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Chapter 1

Weil-étale complexes

For an arithmetic scheme X (separated, of finite type over Spec Z) and
a strictly negative integer n, we are going to construct certain complexes
RΓW,c(X, Z(n)), following Flach and Morin [Mor2014, FM2016]. Here “W”
stays for “Weil-étale” and “c” stays for “compact support”.

The constructions are based on complexes of sheaves Zc(n) on Xét, dis-
cussed in §0.11. The basic properties of motivic cohomology for arithmetic
schemes are still conjectural, and in order to make sense of all our construc-
tions, we will need to assume in 1.1.1 that the groups Hi(Xét, Zc(n)) are
finitely generated.

It is worth mentioning that the constructions in [FM2016] use other cycle
complexes Z(n), mentioned in §0.11. If X has pure dimension d, then all
this amounts to the renumbering

(1.0.1) Zc(n) = Z(d− n)[2d],

which should be taken into account when comparing formulas that will ap-
pear below with the formulas from [FM2016]. We use Zc(n) instead of Z(n)
precisely to avoid any references to the dimension of X (which is not as-
sumed anymore to be equidimensional). Indeed, the dimensions of coho-
mology groups in many formulas in [FM2016] have terms “2d”, and if one
rewrites everything using (1.0.1), they magically disappear. This suggests
that Zc(n) is a more natural object than Z(n) in our situation.

In fact, §1.2 introduces a special definition of Z(n), motivated by [FM2016],
which is unrelated to the cycle complexes. In our setting n < 0, the complex
Z(n) will consist of a single étale sheaf, rather easy to define and under-
stand.

Both Zc(n) and Z(n) will appear in a certain arithmetic duality theorem
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in §1.3, which is stated as a quasi-isomorphism of complexes

RΓ̂c(Xét, Z(n))
∼=−→ RHom(RΓ(Xét, Zc(n)), Q/Z[−2]).

In §1.4 I take a look at RΓ̂c(Xét, Z(n)) and related complexes. Then using the
duality theorem, I define in §1.5 a morphism in the derived category D(Ab)

αX,n : RHom(RΓ(Xét, Zc(n)), Q[−2])→ RΓc(Xét, Z(n))

and declare RΓfg(X, Z(n)) to be its cone:

RHom(RΓ(Xét, Zc(n)), Q[−2])
αX,n−−→ RΓc(Xét, Z(n))→ RΓfg(X, Z(n))

→ RHom(RΓ(Xét, Zc(n)), Q[−1])

The complex RΓfg(X, Z(n)) is almost perfect in the sense of 0.3.3 (i.e. a per-
fect complex modulo possible 2-torsion in arbitrarily high degrees), canoni-
cal and functorial (despite being defined as a cone in the derived category).

Then §1.6 is dedicated to the definition of RΓW,c(X, Z(n)). For this we
will need a morphism

i∗∞ : RΓfg(X, Z(n))→ RΓc(GR, X(C), (2πi)n Z),

where RΓc(GR, X(C), (2πi)n Z) stays for the GR-equivariant cohomology
with compact support on X(C). Then RΓW,c(X, Z(n)) will be given (sadly,
up to a non-unique isomorphism in D(Ab)) by the distinguished triangle

RΓW,c(X, Z(n))→ RΓfg(X, Z(n))
i∗∞−→ RΓc(GR, X(C), (2πi)n Z)

→ RΓW,c(X, Z(n))[1]

The sheaf (2πi)n Z is the constant GR-equivariant sheaf on X(C), which is
the image of Z(n) under the morphism α∗ from §0.7 (see 1.6.2). The existence
of i∗∞ relies on a rather nontrivial argument (theorem 1.6.4).

I show in §1.7 that there is a (non-canonical) splitting

RΓW,c(X, Z(n))⊗Z Q ∼=
RHom(RΓ(Xét, Zc(n)), Q)[−1]⊕ RΓc(GR, X(C), (2πi)n Q)[−1].

Finally, §1.8 is dedicated to verifying that RΓW,c(X, Z(n)) is well-behaved
with respect to open-closed decompositions of schemes U ↪→ X ← Z. With
the present definition, this cannot be shown for the complex itself, but we
are going to establish a canonical isomorphism of the determinants

detZ RΓW,c(X, Z(n)) ∼= detZ RΓW,c(U, Z(n))⊗Z detZ RΓW,c(Z, Z(n)),

which will be enough for our purposes.
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1.1 Conjecture Lc(Xét, n)

Practically all our constructions will make use of the following hypothesis
for an arithmetic scheme X and a strictly negative integer n < 0.

1.1.1. Conjecture Lc(Xét, n). The groups Hi(Xét, Zc(n)) are finitely gener-
ated for all i ∈ Z.

This is analogous to “L(Xét, n)” (Conjecture 3.2) in [FM2016], but in our
setting we need a statement for the dualizing cycle complexes Zc(n). As
we are going to see in 1.5.3, the conjecture Lc(Xét, n) actually implies that
for any arithmetic scheme X the complex Zc(n) is bounded from below and
has some finite 2-torsion in higher degrees. This is related to the Beilinson–
Soulé vanishing conjecture, which has not been proved yet.

1.2 Complexes of étale sheaves Z(n) for n < 0

For our construction, we need to make sense of “cycle complexes” Z(n) for
n < 0. Here we recall a good definition of such an object, coming from
[FM2016, §6.2].

First of all, if Z(n) is defined, then for any abelian group A and n ≥ 0,
one can define the corresponding complex with coefficients in A by

A(n) := Z(n)⊗L
Z A.

The usual distinguished triangle

Z→ Q→ Q/Z→ Z[1]

should give after tensoring with Z(n) a distinguished triangle of complexes
of sheaves

Q/Z(n)[−1]→ Z(n)→ Q(n)→ Q/Z(n)

and we can use this to define the cycle complex Z(n) for n < 0. In this case
we should have Q(n) = 0, so the triangle above suggests that we should put

Z(n) := Q/Z(n)[−1] for n < 0.

The complex Q/Z(n) still does not make sense for n < 0, but we should
have something like

Q/Z(n) =
⊕

p
Z/p∞Z(n) =

⊕
p

lim−→
r

Z/prZ(n),

and we define for n < 0

Z/prZ(n) := jp!µ
⊗n
pr ,

where
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1) jp is the open immersion X[1/p]→ X, and jp! : Sh(X[1/p]ét)→ Sh(Xét)
denotes the extension by zero functor;

2) µpr is the sheaf of roots of unity on X[1/p]ét represented by the com-
mutative group scheme

X[1/p] ×
Spec Z[1/p]

Spec Z[1/p][t]/(tpr − 1)→ X[1/p];

3) µ⊗n
pr is the sheaf on X[1/p]ét defined by

µ⊗n
pr := HomX[1/p](µ

⊗(−n)
pr , Z/pr).

Therefore we are going to use the following definition.

1.2.1. Definition. For each n < 0 we consider the complex of sheaves on Xét

Z(n) := Q/Z(n)[−1] :=
⊕

p
lim−→

r
jp!µ

⊗n
pr [−1].

1.3 An Artin–Verdier-like duality

At the heart of our constructions is a certain arithmetic duality theorem for
cycle complexes obtained by Thomas Geisser in [Gei2010]. It generalizes
the classical Artin–Verdier duality (originating from one of the Woods Hole
seminars [AV1964]; one of the few thorough discussions in the literature is
the second chapter of Milne’s book [Mil2006]).

1.3.1. Proposition (“Artin–Verdier duality”). For any n < 0 we have a quasi-
isomorphism of complexes

RΓ̂c(Xét, Z(n)) ∼= lim−→
m

RHom(RΓ(Xét, Z/mZc(n)), Q/Z[−2]).

Proof. We unwind our definition of Z(n) for n < 0 and reduce everything to
the results from [Gei2010]. It is worth remarking that Geisser uses notation
“RΓc” for our “RΓ̂c” (see §0.9).

As we have Z(n) :=
⊕

p lim−→r
jp!µ

⊗n
pr [−1], it will be enough to show that

for every prime p and r = 1, 2, 3, . . . there is a quasi-isomorphism of com-
plexes

RΓ̂c(Xét, jp!µ
⊗n
pr [−1]) ∼= RHom(RΓ(Xét, Zc/pr(n)), Q/Z[−2]),

and then pass to the corresponding filtered colimits.



