0.20 -0.18 -0.09 0.17 -0.09 1.76E-02 2.89E-01

LPE 22.6 -0.34 -0.27 -0.21 0.27 -0.06 1.45E-02 2.89E-01

PC O.42.6 -0.13 -0.09 -0.06 0.10 -0.03 1.11E-02 9.34E-01

PC 40.8 -0.15 -0.07 -0.01 0.09 -0.06 2.41E-03

LPC 18.3 -0.30 -0.09 0.02 0.26 -0.11 1.76E-02

PC O.34.3 -0.14 -0.02 -0.09 0.09 0.08 2.64E-02

LPC 16.1 -0.20 -0.11 -0.02 0.05 -0.08 1.76E-02

PC 34.3 -0.19 -0.02 -0.04 0.10 0.02 3.30E-02

LPC 20.3 -0.16 -0.07 0.02 0.07 -0.10 3.83E-02

LPC 20.4 -0.17 -0.12 -0.06 0.12 -0.06 1.76E-02

PC O.38.7 -0.09 -0.02 -0.04 0.11 0.02 7.74E-02

PC 34.2 -0.08 -0.02 -0.06 0.02 0.03 3.30E-02

PC 32.2 -0.26 -0.19 -0.05 0.17 -0.14 3.30E-02

PC 36.2 -0.09 -0.02 -0.02 0.03 0.00 9.41E-02

PC 36.4 -0.08 -0.01 -0.04 0.03 0.02 1.26E-01

PC O.36.5 -0.13 -0.03 -0.07 0.10 0.04 1.26E-01

LPC 18.0 -0.11 -0.11 0.08 0.03 -0.19 4.78E-01 1.60E-01

Acylcarnitines, urine

Malonylcarnitine -0.18 0.18 -0.43 0.19 0.61 1.96E-01

Organic Acids, plasma

Inositol -0.20 -0.30 -0.40 0.30 0.10 9.53E-02 9.62E-02

Pyroglutamic acid -0.14 -0.39 -0.46 0.23 0.07 2.11E-02 9.62E-02

Methylmalonic acid -0.12 -0.18 -0.13 0.06 -0.04 9.53E-02

Organic Acids, urine

Uracil 0.27 0.39 -0.23 -0.28 0.61 4.11E-01 3.74E-02

Succinic acid -0.03 0.26 -0.30 0.07 0.57 9.67E-02

Citric acid 0.00 0.17 -0.16 -0.03 0.33 1.80E-01

Endocannabinoids, plasma

Linolenoylethanolamide (LEA) -0.15 -0.08 -0.11 0.02 0.03 1.92E-02

Effect Size FDR q values
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Women have higher energy expenditure and compensate by eating more in the luteal 

phase, particularly protein; suggesting the anabolism in this phase could be greater than 

the degree of difference we observe using the tested metabolomics technologies [19, 20]. 

 

The anabolic effect of the luteal phase does not appear to be limited to amino acids, as 

certain lipids decreased in the luteal relative to follicular phases suggesting a higher 

utilization of fat for lipid or steroid synthesis, and/or an increase in fat absorption with 

less need for anabolism in the follicular phase (Table 2 and Fig. 3). Previous research 

demonstrates total phospholipid content of the endometrium is increased in the luteal 

phase by 26% relative to the periovulatory time-period[21]. A 10-fold increase of 

phospholipase A2 in endometrial tissue has previously been identified in the luteal 

phase[22]. Partial hydrolysis of phosphatidylcholines (PC) and 

phosphatidylethanolamines (PE) by phospholipase A2 produces 

lysophosphatidlycholines  (LPC) and lysophosphatidlyethanolamines (LPE).  

 

PE and LPC are minor phospholipids found in cell membranes such as myelin sheaths 

and erythrocytes; playing roles in cell signaling and enzyme activation. Our findings of 

decreased PCs, LPCs, PEs and LPEs are consistent with their anabolic use for 

endometrial tissue thickening for pregnancy preparation during the luteal phase. 

Previous research identified PCs, LPCs and LPEs are further reduced in the luteal phase 

of PCOS patients versus healthy controls [23, 24]. Thus, lower phospholipids in the 

luteal phase could be physiologically normal. However, certain diseases may perturb 

this state further, suggesting augmentation of physiologic vulnerability and highlighting 

the importance of studying hormonal rhythmicity in health and disease. 

 

Endocannabinoids are known to interact with sex hormones and cytokines to regulate 

fertility [25]. Conversely, changes in levels of sex hormones are known to alter 

endocannabinoid signaling [26]. The central nervous system is a rich source of 

endocannabinoids, highly sensitive to inflammation and this interaction is implicated 

in PMDD [27]. Additionally, endocannabinoids are generated from membrane 

phospholipids [25, 28]. In the present study, one endocannabinoid, linolenoyl 

ethanolamide (LEA), demonstrated luteal phase rhythmicity, which has not been 

demonstrated previously (Table 2). The low concentration of LEA observed may be a 

result of phosphotidylethanolamine use for endometrium development. This results in 

less LEA available for endocannabinoid generation.  
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Fig. 4. Amino acid variability by cycle phase.  Mean log intensity is depicted along with individual variability for 

threonine, ornithine, arginine, alanine, glycine, serine, methionine, asparagine, proline, glutamine, tyrosine, gamma-

glutamyl-alanine, citrulline, o-acetyl-serine, alpha-aminobutyric acid, and gamma-glutamylglutamine at one time 

point for each of the 5 menstrual phases (M=menstrual, F=follicular, O=periovular, L=luteal, p=premenstrual). Each 

colored line represents an individual. Amino acids are depicted which have 2 or more contrast comparisons meeting 

the multiple testing threshold of q<0.20. Statistically significant luteal phase reductions can be observed. 
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Further research is needed to identify if this can increase vulnerability to a sub-optimal 

stress response in individuals susceptible to PMS or PMDD, particularly when combined 

with low concentrations of amino acid precursors of neurotransmitter metabolism. 

 

Medium and longchain acylcarnitines are formed from fatty acid oxidation, and 

elevated in inflammation, menopause and lower in PCOS [1, 2]. In our healthy, 

premenopausal population, a trend of upregulated acylcarnitines was observed in the 

periovular phase from urine and plasma which may reflect a higher state of 

inflammation and demand for beta oxidation and energy utilization [3] 

(Supplementary Table 2). 

