
https://doi.org/10.1007/s11042-018-5691-4

Fusion that matters: convolutional fusion networks
for visual recognition

Yu Liu1 ·Yanming Guo1 ·Theodoros Georgiou1 ·
Michael S. Lew1

Abstract In recent years, deep learning has been successfully applied to diverse multime-
dia research areas, with the aim of learning powerful and informative representations for a
variety of visual recognition tasks. In this work, we propose convolutional fusion networks
(CFN) to integrate multi-level deep features and fuse a richer visual representation. Despite
recent advances in deep fusion networks, they still have limitations due to expensive param-
eters and weak fusion modules. Instead, CFN uses 1 × 1 convolutional layers and global
average pooling to generate side branches with few parameters, and employs a locally-
connected fusion module, which can learn adaptive weights for different side branches and
form a better fused feature. Specifically, we introduce three key components of the pro-
posed CFN, and discuss its differences from other deep models. Moreover, we propose fully
convolutional fusion networks (FCFN) that are an extension of CFN for pixel-level clas-
sification applied to several tasks, such as semantic segmentation and edge detection. Our
experiments demonstrate that CFN (and FCFN) can achieve promising performance by con-
sistent improvements for both image-level and pixel-level classification tasks, compared to
a plain CNN. We release our codes on https://github.com/yuLiu24/CFN. Also, we make a
live demo (goliath.liacs.nl) using a CFN model trained on the ImageNet dataset.

� Yu Liu
y.liu@liacs.leidenuniv.nl

Yanming Guo
y.guo@liacs.leidenuniv.nl

Theodoros Georgiou
t.k.georgiou@liacs.leidenuniv.nl

Michael S. Lew
m.s.lew@liacs.leidenuniv.nl

1 Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1, Leiden,
The Netherlands

Multimed Tools Appl (2018) 77:29407–29434

Received: 30 April 2017 / Revised: 16 November 2017 / Accepted: 19 January 2018 /
Published online: 27 February 2018
© The Author(s) 2018. This article is an open access publication

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-018-5691-4&domain=pdf
http://orcid.org/0000-0002-2067-9175
https://github.com/yuLiu24/CFN
goliath.liacs.nl
mailto:y.liu@liacs.leidenuniv.nl
mailto:y.guo@liacs.leidenuniv.nl
mailto:t.k.georgiou@liacs.leidenuniv.nl
mailto:m.s.lew@liacs.leidenuniv.nl


Keywords Deep fusion networks · Locally-connected fusion · Image-level recognition ·
Pixel-level recognition · Transferring deep features

1 Introduction

In the past few years, deep convolutional neural networks (CNNs) have been successfully
applied in the multimedia community, with the aim of learning powerful visual represen-
tations for a variety of multimedia research areas, for example image recognition [21, 31,
53, 58], object detection [15, 16, 20, 48], image retrieval [6, 40, 46], face recognition [50,
56]. Additionally, more extensive efforts have been made to adapt CNN models to address
the pixel-level classification problems, such as semantic segmentation [8, 42, 67], edge
detection [38, 52, 62], and saliency detection [23, 32]. Up to date, CNNs based approaches
are leading state-of-the-art performance on many frequently benchmarked datasets such as
PASCAL VOC [14], ImageNet [49], MSCOCO [37], and Place [68].

An area of significant progress on CNN architectures has been increasing their depth
to learn more powerful visual representations. In particular, the depth has increased from
several layers (e.g., LeNet [10] and Alexnet [31]) to several tens of layers (e.g., VGGnet
[53] and GoogLeNet [58]). Nevertheless, training a very deep network is extremely difficult
because of vanishing gradients and degradation. To overcome this challenge, recent work in
both Highway networks [55] and ResNet [21] proposes to add shortcut connections between
neighboring convolutional layers, which are able to alleviate the vanishing gradient issue
and ease the training stage. As a result, they promote the study on constructing much deeper
neural networks (e.g. hundreds of layers) and exploring their potential bottleneck that may
limit the learning capabilities. Extended variants [22, 57, 66] based on ResNet provide more
insights towards delving into the residual learning mechanism. Moreover, other attempts
have applied the residual learning mechanism to other vision tasks related to image classi-
fication [11, 29, 61]. Nevertheless, it is nontractable to optimize very deep neural networks
due to their large amount of parameters and the amount of physical memory they require.

An alternative is to have greater integration in the existing intermediate layers in a deep
neural network, rather than deepening the network with new layers. Commonly, the top-
most activations in deep networks (i.e. fully-connected layers) often serve as discriminative
visual representations to describe the image content. However, it is important to note that
intermediate activations (i.e. convolutional layers) can also provide informative and com-
plementary clues about images, including low-level textures, boundaries, and local parts.
Therefore, researchers [1, 39, 64] have given greater attention to intermediate layers, and
evaluated their contributions regarding image recognition performance. In addition, a large
number of approaches [3, 39, 60, 65] have leveraged sophisticated encoding schemes (e.g.,
BoW, VLAD and Fisher Vector) to further encode intermediate feature activations. These
approaches extract deep features from off-the-shelf CNNs without training new networks.

Driven by the significant results of the aforementioned methods, extensive research
efforts [51, 63] have turned to explicitly training deep fusion networks where multi-level
intermediate layers are fused together by adding new side branches. As a result, the deep
fused representation allows us to integrate the strengths of individual layers and generate
superior prediction. Although these deep fusion networks have achieved promising perfor-
mance, they still require a large number of additional parameters required for generating
the side branches. In addition, their fusion modules (e.g. sum-pooling) do not consider the
importance of different side branches.

29408 Multimed Tools Appl (2018) 77:29407–29434



In this work, we propose convolutional fusion networks (CFN), which is a new fusion
architecture to integrate intermediate layers with adaptive weights. To be specific, CFN
mainly consists of three key components: (1) Efficient side outputs: we use efficient 1 × 1
convolution and global average pooling [36] to generate side branches from intermediate
layers and as a result it has a small number of additional parameters. (2) Early fusion and
late prediction: it can not only provide a richer representation, but also reduce the number
of parameters, compared to the “early prediction and late fusion” strategy [63]. (3) Locally-
connected fusion: we propose to adapt a locally-connected layer to act as a fusion module. It
allows us to learn adaptive weights (a.k.a. importance) for different side outputs and gener-
ate a better fused representation. Figure 1 visually compares the feature activations learned
in CNN and CFN, respectively. It can be seen that aggregating multi-level intermediate
layers is essential to integrate their individual information.

Overall, our contributions in this paper can be summarized as follows:

– We propose a new fusion architecture (CFN) which can provide promising insights
towards how to efficiently exploit and fuse multi-level features in deep neural networks.
In particular, to the best of our knowledge, this is the first attempt to use a locally-
connected layer as a fusion module.

– We introduce CFN models to address the image-level classification task. The results
on the CIFAR and ImageNet datasets demonstrate that CFN can achieve promising
improvements over the plain CNN. In addition, we transfer the trained CFN model
to three new tasks, including scene recognition, fine-grained recognition and image
retrieval. The results with the transferred CFN model have consistent performance
improvements on these tasks.

– We further develop fully convolutional fusion networks (FCFN), which are able to per-
form pixel-level classification tasks such as semantic segmentation and edge detection.

(a) (b)

Fig. 1 Illustration of the features activations learned in (a) CNN and (b) CFN. The CIFAR-10 images are
used here. Compared with CNN, CFN can learn complementary clues in the side branches to the full depth
main branch. Specifically, the side branch 1 mainly learns the boundaries or shapes around objects, and the
side branch 2 focuses on some semantic “parts” that fire strong near the objects

Multimed Tools Appl (2018) 77:29407–29434 29409



As a result, FCFN, as a fully convolutional extension, reveals the strong generalization
capabilities of CFN for a variety of visual recognition tasks.

A preliminary version of this work appeared in [41]. This paper extends the earlier
work [41] as follows. (1) We review more related work involved in taking advantage of
intermediate layers in deep neural networks (Section 2). (2) We offer more details about
constructing CFN and provide deeper analysis about its relationships with other deep models
(Section 3.4). (3) An extended model–FCFN, is proposed to address pixel-level classifica-
tion tasks (Section 4). Specifically, We build the FCFN models based on the representative
fully convolutional networks (FCN) used for semantic segmentation and edge detection. (4)
We conduct more comprehensive experiments to verify the effectiveness of CFN (Section 5).
In addition, we give two promising directions towards improving CFN in future work.