Chapter 1. Weil-étale complexes 69

As in §1.2, the morphism jp : X[1/p] ↪→ X denotes the canonical open
immersion. We further denote by f : X → Spec Z the structure morphism of
X and by fp the morphism X[1/p]→ Spec Z[1/p]:

X[1/p] X

Spec Z[1/p] Spec Z

jp

fp f

As we are going to change the base scheme, let us write “HomX(−,−)”
for the Hom between sheaves on Xét (and “HomX(−,−)” for the internal
Hom). Instead of “HomSpec R”, we will simply write “HomR”.

By [Gei2010, Proposition 7.10, (c)], we have the following “exchange for-
mulas”. If we work with complexes of constructible sheaves on the étale site
of schemes over the spectrum of a number ring Spec OK, then for a morphism
φ of such schemes we have

Rφ∗D(F ) ∼= D(Rφ!F ),(1.3.1)

Rφ!D(G) ∼= D(φ∗G),(1.3.2)

where the dualization is given by

D(F •) := RHomX(F
•, Zc(0)).

Applying the exchange formula (1.3.1) to our situation, we get
(1.3.3)

RHomX(jp!µ
⊗n
pr [−1], Zc

X(0)) ∼= Rjp∗RHomX[1/p](µ
⊗n
pr [−1], Zc

X[1/p](0)).

Using the other exchange formula (1.3.2), we may identify the sheaf
RHomX[1/p](µ

⊗n
pr [−1], Zc

X[1/p](0)):

RHomX[1/p](µ
⊗n
pr [−1], Zc

X[1/p](0))
∼= RHomX[1/p]( f ∗p µ⊗n

pr [−1], Zc
X[1/p](0))

(1.3.4)

∼= R f !
pRHomZ[1/p](µ

⊗n
pr [−1], Zc

Z[1/p](0))(1.3.5)

∼= R f !
pRHomZ[1/p](µ

⊗n
pr [−1], Gm[1])(1.3.6)

∼= R f !
pRHomZ[1/p](µ

⊗n
pr , Gm)[2](1.3.7)

∼= R f !
pµ
⊗(1−n)
pr [2](1.3.8)

Here (1.3.4) simply means that the sheaf µ⊗n
pr on X[1/p] is the same as

the inverse image of the corresponding sheaf on Spec Z[1/p]. The quasi-
isomorphism (1.3.5) is the first exchange formula. Then, (1.3.6) is the fact that
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the complex Zc
Z[1/p](0) is quasi-isomorphic to Gm[1] according to [Gei2010,

Lemma 7.4]. Thanks to [Gei2004, Theorem 1.2], we may identify the sheaf
µ
⊗(1−n)
pr :

(1.3.9) µ
⊗(1−n)
pr

∼= ZZ[1/p]/pr(1− n) = Zc
Z[1/p]/pr(n)[−2].

Then [Gei2010, Corollary 7.9] tells us that

(1.3.10) R f !
pZc

Z[1/p]/pr(n) ∼= Zc
X[1/p]/pr(n).

Finally, thanks to [Gei2010, Theorem 7.2 (a)] and [Gei2010, Proposition
2.3], we have Zc

X[1/p]/pr(n) ∼= j∗pZc
X/pr(n), and all the above gives

(1.3.11) RHomX(jp!µ
⊗n
pr [−1], Zc

X(0)) ∼= Rjp∗ j∗pZc
X/pr(n) ∼= Zc

X/pr(n).

After applying RΓ(Xét,−), we get a quasi-isomorphism of complexes of
abelian groups

(1.3.12) RHom(jp!µ
⊗n
pr [−1], Zc

X(0)) ∼= RΓ(Xét, Zc
X/pr(n)).

Now according to the generalization of Artin–Verdier duality by Geisser
[Gei2010, Theorem 7.8], we have
(1.3.13)

RHom(jp!µ
⊗n
pr [−1], Zc(0)) ∼= RHom(RΓ̂c(Xét, jp!µ

⊗n
pr [−1]), Q/Z[−2]).

So what we obtain at the end is a quasi-isomorphism

RΓ(Xét, Zc/pr(n)) ∼= RHom(RΓ̂c(Xét, jp!µ
⊗n
pr [−1]), Q/Z[−2]).

This is almost what we need: if we apply RHom(−, Q/Z[−2]), then, as
Ĥi

c(Xét, jp!µ
⊗n
pr [−1]) are finite groups (because the sheaves jp!µ

⊗n
pr are con-

structible), we have

RHom(RΓ(Xét, Zc/pr(n)), Q/Z[−2]) ∼=
RHom(RHom(RΓ̂c(Xét, jp!µ

⊗n
pr [−1]), Q/Z[−2]), Q/Z[−2])

∼= RΓ̂c(Xét, jp!µ
⊗n
pr [−1]).

�

The quasi-isomorphism

RΓ̂c(Xét, Z(n)) ∼= lim−→
m

RHom(RΓ(Xét, Z/mZc(n)), Q/Z[−2])
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that we just saw means that on the level of cohomology, we get

Ĥi
c(Xét, Z(n)) ∼= lim−→

m
Hom(H2−i(Xét, Z/mZc(n)), Q/Z)

(note that the group Q/Z is divisible, so Hom(−, Q/Z) is an exact functor,
and the filtered colimit lim−→m

is exact as well).

1.3.2. Proposition. Assuming the conjecture Lc(Xét, n) (see 1.1.1), there is a
quasi-isomorphism of complexes

lim−→
m

RHom(RΓ(Xét, Z/mZc(n)), Q/Z[−2]) ∼=

RHom(RΓ(Xét, Zc(n)), Q/Z[−2]).

Proof. As Zc(n) is a complex of flat sheaves, the short exact sequence of
abelian groups

0→ Z
×m−−→ Z→ Z/mZ→ 0

induces a short exact sequence of sheaves

(1.3.14) 0→ Zc(n) ×m−−→ Zc(n)→ Z/mZc(n)→ 0

The morphism Zc(n) → Z/mZc(n) induces some morphisms in coho-
mology

Hi(Xét, Zc(n))→ Hi(Xét, Z/mZc(n)).

We claim that if we pass to the duals Hom(−, Q/Z) and then to the filtered
colimits lim−→m

, then we obtain an isomorphism. (Note that both Hom(−, Q/Z)
and lim−→m

are exact.)
The short exact sequence (1.3.14) induces a long exact sequence in coho-

mology

· · · Hi(Xét, Zc(n)) Hi(Xét, Zc(n)) Hi(Xét, Z/mZc(n))

Hi+1(Xét, Zc(n)) Hi+1(Xét, Zc(n)) Hi+1(Xét, Z/mZc(n)) · · ·

×m

δi
×m

We further have exact sequences

ker δi

Hi(Xét, Zc(n)) Hi(Xét, Zc(n)) Hi(Xét, Zc(n))m 0

0 m Hi+1(Xét, Zc(n)) Hi+1(Xét, Zc(n)) Hi+1(Xét, Zc(n))

im δi

×m

×m
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that give us

0→ Hi(Xét, Zc(n))m → Hi(Xét, Z/mZc(n))→ m Hi+1(Xét, Zc(n))→ 0

Now if we take Hom(−, Q/Z) and filtered colimits lim−→m
, we get

(1.3.15) 0→ lim−→
m

Hom(mHi+1(Xét, Zc(n)), Q/Z)→

lim−→
m

Hom(Hi(Xét, Z/mZc(n)), Q/Z)→ lim−→
m

Hom(Hi(Xét, Zc(n))m, Q/Z)→ 0

By the conjecture Lc(Xét, n), the group Hi+1(Xét, Zc(n)) is finitely gener-
ated, and therefore

m Hi+1(Xét, Zc(n)) = 0 for m� 0,

which means that the first lim−→m
in the short exact sequence (1.3.15) vanishes,

and we obtain isomorphisms

lim−→
m

Hom(Hi(Xét, Zc(n))m, Q/Z)
∼=−→ lim−→

m
Hom(Hi(Xét, Z/mZc(n)), Q/Z).

It remains to note that the first lim−→m
above is canonically isomorphic to

Hom(Hi(Xét, Zc(n)), Q/Z),

as we observed in 0.1.2 (again, thanks to finite generation of Hi(Xét, Zc(n))).
�

Let us summarize the results of this section.

1.3.3. Theorem. Assuming the conjecture Lc(Xét, n), there is a quasi-isomorphism

RΓ̂c(Xét, Z(n))
∼=−→ RHom(RΓ(Xét, Zc(n)), Q/Z[−2]).

In particular, the conjecture Lc(Xét, n) implies that the cohomology of RΓ̂c(Xét, Z(n))
is of cofinite type.