 

Clinical laboratory diagnostics used in practice can vary with the menstrual cycle due 

to increased anabolic demands in the luteal phase, for example, and should be 

interpreted with caution. Cholesterol is a key constituent of sex hormones and is 

utilized during the luteal phase for progesterone and estrogen synthesis. In the present 

study, cholesterol and HDL showed significant trends with reductions in the luteal 

relative to the follicular phases and, consistent with prior literature [4, 5]. Triglyceride 

concentrations are known to be reduced in the luteal phase, as was observed in our 

study; and, more specifically, are reduced 30% from estradiol treatment (but not 

progesterone) due to accelerated VLDL-TG plasma clearance [6, 7]. Thus, caution is 

warranted when interpreting cholesterol and triglyceride laboratory results (Table 2). 

 

While not yet accepted as a biomarker for clinical practice, inositol is produced by the 

human body from glucose and may be in high demand to meet the anabolic 

requirement of luteal phase pregnancy preparation. It plays a key role in insulin signal 

transduction, lipid transport and catabolism, oocyte maturation, embryonic 

development and cytoskeleton assembly which influence the steroidogenesis process 

[8-10]. We observed a significant reduction in luteal phase myo-inositol (Table 2). The 

trend observed of reduced glucose concentration in the luteal phase may have led to the 

reduction in inositol production (Supplementary Table 2).  

 

Significant neurotransmitter, amino acid and B vitamin precursor rhythmicity may 

influence susceptibility to the cyclical stress, anxiety and depression implicated in PMS 

and PMDD. Women are more affected than men by depressive disorders during the 

time between menarche and menopause suggesting this increase in depression risk is 

sex hormone related [11-13]. For example,-amino-butyric-acid (GABA) inhibition has 

been implicated in depression pathophysiology, differs between men and women, and 

can be modulated by progesterone and estrogen [14, 15]. We have observed a significant 

reduction of the neurotransmitter serotonin and several neurotransmitter metabolic 
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precursors (tyrosine, tryptophan, 3-methoxytyrosine, GABA, L-phenylalanine) which is 

consistent with previous research that demonstrates reduced mood enhancing 

neurotransmitter metabolite levels in the luteal phase, such as, 5-hydroxyindoleacetic 

acid (5-HIAA), the serotonin metabolite [16] (Table 1, and Fig. 5).  

 

Four-pyridoxic acid is one of two major vitamin B-6 compounds present in plasma. It is 

a cofactor in sex hormone gene expression and neurotransmitter metabolism through 

the conversion of tryptophan to serotonin [17]. It is also a cofactor for GABA synthesis 

(Fig. 5). Supplementation with B6 has been shown to improve the psychiatric symptoms 

of PMS [18, 19]. In our study, 4-pyridoxic acid was significantly lower in the periovulatory 

phase, which may increase susceptibility to premenstrual syndrome in vulnerable 

individuals should there be insufficient B6 for tryptophan to serotonin conversion in 

the brain (Table 2). The periovulatory reduction in 4-pyridoxic acid may lead to the 

cystathionine depletion observed in the luteal phase as B6 is a cofactor for the 

cystathione-synthase conversion to cystationine (Table 2 and Fig. 5). 

 

Rhythmicity in glutathione and associated metabolites may lead to oxidative stress and 

impaired liver detoxification and may be associated with sex hormone influences in 

oxidative stress and drug metabolism [20-22]. Sex hormones have been shown to be 

correlated with redox balance during the menstrual cycle in the endometrium through 

modulation of glutathione metabolism [23]. In the present study, plasma total 

glutathione and its’ precursors; glycine, -glutamyl-alanine, and pyroglutamic acid 

showed significant differences across the menstrual cycle with the precursors following 

the same pattern of lowest concentrations in the luteal phase (Table 1 and Fig. 5). In 

the present study, the reduced glutathione precursors in the luteal phase significantly 

increased in the menstrual phase, which may be necessary to precede glutathione’s 

successful follicular phase regeneration (Supplementary Fig. 3). Previous findings 

correlate elevated glutathione and glutathione peroxidase activity with the estrogen 

peak in the follicular phase [24-26]; and may be one mechanism through which 

estrogens attenuate oxidative stress [27, 28]. Individuals with PMS have been shown to 

have an imbalance in oxidant/antioxidant status and may be more susceptible in a state 

of low glutathione metabolic activity in the luteal phase [29]. 

 

Vitamin D supplementation, when combined with calcium, has been used to improve 

weight loss, menstrual regularity, hyperandrogenism and, possibly, fertility; in women 

with PCOS [30]. High dietary intake of vitamin D may reduce risk of PMS which may be 

related to its capacity to activate serotonin synthesis [31, 32]. Vitamin D regulates 

calcium and bone health, sex steroidogenesis, and interacts with progesterone to 

regulate the immune system through T cell induction of the vitamin D receptor [33]. 



Chapter 5 

133 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Rhythmic metabolites in the urea cycle, neurotransmitter metabolism connect with 1 carbon, glutathione metabolism and the citric acid cycle. The metabolites with FDR 
controlled rhythmicity participate in inter-related, biochemical pathways including nitrogen metabolism (the urea cycle), neurotransmitter metabolism, methylation (1 carbon 
metabolism), oxidative stress (glutathione metabolism) and energy metabolism (citric acid cycle). NOS = Nitric oxide synthase; BH4 = Tetrahydrobiopterin; BH2 = Bihydrobiopterin; 
MTHFR = Methylenetetrahydrofolate reductase; THF = Tetrahydrofolate; MTR = Methionine synthase; DMG = Dimethylglycine; TMG = Trimethylglycine; B6 = Vitamin B6. 
Compounds boxed with dotted lines (NOS, BH4, BH2, MTHFR, THF, MTR, 5-methyl THF, DMG, TMG, homocysteine) were not evaluated or not significant (dopamine). All 
metabolites without dotted lines met the multiple testing threshold q<0.20. *Cystathionine was statistically significant with p value <0.05, but did not meet the multiple testing 
threshold.
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A reduction of 25-hydroxyvitamin D (25OH-vitamin D) associated with a decrease in 

estradiol is seen in post-menopause and likely related to the sensitive interdependency 

between changes in estrogen levels and vitamin D binding protein[1]. In human 

follicular cells, it alters FSH sensitivity and participates in folliculogenesis and 

progesterone production, indicating a possible role in follicular development and 

luteinization[2]. In our study, the significant reduction of vitamin D in the luteal and 

periovulatory phases may  reflect a higher utilization for folliculogenesis in the 

periovulatory phase and progesterone synthesis during the luteal phase, which has been 

suggested in prior research [3] ( Table 2). 