The remainder of this paper is organized as follows. Section 2 summarizes recent works
in terms of using intermediate features in deep neural networks. Section 3 introduces the
details of constructing the proposed CFN for image-level classification problem. In addi-
tion, we compare and highlight the differences of CFN from other deep models. The FCFN
model for pixel-level classification is described in Section 4. Section 5 presents experimen-
tal results that demonstrate the performance of CFN and FCFN on various visual recognition
tasks. Also, we point out two promising directions in the future. Finally, Section 6 concludes
this work.

2 Related work

In this section, we summarize related work that focuses on the use of intermediate
convolutional layers in the following three aspects, and highlight our differences from them.

Employment of intermediate layers In recent decades, turning the focus of research to
CNNs has been a leading and promising trend in the multimedia community. CNNs can
explore high-level visual concepts in images by employing the top activations (i.e. fully-
connected layers). However, intermediate convolutional layers can also provide informative
and complementary image features. The approaches [3, 9, 39, 43, 60, 64, 65] are able to
achieve competitive performance with the fully-connected layers, by taking advantage of
intermediate layers. To obtain richer image representations, it is beneficial to extract dense
CNN features from local patches or region proposals in one image. The local CNN fea-
tures are used to construct a visual codebook, based on which an encoder scheme(e.g.,
BoW, VLAD and Fisher Vector) aggregates them and produces a more powerful deep rep-
resentation. For example, Mohedano et al. [43] used the BoW model to encode the local
convolutional activations, and Ng et al. [65] integrated the intermediate layers with the
VLAD scheme. Similarly, Cimpoi et al. [9] and Wei et al. [60] made use of Fisher Vectors
to encode intermediate activations. Moreover, Liu et al. [39] and Babenko et al. [3] aggre-
gated several intermediate activations and generated a more discriminative and expensive
image descriptor.

Intermediate supervision In a plain CNN model, a supervision signal, for instance the
ground-truth categorial label for the input image, is only associated with the top-most pre-
diction. As a result, the effects of the loss cost on the intermediate layers are implicit and
weak. To guide the intermediate layers explicitly, some works attempt to impose additional
supervision on the intermediate layers. DSN [34] was the first approach to use earlier and

Multimed Tools Appl (2018) 77:29407–2943429410



Fig. 2 The general pipeline of a plain CNN model. Note that one 1 × 1 convolutional layer and global
average pooling are used on the top layers

more supervision signals, rather than the standard approach of only supervising the final
prediction. Likewise, GoogLeNet [58] created two extra branches from the intermediate
layers and supervised them jointly with the full-depth main branch. Sun et al. [56] built a
robust face recognition network learned with multiple identification-verification supervi-
sory signals. In summary, these approaches only aim to supervise intermediate layers better,
but not to integrate their outputs as a fused feature.

Deep fusion networks In order to incorporate intermediate outputs explicitly, multi-
layer fusion networks are presented in recent literature [42, 51, 62, 63]. Briefly speaking,
they begin to create the side branches from the intermediate layers and then fuse their
outputs together to make a more accurate prediction. A similar work in [63] built a DAG-
CNNs model that summed up the multi-scale outputs from intermediate layers. However,
DAG-CNNs required adding a large number of parameters, and its fusion module (i.e. sum-
pooling) failed to consider the importance of side branches. Different from DAG-CNNs,
the proposed CFN can learn adaptive weights for fusing side branches, while adding few
parameters. Apart from image recognition, multi-layer fusion is also well-established for
pixel-level classification. For example FCN [42] summed low-resolution, high layers with
high-resolution, low layers for semantic segmentation. In contrast to simple sum computa-
tion, HED [62] employed a 1 × 1 convolution to learn shared weights. However, our FCFN
is able to learn more adaptive weights than [42, 62].

3 Convolutional fusion networks

In this section, we introduce the details of building CFN and its training procedure. In
addition, we compare its differences from other deep models.

3.1 Overview

First, we show a general architecture of a plain CNNmodel. As illustrated in Fig. 2, it mainly
comprises of successive convolutional layers and pooling layers. In particular, a 1 × 1 con-
volutional layer and global average pooling is used in the last due to their efficiency, similar
to [21, 36, 58]. Based on this plain CNN, we can develop the proposed CFN by adding new
side branches from intermediate layers and aggregating them in a locally-connected fusion
module. Figure 3 illustrates the architecture of the proposed CFN.

3.2 Architecture

Overall, CFN mainly consists of following three key components.

Multimed Tools Appl (2018) 77:29407–29434 29411



Fig. 3 The general pipeline of the proposed CFN. First, the side branches start from the pooling layers and
consist of a 1 × 1 convolution layer and global average pooling. Then, all side outputs are stacked together.
A locally-connected layer is used to learn adaptive weights for the side outputs (drawn in different color).
Finally, the fused feature is fed to the following fully-connected layer that is able to make a better prediction.
(best viewed in zoom in)

Efficient side outputs Prior work often added new fully-connected (FC) layers in the side
branch [63], but this way may severely increase the number of parameters. Instead, CFN
is able to efficiently create the side branches from the intermediate layers by adding few
parameters. First, the side branches are grown from the pooling layers (see Fig. 3). These
side branches use a 1 × 1 convolution like the main branch. All 1 × 1 convolutional layers
must have the same number of channels so that they can be integrated together. Then, global
average pooling (GAP) is performed over the 1 × 1 convolutional maps so as to obtain
one-dimensional feature vector, called GAP feature. As a result, the side branches have the
similar top layers (1 × 1 conv and GAP) as the full-depth main branch. One difference is
that the 1 × 1 conv in the main branch follows a convolutional layer but not a pooling layer.
For concise formulation, we consider the full-depth main branch as another side branch.

Assume that there are S side branches in total and the last side branch (i.e. S-th) indicates
the main branch. We notate h

(s)
i,j as the input of 1 × 1 convolution in the s-th side branch,

where s = 1, 2, . . . , S and (i, j) is the spatial location over feature maps. As 1 × 1 convo-
lution has K channels, its output associated with the k-th kernel is denoted as f

(s)
i,j,k , where

k = 1, . . . , K . Let H(s) and W(s) be the height and width of features maps derived from the
s-th 1 × 1 convolution. Then, global average pooling performed over the feature map f

(s)
k

is calculated by

g
(s)
k = 1

H(s)W(s)

H(s)∑

i=1

W(s)∑

j=1

f
(s)
i,j,k, (1)

Where g
(s)
k is the k-th element in the s-th GAP feature vector. Thus, we can notate g(s) =

[g(s)
1 , . . . , g

(s)
K ], a 1 × K dimensional vector, as the whole GAP feature from the s-th side

branch. Recall that g(S) represents the GAP feature from the full-depth main branch.

Early fusion and late prediction Considering how to incorporate the side branches,
some work [42, 62, 63] used an “early prediction and late fusion” (EPLF) strategy. In
Fig. 4a, EPLF computes a prediction from the GAP feature using a fully-connected layer
and then fuses side predictions together to make the final prediction. In contrast to EPLF
[63], in which a couple of FC layers are added, we present an opposite strategy called
“early fusion and late prediction” (EFLP). EFLP first fuses the GAP features from the side

Multimed Tools Appl (2018) 77:29407–2943429412



(a) (b)

Fig. 4 Comparison between EPLF and EFLP. a The schematic pipeline of EPLF strategy; b The schematic
pipeline of EFLP strategy

branches and obtains a fused feature. Then, a fully-connected layer following the fused fea-
ture is used to estimate the final prediction. As seen in Fig. 4b, EFLP has fewer parameters
due to using only one fully-connected layer. Assume that each fully-connected layer has
C units that correspond to the number of object categories. The fusion module has Wf use

parameters. Quantitatively, we can compare the number of parameters between EFLP and
EPLF using the following formula:

WEFLP = K(C + 1) + Wf use < WEPLF = SK(C + 1) + Wf use. (2)

Hence, we make use of EFLP to fuse intermediate features earlier due to its efficiency.
More importantly, the fused feature in EFLP is able to act as a richer image representation,
compared with the widely-used fc6 and fc7 [31, 53]. In addition, the fused feature could be
transferred to other vision domains due to its significant generalization capabilities. How-
ever, EPLF is less capable to generate such a rich image representation. We also observe
that EFLP can achieve the same accuracy as EPLF, though EPLF contains more parameters.

Locally-connected fusion Another significant component in CFN is that it employs a
locally-connected (LC) layer to fuse the side branches. Owing to its no-sharing filters over
spatial dimensions, LC layer can learn different weights in each local field [18]. For exam-
ple, DeepFace [56] used the LC filters to learn more discriminative face representations
instead of spatially-sharing convolutional filters. Differently, our aim is to adapt a LC layer
to learn adaptive weights (or importance) for different side branches, and generate a better
fused feature. As we know, this is the first attempt to apply a locally-connected layer to a
fusion module. Formally, its details are introduced as follows.