1.4 Complexes RΓ̂(GR, (R f!Z(n))C)

The duality theorem 1.3.3 deals with the complex RΓ̂c(Xét, Z(n)), so let us
make a little digression to understand it. By the definition from §0.9, it sits
in the distinguished triangle

RΓ̂c(Xét, Z(n))→ RΓc(Xét, Z(n))→ RΓ̂(GR, (R f!Z(n))C)

→ RΓ̂c(Xét, Z(n))[1]
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To define cohomology with compact support, we pick a Nagata compact-
ification

X X

Spec Z

j

f g

where j is an open immersion and g is proper. Then by definition, R f!Z(n) :=
Rg∗ j!Z(n). As we are interested in the stalk of R f!Z(n) at Spec C→ Spec Z,
let us consider the base change to C. The schemes f : X → Spec Z and
g : X → Spec Z give us fC : XC → Spec C and gC : XC → Spec C, and the
open immersion j : X ↪→ X induces an open immersion jC : XC ↪→ XC. We
have the following commutative prism:

XC XC

Spec C

X X

Spec Z

jC

fC
gC

j

f g

Note that the back face is also a pullback. The proper base change the-
orem [SGA 4, Exposé XII, Theéorème 5.1] applied to the right face of the
prism (recall that the morphism g is proper) and the abelian torsion sheaf
j!Z(n) on Xét, gives us an isomorphism

(1.4.1) RgC,∗(j!Z(n))C
∼= (Rg∗ j!Z(n))C.

Here (j!Z(n))C denotes the inverse image of j!Z(n) with respect to XC →
X, and (Rg∗ j!Z(n))C denotes the inverse image of Rg∗ j!Z(n) with respect to
Spec C → Spec Z. Extension by zero commutes with base change, so we
have

(j!Z(n))C
∼= jC,!(Z(n)C),

and we may rewrite (1.4.1) as

(1.4.2) RgC,∗ jC,!(Z(n)C)︸ ︷︷ ︸
=:R fC,!(Z(n)C)

∼= (Rg∗ j!Z(n)︸ ︷︷ ︸
=:R f!Z(n)

)C.
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Now we would like to apply Artin’s comparison theorem [SGA 4, Exposé
XVI, Théorème 4.1]. We have the following commutative square of sites:

XC,ét XC,cl

(Spec C)ét (Spec C)cl

gC,ét

εX

gC,cl

εC

and for the sheaf jC,!(Z(n)C), Artin’s theorem gives

RgC,cl,∗ε
∗
X jC,!(Z(n)C) ∼= ε∗CRgC,ét,∗ jC,!(Z(n)C).

Note that we have

ε∗X jC,!(Z(n)C) ∼= jC,cl,!ε
∗
X(Z(n)C),

where εX denotes the corresponding morphism of sites XC,cl → XC,ét. Now

R fC,cl,!ε
∗
X(Z(n)C) := RgC,cl,∗ jC,cl,!ε

∗
X(Z(n)C)

∼= ε∗CRgC,ét,∗ jC,!(Z(n)C)

(1.4.2)∼= ε∗C(Rg∗ j!Z(n))C

=: ε∗C(R f!Z(n))C.

Note that ε∗C is just an equivalence of categories, and both R fC,cl,!ε
∗
X(Z(n)C)

and ε∗C(R f!Z(n))C may be viewed as complexes of abelian groups or, more
precisely, of GR-modules.

Let us calculate the sheaf ε∗X(Z(n)C) on XC,cl. Recall that by definition,

Z(n) := Q/Z(n)[−1] :=
⊕

p
lim−→

r
jp!µ

⊗n
pr [−1],

where
µ⊗n

pr := HomX[1/p](µ
⊗(−n)
pr , Z/prZ).

Base change to XC and the inverse image ε∗X commute with colimits. The
sheaves µ⊗n

pr become constant sheaves µ⊗n
pr (C) on X(C), and their colimit is

given by 0.5.5.

1.4.1. Proposition. There is an isomorphism of constant GR-equivariant sheaves
on XC,cl

ε∗X(Z(n))C
∼= (2πi)n Q/Z[−1].
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This implies that the complex R fC,cl,!ε
∗
X(Z(n)C) may be identified with

RΓc(X(C), (2πi)n Q/Z[−1]), and in particular, we have a quasi-isomorphism
of complexes

(1.4.3) RΓ̂c(GR, X(C), (2πi)n Q/Z[−1]) ∼= RΓ̂(GR, (R f!Z(n))C),

where

RΓ̂c(GR, X(C), (2πi)n Q/Z[−1]) := RΓ̂(GR, RΓc(X(C), (2πi)n Q/Z[−1])).

1.4.2. Proposition. We have a quasi-isomorphism of complexes

RΓ̂c(GR, X(C), (2πi)n Q/Z[−1]) ∼= RΓ̂c(GR, X(C), (2πi)n Z).

Proof. Consider the short exact sequence of GR-equivariant sheaves on X(C)

0→ (2πi)n Z→ (2πi)n Q→ (2πi)n Q/Z→ 0

which gives us a distinguished triangle

RΓ̂c(GR, X(C), (2πi)n Z)→ RΓ̂c(GR, X(C), (2πi)n Q)

→ RΓ̂c(GR, X(C), (2πi)n Q/Z)→ RΓ̂c(GR, X(C), (2πi)n Z)[1]

and the corresponding long exact sequence in cohomology

· · · → Ĥi−1
c (GR, X(C), (2πi)n Q)→ Ĥi−1

c (GR, X(C), (2πi)n Q/Z)→
Ĥi

c(GR, X(C), (2πi)n Z)→ Ĥi
c(GR, X(C), (2πi)n Q)→ · · ·

Now in the spectral sequence

Epq
2 = Ĥp(GR, Hq

c (X(C), (2πi)n Q)) =⇒ Ĥp+q
c (GR, X(C), (2πi)n Q),

the groups Ĥp(GR, Hq
c (X(C), (2πi)n Q)) are Q-vector spaces, and they are

2-torsion for all p ∈ Z (keep in mind that we are working with Tate coho-
mology). This means that Epq

2 = 0 for all p, q ∈ Z, and

Ĥi
c(GR, X(C), (2πi)n Q) = 0.

We conclude that the morphism

RΓ̂c(GR, X(C), (2πi)n Q/Z[−1])→ RΓ̂c(GR, X(C), (2πi)n Z)

induces isomorphisms on cohomology. �
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Combining the last proposition with (1.4.3), we obtain the following re-
sult.

1.4.3. Theorem. There is a quasi-isomorphism of complexes

RΓ̂(GR, (R f!Z(n))C) ∼= RΓ̂c(GR, X(C), (2πi)n Z).

The cohomology of these complexes is given by finite 2-torsion groups.

Proof. Tate (hyper)cohomology groups of GR are always killed by #GR = 2
(see 0.9.1). To see that in our case these 2-torsion groups are finite, we may
consider the spectral sequence

Epq
2 = Ĥp(GR, Hq

c (X(C), (2πi)n Z)) =⇒ Ĥp+q
c (GR, X(C), (2πi)n Z).

According to 0.10.1, the groups Hq
c (X(C), (2πi)n Z) are finitely generated

for all q, and they vanish for q � 0 and q < 0. This means that the second
page of the spectral sequence looks like

q

p

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

where all objects are finite 2-torsion. �

For the sake of completeness and for further reference, let us look at
spectral sequences similar to the one in the last proof, but with the usual
group cohomology instead of Tate cohomology. If we replace Ĥ with H,
then Hp(GR, Hq

c (X(C), (2πi)n Z)) is not necessarily 2-torsion for p = 0, and
the second page of the spectral sequence

Epq
2 = Hp(GR, Hq

c (X(C), (2πi)n Z)) =⇒ Hp+q
c (GR, X(C), (2πi)n Z)

looks like
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q

p

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

where the shaded part Epq
2 , p > 0 consists of finitely generated 2-torsion

groups, the line E0q
2 consists of finitely generated groups, and the objects Epq

2
are zero for q � 0. It follows that the groups Hi(GR, X(C), (2πi)n Z) are
all finitely generated as well, and they are torsion for i � 0. This is in fact
2-torsion, and we may see this as follows. If P• � Z is the bar-resolution of
Z by free ZGR-modules, then the morphism of complexes

· · · P3 P2 P1 P0 0

· · · P3 P2 P1 P0 0

2 2 2 2−N

“2” : P• → P•,

(2− N) : P0 → P0,

2 : Pi → Pi for i > 1,

which induces multiplication by 2 on Hi(G,−) for i > 0 is null-homotopic
[Wei1994, Theorem 6.5.8]. It is not multiplication by 2 in degree 0, but as the
complex RΓc(GR, X(C), (2πi)n Z) is bounded, we see that it induces multi-
plication by 2 on Hi(GR, X(C), (2πi)n Z) for i � 0. So we just proved the
following.