 

Fatty acids contained in the phospholipids found reduced in the luteal phase of the 

present study participate in inflammation modulation through eicosanoid signaling, 

including linoleic (18:2,ω6), docosahexaenoic (22:6,ω3), stearic (18:0ω6), linolenic 

(18:3,ω6), arachidonic (20:4,ω6), acids ( Table 2). It has been suggested conversion of 

linoleic to -linolenic acid is reduced in PMS [4]. Thus, a state of low linolenic acid 

could be further augmented in the luteal phase in individuals susceptible to PMS 

leading to inflammation [5]. PMS symptoms related to inflammation include mood, 

abdominal cramps, back pain, breast tenderness, appetite cravings, weight gain and 

bloating [6]. Symptoms of PMS are associated with elevated CRP, which was also 

observed in the luteal phase [6]; and the elevated luteal phase acylcarnitines may also 

potentiate a hyperinflammatory state [7]. 

 

Health can be defined as the ability of a living being to adapt and to self manage [8]. 

The healthy, physiologic state of rhythmicity must be defined to understand the 

perturbations that need adaptation and management. Identification of biochemical 

variations in a healthy menstrual cycle can provide a foundation of comparison for 

future deep phenotyping, such as phenotypic challenges of adaptation [9, 10], for sex 

hormone related disorders, such as PMS, and PMDD. 

 

This data obtained from healthy women highlights the importance of deeper research 

on metabolism and sex hormone rhythmicity to understand how therapeutic strategies 

could be developed to treat challenging medical conditions such as PMS and PMDD. 

Perturbations in rhythmicity caused by diet, stress and environmental toxins may 

impact sex hormone related health challenges and result in a loss of rhythmicity and, 

thus, therapeutic strategies, such as dietary change, may be optimal for restoration. The 

dietary implications of this study’s findings deserve further testing in a population 

vulnerable to insufficient diet intake to sustain healthy rhythmicity such as the large 

population of women with symptoms of PMS and PMDD. Higher protein load, 

phosphatidylcholine, omega 3 [11] and omega 6 [5] fatty acid intakes may be implicated 
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in the luteal phase along with assurance of sufficient vitamin D intake [12]/sun exposure, 

B6 [13] sulfur containing vegetables to promote glutathione metabolism [14], and 

antioxidant food sources [15] intake throughout the cycle. 

 

The following summarizes the key limitations in our study. Dietary intake has a 

significant impact on metabolomics results [16]. While participants limited tea, coffee, 

fish, alcohol and vigorous exercise 24h prior to sampling[17]; dietary data were not 

collected throughout the cycle to assess the associations between differences in food 

intake and biochemical changes in the blood, plasma and urine. This study was limited 

in its capacity to detect significant vitamin differences due to missing values from 

limited sample volumes. In order to develop effective, sensitive diagnostics using 

metabolomics technologies, more time point measurements could enhance the 

granularity of conclusions about biochemical changes. Participants were excluded if 

they were diagnosed with a health condition, however, women who may have had 

recurrent PMS symptoms in the setting of a healthy menstrual cycle, insufficient to 

necessitate a medical diagnosis, may not have been excluded. 

 

Our study is, to the best of our knowledge, the first of its kind to conduct a deep 

phenotyping of the metabolomic, lipidomic, and nutrient biomarker differences across 

menstrual cycle phases in healthy women. Significant changes in levels of several amino 

acid and lipid metabolites were identified in addition to those characterized previously 

[18]. Amino acid and lipid metabolites were reduced in the luteal phase, suggesting 

differences in anabolic requirements related to changing hormone levels. Rhythmic 

differences in neurotransmitter related amino acid precursors, vitamin cofactors and 

stress related metabolites may influence predisposition for anxiety and depression 

related PMS or PMDD. Glutathione and associated amino acid precursors show 

rhythmic differences suggesting a greater propensity for oxidative stress throughout the 

menstrual cycle. The reduction of amino acid levels in the luteal phase combined with 

prior research on cyclical nitrogen fluctuation, increased energy metabolism and food 

intake may suggest the intake of a higher protein load as a portion of the increased 

calorie intake would be advantageous. A menu plan that optimizes protein intake, B6, 

omega 3 and omega 6 fatty acid and glutathione metabolism deserves further testing in 

a population at risk of PMS or PMDD. The information generated from this study 

provides the foundation for research on differences in menstrual cycle, sex hormone 

related metabolism and clinical biomarker interpretations. Furthermore, it forms the 

basis to test novel nutrition strategies for women with an emphasis on health issues 

impacted by rhythmic variability. 
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SUPPLEMENTARY INFORMATION 

Supplementary Fig. 1. Sex hormones per cycle phase. Illustrates the concentration of 4 sex hormone levels across phases in the current study. Serum hormone levels, urinary 

luteninizing hormone (LH) for date of ovulation and self-reported menstrual cycle length were used to determine menstrual cycle phase.  FSH = follicular stimulating hormone; M 

= menstrual; F = follicular; O = peri-ovulatory; L = luteal; P = premenstrual phases. 
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Supplementary Fig. 2a. Reactions per metabolite and impacted sub-systems. The connectivity of the 41 metabolic entities within the 419 reactions was analyzed using the 

Human Genome Scale Metabolic Model or RECON 2.2. Reduced glutathione, succinate, L-histidine and glycine followed by L-lysine, L-alanine, L-arginine and L-serine are 

impacting/impacted by the most number of reactions. 
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Supplementary Fig. 2b. Thirty four subsystems which comprise the 419 reactions were identified within the metabolic landscape using the Human Genome Scale Metabolic 

Model or RECON 2.2. The spread across different pathways is shown. Affected sub-systems include amino acid metabolism/synthesis, the urea cycle, eicosanoid metabolism, 

citric acid cycle and bile acid synthesis. 
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Supplementary Fig. 3. Interconnected metabolites (L-F, L-M). A metabolite connectivity network is illustrated to assess how the differentially observed metabolites are dependent on each 

other and accordingly express an interdependent change. Any metabolite is connected to another metabolite, if they are participating in a reaction, i.e. they are either products/reactants and 

vice versa. Interconnectivities and differences between menstrual cycle phases were visualized using custom MATLAB (Mathwork Inc.) scripts and edited using yEd (yWorks GmbH). To visualize 

and analyze the interconnections within the reactome, any line with an arrow denotes a direct relationship between the two reactions. The maximum number of differences are observed 

between the menstrual and the luteal phase, with the key set of metabolites methionine, asparagine, -alanine, glutamine, alanine, serine, glycine, ornithine, arginine and lysine forming the 

core backbone of interconnected metabolites impacted by Luteal-Follicular and Luteal-Menstrual phase differences. Red circles are used to denote glutathione and its’ related precursors.
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Supplementary Table 1. Number of observations per cycle phase 

Sample 
collection 

M F O L P Total 

A 33 0 0 0 0 33 

B 0 31 2 0 0 33 

C 0 0 13 16 1 30 

D 0 0 0 11 10 21 

Total  33 31 15 27 11 117 

 

Number of participants observed for each metabolite per sample and per phase, including the sample to phase 

classification. Blood and urine collection timepoints are denoted as A,B,C,D. Each of the 4 sample timepoints were 

assigned to 1 of 5 cycle phases. Number of observations are denoted based on cycle phase and collection timepoint. 