At first, we stack all GAP features together from g(1) to g(S), and form a layer G with
size of 1 × K × S, see Fig. 3. For example, the s-th feature map of G is g(s). Then, one
LC layer which has K of no-sharing filters is convolved over G. Each filter has 1 × 1 × S

kernel size. Since LC is able to learn adaptive weights for different elements in the GAP
features which represent the importance of the side branches, it is able to produce a better
fused feature. Finally, the fused feature convolved by LC also has 1 × K shape, denoted as
g(f ). The i-th element in g(f ) can be expressed by

g
(f )
i = σ

⎛

⎝
S∑

j=1

W
(f )
i,j · g

(j)
i + b

(f )
i

⎞

⎠ , (3)

where i = 1, 2, . . . , K; σ indicates the activation function (i.e. ReLU).W(f )
i,j and b

(f )
i repre-

sent the weights and bias for fusing the i-th elements of GAP features that are from different

Multimed Tools Appl (2018) 77:29407–29434 29413



(a) (b) (c)

Fig. 5 Comparison of three fusion modules (best viewed in color). Left: Sum-pooling fusion has no weights;
Middle: Convolution fusion learns sharing weights over spatial dimensions, as drawn in the same color;
Right: Locally-connected fusion learns no-sharing weights over spatial dimensions, as drawn in different
colors. To learn element-wise weights, we use 1 × 1 local field

side branches. The number of parameters in the LC fusion is K × (S + 1). Using these
additional parameters benefits adaptive fusion while does not require any manual tuning.

To clearly demonstrate the advantage of the LC fusion module, Fig. 5 compares LC
fusion with other fusion methods. In Fig. 5a, the sum-pooling fusion simply sums up the
side outputs together without learning any weights, whereas this way treats each side branch
equally and fails to consider their different importance. In Fig. 5b, the convolutional fusion
can learn only one sharing filter over the whole spatial dimensions (as drawn with the same
blue color). In contrast, LC enables the fusion module to learn independent weights over
each local field (i.e. 1×1× S size) (drawn in different colors in Fig. 5c). Although LC fusion
consumes more parameters than the sum-pooling fusion (no weights) and the convolutional
fusion (S + 1), these parameters are a negligible proportion of the total number of the
network parameters (see Table 1).

3.3 Training

CFN has a similar training procedure as a standard CNN, including forward pass and back-
ward propagation. Assume a training dataset which contains N images: {x(i), y(i)}, where

Table 1 Two plain CNN models built for classification on CIFAR-10/100

CNN-A CNN-B

Input 32 × 32 RGB image

5 × 5 × 64 conv, ReLU 3 × 3 × 96 conv, ReLU

3 × 3 × 96 conv, ReLU

3 × 3 max-pooling, stride 2. Dropout ratio 0.5

5 × 5 × 64 conv, ReLU 3 × 3 × 192 conv, ReLU

3 × 3 × 192 conv, ReLU

3 × 3 average-pooling, stride 2. Dropout ratio 0.5

5 × 5 × 64 conv, ReLU 3 × 3 × 192 conv, ReLU

3 × 3 × 192 conv, ReLU

1 × 1 × 192 conv, ReLU

8 × 8 global average pooling. Dropout ratio 0.5

10 or 100-way fully-connected layer

Softmax classifier

Multimed Tools Appl (2018) 77:29407–2943429414



x(i) is the i-th input image and y(i) is its ground-truth class label. W indicates the set of all
parameters learned in the CFN (including the LC fusion weights), Therefore, the objective
function in the network is to minimize the total loss cost L

argmin
W

1

N

N∑

i=1

L(f (x(i); W), y(i)), (4)

where f (x(i); W) indicates the predicted class of x(i). We use the softmax loss function to
compute the cost L. To minimize the loss cost, the partial derivatives of the loss cost with
respect to any weight are recursively computed by the chain rule during the backward propa-
gation [10]. Since the main parts in the CFN model are the side branches, we will induce the
detail computations of their partial derivatives. For notational simplicity, we independently
consider each image in the following.

First, we compute the gradient of the loss cost with respect to the outputs of the side
branches. As an example of the s-th side branch, the gradient of L with respect to the side
output g(s) can be formulated as below

∂L
∂g(s)

= ∂L
∂g(f )

· ∂g(f )

∂g(s)
, s = 1, 2, . . . , S. (5)

Second, we formulate the gradient of L with respect to the inputs of the side branches.
Let a(s) be the input of the s-th side branch. As depicted in Fig. 3, a(s) corresponds to the
pooling layer. However, the input of the main branch, denoted as a(S), refers to the last
convolutional layer (i.e. conv S). It is important to note that the gradient of a(s) depends on
several side branches. To be more specific, the gradient of a(1) is influenced by S branches;
the gradient of a(2) need to consider the gradient from the 2-th to S-th branch; but the
gradient of a(S) is updated by only the main branch. Then, the gradient of L with respect to
the side input a(s) can be computed via

∂L
∂a(s)

=
S∑

i=s

∂L
∂g(i)

· ∂g(i)

∂a(i)
, (6)

where i indexes the related branch that contributes to the gradient of a(s). It needs to sum
up the gradients from several side branches. As is common practice, we employ a standard
stochastic gradient descent (SGD) algorithm with mini-batch [31] to train the entire CFN
model.

3.4 Discussion

To get more insights about CFN, we compare it with other deep models.

Relationship with CNN As CFN is built upon a plain CNN, we therefore compare
their differences as described below. Normally, a plain CNN only estimates a final pre-
diction based on the topmost layer; as a result, the effects of intermediate layers towards
the prediction are implicit and indirect. In contrast, CFN connects the intermediate layers
using additional side branches, and fuses them to jointly make the final predictions. In this
way, CFN allows us to take advantage of intermediate layers explicitly and directly. This
advantage explains why CFN is able to achieve more accurate prediction than a plain CNN.

Relationship with DSN DSN [34] is the first model to add extra supervision to interme-
diate layers for earlier guidance. As a result, it can improve the directness and transparency

Multimed Tools Appl (2018) 77:29407–29434 29415



of learning a deep neural network. Therefore, we can view DSN as a “loss fusion” model.
Instead, CFN still uses one supervision towards the final prediction derived from the fused
representation, however it is able to increase the effects of the loss cost on the intermediate
layers without adding more supervision signals. In a word, we clarify that CFN is a “feature
fusion” model. It is important to note that there is no technical conflict between CFN and
DSN, so it is promising to combine these two models together in the future.

Relationship with ResNet ResNet [21] addresses the vanishing gradient problem by
adding densely “linear” shortcut connections. Due to being inspired by a distinct motivation,
CFN has three main differences with ResNet: (1) The side branches in CFN are not shortcut
connections. They start from pooling layers and merge into a fusion module together. (2) In
contrast to adding a “linear” branch, we still use non-linear ReLU in side branches. (3) CFN
employs a sophisticated fusion module to generate a richer feature, rather than using the
simple summation as in ResNet. As mentioned in the ResNet work, when the network is not
overly deep (e.g., 11 or 18 layers), ResNet may obtain few improvements over a plain CNN.
However, CFN can obtain some considerable gains over CNN. Hence, CFN can serve as an
alternative for improving the discriminative capabilities of not-very-deep models, instead of
purely increasing the depth. In summary, ResNet tells us that “depth that matters”, but CFN
concludes that “fusion that matters”.

4 Fully convolutional fusion networks

Deep neural networks allow us to narrow the gap between different vision tasks. More
specifically, CNN models for image-level classification can be well-adapted to other pixel-
level classification tasks which aim to generate a per-pixel prediction in images. As a
common practice, it is essential to cast traditional convolutional neural networks to their
corresponding fully convolutional networks (FCNs) by replacing the fully-connected layers
with more convolutional layers. FCNs are able to infer any size of images without requir-
ing specific input dimensionality. In this section, we introduce fully convolutional fusion
networks (FCFN), which are used for two representative pixel-level classification tasks:
semantic segmentation and edge detection. Based on the FCN models, FCFN models are
built to learn better pixel representations from a fusion module.