1.4.4. Lemma. The complex

RΓc(GR, X(C), (2πi)n Z) = RΓ(GR, RΓc(X(C), (2πi)n Z))

is almost perfect in the sense of 0.3.3.

As for Q/Z-coefficients, we may analyze a similar spectral sequence

Epq
2 = Hp(GR, Hq

c (X(C), (2πi)n Q/Z)) =⇒ Hp+q(GR, X(C), (2πi)n Q/Z).
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The second page will have groups of cofinite type on the line E0q
2 (see 0.10.1)

and finite 2-torsion groups Epq
2 for p > 0. We have filtrations

(1.4.4) Hp+q = F0(Hp+q) ⊇ F1(Hp+q) ⊇ F2(Hp+q) ⊇ · · ·
⊇ Fp+q(Hp+q) ⊃ Fp+q+1(Hp+q) = 0

where
0→ Fp+1(Hp+q)→ Fp(Hp+q)→ Epq

∞ → 0

Note that E0q
∞ will be groups of cofinite type, and Epq

∞ will be finite 2-torsion
groups for p > 0, as we are going to have

0→ E0q
r+1 → E0q

r → T → 0

where T is finite 2-torsion, and similarly,

Epq
r+1
∼= ker dpq

r / im dp−r,q+r−1
r

Ep−r,q+r−1
r

dp−r,q+r−1
r−−−−−→ Epq

r
dpq

r−→ Ep+r,q−r+1
r

where Epq
r is finite 2-torsion for p > 0. It follows by induction that all the

members of the filtration (1.4.4) are finite groups, except for F0(Hp+q) =
Hp+q itself, which is of cofinite type, being an extension of a group of cofinite
type E0q

∞ by a finite group F1(Hp+q) (see 0.1.3). We also see that Hp+q is 2-
torsion for p + q� 0. This gives us the following result.

1.4.5. Lemma. The complex

RΓc(GR, X(C), (2πi)n Q/Z) = RΓ(GR, RΓc(X(C), (2πi)n Q/Z))

is almost of cofinite type in the sense of 0.3.7.

1.5 Complexes RΓfg(X, Z(n))

1.5.1. Definition. The morphism αX,n in D(Ab) is given by the composition
of morphisms

RHom(RΓ(Xét, Zc(n)), Q[−2])→ RHom(RΓ(Xét, Zc(n)), Q/Z[−2])
∼=←− RΓ̂c(Xét, Z(n))→ RΓc(Xét, Z(n))

Here the first arrow is induced by RHom(RΓ(Xét, Zc(n)),−) and the
canonical projection Q � Q/Z. The second arrow is a quasi-isomorphism
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given by theorem 1.3.3. The third arrow is the morphism (0.9.8) from co-
homology with compact support à la Milne to the usual cohomology with
compact support.

Then the complex RΓfg(X, Z(n)) is defined as a cone of αX,n in D(Ab):

RHom(RΓ(Xét, Zc(n)), Q[−2])
αX,n−−→ RΓc(Xét, Z(n))→ RΓfg(X, Z(n))

→ RHom(RΓ(Xét, Zc(n)), Q[−1])

1.5.2. Remark. If X(R) = ∅, then RΓ̂c(Xét, Z(n)) is the same as RΓc(Xét, Z(n))
(see 0.9.2), so that in this case we have an isomorphism of distinguished tri-
angles

RHom(RΓ(Xét, Zc(n)), Q[−2]) RHom(RΓ(Xét, Zc(n)), Q[−2])

RHom(RΓ(Xét, Zc(n)), Q/Z[−2]) RΓc(Xét, Z(n))

RHom(RΓ(Xét, Zc(n)), Z[−1]) RΓfg(X, Z(n))

RHom(RΓ(Xét, Zc(n)), Q[−1]) RHom(RΓ(Xét, Zc(n)), Q[−1])

id

'

'

id

where the left column is the result of application of RHom(RΓ(Xét, Zc(n)),−)
to an appropriate rotation of the triangle

Z→ Q→ Q/Z→ Z[1]

We conclude that

RΓfg(X, Z(n)) ' RHom(RΓ(Xét, Zc(n)), Z[−1]).

However, this holds only if X(R) = ∅. In what follows, we are not going
to make such an assumption on X, even though it would save quite some
technical work. It is still helpful to keep in mind the special case X(R) = ∅.

The complex of sheaves Zc(n) is bounded from below, under the as-
sumption that their cohomology groups are finitely generated (which is our
conjecture Lc(Xét, n), stated in 1.1.1).

1.5.3. Lemma. Assuming the conjecture Lc(Xét, n), we have

Hi(Xét, Zc(n)) = 0 for i < −2 dim X.
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Proof. The complex of sheaves Zc(n) is flat, so the short exact sequence of
abelian groups

0→ Z→ Q→ Q/Z→ 0

gives us a short exact sequence of étale sheaves

0→ Zc(n)→ Qc(n)→ Q/Zc(n)→ 0

and then applying RΓ(Xét,−), we obtain a distinguished triangle in D(Ab)

RΓ(Xét, Zc(n))→ RΓ(Xét, Qc(n))→ RΓ(Xét, Q/Zc(n))→ RΓ(Xét, Zc(n))[1]

Now according to [Mor2014, Lemma 5.12] (note that the proof there also
uses Geisser’s duality), we have

Hi(Xét, Q/Zc(n)) = 0 for i < −2 dim X,

and the above triangle implies that

Hi(Xét, Qc(n)) ∼= Hi(Xét, Zc(n)) for i < −2 dim X.

However, Hi(Xét, Qc(n)) is a Q-vector space, and according to the conjecture
Lc(Xét, n), the groups Hi(Xét, Zc(n)) are finitely generated over Z. This
means that for i < −2 dim X these groups are trivial. �

1.5.4. Proposition. The complex RΓfg(X, Z(n)) is almost perfect in the sense of
0.3.3, i.e. its cohomology groups Hi

fg(X, Z(n)) := Hi(RΓfg(X, Z(n))) are finitely
generated, trivial for i� 0, and only have 2-torsion for i� 0.

Proof. By the definition of RΓfg(X, Z(n)), we have a long exact sequence in
cohomology

· · · Hom(H2−i(Xét, Zc(n)), Q) Hi
c(Xét, Z(n)) Hi

fg(X, Z(n))

Hom(H1−i(Xét, Zc(n)), Q) Hi+1
c (Xét, Z(n)) · · ·

Hi(αX,n)

δi
Hi+1(αX,n)

We consider short exact sequences

0 ker δi Hi
fg(X, Z(n)) im δi 0

coker Hi(αX,n) ker Hi+1(αX,n)
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By the definition of αX,n, the morphism Hi(αX,n) factors as

Hom(H2−i(Xét, Zc(n)), Q)→ Hom(H2−i(Xét, Zc(n)), Q/Z)
∼=−→ Ĥi

c(Xét, Z(n))→ Hi
c(Xét, Z(n))

Here the morphism Ĥi
c(Xét, Z(n))→ Hi

c(Xét, Z(n)) is identity, except for
some finite 2-torsion. Indeed, this morphism sits in the long exact sequence
(0.9.9):

· · · → Ĥi−1(GR, (R f!Z(n))C)→ Ĥi
c(Xét, Z(n))→ Hi

c(Xét, Z(n))

→ Ĥi(GR, (R f!Z(n))C)→ · · ·

and Ĥi(GR, (R f!Z(n))C) is finite 2-torsion according to 1.4.3.
The group H2−i(Xét, Zc(n)) is finitely generated according to the conjec-

ture Lc(Xét, n) (see 1.1.1). If this group is of the form Z⊕r ⊕ T, the morphism
Hi(αX,n) is given by

Q⊕r � (Q/Z)⊕r � Ĥi
c(Xét, Z(n))→ Hi

c(Xét, Z(n))

where (Q/Z)⊕r � Ĥi
c(Xét, Z(n)) is the inclusion of the maximal divisible

subgroup in the group of cofinite type

Ĥi
c(Xét, Z(n)) ∼= Hom(H2−i(Xét, Zc(n)), Q/Z).