M=menstrual, F=follicular, O=periovular, L=luteal, P=premenstrual. Refer to Wallace, et.al. for details17.  

 
Supplementary Table 2. Significant clinical and acylcarnitine metabolites

Biomarkers  L-F  L-M  L-O P-L O-M raw p L-F raw p L-M raw p L-O raw p P-L raw p O-M

Clinical, serum

Glucose -0.02 -0.03 0.00 0.04 -0.03 1.37E-01 5.21E-03 9.79E-01 1.01E-02 2.35E-02

CRP 0.65 0.18 0.56 -0.36 -0.38 5.80E-03 4.68E-01 8.15E-02 2.70E-01 2.08E-01

HDL -0.04 -0.02 -0.02 -0.02 0.00 2.43E-02 2.09E-01 3.34E-01 4.71E-01 9.97E-01

Magnesium -0.01 -0.03 0.00 0.00 -0.03 6.10E-01 3.92E-02 7.90E-01 9.82E-01 4.82E-02

Triglycerides -0.11 -0.05 -0.03 -0.03 -0.02 3.32E-02 3.69E-01 7.06E-01 7.14E-01 7.34E-01

Riboflavin - plasma -0.10 -0.05 -0.02 0.22 -0.03 1.36E-01 4.61E-01 7.97E-01 3.78E-02 7.54E-01

Cholesterol -0.05 -0.04 -0.04 0.01 0.00 3.86E-02 1.18E-01 2.51E-01 7.88E-01 9.45E-01

Acylcarnitines, plasma

Linoleylcarnitine -0.11 -0.01 -0.17 0.01 0.16 7.86E-03 7.86E-01 1.32E-03 8.23E-01 1.52E-03

Acetylcarnitine -0.14 0.00 -0.23 0.05 0.22 2.44E-02 9.58E-01 2.94E-03 5.86E-01 1.98E-03

Carnitine -0.11 -0.04 -0.14 0.08 0.10 2.13E-02 3.23E-01 1.43E-02 2.37E-01 7.59E-02

Palmitoylcarnitine 0.00 0.02 -0.09 -0.08 0.11 9.80E-01 5.70E-01 6.48E-02 1.55E-01 1.62E-02

Oleylcarnitine -0.09 0.00 -0.18 -0.02 0.18 6.45E-02 9.55E-01 4.90E-03 8.18E-01 2.58E-03

Myristoilcarnitine -0.07 0.02 -0.19 -0.10 0.21 2.69E-01 7.28E-01 1.30E-02 2.45E-01 3.71E-03

Choline -0.05 -0.18 0.04 -0.10 -0.22 4.88E-01 1.41E-02 7.05E-01 3.21E-01 1.65E-02

Hexanoylcarnitine -0.20 -0.05 -0.34 0.01 0.28 3.27E-02 5.53E-01 4.45E-03 9.58E-01 1.17E-02

Butyrylcarnitine -0.16 -0.11 -0.20 0.13 0.09 4.39E-03 4.34E-02 5.75E-03 1.18E-01 1.97E-01

Hexadecenoylcarntine -0.09 -0.01 -0.24 -0.03 0.22 2.03E-01 8.50E-01 8.80E-03 7.44E-01 9.04E-03

Isovalerylcarnitine -0.05 -0.17 0.00 0.04 -0.17 4.98E-01 6.80E-03 9.96E-01 6.59E-01 2.93E-02

Tetradecadienylcarntine -0.22 -0.01 -0.28 -0.02 0.27 5.62E-02 9.08E-01 4.59E-02 9.05E-01 4.44E-02

Tetradecenoylcarnitine -0.14 0.02 -0.30 -0.07 0.32 2.08E-01 8.38E-01 3.30E-02 6.57E-01 1.58E-02

Tiglylcarnitine -0.05 -0.13 0.01 0.02 -0.14 3.23E-01 1.54E-02 8.35E-01 8.26E-01 2.97E-02

Decenoylcarnitine -0.20 -0.05 -0.25 0.01 0.19 4.16E-02 5.51E-01 3.91E-02 9.45E-01 9.02E-02

Octenoylcarnitine -0.11 0.03 -0.17 0.09 0.20 1.78E-01 7.04E-01 9.38E-02 4.45E-01 3.81E-02

Isobutyrylcarnitine -0.02 -0.03 0.17 0.01 -0.20 8.07E-01 6.71E-01 5.21E-02 9.46E-01 1.68E-02

Propionylcarnitine -0.12 -0.03 -0.05 0.01 0.01 3.37E-02 5.53E-01 5.22E-01 8.80E-01 8.46E-01

2 methylbutyroylcarnitine -0.05 -0.08 -0.04 0.03 -0.04 1.69E-01 2.48E-02 4.28E-01 6.18E-01 3.30E-01

Acylcarnitines, urine

Dodecenoylcarnitine -0.17 0.06 -0.36 0.15 0.42 2.53E-01 6.59E-01 5.34E-02 4.78E-01 1.76E-02

Tetradecadienylcarntine -0.18 0.04 -0.43 0.16 0.48 2.27E-01 7.66E-01 1.92E-02 4.41E-01 7.28E-03

Octanoylcarnitine -0.32 0.01 -0.39 0.15 0.40 2.77E-02 9.59E-01 3.45E-02 4.85E-01 2.45E-02

Pivaloylcarnitine -0.16 0.10 -0.43 -0.17 0.53 2.86E-01 5.11E-01 2.69E-02 4.45E-01 4.45E-03

Carnitine -0.35 0.15 -0.55 0.42 0.71 1.24E-01 4.93E-01 5.47E-02 1.98E-01 1.04E-02

Butenylcarnitine -0.15 0.15 -0.28 0.17 0.44 2.71E-01 2.50E-01 1.04E-01 3.86E-01 8.49E-03