4.1 Semantic segmentation

Semantic segmentation intends to predict a category label for spatial pixels in an image.
The FCN-8s [42] model was the first attempt to apply CNNs to semantic segmentation, and
yielded significant improvements in comparison with non-deep-learning approaches. First,
FCN-8s is fine-tuned from the VGG-16 model [53] pre-trained on the ImageNet dataset
[49]. Then, it adds two side branches with the full-depth main branch; as a result, it allows to
integrate both coarse-level and fine-level pixel predictions together that benefit to improve
the semantic segmentation performance. Particularly, FCN-8s uses a simple sum-pooling to
fuse the multi-level predictions. Inspired by FCN-8s, we extend the above CFN model and
build the FCFN for generating fused pixel features. From FCN-8s to CFN-8s, we use two
locally-connected layers in a two-stage fusion fashion, as illustrated in Fig. 6.

Recall that the LC fusion module is able to learn independent weights for each spatial
pixel in an image. We need extend the formulations in Section 3.2 to be suitable for the
LC fusion module in FCFN. In the first fusion module, two branches which have both

Multimed Tools Appl (2018) 77:29407–2943429416



Fig. 6 Illustration of the proposed CFN-8s model semantic segmentation, which is built upon the baseline
FCN-8s [42]. Two locally-connected layers are used in a two-stage fusion fashion

K channels of feature maps are taken as input. Note that the top layers are unsampled 2
times to retain the same spatial dimensions as the bottom layers. We consider the adaptive
weights of each channel separately and reshape each two-dimensional feature map to a one-
dimensional feature vector. For example, g

(1)
k,i indicates the feature activation of the i-th

pixel of the k-th channel in the first branch, and g
(2)
k,i is the corresponding activation in the

second branch, where i = 1, . . . , H × W and k = 1, . . . , K . Therefore, the fused pixel
feature can be computed by

g
(f )
k,i = σ

⎛

⎝
2∑

j=1

W
(f )
k,i,j · g

(j)
k,i + b

(f )
k,i

⎞

⎠ , (7)

The parameters in this fusion module are H × W × 21 × 2.
Moreover, the second fusion module integrates coarser feature maps with the output

of the first fusion module. Let g
′(1)
k,i be the activation in the coarser layer. For notational

simplicity, the activation g
(f )
k,i from the output of the first fusion module, is renamed to g

′(2)
k,i .

Likewise, the computation in the second LC fusion is expressed via

g
′(f )
k,i = σ

⎛

⎝
2∑

j=1

W
′(f )
k,i,j · g

′(j)
k,i + b

′(f )
k,i

⎞

⎠ , (8)

where g
′(f )
k,i represents the final fused feature by using the two-stage fusion approach.

Considering the computation of the loss cost with respect to the ground-truth, we still
employ the softmax loss function and accumulate the loss of all pixels together. For brevity,
we give the loss computation for one image here. It is easy to extend to a mini-batch size of
images.

L = −
H×W∑

i=1

K∑

k=1

h(yi = k) logpk,i , (9)

where yi is the ground-truth pixel label. h(i = j) is the Kronecker delta response.
The predicted pixel probability is normalized with the softmax function, where pk,i =

exp(g
′(f )
k,i )

∑K
k=1 exp(g

′(f )
k,i )

. As introduced in Section 3.3, we still use the SGD with mini-batch to train

the entire FCFN model.

Multimed Tools Appl (2018) 77:29407–29434 29417



4.2 Edge detection

The problem of edge detection is to extract semantically meaningful edges in images,
Typically, edge detection acts as a low-level task, but has significant contributions to
other high-level visual tasks, such as object detection and image segmentation. Driven by
the increasing developments of deep learning, edge features have moved from carefully-
engineered descriptors such as Canny [5], gPb [2] and Structured Edges (SE) [13]), to
discriminative deep features [4, 52, 62]. In particular, HED [62] is the first work to use
FCNs for end-to-end edge detection, and leads state-of-the-art performance on well-known
benchmarks. HED integrates the strengths of high efficiency from end-to-end FCNs [42]
and using additional deep supervision as in DSN [34].

In this section, we develop a FCFN model for edge detection based on HED. Figure 7
shows the overview architecture of FCFN. In contrast to HED, which uses a convolutional
fusion module, FCFN fuses five intermediate side branches with a locally-connected layer.
To be specific, one side branch generates a feature map where the activations measure the
probabilities of pixels being edges. Five feature maps from side branches stack together, and
are reshaped from (H, W, 5) to (H ×W, 5). Similarly, we can compute the fused prediction
g

(f )
i (i = 1, . . . , H × W ) by

g
(f )
i = σ

⎛

⎝
5∑

j=1

W
(f )
i,j · g

(j)
i + b

(f )
i

⎞

⎠ , (10)

Then, the loss cost based on the sigmoid cross-entropy function is expressed via

Lf use = −
H×W∑

i=1

[
βi log g

(f )
i + (1 − βi) log(1 − g

(f )
i )

]
, (11)

where the parameter βi regulates the importance of edge and non-edge pixels, as mentioned
in [62]. It is important to note that we also impose the intermediate supervision on the side
branches similar to [34, 62], to discard the negative edges in the earlier intermediate layers.
The loss cost in the k-th side branch (i.e. k = 1, . . . , 5) is represented by the following
formala

L(k)
side = −

H×W∑

i=1

[
βi log g

(k)
i + (1 − βi) log(1 − g

(k)
i )

]
, (12)

Fig. 7 Illustration of the proposed FCFN model built for edge detection, which is bulit upon the baseline
HED [62]. Five side branches are fused together in a LC fusion module

Multimed Tools Appl (2018) 77:29407–2943429418



where g
(k)
i accounts for the predicted probability of the i-th pixel being an edge point.

Finally, the overall loss cost in FCFN integrates a fused loss term and five intermediate loss
terms together:

L =
5∑

k=1

L(k)
side + Lf use. (13)

This edge detection network is also fine-tuned from the VGG-16 model and updated with
the SGD algorithm with mini-batch end-to-end.

5 Experiments

This experimental section evaluates the performance of the proposed CFN for image-level
classification and FCFN for pixel-level classification. First, we trained the CFN models on
the CIFAR-10/100 [30] and ImageNet 2012 [49]. Then, we transferred the trained CFN
model to three new tasks, including scene recognition, fine-grained recognition and image
retrieval. Moreover, we trained the specific FCFN models for semantic segmentation on
the PASCAL dataset [14], and edge detection on the BSDS dataset [2], respectively. All
experiments were conducted using the Caffe library [27] on a NVIDIA TITAN X card with
12 GB memory.

5.1 CIFAR dataset

Both CIFAR-10 [30] and CIFAR-100 [30] consist of 50,000 training images and 10,000
testing images. They define 10 and 100 object categories, respectively. We preprocessed
their RGB images by global contrast normalization [17], and randomly shuffle the training
set.

Models We employ two plain CNNs as baselines and build their CFN counterparts. Table 1
describes the two CNN models used for CIFAR-10/100, called CNN-A and CNN-B. (1)
CNN-A is a shallow network similar to the Caffe-Quick model [27]. It has three 5 × 5
convolutions and a 1 × 1 convolution. The global average pooling is performed over the
1 × 1 convolutional maps. Finally, a fully-connected layer with 10 or 100 units is used to
predict object categories; (2) CNN-B replaces the 5×5 convolution in CNN-A by two 3×3
convolutional layers. This is inspired by the advantageous observation in VGGnet [53]. In
addition, CNN-B utilizes more feature channels than CNN-A. Note that, when training the
CNN-B model on the CIFAR-100 dataset, the first and second convolutional layer also use
192 channels instead of 96 channels. Correspondingly, the CFN-A and CFN-B models are
built upon CNN-A and CNN-B respectively, by constructing two additional side branches
after the pooling layers, as depicted in Fig. 8a and b.

We use the same hyper-parameters to train CNN and CFN, for example, a weight decay
of 0.0001, a momentum of 0.9, and a mini-batch size of 100. The learning rate is initialized
with 0.1 and is divided by 10 after 10×104 iterations. The whole training will be terminated
after 12 × 104 iterations. As for CFN, the initialized weights in the LC fusion module are
set to 0.333, as there are three side branches in total (including the full-depth main branch).

Results Table 2 shows the results on CIFAR-10/100 test sets. We can analyze the results
from the following three aspects:

Multimed Tools Appl (2018) 77:29407–29434 29419



(a)

(b)

Fig. 8 Illustration of CFN built for CIFAR dataset. For the convolutional layers (denoted as C), the right
lower numbers indicate the kernel size; the right upper number indicates the number of channels. For the
pooling layers (denoted as P ), the right lower numbers indicate the window size; the right upper number is
the size of strides

(1) CFN achieves about 1% improvements on the performance compared to the plain
CNNs (both CNN-A and CNN-B). For example on the CIFAR-10 dataset, CFN-A and
CFN-B obtains 14.73 and 8.27 error rates that are better than the results of CNN-A
and CNN-B (15.57 and 9.28). The comparison between CFN and CNN demonstrates
the effectiveness of fusing multi-level intermediate layers. Additionally, CFN is able
to improve the expressive capabilities of deep neural networks, to learn superior visual
representation.