Both kernel and cokernel of the above map are finitely generated, hence
Hi

fg(X, Z(n)) is finitely generated.
As we observed in 1.5.3, again assuming the conjecture Lc(Xét, n), we

may deduce that the complex Zc(n) is bounded from below. This means
that for i� 0 we have

ker Hi+1(αX,n) = 0, Hi
fg(X, Z(n)) ∼= coker Hi(αX,n) = Hi

c(Xét, Z(n)).

For i < 1 we have Hi
c(Xét, Z(n)) = 0, and for i� 0 we know that

Ĥi
c(Xét, Z(n)) ∼= Hom(H2−i(Xét, Zc(n)), Q/Z) = 0,

again by boundedness of Zc(n) from below. The only difference between
Hi

c(Xét, Z(n)) and Ĥi
c(Xét, Z(n)) is some finite 2-torsion. �

1.5.5. Observation. RΓfg(X, Z(n)) is defined up to a unique isomorphism in
D(Ab).

Proof. The complex RHom(RΓ(Xét, Zc(n)), Q[−2]) consists of Q-vector spaces,
and RΓfg(X, Z(n)) is almost perfect, so we are in the situation of 0.3.6. �
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1.5.6. Observation. Fix a distinguished triangle defining RΓfg(X, Z(n)):

RHom(RΓ(Xét, Zc(n)), Q[−2])
αX,n−−→ RΓc(Xét, Z(n))

f−→ RΓfg(X, Z(n))
g−→ RHom(RΓ(Xét, Zc(n)), Q[−1])

1) For each m = 1, 2, 3, . . . the morphism

f ⊗Z/mZ : RΓc(Xét, Z(n))⊗L
Z Z/mZ

∼=−→ RΓfg(X, Z(n))⊗L
Z Z/mZ

is iso. Further, we have

RΓc(Xét, Z(n))⊗L
Z Z/mZ ∼= RΓc(Xét, Z/mZ(n))

:= RΓc(Xét, Z(n)⊗L Z/mZ).

2) The morphism

g⊗Q : RΓfg(X, Z(n))⊗Z Q
∼=−→ RHom(RΓ(Xét, Zc(n)), Q[−1])

is iso.

Proof. The statement 1) follows from the fact that the complexes

RHom(RΓ(Xét, Zc(n)), Q[. . .])

consist of Q-vector spaces, and thus

RHom(RΓ(Xét, Zc(n)), Q[. . .])⊗L
Z Z/mZ

' RHom(RΓ(Xét, Zc(n)), Q[. . .])⊗Z Z/mZ ' 0.

Next, 2) follows from the fact that the cohomology of the étale sheaf Z(n) is
torsion, and therefore

Hi(RΓc(Xét, Z(n))⊗Z Q) ∼= Hi
c(Xét, Z(n))⊗Z Q = 0,

RΓc(Xét, Z(n))⊗Z Q ' 0.

�

1.6 Complexes RΓW,c(X, Z(n))

To define complexes RΓW,c(X, Z(n)), we first construct a morphism

i∗∞ : RΓfg(X, Z(n))→ RΓc(GR, X(C), (2πi)n Z).
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By definition, it sits in the morphism of distinguished triangles

(1.6.1)

RHom(RΓ(X, Zc(n)), Q[−2]) 0

RΓc(Xét, Z(n)) RΓc(GR, X(C), (2πi)n Z)

RΓfg(X, Z(n)) RΓc(GR, X(C), (2πi)n Z)

RHom(RΓ(X, Zc(n)), Q[−1]) 0

αX,n

u∗∞

id
i∗∞

Here
u∗∞ : RΓ(Xét, Z(n))→ RΓc(GR, X(C), (2πi)n Z)

is some morphism, to be defined below, such that the composition u∗∞ ◦ αX,n
is zero. Then by the axiom (TR3) there exists some morphism i∗∞. The fact
that u∗∞ ◦ αX,n = 0 will be a delicate issue, which is the main goal of this
section. However, once we know that, i∗∞ is automatically unique.

1.6.1. Observation. If i∗∞ exists, then it is unique.

Proof of 1.6.1. We may apply 0.3.6, because RHom(RΓ(X, Zc(n)), Q[−2]) is a
complex of Q-vector spaces and both

RΓfg(X, Z(n)) and RΓc(GR, X(C), (2πi)n Z)

are almost perfect complexes by 1.5.4 and 1.4.4. �

1.6.2. Proposition. Consider the morphism

α∗ : Sh(Xét)→ Sh(GR, X(C)),

as described in §0.7. For the sheaf

Q/Z(n) :=
⊕

p
lim−→

r
jp!µ

⊗n
pr

defined in §1.2 we have an isomorphism of GR-equivariant constant sheaves on
X(C)

α∗Q/Z(n) ∼=
(2πi)n Q

(2πi)n Z
=: (2πi)n Q/Z.
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Proof. First of all, since α∗ is the composition of certain inverse image func-
tors γ∗ and ε∗ (which are left adjoint) and an equivalence of categories δ∗,
the functor α∗ preserves colimits, and in particular

(1.6.2) α∗Q/Z(n) ∼=
⊕

p
lim−→

r
α∗ jp!µ

⊗n
pr .

Another formal observation is that the base change from Spec Z to Spec C

factors through the base change to Spec Z[1/p], and then j∗p ◦ jp! = idSh(X[1/p]ét)
:

Sh(X[1/p]ét) Sh(Xét) Sh(XC,ét)

Sh(X[1/p]ét)

jp!

id

γ∗

j∗p

which means that we may safely erase “jp!” in (1.6.2), and everything boils
down to calculating the sheaves

α∗µ⊗n
pr = α∗HomX[1/p](µ

⊗(−n)
pr , Z/prZ).

As we base change to Spec C, the étale sheaf µpr simply becomes the constant
sheaf µpr (C) on X(C), and

α∗µ⊗n
pr = HomX(C)(µ

⊗(−n)
pr (C), Z/prZ).

In 0.5.5 we calculated the colimit of such things to be (2πi)n Q/Z. �

1.6.3. Definition. The morphism

u∗∞ : RΓc(Xét, Z(n))→ RΓc(GR, X(C), (2πi)n Z)

is given by the composition

RΓc(Xét, Z(n)) := RΓc(Xét, Q/Z(n))[−1]
v∗∞ [−1]−−−−→ RΓc(GR, X(C), (2πi)n Q/Z)[−1]→ RΓc(GR, X(C), (2πi)n Z)

Here the last arrow is induced by (2πi)n Q/Z[−1]→ (2πi)n Z, which comes
from the distinguished triangle of constant GR-equivariant sheaves

(2πi)n Z→ (2πi)n Q→ (2πi)n Q/Z→ (2πi)n Z[1]

and the arrow

v∗∞ : RΓc(Xét, Q/Z(n))→ RΓc(GR, X(C), (2πi)n Q/Z)
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is induced by the morphism

Γc(Xét, Q/Z(n))→ Γc(GR, X(C), α∗Q/Z(n)) ∼= Γc(GR, X(C), (2πi)n Q/Z)

(see 0.8.3 and 1.6.2).

1.6.4. Theorem. For any arithmetic scheme X one has u∗∞ ◦ αX,n = 0 in the derived
category.

This seems to be rather nontrivial; our proof will be based on the follow-
ing result about `-adic cohomology.

1.6.5. Proposition. Let f : X → Spec Z be an arithmetic scheme (that is, with f
separated, of finite type). Let n < 0. Then for any prime ` we have

(Hi
c(X

Q,ét, Q`/Z`(n))GQ)div = 0.

Proof. Let us recall some facts about `-adic cohomology. We refer to [SGA 5,
Exposé VI] for details. Let us first consider the sheaf Z`(n). It is a con-
structible Z`-sheaf* on X in the sense of [SGA 5, Exposé VI, 1.1.1]. We
would like to compare the cohomology of Z`(n) on X

Q,ét and XFp ,ét, where
p is some prime different from `, to be determined later. For this we fix
some algebraic closures Q/Q and Fp/Fp and consider the corresponding
morphisms

η : Spec Q→ Spec Z, x : Spec Fp → Spec Z.

Let X
Q,ét and XFp ,ét be the pullbacks of X along the above morphisms:

X
Q

X XFp

Spec Q Spec Z Spec Fp

y
f
Q

f f
Fp

x

η x

According to [SGA 5, Exposé VI, 2.2.3], the proper base change theorem
holds for constructible Z`-sheaves. It gives us isomorphisms

Hi
c(X

Q,ét, Z`(n)) ∼= (Ri f!Z`(n))η , Hi
c(XFp ,ét, Z`(n)) ∼= (Ri f!Z`(n))x,

where Ri f!Z`(n) is the same sheaf on Spec Z, and we take its different stalks
to get cohomology with compact support on different fibers. The construc-
tion of higher direct images with proper support Ri f!F for `-adic sheaves
is given in [SGA 5, Exposé VI, §2.2]. The key nontrivial fact that we need

*Or simply Z`-sheaf in the terminology of [SGA 4 1
2 , Rapport].
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is that for every morphism (of locally noetherian schemes) f : X → Y, sep-
arated of finite type, if F is a constructible Z`-sheaf on X, then Ri f!F is a
constructible Z`-sheaf on Y.