Hexanoylcarnitine -0.24 0.03 -0.39 0.10 0.42 8.02E-02 8.10E-01 2.53E-02 5.93E-01 1.14E-02

Glutarylcarnitine -0.18 0.10 -0.44 0.27 0.55 2.94E-01 5.35E-01 3.99E-02 2.68E-01 8.08E-03

Octenoylcarnitine -0.09 0.32 -0.27 0.19 0.58 6.64E-01 1.12E-01 2.99E-01 5.05E-01 1.75E-02

Acetylcarnitine -0.31 0.33 -0.43 0.48 0.77 3.03E-01 2.66E-01 2.55E-01 2.63E-01 3.60E-02

Tetradecenoylcarnitine -0.21 0.02 -0.47 0.16 0.50 1.82E-01 8.91E-01 1.92E-02 4.95E-01 1.06E-02

Hexenoylcarnitine -0.14 0.27 -0.27 0.24 0.53 4.92E-01 1.68E-01 2.88E-01 4.02E-01 2.57E-02

Decanoylcarnitine -0.19 0.02 -0.34 0.03 0.36 1.41E-01 8.62E-01 3.85E-02 8.60E-01 2.13E-02

CholinE   caution 0.23 0.13 0.19 -0.42 -0.05 9.16E-02 3.25E-01 2.82E-01 3.46E-02 7.45E-01

Deoxycarnitine -0.03 0.02 -0.30 0.09 0.32 8.13E-01 8.54E-01 6.86E-02 6.14E-01 4.08E-02

Clinical and acycarnitine metabolites q>0.10.

Effect Size P values
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CONCLUSIONS 

 

The clinical nutrition practitioner, such as a registered dietitian, seeks to optimize 

nutritional therapies for the individual. Such experts rely on clinical practice 

guidelines translated from scientific publications as realistic recommendations for 

nutritional diagnosis and therapeutic recommendations. For example, the Academy 

of Nutrition and Dietetics in the U.S. has over 100 guidelines for common conditions 

(e.g., nursing) to specific diseases such as emergency medicine, allergy and 

immunology, obstetrics and gynecology, podiatry, or urology [1]. However, much of 

the scientific literature in the area of nutrition, and indeed, biomedical research, relies 

on statistical averages of selected groups (e.g., cases versus controls) which by 

definition cannot represent larger, more varied populations or an individual.  These 

averages are used to supplement disease diagnostic practices; and translating this 

corpus of literature results to personalized nutrition recommendations evidence is 

currently not possible. 

 

Two broad strategies are needed to overcome the challenges of improving population 

as well as personal health.  The first tactic is to develop n-of-1 research strategies that 

are capable not only of deeply analyzing individuals [2-4] but also aggregating data to 

expand recommendations beyond the studied population [4].  The second approach 

expands the reductionism currently used to analyze data from drug or nutrition 

studies to a more holistic analysis and interpretation of multiple biological and 

environmental scales (e.g., data from within the body plus the environment of 

individuals [5]. Systems biology [6, 7] approaches that produce data from the 

microscales within the body, such as metabolomic, proteomic, and network pathway 

analyses, hold the potential to assist the clinical nutritionist in developing a more 

personalized approach. However, the application of systems biology to nutrition in 

practice is still in its infancy. To date, these approaches rely on aggregating individual 

reductionistic analysis since the systems view of the whole metabolite-profile has not 

yet been elucidated. The integration of a systems view of nutrition with a systems view 

of metabolomics, and a systems view of proteomics, genomics, clinical, and laboratory 

metabolomics data sets has not yet been attained. Interpreting these systems 

integrations in the individual’s environmental, social, and psychological contexts is at 

the fore-front of healthcare but has not yet been initiated in academic, government, 

and all but a few isolated examples. 

 

The challenge remains…how do we integrate the various –omics technologies that are 

increasingly available from academic and industry research with nutrient 

measurements and nutrition interventions to generate the statistical evidence 
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necessary to help people become healthier and prevent disease? This thesis has 

touched on just a few elements of this challenge, using metabolomics and proteomics 

to characterize subgroups and diet response. 

 

In Chapter 2, we demonstrated it is possible to use a short-term healthy vegan diet 

to challenge metabolism and produce a metabolic signature conducive to optimal 

blood sugar, insulin and lipid control after only 48 hours. Our tightly controlled diet 

intervention resulted in strong correlations between dietary nutrients and plasma 

metabolites, supporting the notion food intake was closely linked to metabolites 

measured. Finally, we observed that nutritional biochemistries and the metabolite 

results, insulin and branched chain amino acids, were impacted by gender 

dimorphism. 

 

In Chapter 3, we continued to build the story begun with Chapter 2. We evaluated 

postprandial responses with glycemic, lipid and related metabolites on day three of 

the vegan and animal diets and demonstrated both diet types can have health 

advantages with flexitarian modifications. The vegan diet breakfast resulted in a less 

optimal metabolic signature despite apparently healthful food choices. However, the 

fiber content of the vegan diet may have reduced metabolite peaks and promoted bile 

acid concentrations that have positive health implications. The animal diet produced 

undesirable insulin and glucose peaks after lunch but a more favorable fatty acid 

profile from both mealtimes. We concluded that liberalization of the vegan meal plan 

to vegetarian; and the animal meal plan to a Nordic-based diet with increased focus 

on vegetable-based foods could result in improved metabolic signatures for both diet 

strategies. Insulin, triglyceride, amino acid and bile acid results showed gender 

dimorphic responses in these analyses. 

 

In Chapter 4, we further explored the influence of sexual dimorphism plasma profiles 

using aptamer-based proteomics combined with network analysis in a healthy cohort 

of women and men. Twenty eight percent of the total proteins analyzed were 

differentially expressed in a sexually dimorphic manner. These results were then 

successfully replicated in a larger cohort. The top eight most significant proteins 

elevated in females had known associations with sex hormone metabolism and each 

protein was involved in at least one diet- related metabolic disease. These proteins 

were all involved in glucose and insulin metabolism, metabolic rate, carbohydrate 

intake and salt sensitive hypertension. Of the top proteins more highly expressed in 

males, some were also involved in sex hormone metabolism with a focus on such areas 

as blood coagulation, inflammation and iron metabolism and overload and 

cardiovascular disease risk. Iron, total lipids, monounsaturated fatty acids, omega 3 
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polyunsaturated fatty acids, and vitamins K and A are known to play key roles in the 

proteins found to be highly expressed in males.  

 

In Chapter 5, we analyzed vitamins, metabolomics and clinical chemistries during 

the five menstrual cycle phases in women to uncover the sex hormone related 

metabolic differences, which influence the sexual dimorphism seen in Chapter 4. 