(2) In order to analyze the advantage of using the LC fusion, we implement the sum-
pooling fusion and convolutional fusion that are denoted as CNN-Sum and CNN-Conv.
By comparing CFN with either CNN-Sum or CNN-Conv, it can be seen that the
LC fusion outperforms the other two fusion ways by a considerable margin. Hence,
learning adaptive weights is essential to generate a better fused feature.

(3) Moreover, we compute the number of parameters in the models to estimate their effi-
ciency. In the second column of the table, the additional parameters for extra side
branches and the LC fusion are significantly fewer than the number of basic param-
eters in the models. Although the LC fusion consumes more parameters compared
to the sum-pooling fusion and convolutional fusion, these parameters have minimal
increase to the network complexity. Furthermore, we further compare the training time

Table 2 Test error (%) on CIFAR-10/100 dataset (without data augmentation)

Model #parameters CIFAR-10 CIFAR-100

CNN-A 0.224M (basic) 15.57 40.62

CNN-Sum-A 0.224M (basic) + 0.025M (extra branches) + 0 (fusion) 15.33 40.32

CNN-Conv-A 0.224M (basic) + 0.025M (extra branches) + 4 (fusion) 15.19 40.15

CFN-A 0.224M (basic) + 0.025M (extra branches) + 768 (fusion) 14.73 39.54

CNN-B 1.287M (basic) 9.28 31.89

CNN-Sum-B 1.287M + 0.074M (extra branches) + 0 (fusion) 8.84 31.42

CNN-Conv-B 1.287M + 0.074M (extra branches) + 4 (fusion) 8.68 31.16

CFN-B 1.287M + 0.074M (extra branches) + 768 (fusion) 8.27 30.68

For both Model A and B, the proposed CFN can achieve better results shown in bold face

Multimed Tools Appl (2018) 77:29407–2943429420



Iterations (1e4)

0

0.5

1

1.5

2

2.5

T
ra

in
in

g 
lo

ss

CNN-A

CFN-A

CNN-B

CFN-B

(a)

0 2 4 6 8 10 12 0 2 4 6 8 10 12
Iterations (1e4)

0

0.1

0.2

0.3

0.4

T
es

t e
rr

or
 r

at
e(

%
)

CNN-A
CFN-A
CNN-B
CFN-B

(b)

Fig. 9 Comparison between CFN and CNN on the CIFAR-10 dataset. a The training loss when training
CFN and CNN. b The test error rates along with the increasing iterations

between CNN and CFN. For example on the CIFAR-10 dataset, CNN-B and CFN-B
take about 1.67 and 2.08 h, respectively.

Figure 9 shows the training loss and the test accuracy while training CFN and CNN.
Along with the training iterations, both CFN-A and CFN-B models have less training loss
and lower test error rates than the corresponding CNNmodels. In addition, Fig. 10a presents
the adaptive weights learned in the LC fusion of CFN-B. Recall that LC learns 192 filters
(each filter is 1 × 3 size) and each filter has 1× 3 weights. We compute the average weight
in each branch, and estimate its fluctuation. As we can see in the figure, the side branch 3
(a.k.a. the full-depth main branch) plays a core role, while the other two side branches are
complementary to the main branch. After a large amount of training iterations, the adaptive
weights tend to be stable. Moreover, in Fig. 1, we visualize and compare the learned feature
maps in CNN-B and CFN-B. We select ten images from the CIFAR-10 dataset. The feature
maps in the 1 × 1 convolutional layer of three side branches are extracted. We rank the
feature maps by averaging spatial activations and select the top-4 maps to visualize. One
can see that CFN can learn improtantly complementary clues in the side branches, while
retaining the necessary information in the main branch.

Iterations (1e4)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
us

ed
 w

ei
gh

ts

side branch 1
side branch 2
side branch 3

0 2 4 6 8 10 12 5 10 15 20

Iterations (1e4)

0.1

0.2

0.3

0.4

F
us

ed
 w

ei
gh

ts

side branch 1
side branch 2
side branch 3
side branch 4

(a) (b)

Fig. 10 Illustration of adaptive weights of the side branches learned in the LC fusion. All side branches
are initialized with the same weights before training. During the training stage, the top branches have larger
weights than the bottom branches

Multimed Tools Appl (2018) 77:29407–29434 29421



Table 3 Test error on CIFAR-10/100 to compare CFN-B with recent state-of-the-art

Method #Layers CIFAR-10 CIFAR-10∗ CIFAR-100

Maxout Networks [17] 5 11.68% 9.38% 38.57%

NIN [36] 9 10.41% 8.81% 35.68%

DSN [34] 9 9.69% 7.97% 34.54%

ALL-CNN [54] 9 9.08% 7.25% 33.71%

RCNN-160 [35] 6 8.69% 7.09% 31.75%

NIN + SReLU [28] 9 8.41% 6.98% 31.10%

CNN (baseline) 8 9.28% 7.34% 31.89%

CFN (ours) 8 8.27% 6.77% 30.68%

A superscripted * indicates to use the standard data augmentation [34]

CFN can achieve superior results which are bolded

Comparison with other approaches Table 3 reports recent results on CIFAR datasets.
For fair comparison, we compare CFN-B with other not-very-deep models. Notably, ”not-
very-deep” is a relative concept. We use it to emphasis the differences between the models
in Table 3 and other ResNet-like models. In Table 3, our method (CFN) and the compared
methods develop less than 10 layers’ models to evaluate their effectiveness. These models
certainly belong to deep neural networks, however, they are not very deep, compared to
the ResNets that mostly have hundreds of layers on the datasets like CIFAR-10/100. Also,
we show the depth of these models for clear comparison and analysis. In summary, CFN
obtains comparative results and outperforms these compared methods. In this work, we aim
to investigate the potential of integrating multiple intermediate layers, and the results in
Table 3 verify the effectiveness of CFN. Also, building CFN on top of a much deeper model
(e.g. ResNet [21]) will be our main future work.

5.2 ImageNet 2012

The ImageNet 2012 dataset [49] consists of 1.2 million training images, 50,000 validation
images and 100,000 test images. We developed a basic 11-layer plain CNN (called CNN-
11) where the channels of convolutional layers range from 64 to 1024. This baseline model
is inspired by prior widely-used deep models [21, 53, 58]. Based on this CNN, we built its
CFN counterpart (called CFN-11) as illustrated in Fig. 11. Note that we create three extra
side branches from the intermediate pooling layers (excluding the first pooling layer).

The training setup in our implementation follows the empirical practice in existing liter-
ature [21, 31, 53, 58]. To be more specific, the original image is resized to 256 × 256. In
training phase, a 224 × 224 crop is randomly sampled from the resized image or its flip.
The cropped input image is subtracted with per-pixel mean. We initialize the weights and

Fig. 11 Overview of the CFN-11 architecture built on top of CNN-11. Three additional side branches are
generated from the pooling layers, and fused together with the full-depth main branch (a.k.a the last side
branch)

Multimed Tools Appl (2018) 77:29407–2943429422



Table 4 Error rates (%) on the ImageNet 2012 validation set

Method AlexNet CNN-11 DSN-11 ResNet-11 CFN-11 CNN-19 CFN-19

Top-1 42.90 43.11 42.24 43.02 41.96 36.99 35.47

Top-5 19.80 19.91 19.24 19.85 19.09 14.74 13.93

Best results are in bold face

biases following GoogLeNet [58], for example a weight decay of 0.0001, and a momentum
of 0.9. Batch normalization (BN) [24] is added after one convolutional layer. The learning
rate starts from 0.01 and decreases to 0.001 at 10×104 iterations, and to 0.0001 at 15×104

iterations. The whole training will be terminated after 20 × 104 iterations. Notably, LC
weights in the fusion module are initialized with 0.25 due to four side branches in total. We
use SGD to optimize the models with a mini-batch size of 64.

Results Table 4 compares the results on the validation set. The following will analyze these
results from several aspects.

(1) CNN-11 is able to achieve competitive results as compared to AlexNet [31], however,
it consumes much fewer parameters (∼6.3 millions) than Alexnet (∼60 millions). This
results from replacing the fully-connected layers with global average pooling.