According to [SGA 5, Exposé VI, 1.2.6], for a projective system of abelian
sheaves F = (Fn)n∈N on Xét, the following are equivalent:

1) F is a constructible Z`-sheaf,

2) every open subscheme U ⊂ X is a finite union of locally closed pieces
Zi where F |Zi

is a twisted constant constructible Z`-sheaf*.

Being “twisted constant” means that each sheaf Fn in the projective sys-
tem (Fn)n∈N is locally constant. The importance of twisted constant sheaves
is explained by the following property [SGA 5, Exposé VI, 1.2.4, 1.2.5]: for
a connected locally noetherian scheme X, the category of twisted constant
Z`-constructible sheaves on X is equivalent to the category of finitely gen-
erated Z`-modules with a continuous action of the étale fundamental group
πét

1 (X).
In our setting, all this means that there exists an open subscheme

U = Spec ZS ⊂ Spec Z,

where ZS denotes the localization of Z at a finite set of primes S, such
that the sheaves Ri f!Z`(n) are twisted constant on U. By removing all the
necessary bad primes, we can make sure this holds for all i.

Now according to [Elements, Book IX, Proposition 20], there exists some
prime p /∈ S (that is, (p) ∈ U), for which we may consider the following
picture:

X
Q

XU XFp

Spec Q U Spec Fp

y
f
Q fU f

Fp
x

η x

It follows that we have isomorphisms
(1.6.3)

Hi
c(X

Q,ét, Z`(n)) ∼= (Ri fU,!Z`(n))η
∼= (Ri fU,!Z`(n))x ∼= Hi

c(XFp ,ét, Z`(n)),

of finitely generated Z`-modules with continuous action of

πét
1 (U) ∼= Gal(QS/Q),

where QS/Q denotes a maximal extension of Q unramified outside of S.
We note that (Ri fU,!Z`(n))η naturally carries an action of πét

1 (U, η), while

*A faisceau lisse in the terminology of [SGA 4 1
2 , Rapport].
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(Ri fU,!Z`(n))x carries an action of πét
1 (U, x), and the isomorphism in the

middle of (1.6.3) sweeps under the rug an identification of πét
1 (U, η) with

πét
1 (U, x).

To state this more accurately, note that the Z`-module Hi
c(X

Q,ét, Z`(n))
carries a natural action of GQ while Hi

c(XFp ,ét, Z`(n)) carries a natural action
of GFp . After making the necessary choices, we have GQp ⊂ GQ and a short
exact sequence

1→ Ip → GQp → GFp → 1

where Ip is the inertia subgroup, acting trivially on Hi
c(X

Q,ét, Z`(n)). We
have thus isomorphisms of finitely generated Z`-modules

Hi
c(X

Q,ét, Z`(n)) ∼= Hi
c(XFp ,ét, Z`(n)),

equivariant under the action of GQp /Ip on the left hand side and of GFp on
the right hand side. To relate all this to Q`(n) and Q`/Z`(n)-coefficients,
note that we have the following isomorphic long exact sequences in coho-
mology

(1.6.4)

...
...

Hi−1
c (X

Q,ét, Q`/Z`(n)) Hi−1
c (XFp ,ét, Q`/Z`(n))

Hi
c(X

Q,ét, Z`(n)) Hi
c(XFp ,ét, Z`(n))

Hi
c(X

Q,ét, Q`(n)) Hi
c(XFp ,ét, Q`(n))

Hi
c(X

Q,ét, Q`/Z`(n)) Hi
c(XFp ,ét, Q`/Z`(n))

...
...

δ

∼=

δ

φ

∼=

φ

ψ

∼=

ψ

∼=

Here

Hi
c(X

Q,ét, Q`(n)) = Hi
c(X

Q,ét, Z`(n))⊗Z`
Q`,

Hi
c(XFp ,ét, Q`(n)) = Hi

c(XFp ,ét, Z`(n))⊗Z`
Q`,
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and the arrows φ above are canonical localization morphisms. The horizontal
arrows are equivariant isomorphisms in the above sense. Note that we have

Hi
c(X

Q,ét, Q`/Z`(n))GQ � Hi
c(X

Q,ét, Q`/Z`(n))
GQp /Ip

∼= Hi
c(XFp ,ét, Q`/Z`(n))

GFp ,

so in order to prove that

(Hi
c(X

Q,ét, Q`/Z`(n))GQ)div = 0,

it will be enough to show that

(Hi
c(XFp ,ét, Q`/Z`(n))

GFp )div = 0.

From now on we move to the characteristic p and consider the fixed points
of GFp acting on the Z`-module Hi

c(XFp ,ét, Q`/Z`(n)). In the long exact
sequence (1.6.4), we have (keeping in mind that φ is merely the localization
morphism):

ker φ = Hi
c(XFp ,ét, Z`(n))tor,

ker ψ = im φ ∼= Hi
c(XFp ,ét, Z`(n))/ ker φ

=
Hi

c(XFp ,ét, Z`(n))

Hi
c(XFp ,ét, Z`(n))tor

=: Hi
c(XFp ,ét, Z`(n))cotor,

im ψ = Hi
c(XFp ,ét, Q`/Z`(n))div.

This gives us a short exact sequence

0→ Hi
c(XFp ,ét, Z`(n))cotor → Hi

c(XFp ,ét, Q`(n))

→ Hi
c(XFp ,ét, Q`/Z`(n))div → 0

After taking the GFp -invariants, we obtain a long exact sequence of cohomol-
ogy groups

(1.6.5) 0→ (Hi
c(XFp ,ét, Z`(n))cotor)

GFp → Hi
c(XFp ,ét, Q`(n))

GFp

→ (Hi
c(XFp ,ét, Q`/Z`(n))div)

GFp → H1(GFp , Hi
c(XFp ,ét, Z`(n))cotor)→ · · ·

We claim that

(1.6.6) Hi
c(XFp ,ét, Q`(n))

GFp = 0.



Chapter 1. Weil-étale complexes 89

Indeed, according to [SGA 7, Exposé XXI, 5.5.3], the eigenvalues of the
geometric Frobenius acting on Hi

c(XFp ,ét, Q`) are algebraic integers. We are

twisting Q` by n, so the eigenvalues of Frobenius lie in p−n Z. Since n < 0
by our assumption, this implies that 1 does not occur as an eigenvalue.

Now (1.6.6) and the long exact sequence (1.6.5) imply that there is a
monomorphism

(Hi
c(XFp ,ét, Q`/Z`(n))div)

GFp � H1(GFp , Hi
c(XFp ,ét, Z`(n))cotor),

which restricts to a monomorphism between the maximal divisible sub-
groups

((Hi
c(XFp ,ét, Q`/Z`(n))div)

GFp )div � H1(GFp , Hi
c(XFp ,ét, Z`(n))cotor)div.

However, H1(GFp , Hi
c(XFp ,ét, Z`(n))cotor) is a finitely generated Z`-module,

and therefore its maximal divisible subgroup is trivial. We have therefore

(Hi
c(XFp ,ét, Q`/Z`(n))

GFp )div = ((Hi
c(XFp ,ét, Q`/Z`(n))div)

GFp )div = 0.

(For the first equality, note that for any G-module A one has ((Adiv)
G)div =

(AG)div.) �

Now we are ready to prove 1.6.4. The morphism αX,n is defined on

RHom(RΓ(Xét, Zc(n)), Q[−2]),

which is a complex of Q-vector spaces, so it will be enough to show that v∗∞
is a torsion element in the abelian group

HomD(Ab)(RΓc(Xét, Q/Z(n)), RΓc(GR, X(C), (2πi)n Q/Z)).