Fifty percent of the metabolites tested showed significant differences in rhythmicity 

across cycle phases and were enriched in neurotransmitter, glutathione (oxidative 

stress), urea cycle (nitrogen), vitamin B6 and vitamin D metabolism. Thus, we 

demonstrated the importance of accounting for menstrual cycle phase and sex 

hormone concentration differences in performing routine health diagnosis. 

Additionally, the luteal phase demonstrated the most significant decreases in amino 

acids and lipids, which may be caused by the anabolic effect of the progesterone peak.  

The changes in level of these metabolites could be linked to current biochemical and 

physiologic knowledge on biomarker changes in menstrual conditions such as 

premenstrual syndrome (PMS) and premenstrual dysphoric disorder (PMDD). Since 

individuals differ genetically, socially, and in environmental exposures, a larger 

population sample might identify those susceptible to PMDD and PMS and allow for 

strategic dietary interventions to alleviate symptoms. 

 

FUTURE PERSPECTIVES 

 

Innovative research designs, such as n-of-1 research [8] approaches that capture 

individual variability, need to be combined with controlled diet interventions to 

effectively translate –omics results to diet prescriptions. Challenge studies can be 

conducted alongside diet interventions to examine short-term changes in phenotypic 

flexibility.  

 

As a part of this thesis project, Figure 1 depicts a conceptual experimental framework 

that was developed to analyze utilization of a combinatorial glucose and fructose (e.g., 

disaccharides in sugar) tolerance challenge test during different phases of the 

menstrual cycle.  Specifically, this model experiment may determine how a sugar 

bolus (often consumed in excess in the luteal phase) alters carbohydrate, lipid, and 

protein metabolic effects, over a 10-hour time period in pre-diabetic and diabetic 

women. Introducing a protein shake, supplemented with essential fatty acids, may 

alter metabolism during the luteal phase to compensate for the increased protein and 

lipid requirements that may be relevant to the cell regeneration and recycling 

described in Chapter 5.   
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Figure 1: Hypothetical diet challenge study to evaluate the metabolic impact of an increase in protein intake 
during the luteal phase of the menstrual cycle. 

 

The challenge test would be done during the follicular and luteal phases when the 

participants are ingesting a usual diet; and then repeated after the daily ingestion of 

a high protein shake during the luteal phase. The results of the tolerance test would 

be compared between the follicular phase, which is the more stable phase for blood 

sugar control, and the luteal phase to examine the differences in the individual’s blood 

sugar control during this more vulnerable timeperiod. Finally, the luteal phase 

response of the individual to the luteal phase protein shake would be compared to 

examine the utility of this type of periodic intervention.  

 

Multiple plasma samples would be collected for clinical biomarker and metabolomics 

assessments. Creatinine clearance from 24-hour urine may be used to evaluate 

differences in protein utilization during these 3 phase specific timepoints. Dietary 

intake data would also be collected and evaluated for differences in habitual intake 

across individuals that are known to influence blood sugar control (Figure 1). This 

type of research strategy may create opportunities to use sex hormone subtyping for 

diet design that is translatable to practice and deserves further exploration. 

 

Hence, menstrual phase subgroups and sexually dimorphic data, may launch 

personalized nutrition into future healthcare practice.  Metabotypes, which are 

identified through cluster analysis of individuals based on similar metabolic 

phenotypes that can be identified using clinical and metabolomic markers [9], 

provide the conceptual basis to differentiate dietary intervention response. 
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Metabotype response then translates to targeted diet prescriptions. This type of 

analysis on the data generated in Chapters 1 and 2 in response to the vegan and 

animal test diets would have been appropriate. However, a sample size of 21 was too 

small to locate significant metabotype clusters.   

 

As one example of how metabotyping works, in a study of 1500 individuals, 3 

metabotypes were identified: 1) high HDL (high density lipoprotein) cholesterol, low 

glucose, low triglycerides; 2) low cholesterol; 3) high trigyclerides, high total 

cholesterol, low HDL and high insulin resistance. Dietary advice was targeted to 

metabotypes 1 and 3 to lower the characteristic biomarkers. This simplified targeted 

approach showed strong agreement with the individualized dietary advice provided 

by the dietitian (2). 

 
Another study used metabotyping to further analyze metabolic syndrome marker 

reduction with Vitamin D supplementation. That study analysis demonstrated an 

increase in Vitamin D concentration but no significant metabolic syndrome marker 

changes in the responder group.  

 

However, the use of a metabotype clustering approach identified a sub-group of 

vitamin D responsive patients that demonstrated significant decreases in fasting 

insulin, homeostatic model assessment score, and C-reactive protein (3). LDL level, 

fasting glucose, and cholesterol subgroups were also identified based on response to 

a longer term (6 week) micronutrient intervention in teens and adolescents [4] further 

buttressing the use of challenges tests to identify metabotypes. This type of approach 

could be used to analyze response to semi-vegetarian (flexitarian) diets, a concept 

that emerged from the vegan diet studied in this thesis.  

 

Study approaches need to join the rapid pace of technology development in order to 

ensure new technologies can help more people sooner. For example, the research 

results represented in Chapters 1 and 2 were generated from five years of work; 

including study design, recruitment, laboratory measurements, data analysis, 

manuscript generation and publication. The cost was close to 5 million francs. 

Research takes an average of 17 years to translate evidence into practice [10, 11]. This 

is too long given the rapid pace of climate change, population growth, food systems 

changes, and healthcare crises faced by modern society [12]. 

 

Self-quantification emerged following the development of smart phones and apps 

which allow for self-monitoring, data collection, and analysis to track activities, 

nutrient intakes, and health status.  Self-quantifiers reflect on their personal health 
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data to gain a better understanding of their body, health behavior and interaction 

with their environment [13]. A worldwide community exists to leverage homemade 

tools and experiences [14]. For example, smartphone applications, such as Clue [15] 

are widely used by women to easily track related symptoms and phases of their 

menstrual cycle, fertility and perimenopausal transition. These types of easy to use 

applications provide the inputs for individuals to track the results of their own self-

experimentation, such as the impact of changing diet strategies on menstrual cycle 

symptoms. The individual is empowered by the opportunity to test the effectiveness 

for themselves of an alternate diet strategy, such as the luteal phase protein shake 

suggested in the Women’s Health Challenge future study design (Figure 1). This type 

of self-centered research can be conducted more efficiently than currently accepted 

standard approaches to human clinical research. 