(2) CFN-11 obtains about 1% improvement over CNN-11, while adding few parameters
(∼0.5 millions). It verifies its consistent improvements on the performance for a large-
scale dataset. Moreover, for fair comparison with other deep models, we implement
the DSN-11 and ResNet-11 based on the plain CNN-11, which are shown in Figs. 12
and 13, respectively. It can be seen that, CFN-11 can still achieve better accuracy than
DSN-11 and ResNet-11. Therefore, we can view CFN as an alternative to promote the
discriminative capacity of such a not-overly deep CNN model, rather than increasing
the depth as in ResNet. Notably, CFN-11 can improve CNN-11, but ResNet-11 cannot.
But it does not conclude that CFN may be better than ResNet, as the networks are not
very deep. Our primary purpose is to evaluate the superiority of CFN over CNN, and
the results are consistent with our motivation.

(3) To test the generalization of CFN to deeper networks, we build a 19-layer model fol-
lowing the similar principle of the 11-layer model. Likewise, CFN-19 outperforms
CNN-19 with about 1% gains for both top-1 and top5 performance. For simplicity,
we did not use the same implementation in ResNet [21], such as scale augmentation,
large mini-batch size, multi-scale test. Therefore, our results of CNN-19 and CFN-19

Fig. 12 Overview of the DSN-11 architecture built on top of CNN-11. DSN-11 creates three side branches
that can provide intermediate predictions for the input image. The ground-truth label is also used to guide
these intermediate predictions, to enhance the discriminative abilities of hidden layers

Multimed Tools Appl (2018) 77:29407–29434 29423



Fig. 13 Overview of the ResNet-11 architecture built on top of CNN-11. There are four residual connec-
tions in total. Due to inconsistent numbers of channels, 1x1 convolution layers are needed in the residual
connections, but they are not followed by ReLU to make sure linear transformation

are not as high as CNN-18 and ResNet-18 in [21]. We believe that our results can raise
awareness of the potential of building deep multi-layer fusion networks. If needed, in
the future we will develop 50 or 100 layers of networks to test the effectiveness of
CFN, apart from 11 and 19 layers.

Similar to CIFAR-10, Fig. 10b illustrates the adaptive weights learned in the LC fusion
of CFN-11. It is important to note that, the top branches (i.e. 3 and 4) have larger weights
than the bottom branches (i.e. 1 and 2). Additionally, we extract the feature activations of
the 1 × 1 convolutional layer in one side branch. Figure 14 show and compare the feature
maps from different side branches.

5.3 Transferring deep fused features

To evaluate the generalization of CFN, we transferred the trained ImageNet model (i.e.
CFN-11) to three new tasks: scene recognition, fine-grained recognition and image retrieval.
Each task is evaluated on two widelly-used datasets: Scene-15 [33] and Indoor-67 [47],
Flower [44] and Bird [59], and Holidays [26] and UKB [45]. The configurations of these
six datasets are summarized in Table 5. Also, image examples are shown in Fig. 15.

The AlexNet [31] acts as a baseline that uses the fc7 layer (4096-Dim) to provide an
image representation. For CNN-11, we use the output of the global average pooling (1024-
Dim) as image feature. Notably, CFN-11 allows us to utilize a fused feature (1024-Dim)
that integrates multiple intermediate layers. For scene and fine-grained recognition, linear

Fig. 14 Illustration of feature maps in the four side branches. On one hand, the side branch 1 and 2 can
capture some low-level clues about images, such as boundaries and textures. On the other hand, side branch
3 and 4 aim to obtain more abstract features that fire strong around objects. Therefore, CFN can incorporate
multi-layer intermediate features explicitly and adaptively so as to improve visual representation

Multimed Tools Appl (2018) 77:29407–2943429424



Table 5 Configurations of six datasets for scene recognition, fine-grained recognition and image retrieval

Scene 15 Indoor 67 Flower Bird Holidays UKB

#categories 15 67 102 200 – –

#train images 1500 5360 2040 5994 991 10200

#test images 2985 1340 6149 5794 500 10200

SVM [7] is trained to compute the classification accuracy. For image retrieval, we use KNN
to compute the mAP on Holidays and the N-S score on UKB.

Results Table 6 reports the transfer learning results on six datasets. Although it is challeng-
ing to generalize a deep model to diverse visual tasks, we can still summarize these results
to provide more insights about CFN.

(1) Overall, CFN-11 obtains consistent improvements for the three tasks on all datasets,
compared with the baseline CNN-11. In addition, CFN-11 outperforms the Alexnet
while using a much lower dimensional feature vector. These results reveal that learning
fused deep representations is beneficial for not only image classification, but also a
variety of visual tasks, even though the images in these tasks have large differences.

(2) Notably, the improvements on these three tasks are more significant than those on the
ImageNet itself. In particular, CFN-11 yields about 6% accuracy gains on the Flower
dataset for fine-grained recognition. On other datasets, about 2% accuracy gains are
obtained as well (Note that the UKB uses the N-S score which is different from pre-
cision accuracy). We believe that fine-tuning the models on the target datasets will
further improve the results.

5.4 Semantic segmentation

We conduct the semantic segmentation experiment on the PASCAL VOC 2012 segmen-
tation dataset [14] that consists of 20 foreground object classes and a background class.
The original dataset contains 1464 training images, 1449 validation images, and 1456 test
images. When evaluating the val set, we use a merged training dataset with the original
training images and the augmented training images as in [19]. Since there are validation

Fig. 15 Image examples from six datasets about scene recognition, fine-grained recognition and image
retrieval. We can see their significant differences with respect to the image content

Multimed Tools Appl (2018) 77:29407–29434 29425



Table 6 Results on transferring the ImageNet model to three target tasks

Method Dim Scene recognition Fine-grained recognition Image retrieval

Scene 15 Indoor 67 Flower Bird Holidays UKB

AlexNet [31] 4096 83.99 58.28 78.68 45.79 76.77 3.45

CNN-11 1024 84.32 60.45 76.79 45.98 78.33 3.47

CFN-11 1024 86.83 62.24 82.57 48.12 80.32 3.54

For each dataset, better results are in bold face

images included in the merged training set, we need to pick the non-intersecting set of 904
images [42] as a new validation set.

For fair comparison, we used the same parameters to train both the baseline FCN-8s [42]
and our proposed FCFN, including a fixed learning rate of 10−4, a weight decay of 0.0001,
a momentum of 0.9, and a mini-batch size of 1. The training stage will be terminated after
100K iterations. It is worth mentioning that, we fine-tune FCN-8s directly from the VGG-
16 model, without pre-training FCN-32s and FCN-16s. FCFN undergoes the same training
procedure. The segmentation performance is measured in terms of pixel intersection-over-
union (IoU).

Results Table 7 reports the mean IoU accuracy and the detailed results of 20 object classes.
The proposed FCFN achieves 1.6% gains on the mean IoU performance compared to the

Table 7 Semantic segmentation
results (IoU accuracy) on the
PASCAL VOC 2012 val set. For
the 20 object classes, better
results are in bold

FCN-8s [42] FCFN

aero 75.5 75.2

bike 34.5 33.8

bird 69.5 72.0

boat 56.7 53.3

bottle 59.7 63.8

bus 68.7 71.2

car 70.3 69.2

cat 73.4 75.0

chair 23.8 24.0

cow 53.0 63.4

table 39.7 40.7

dog 63.3 65.6

horse 46.3 57.6

mbike 75.2 74.5

person 73.9 75.4

plant 42.2 40.2

sheep 59.7 62.3

sofa 27.0 30.3

train 73.4 74.0

tv 58.7 55.7

mean 57.1 60.3

Multimed Tools Appl (2018) 77:29407–2943429426



Fig. 16 Comparison of a semantic segmentation example between the baseline FCN-8s and the proposed
FCFN

baseline FCN-8s. In addition, more object classes obtain superior results based on FCFN,
rather than FCN-8s. Figure 16 shows a visual example to highlight the segmentation details
between the two models. We clarify that FCFN is a fundamental architecture that can
be integrated with other sophisticated techniques such as CRF [8] and Recurrent Neural
Networks (RNN) [67], in order to further recover the segmentation details.

5.5 Edge detection

We evaluate the edge detection performance on the BSDS500 dataset [2] that consists of
200 training, 100 validation, and 200 testing images. One image is manually annotated by
five human annotators on average. The validation set is used to fine-tune the hyperparam-
eters, similar to HED [62]. For example, we use a momentum of 0.9 and a weight decay
of 0.0002. Also, the initialization of theside-output filters is set to 0, and the initialization
of the LC fusion filter is set to 0.2 due to fusing five side branches in total. The training
images are resized to 400 × 400 and the batch size is 8. The learning rate is initialized with
1e-6, and the training is terminated after 25 epoches. The performance measurements for
edge detection include fixed contour threshold (ODS), per-image best threshold (OIS) and
average precision (AP).