The complexes RΓc(Xét, Q/Z(n)) and RΓc(GR, X(C), (2πi)n Q/Z) are al-
most of cofinite type in the sense of 0.3.7. Indeed, we observed it in 1.4.5 for
RΓc(GR, X(C), (2πi)n Q/Z), and for RΓc(Xét, Q/Z(n)), by the duality theo-
rem 1.3 we have

Hi
c(Xét, Q/Z(n)) = Hi−1

c (Xét, Z(n))
up to 2-torsion

≈ Ĥi−1
c (Xét, Z(n))

∼= Hom(H3−i(Xét, Zc(n)), Q/Z(n))

and the groups H3−i(Xét, Zc(n)) are finitely generated by our conjecture
Lc(Xét, n) (see 1.1.1), trivial for i � 0 by 1.5.3 (again, assuming Lc(Xét, n))
and finite 2-torsion for i � 0. Therefore, according to 0.3.8, to show that
v∗∞ : RΓc(Xét, Q/Z(n)) → RΓc(GR, X(C), (2πi)n Q/Z) is torsion in D(Ab),
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it is enough to show that the corresponding morphisms on the maximal
divisible subgroups

Hi
c(v
∗
∞)div : Hi

c(Xét, Q/Z(n))div → Hi
c(GR, X(C), (2πi)n Q/Z)div

are all trivial.
The morphism Hi

c(v∗∞) factors through Hi
c(X

Q,ét, µ⊗n)GQ , where µ⊗n is
the sheaf of all roots of unity on X

Q,ét twisted by n. We have therefore

Hi
c(Xét, Q/Z(n))div Hi

c(GR, X(C), (2πi)n Q/Z)div

(
Hi

c(X
Q,ét, µ⊗n)GQ

)
div

Hi
c(v∗∞)div

Now(
Hi

c(X
Q,ét, µ⊗n)GQ

)
div
∼=
(⊕

`

Hi
c(X

Q,ét, Q`/Z`(n))GQ

)
div

∼=

⊕
`

(
Hi

c(X
Q,ét, Q`/Z`(n))GQ

)
div

,

where all summands are trivial according to 1.6.5. �

1.6.6. Corollary. The morphism i∗∞ is torsion in the derived category, i.e. i∗∞⊗Q =
0.

Proof. Let us examine the morphism of distinguished triangles (1.6.1) that
defines i∗∞; in particular, the commutative diagram

RΓc(Xét, Z(n)) RΓfg(X, Z(n))

RΓc(GR, X(C), (2πi)n Z)

u∗∞
i∗∞

According to 0.3.6, the morphism

HomD(Ab)(RΓfg(X, Z(n)), RΓc(GR, X(C), (2πi)n Z))→
HomD(Ab)(RΓc(Xét, Z(n)), RΓc(GR, X(C), (2πi)n Z))

induced by the composition with RΓc(Xét, Z(n))→ RΓfg(X, Z(n)), is mono,
and therefore

HomD(Ab)(RΓfg(X, Z(n)), RΓc(GR, X(C), (2πi)n Z))⊗Z Q→
HomD(Ab)(RΓc(Xét, Z(n)), RΓc(GR, X(C), (2πi)n Z))⊗Z Q
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is mono as well. However, we just saw in the proof of 1.6.4 that u∗∞ ⊗Q = 0,
and this implies that i∗∞ ⊗Q = 0. �

Now that we know that i∗∞ exists (and is unique), we are ready to define
Weil-étale complexes.

1.6.7. Definition. RΓW,c(X, Z(n)) is an object in the derived category D(Ab)
which is a mapping fiber of i∗∞:

RΓW,c(X, Z(n))→ RΓfg(X, Z(n))
i∗∞−→ RΓc(GR, X(C), (2πi)n Z)

→ RΓW,c(X, Z(n))[1]

The Weil-étale cohomology with compact support is given by

Hi
W,c(X, Z(n)) := Hi(RΓW,c(X, Z(n))).

Note that this defines RΓW,c(X, Z(n)) up to a non-unique isomorphism
in D(Ab), and the groups Hi

W,c(X, Z(n)) are also defined up to a non-unique
isomorphism.

1.6.8. Proposition. The conjecture Lc(Xét, n) implies that RΓW,c(X, Z(n)) is a
perfect complex.

Proof. By definition, we have a long exact sequence in cohomology

· · · → Hi−1
c (GR, X(C), (2πi)n Z)→ Hi

W,c(X, Z(n))→

Hi
fg(X, Z(n))

Hi(i∗∞)−−−→ Hi
c(GR, X(C), (2πi)n Z)→ · · ·

The groups Hi
c(GR, X(C), (2πi)n Z) and Hi

fg(X, Z(n)) are finitely gener-
ated by 1.4.4 and 1.5.4. They vanish for i � 0, but they are finite 2-torsion
for i � 0. I claim that Hi(i∗∞) is an isomorphism for i � 0, meaning that
this 2-torsion in higher degrees does not appear in Hi

W,c(X, Z(n)). We have
a commutative diagram

Hi
c(Xét, Z(n)) Hi

fg(X, Z(n))

Hi
c(GR, X(C), (2πi)n Z)

Hi(u∗∞)
Hi(i∗∞)

The morphism Hi(u∗∞) is iso for i � 0, hence Hi(i∗∞) is surjective for
i � 0. However, Hi

fg(X, Z(n)) and Hi
c(GR, X(C), (2πi)n Z) have the same

2-torsion for i� 0,and Hi(i∗∞) is iso for i� 0.
�



92 1.6. Complexes RΓW,c(X, Z(n))

1.6.9. Proposition. The determinant detZ RΓW,c(X, Z(n)) is well-defined up to a
canonical isomorphism.

Proof. For two different choices of a mapping fiber of i∗∞, we obtain an iso-
morphism of distinguished triangles

RΓW,c(X, Z(n)) RΓW,c(X, Z(n))′

RΓfg(X, Z(n)) RΓfg(X, Z(n))

RΓc(GR, X(C), (2πi)n Z) RΓc(GR, X(C), (2πi)n Z)

RΓW,c(X, Z(n))[1] RΓW,c(X, Z(n))′[1]

∼=

i∗∞

id

i∗∞

id

∼=

Here the dashed arrows are not canonical, but this does not affect the de-
terminants, because these are functorial with respect to isomorphisms of tri-
angles (see 0.4.1). The only technical issue is that the complexes RΓfg(X, Z(n))
and RΓc(GR, X(C), (2πi)n Z) may have unbounded 2-torsion, unless X(R) =
∅. However, we know that the arrow

Hi(i∗∞) : Hi
fg(X, Z(n))→ Hi

c(GR, X(C), (2πi)n Z)

is an isomorphism for i� 0. Therefore, taking the truncations τ≤m for m big
enough, we obtain a commutative diagram where the columns still induce
long exact sequences in cohomology:

RΓW,c(X, Z(n)) RΓW,c(X, Z(n))′

τ≤mRΓfg(X, Z(n)) τ≤mRΓfg(X, Z(n))

τ≤mRΓc(GR, X(C), (2πi)n Z) τ≤mRΓc(GR, X(C), (2πi)n Z)

RΓW,c(X, Z(n))[1] RΓW,c(X, Z(n))′[1]

∼=

i∗∞

id

i∗∞

id

∼=

which gives us the desired canonical isomorphism

detZ RΓW,c(X, Z(n)) ∼=
detZ τ≤mRΓfg(X, Z(n))⊗Z (detZ τ≤mRΓc(GR, X(C), (2πi)n Z))−1

∼= detZ RΓW,c(X, Z(n))′.
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�

1.6.10. Remark. Our methods establish existence of i∗∞ only as a morphism
in the derived category and RΓW,c(X, Z(n)) is defined only up to a non-
canonical quasi-isomorphism. It is probably possible to construct i∗∞ as a
canonical morphism in the category of complexes. This would give us a
canonical construction of RΓW,c(X, Z(n)) as a complex. Another possibility
to make things canonical is to work with the derived ∞-category [Lur2006].

The reader will note that the non-canonicity of RΓW,c(X, Z(n)) in the
present construction is not only aesthetically unpleasant, but will also give
us some technical troubles later on, for instance in §1.8.

1.7 Splitting of RΓW,c(X, Z(n))⊗Z Q

The following result will be crucial in the next chapter.

1.7.1. Proposition. There is a direct sum decomposition

RΓW,c(X, Z(n))⊗Z Q ∼=
RHom(RΓ(Xét, Zc(n)), Q)[−1]⊕ RΓc(GR, X(C), (2πi)n Q)[−1].

This isomorphism is not canonical, but induces a canonical isomorphism

(detZ RΓW,c(X, Z(n)))⊗Z Q ∼= detQ(RΓW,c(X, Z(n))⊗Z Q)
∼= detQ RHom(RΓ(Xét, Zc(n)), Q)[−1]⊗Q detQ RΓc(GR, X(C), (2πi)n Q)[−1].