 

The challenge lies in aggregating this kind of data from a variety of tools collected by 

individuals in a consistent way so that humanity can benefit. Health information 

sharing websites, such as PatientsLikeMe [16] empower individuals to share their 

health conditions, data and unique experiences and connect with other patients like 

them. Participants have the opportunity to find new ideas and solutions to their 

unique health challenges that may not be known from published scientific research. 

Their data is then aggregated and sold to companies that wish to produce new 

products and services in diagnostics and therapeutics. Other companies, such as 

Arivale [17], Human Longevity, Inc. [18], and Molecularyou [19] target big data 

diagnostics analyzing blood, saliva and urine for genomics, metabolomics, 

microbiome analysis, proteomics, and lifestyle information. Advances in machine 

learning and artificial intelligence computing are likely to uncover new therapeutic 

solutions. Health action plans and personalized coaching are provided. Participants 

pay to provide their samples and receive their analyses. Data are aggregated and 

research discoveries made on a rolling basis. An example of using public domain data 

is analysis of 9896 users who self-recorded 587,187 food diary pages of the 

MyFitnessPal app with machine learning algorithms to discover under and over-

reporting of food intake goals [20]. Thus, big data and self-quantification could 

potentiate translation of valuable nutrition research findings to advance healthcare 

more quickly by overcoming some of the timeline and cost hurdles associated with 

the more traditional approaches to clinical trials research. 

 

Challenges with integrating –omics technology and nutrition remain. This thesis has 

taken some steps in this direction by evaluating healthy women and men to obtain 

metabolomics and proteomics signatures. Personalized nutrition subtypes were 

examined using the menstrual cycle phases and gender differences. Short-term diet 
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challenges were evaluated using metabolomics technology and demonstrated short-

term health improvement. Harnessing the power of nutrition by integrating it with 

new scientific and information technologies will launch us into a new era of 

preventive healthcare in which we can more effectively use metabolism and nutrition 

to diagnose and optimize health. 
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SAMENVATTING 

 

Metabolische gezondheid kan worden gedefinieerd als een toestand van veerkrachtig 

fysiek en chemisch cellulair fysiologisch functioneren, adequaat ondersteund door de 

spijsvertering en transformatie van voedsel in energie. Gezondheid moet breed en 

systematisch worden bezien, en niet gefixeerd zijn op enkelvoudige aspecten van 

cellulaire functie. Van nature voeden we alle aspecten van de cellulaire functie van ons 

lichaam gelijktijdig door het innemen van een variabele veelvoud aan voedingsstoffen 

en cofactoren. Zodoende worden de metabole fysiologische behoeften van het lichaam 

op een systematisch niveau ondersteund om de gezondheid te behouden. Omgekeerd 

vermindert onevenwichtige voeding de metabolische flexibiliteit en leidt deze tot het 

ontstaan van ziekteprocessen. 

 

Geslachts- en genderverschillen evenals een verandering in dynamiek van het 

vrouwelijke geslachtshormoon beïnvloeden gezondheidstrajecten, genexpressie en 

voedingsbehoeften. Er is onderzoek gedaan naar gezondheid van vrouwen, met name 

gericht op zwangerschap, borstvoeding en kindervoeding, waaruit voedingsrichtlijnen 

zijn gepubliceerd. Echter, onderzoek onder adolescente, niet-zwangere vrouwen is over 

het algemeen schaars. De luteale fase van de menstruatiecyclus is mogelijkerwijs een 

normale stressor, waarbij fysiologische onevenwichtigheden gemakkelijker te 

detecteren zijn, en deze onevenwichtigheden zouden een voorspeller van 

gezondheidstrajecten op lange termijn kunnen zijn. Dynamiek in geslachtshormonen, 

of juist een gebrek aan dynamiek, staan mogelijk in verband met diverse vormen van 

premenstrueel syndroom (PMS), die zich voordoen in verschillende fasen van de cyclus, 

maar voornamelijk in de luteale fase. Voedingsbehoeften kunnen variëren gedurende 

de menstruatiecyclus, maar er zijn slechts beperkte voedingsrichtlijnen en 

geaccepteerde voedingstherapieën gepubliceerd voor Westerse geneeskunde en diëtiek 

in de praktijk. Het gebruik van geslacht of gender en vrouwelijke hormonale cycli 

identificeert subgroepen voor wie gepersonaliseerde voeding kan worden ontwikkeld 

en ingezet. 

 

De kracht van gezondheidsdiagnose op maat waaruit gepersonaliseerde 

voedingstherapieën kunnen worden voorgeschreven, is afhankelijk van zowel 

individuele variaties in genotype als milieu- en fysiologische reacties die tot uiting 

komen in transcriptomics, metabolomics en proteomics-metingen. Tevens kunnen 

persoonlijke psychosociale factoren worden gemeten en erbij betrokken worden. Het 

doel van dit proefschrift was om gezonde vrouwen en mannen en hun metabole respons 

op voeding en/of natuurlijke hormonale dynamiek te bestuderen, gemonitord met 
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klinische en metabole biomarkers, als een manier om menselijke metabolische 

gezondheid beter te begrijpen. 

 

In Hoofdstuk 2 werd het concept van een voedingsrijke dieetuitdaging geïntroduceerd 

in een gezonde, gender-gebalanceerde populatie. Een veganistisch dieet werd 

geëvalueerd op basis van een 48-uurs impact op een modulerende metabole signatuur. 

Het vergelijkingsdieet was een dierlijk dieet gebaseerd op alledaagse voeding. We 

hebben aangetoond dat het mogelijk is om een kortdurend gezond veganistisch dieet te 

gebruiken om het metabolisme te prikkelen, zodat al na 48 uur een metabolische 

signatuur ontstaat die bevorderlijk is voor een optimale bloedsuikerspiegel, insuline en 

lipidencontrole. Onze streng gecontroleerde dieetinterventie resulteerde in sterke 

correlaties tussen voedingsnutriënten en plasmametabolieten, hetgeen het idee 

ondersteunde dat voedselinname nauw verbonden was met de metabolieten onder 

studie. Ten slotte hebben we vastgesteld dat de voedingsbiochemie en de 

metabolietresultaten, insuline- en vertakte keten aminozuren, beïnvloed werden door 

geslachtsdimorfisme, wat suggereert dat dieetstrategieën genderspecifiek zijn. 

 

Hoofdstuk 3 bouwt voort op de resultaten van Hoofdstuk 2, door de impact te 

vergelijken van zowel veganistische als dierlijke maaltijden op de postprandiale respons. 