Results Table 8 provides a comparison of edge detection results on the BSDS dataset.
First, we can see that deep learning approaches (in the lower group) largely push the state-
of-the-art performance compared to the hand-crafted edge detection approaches (in the
upper group). In addition, the proposed FCFN outperforms the baseline HED with con-
siderable improvements. This shows the advantage of learning adaptive weights in the
locally-connected fusion module. Moreover, we illustrate the precision/recall curves of

Table 8 Edge detection results
on the BSDS dataset. The upper
group lists some representative
approaches without using deep
learning. The lower group gives
the deep learning based
approaches

Method ODS OIS AP

Canny [5] .600 .630 .580

gPb-owt-ucm [2] .726 .757 .696

SE-Var [13] .746 .767 .803

DeepEdge [4] .753 .772 .807

DeepContour [52] .757 .776 .790

HED [62] 0.780 0.802 0.786

FCFN 0.784 0.806 0.788
Best results are in bold face

Multimed Tools Appl (2018) 77:29407–29434 29427



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

[F=.800] Human
[F=.784] FCFN
[F=.780] HED
[F=.757] DeepContour
[F=.753] DeepEdge
[F=.746] SE-Var
[F=.726] gPb-owt-ucm
[F=.600] Canny

Fig. 17 Precision and recall curves on the BSDS500 dataset. These methods are ranked according to their
best F-score (ODS). FCFN achieves superior result as compared with other approaches

these approaches in Fig. 17. Figure 18 shows an edge detection example and compares the
visual details between FCFN and HED.

5.6 Future work

Recall that the proposed CFN (and FCFN) model is a general extension of a plain CNN, and
can be applied to a variety of visual recognition tasks. Therefore, it is potentially possible to
promote CFN by introducing more techniques in future work. In the following, we provide
two promising directions.

(1) While computing adaptive weights in the LC fusion module, we use a 1 × 1 kernel
filter to independently consider each spatial location in the feature maps. A potential
attempt is to utilize larger kernel sizes such as 1× 2 and 1× 3, which can incorporate
the contextual information in the feature maps.

Fig. 18 Comparison of an edge detection example between the baseline HED and the proposed FCFN. The
FCFN results look more similar with the ground-truth annotations than the HED results

Multimed Tools Appl (2018) 77:29407–2943429428



(2) The adaptive weights are learned with the training images and will be directly applied
to the test images for inference. It may be beneficial to learn input-specific weights to
decrease the variance between images. Jaderberg et al. [25] proposed a new learnable
module, called the Spatial Transformer, that can perform explicit spatial transforma-
tions of features within CNNs. Similarly, Brabandere et al. [12] proposed a Dynamic
Filter Network (DFN), where filters are dynamically generated conditioned on an input
image. Driven by these works, CFN can also learn dynamical filters conditioned on an
input image.

6 Conclusions

This work presents a deep fusion architecture (CFN) built on top of plain CNNs. It allows to
aggregate intermediate layers with adaptive weights, and generates a discriminative feature
representation. We conducted comprehensive experiments to evaluate its effectiveness for
both image-level and pixel-level classification tasks. To summarize, several remarks and
insights can be obtained based on the performance from the experiments:

(1) On the CIFAR and ImageNet datasets, the CFN models achieved considerable
improvements while adding few parameters, even though these models are not very
deep. CFN is a simple yet efficient architecture that has potential to be adapted to both
deep (e.g. 10 layers) and much deeper (e.g. 100 layers). In future work, we will build
CFN on top of other deeper networks.

(2) CFN shows promising results when it is transferred to three different tasks, since CFN
inherits the generalization capabilities from CNN. Additionally, CFN yields remark-
able gains over CNN in the Flower dataset for fine-grained recognition. We find that
it is quite important and necessary to make use of intermediate features to describe
fine-grained attributes of objects.

(3) Although the FCFN models need to learn more adaptive weights in the fusion module,
there are significant benefits due to the improvements for semantic segmentation and
contour detection. In addition, a great many details related to objects (e.g. boundary)
can be obtained from the intermediate layers instead of the top layers.

(4) Although we have evaluated CFN for several classification tasks, it is promising to
apply CFN to other visual applications such as object detection and visual tracking.

Acknowledgments This work was supported mainly by the LIACS Media Lab at Leiden University and
in part by the China Scholarship Council. We would like to thank NVIDIA for the donation of GPU cards.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Agrawal P, Girshick R, Malik J (2014) Analyzing the performance of multilayer neural networks for
object recognition

2. Arbelaez P, MaireM, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation.
IEEE Trans Pattern Anal Mach Intell 33(5):898–916

Multimed Tools Appl (2018) 77:29407–29434 29429

http://creativecommons.org/licenses/by/4.0/


3. Babenko A, Lempitsky VS (2015) Aggregating deep convolutional features for image retrieval. In:
Proceedings of the international conference on computer vision (ICCV)

4. Bertasius G, Shi J, Torresani L (2015) Deepedge: a multi-scale bifurcated deep network for top-down
contour detection. In: The IEEE conference on computer vision and pattern recognition (CVPR)

5. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell
8(6):679–698

6. Cao L, Gao L, Song J, Shen F, Wang Y (2017) Multiple hierarchical deep hashing for large scale image.
https://doi.org/10.1007/s11042-017-4489-0

7. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst
Technol 2:27:1–27:27

8. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2015) Semantic image segmentation with
deep convolutional nets and fully connected crfs. In: International conference on learning representations
(ICLR)

9. Cimpoi M, Maji S, Vedaldi A (2015) Deep filter banks for texture recognition and segmentation. In:
Proceedings of the ieee conference on computer vision and pattern recognition (CVPR)

10. Cun L, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1990) Handwritten digit
recognition with a back-propagation network. In: Neural information processing systems (NIPS)

11. Dai J, Li Y, He K, Sun J (2016) R-FCN: object detection via region-based fully convolutional networks.
In: Neural information processing systems (NIPS)

12. De Brabandere B, Jia X, Tuytelaars T, Van Gool L (2016) Dynamic filter networks. In: Neural
information processing systems (NIPS)

13. Dollár P, Zitnick CL (2015) Fast edge detection using structured forests. IEEE Trans Pattern Anal Mach
Intell 37(8):1558–1570

14. EveringhamM, Eslami SMA, Van Gool L, Williams CKI, Winn J, Zisserman A (2015) The pascal visual
object classes challenge: a retrospective. Int J Comput Vis 111(1):98–136

15. Girshick R (2015) Fast R-CNN. In: Proceedings of the International conference on computer vision
(ICCV)

16. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection
and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR)

17. Goodfellow IJ, Warde-Farley D, Mirza M, Courville AC, Bengio Y (2013) Maxout networks. In: ICML
18. Gregor K, LeCun Y (2010) Emergence of complex-like cells in a temporal product network with local

receptive fields. CoRR arXiv:1006.0448
19. Hariharan B, Arbelaez P, Bourdev L, Maji S, Malik J (2011) Semantic contours from inverse detectors.

In: The IEEE international conference on computer vision (ICCV)
20. He K, Zhang X, Ren S, Sun J (2014) Spatial pyramid pooling in deep convolutional networks for visual

recognition. In: Proceedings of the European conference on computer vision (ECCV)
21. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of

the ieee conference on computer vision and pattern recognition (CVPR)
22. Huang G, Sun Y, Liu Z, Sedra D, Weinberger K (2016) Deep networks with stochastic depth. In:

Proceedings of the european conference on computer vision (ECCV)
23. Huang X, Shen C, Boix X, Zhao Q (2015) Salicon: reducing the semantic gap in saliency prediction by

adapting deep neural networks. In: The IEEE international conference on computer vision (ICCV)
24. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal

covariate shift. In: ICML
25. Jaderberg M, Simonyan K, Zisserman A, Kavukcuoglu K (2015) Spatial transformer networks. In:

Neural information processing systems (NIPS)
26. Jegou H, Douze M, Schmid C (2008) Hamming embedding and weak geometric consistency for large

scale image search. In: Proceedings of the European conference on computer vision (ECCV)
27. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe:

convolutional architecture for fast feature embedding. In: ACM multimedia
28. Jin X, Xu C, Feng J, Wei Y, Xiong J, Yan S (2016) Deep learning with s-shaped rectified linear activation

units. In: AAAI
29. Kim JH, Lee SW, Kwak DH, Heo MO, Kim J, Ha JW, Zhang BT (2016) Multimodal residual learning

for visual qa. In: Neural information processing systems (NIPS)
30. Krizhevsky A (2009) Learning multiple layers of features from tiny images. Master’s thesis, Department

of Computer Science, University of Toronto
31. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural

networks. In: Neural information processing systems (NIPS)
32. Kuen J, Wang Z, Wang G (2016) Recurrent attentional networks for saliency detection. In: The IEEE

conference on computer vision and pattern recognition (CVPR)

Multimed Tools Appl (2018) 77:29407–2943429430

https://doi.org/10.1007/s11042-017-4489-0
http://arxiv.org/abs/1006.0448


33. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recog-
nizing natural scene categories. In: Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR)

34. Lee C, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: AISTATS
35. Liang M, Hu X (2015) Recurrent convolutional neural network for object recognition. In: Proceedings

of the IEEE conference on computer vision and pattern recognition (CVPR)
36. Lin M, Chen Q, Yan S (2014) Network in network. In: International conference on learning representa-

tions (ICLR)
37. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft

coco: Common objects in context. In: Proceedings of the European conference on computer vision
(ECCV)

38. Liu Y, Lew MS (2016) Learning relaxed deep supervision for better edge detection. In: The IEEE
conference on computer vision and pattern recognition (CVPR)

39. Liu L, Shen C, van den Hengel A (2015) The treasure beneath convolutional layers: cross convolutional
layer pooling for image classification. In: proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR)

40. Liu Y, Guo Y, Wu S, Lew MS (2015) Deepindex for accurate and efficient image retrieval. In:
Proceedings of the 5th ACM on international conference on multimedia retrieval (ICMR)

41. Liu Y, Guo Y, Lew SM (2017) On the exploration of convolutional fusion networks for visual
recognition. In: International conference on multimedia modeling (MMM)

42. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In:
Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)

43. Mohedano E, McGuinness K, O’Connor NE, Salvador A, Marques F, Giro-i Nieto X (2016) Bags
of local convolutional features for scalable instance search. In: Proceedings of ACM on international
conference on multimedia retrieval (ICMR)

44. Nilsback ME, Zisserman A (2008) Automated flower classification over a large number of classes. In:
Indian conference on computer vision, graphics and image processing

45. Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR)

46. Ou X, Ling H, Liu S, Lei J (2016) Hierarchical deep semantic hashing for fast image retrieval. Multimed
Tools Appl 76(20):21281–21302

47. Quattoni A, Torralba A (2009) Recognizing indoor scenes. In: Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR)

48. Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region
proposal networks. In: Neural information processing systems (NIPS)

49. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein
M, Berg AC, Fei-Fei L (2015) ImageNet large scale visual recognition challenge. IJCV 115(3):211–252

50. Schroff F, Kalenichenko D, Philbin J (2015) FaceNet: a unified embedding for face recognition
and clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR)

51. Sermanet P, Chintala S, LeCun Y (2012) Convolutional neural networks applied to house numbers digit
classification. In: International conference on pattern recognition (ICPR)

52. Shen W, Wang X, Wang Y, Bai X, Zhang Z (2015) Deepcontour: a deep convolutional feature learned
by positive-sharing loss for contour detection. In: The IEEE conference on computer vision and pattern
recognition (CVPR)

53. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition.
In: International conference on learning representations (ICLR)

54. Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M (2015) Striving for simplicity: the all convolu-
tional net. In: International conference on learning representations (ICLR)

55. Srivastava RK, Greff K, Schmidhuber J (2015) Training very deep networks. In: Neural information
processing systems (NIPS)

56. Sun Y, Wang X, Tang X (2015) Deeply learned face representations are sparse, seletive, and robust. In:
Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)

57. Szegedy C, Ioffe S, Vanhoucke V (2016) Inception-v4, inception-resnet and the impact of residual
connections on learning. CoRR arXiv:1602.07261

58. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A
(2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR)

59. Wah C, Branson S, Welinder P, Perona P, Belongie S (2011) The Caltech-UCSD Birds-200-2011
Dataset. Tech. Rep. CNS-TR-2011-001

Multimed Tools Appl (2018) 77:29407–29434 29431

http://arxiv.org/abs/1602.07261


60. Wei XS, Gao BB, Wu J (2015) Deep spatial pyramid ensemble for cultural event recognition. In:
Proceedings of the international conference on computer vision (ICCV) workshops

61. Wu S, Zhong S, Liu Y (2017) Deep residual learning for image steganalysis. Multimed Tools Appl.
https://doi.org/10.1007/s11042-017-4440-4

62. Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the international conference
on computer vision (ICCV)

63. Yang S, Ramanan D (2015) Multi-scale recognition with DAG-CNNs. In: Proceedings of the interna-
tional conference on computer vision (ICCV)

64. Yoo D, Park S, Lee JY, Kweon IS (2015) Multi-scale pyramid pooling for deep convolutional repre-
sentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR),
DeepVision workshop

65. Yue-Hei Ng J, Yang F, Davis LS (2015) Exploiting local features from deep networks for image retrieval.
In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Deep
Vision workshops

66. Zagoruyko S, Komodakis N (2016) Wide residual networks. In: British machine vision conference
(BMVC)

67. Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su Z, Du D, Huang C, Torr P (2015) Conditional
random fields as recurrent neural networks. In: The IEEE international conference on computer vision
(ICCV)

68. Zhou B, Lapedriza A, Xiao J, Torralba A, Oliva A (2014) Learning deep features for scene recognition
using places database. In: Neural information processing systems (NIPS)

Yu Liu received the B.S. degree and M.S degree from School of Software Technology, Dalian University
of Technology, Dalian, China, in 2011 and 2014, respectively. He is currently a Ph.D. in Leiden Institute of
Advanced Computer Science (LIACS), Leiden University. His current research interests include computer
vision and deep learning, especially, image classification, image retrieval and multi-modal matching. He
obtained the Best Paper Award in MMM 2017.

Multimed Tools Appl (2018) 77:29407–2943429432

https://doi.org/10.1007/s11042-017-4440-4


Yanming Guo received the B.S. degree in information system engineering, the M.S degree in operational
research from the National University of Defense Technology, Changsha, China, in 2011 and 2013, respec-
tively. He is currently a Ph.D. in Leiden Institute of Advanced Computer Science (LIACS), Leiden University.
His current research interests include image classification, object detection and image retrieval.

Theodoros Georgiou received the B.S. degree and M. S degree from Leiden University, The Netherlands.
He is currently a Ph.D. in Leiden Institute of Advanced Computer Science (LIACS), Leiden University. His
current research interests include high-dimensional data mining and deep learning.

Multimed Tools Appl (2018) 77:29407–29434 29433



Michael S. Lew is co-head of the Imagery and Media Research Cluster at LIACS and director of theLIACS
Media Lab. He received his doctorate from University of Illinois at Urbana-Champaign and then became a
postdoctoral researcher at Leiden University. One year later he became the first Leiden University Fellow
which was a pilot program for tenure track professors. In 2003, he became a tenured associate professor
at Leiden University and was invited to serve as a chair full professor in computer science at Tsinghua
University (theMIT of China). He has published over 100 peer reviewed papers with three best paper citations
in the areas of computer vision, content-based retrieval, and machine learning. Currently (September 2014),
he has the most cited paper in the history of the ACM Transactions on Multimedia. In addition, he has the
most cited paper from the ACM International Conference on Multimedia Information Retrieval (MIR) 2008
and also from ACMMIR 2010. He has served on the organizing committees for over a dozen ACM and IEEE
conferences. He served as the founding the chair of the ACM ICMR steering committee and had served as
chair for both the ACM MIR and ACM CIVR steering committees. In addition he is the Editor-in-Chief of
the International Journal of Multimedia Information Retrieval (Springer) and a member of the ACM SIGMM
Executive Board which is the highest and most influential committee of the SIGMM.

Multimed Tools Appl (2018) 77:29407–2943429434


	Fusion that matters: convolutional fusion networks for visual recognition
	Abstract
	Introduction
	Related work
	Employment of intermediate layers
	Intermediate supervision
	Deep fusion networks



	Convolutional fusion networks
	Overview
	Architecture
	Efficient side outputs
	Early fusion and late prediction
	Locally-connected fusion


	Training
	Discussion
	Relationship with CNN
	Relationship with DSN
	Relationship with ResNet



	Fully convolutional fusion networks
	Semantic segmentation
	Edge detection

	Experiments
	CIFAR dataset
	Models
	Results
	Comparison with other approaches


	ImageNet 2012
	Results

	Transferring deep fused features
	Results

	Semantic segmentation
	Results

	Edge detection
	Results

	Future work

	Conclusions
	Acknowledgments
	Open Access
	References