Postprandiale respons met glycemische, lipide en gerelateerde metabolieten werden op 

dag 3 van de veganistische- en dierlijke diëten geëvalueerd. Beide soorten voeding met 

flexitarische aanpassingen kunnen gezondheidsvoordelen hebben. Het veganistische 

dieetontbijt resulteerde ondanks een ogenschijnlijk gezonde voedingskeuze in een 

minder optimale metabole signatuur. Het vezelgehalte van het veganistische dieet kan 

mogelijk metaboliet concentraties verlagen en galzuurconcentraties verhogen, die 

positieve gezondheidsimplicaties hebben. Het dierlijk dieet produceerde na de lunch 

ongewenste insuline en glucose pieken, maar resulteerde in een gunstiger 

vetzuurprofiel. Liberalisering van het veganistische maaltijdplan naar vegetarisch en 

van het dierlijke plan naar een Scandinavisch dieet met meer aandacht voor plantaardig 

voedsel, zou kunnen resulteren in verbeterde metabole signaturen voor beide 

voedingsstrategieën. Resultaten van insuline, triglyceriden, aminozuren en galzuren 

vertoonden gender-dimorfe respons in deze analyses, hetgeen wederom suggereert dat 

voedingsstrategieën genderspecifiek zijn. 

 

In Hoofdstuk 4 hebben we de invloed van seksueel dimorfisme op plasmaprofielen 

verder onderzocht met behulp van aptameer-gebaseerde proteomics in combinatie met 

netwerkanalyse in een gezond cohort van vrouwen en mannen. Pathway over-

representation en functionele pathway-enrichment analyse werden uitgevoerd met 

behulp van WikiPathways, Kyoto Encyclopedia of Genes and Genomics (KEGG) en 
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Reactome-databases. Achtentwintig procent van de totale geanalyseerde eiwitten 

werden differentieel uitgedrukt op een seksueel dimorfe manier. Deze resultaten 

werden vervolgens met succes gerepliceerd in een groter cohort. De top acht van de 

meest significante eiwitten die zijn verhoogd bij vrouwen, hadden associaties met het 

geslachtshormoonmetabolisme en elk eiwit was betrokken bij ten minste één dieet-

gerelateerde metabole ziekte. Deze eiwitten waren betrokken bij glucose- en 

insulinemetabolisme, metabole snelheid, inname van koolhydraten en zoutgevoelige 

hypertensie. Van de meest significante eiwitten, die hoger tot expressie waren bij 

mannen, waren sommigen ook betrokken bij het metabolisme van geslachtshormonen 

met een focus op gebieden als bloedcoagulatie, ontsteking en ijzermetabolisme, 

overbelasting en cardiovasculaire ziekterisico's. Deze resultaten suggereren dat seksueel 

dimorfisme van eiwit-expressie op een geslachts-specifieke manier kan worden 

beïnvloed door verschillende dieetcomponenten. 

 

In Hoofdstuk 5 werd metabolomics gebruikt om variaties in de menstruatie gerelateerd 

aan hormoonfysiologie te evalueren bij gezonde menstruerende vrouwen. Vitaminen, 

metabolieten en klinische chemie werden tijdens de vijf fasen van de menstruatiecyclus 

bij vrouwen gemeten om de metabolische verschillen in geslachtshormonen bloot te 

leggen, die het seksuele dimorfisme zoals bestudeerd in Hoofdstuk 4 beïnvloeden. 

Vijftig procent van de geteste metabolieten vertoonden significante verschillen in 

dynamiek gedurende cyclusfasen met name in neurotransmitter, glutathione 

(oxidatieve stress), ureumcyclus (stikstof), vitamine B6 en vitamine D-metabolisme. 

Zodoende is het belang aangetoond om rekening te houden met de menstruatiecyclus-

fase en geslachtshormoonconcentratie bij het uitvoeren van routinematige 

gezondheidsdiagnoses. Bovendien vertoonde de luteale fase de meeste significante 

verlagingen van aminozuren en lipiden, die veroorzaakt zouden kunnen worden door 

het anabole effect van de progesteron stijging. Omdat individuen genetisch verschillend 

zijn en bloot staan aan verschillende sociale en andere omgevingsfactoren, kunnen in 

een grotere steekproef met personen die vatbaar zijn voor premenstruele dysfore 

stoornis (PMDD) en PMS identificeren, mogelijk strategische dieetinterventies ontdekt 

worden om de symptomen te verlichten. 

 

Onderzoeksbenaderingen moeten aansluiten bij het snelle tempo van technologische 

ontwikkeling om ervoor te zorgen dat nieuwe technologieën meer mensen eerder 

kunnen helpen. Zo werden de onderzoeksresultaten die zijn weergegeven in 

Hoofdstukken 1 en 2 bijvoorbeeld gegenereerd op basis van vijf jaar werk en een budget 

van 5 miljoen Zwitserse frank. Het is mogelijk dat de hoge kosten en lange tijdlijnen die 

nodig zijn om klinisch onderzoek uit te voeren op mensen verminderd kunnen worden 

door zelfmeting. Zelfmeting is ontstaan na de ontwikkeling van smartphones en apps, 
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die monitoring, gegevensverzameling en analyse van activiteiten, voedingsinname en 

gezondheidsstatus mogelijk maken. Dit soort eenvoudig te gebruiken applicaties geven 

individuen de gelegenheid om de resultaten van hun eigen experimenten bij te houden. 

Deze zelf-geïnitieerde onderzoeksaanpak kan efficiënter worden uitgevoerd dan de 

huidige standaardbenaderingen voor klinisch onderzoek bij mensen. Uitdagingen rond 

de integratie van –omics technologie in voedingsonderzoek blijven echter bestaan. 

 

Dit proefschrift heeft enkele stappen in een verbetering hiervan in gang gezet door 

gezonde vrouwen en mannen te evalueren om zo inzicht te krijgen in metabolomics en 

proteomics-signaturen. Voedingssubtypes werden onderzocht op basis van de fasen van 

de menstruatiecyclus en genderverschillen. Kortdurende dieetuitdagingen werden 

geëvalueerd met behulp van metabolomics-technologie en toonden 

gezondheidsverbetering op korte termijn aan. Door gebruik te maken van de kracht van 

voeding en deze kennis te integreren met nieuwe wetenschappelijke- en 

informatietechnologieën, zullen we een nieuw tijdperk van preventieve 

gezondheidszorg ingaan waarin we metabolisme en voeding effectiever kunnen 

gebruiken om gezondheid te diagnosticeren, optimaliseren en personaliseren.
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