Proof. Everything has to do with the cohomology of RΓc(Xét, Z(n)) and the
morphism i∗∞ being torsion. In fact we already noted in 1.5.6 that the distin-
guished triangle defining RΓfg(X, Z(n))

RHom(RΓ(Xét, Zc(n)), Q[−2])
αX,n−−→ RΓc(Xét, Z(n))→ RΓfg(X, Z(n))

g−→ RHom(RΓ(Xét, Zc(n)), Q[−1])

after tensoring with Q gives us an isomorphism

g⊗Q : RΓfg(X, Z(n))⊗Z Q
∼=−→ RHom(RΓ(Xét, Zc(n)), Q[−1]).

Now examine the triangle that defines RΓW,c(X, Z(n)):

RΓW,c(X, Z(n)) h−→ RΓfg(X, Z(n))
i∗∞−→ RΓc(GR, X(C), (2πi)n Q)

→ RΓW,c(X, Z(n))[1]
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According to 1.6.6, the morphism i∗∞ is torsion, so that i∗∞ ⊗ Q = 0 and
tensoring with Q gives a distinguished triangle

RΓW,c(X, Z(n))⊗Z Q
h⊗Q−−→ RΓfg(X, Z(n))⊗Z Q

0−→ RΓc(GR, X(C), (2πi)n Q)→ RΓW,c(X, Z(n))⊗Z Q[1]

To shorten the notation, let us write [−,−] instead of RHom(−,−) and (−)Q

instead of −⊗Z Q. We have an isomorphism of distinguished triangles

(1.7.1)

RΓW,c(X, Z(n))Q RΓW,c(X, Z(n))Q

[RΓ(Xét, Zc(n)), Q[−1]]
⊕

RΓc(GR, X(C), (2πi)n Q)[−1]

RΓfg(X, Z(n))Q [RΓ(Xét, Zc(n)), Q[−1]] [RΓ(Xét, Zc(n)), Q[−1]]

RΓc(GR, X(C), (2πi)n Q) RΓc(GR, X(C), (2πi)n Q) RΓc(GR, X(C), (2πi)n Q)

RΓW,c(X, Z(n))Q[1] RΓW,c(X, Z(n))Q[1]
[RΓ(Xét, Zc(n)), Q]

⊕
RΓc(GR, X(C), (2πi)n Q)

h⊗Q

id

(h◦g)⊗Q

∼=

0

g⊗Q

∼=
0

id

id id

id ∼=

Here the right triangle is distinguished, being the direct sum of the dis-
tinguished triangles

RHom(RΓ(Xét, Zc(n)), Q[−1]) id−→ RHom(RΓ(Xét, Zc(n)), Q[−1])

→ 0→ RHom(RΓ(Xét, Zc(n)), Q)

and

RΓc(GR, X(C), (2πi)n Q)[−1]→ 0→ RΓc(GR, X(C), (2πi)n Q)

id−→ RΓc(GQ, X(C), (2πi)n Q)

The two dashed arrows in (1.7.1) exist thanks to the axiom (TR3), and they
are isomorphisms by the triangulated 5-lemma. We note that these arrows
are by no means unique*. To see that the obtained splitting is canonical on

*It is a well-known lemma that in a triangulated category, a distinguished triangle X u−→
Y v−→ Z w−→ X[1] splits whenever one of the morphisms u, v, w is zero—[Verdier-thèse, Chapitre
II, Corollaire 1.2.6]. I basically recalled the proof for our case to stress that such a splitting is
not canonical.
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the level of determinants, we argue as in 1.6.9. The isomorphism of triangles

RΓc(GR, X(C), (2πi)n Q)[−1] RΓc(GR, X(C), (2πi)n Q)[−1]

RΓW,c(X, Z(n))Q

[RΓ(Xét, Zc(n)), Q[−1]]
⊕

RΓc(GR, X(C), (2πi)n Q)[−1]

RΓfg(X, Z(n))Q [RΓ(Xét, Zc(n)), Q[−1]]

RΓc(GR, X(C), (2πi)n Q) RΓc(GR, X(C), (2πi)n Q)

id

f
∼=

0

g⊗Q

∼=

id

induces by 0.4.1 a commutative diagram

detQ RΓc(GR, X(C), (2πi)n Q)[−1]
⊗Q

detQ RΓfg(X, Z(n))⊗Z Q

detQ RΓW,c(X, Z(n))⊗Z Q

detQ RΓc(GR, X(C), (2πi)n Q)[−1]
⊗Q

detQ RHom(RΓ(Xét, Zc(n)), Q)[−1]
detQ

RHom(RΓ(Xét, Zc(n)), Q)[−1]
⊕

RΓc(GR, X(C), (2πi)n Q)[−1]



∼=

∼=id⊗det(g⊗Q)
det( f )∼=

∼=

Here the top arrow is canonical, and the left arrow as well; composing
them, we obtain a canonical isomorphism

detQ(RΓW,c(X, Z(n))⊗Z Q) ∼=
detQ RΓc(GQ, X(C), (2πi)n Q)[−1]⊗Q detQ RHom(RΓ(Xét, Zc(n)), Q)[−1].

�

1.7.2. Remark. This means that for the Weil-étale cohomology with rational
coefficients, we could take as the definition

RHom(RΓ(Xét, Zc(n)), Q)[−1]⊕ RΓc(GR, X(C), (2πi)n Q)[−1],

which would simplify things a lot. However, it is crucial for us to work
with RΓW,c(X, Z(n)). In the next chapter, this will mean that we will state
conjectures about special values of ζ(X, s) up to a sign ±1 and not merely
up to a multiplier x ∈ Q×. Of course the latter would be much easier.
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1.8 Compatibilities with open-closed decompo-
sitions

We say that we have an open-closed decomposition of a scheme X if there
are given morphisms

U ↪→ X ← Z

where U ↪→ X is an inclusion of an open subscheme of X and Z → X is a
closed immersion where Z = X \U. The goal of this section is to prove the
following result.

1.8.1. Proposition. An open-closed decomposition of arithmetic schemes

U ↪→ X ← Z

induces a canonical isomorphism
(1.8.1)

detZ RΓW,c(X, Z(n)) ∼= detZ RΓW,c(U, Z(n))⊗Z detZ RΓW,c(Z, Z(n)).

Morally, an open-closed decomposition should induce a distinguished
triangle of Weil-étale complexes

(1.8.2) RΓW,c(U, Z(n))→ RΓW,c(X, Z(n))→ RΓW,c(Z, Z(n))

→ RΓW,c(U, Z(n))[1]

and the corresponding long exact sequence in cohomology

· · · → Hi
W,c(U, Z(n))→ Hi

W,c(X, Z(n))→ Hi
W,c(Z, Z(n))

→ Hi+1
W,c (U, Z(n))→ · · ·

However, with the definition of RΓW,c(−, Z(n)) that we have at the moment,
obtaining such a distinguished triangle seems to be a nontrivial task, and
even the complexes in (1.8.2) are defined only up to a non-unique isomor-
phism in the derived category.

1.8.2. Remark. The main technical issue is the following. Given a morphism
of distinguished triangles

(1.8.3)

X Y Z X[1]

X′ Y′ Z′ X′[1]
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sometimes it is tempting to consider its “cone”, i.e. complete the above
diagram to a 3× 3-diagram with distinguished rows and columns

X Y Z X[1]

X′ Y′ Z′ X′[1]

X′′ Y′′ Z′′ X′′[1]

X[1] Y[1] Z[1] X[2]

(ac)

where all squares commute, except for the bottom right square, which anti-
commutes*. Whenever it is possible, Neeman in [Nee1991] says that (1.8.3) is
middling good. Unfortunately, not every morphism of triangles is middling
good (see [Nee1991, Example 2.6]). It seems like the best result one can
obtain in general is that given a diagram with distinguished rows

X Y Z X[1]

X′ Y′ Z′ X′[1]

there exists some morphism Z → Z′ making the above diagram into a mid-
dling good morphism of triangles (this is done using the axiom (TR4); see
e.g. [BBD1982, Proposition 1.1.11] or [May2001, Lemma 2.6]).

The reader may consult [Nee1991] for a thorough discussion of this issue.
The bottom line is that we should be careful and never expect an arbitrary
morphism of distinguished triangles to be completed to a 3× 3-diagram.

*The anti-commutativity comes from the following sign issue. The rotation axiom (TR2)

says that X u−→ Y v−→ Z w−→ X[1] is distinguished if and only if Y v−→ Z w−→ X[1]
−u[1]−−−→ Y[1] is

distinguished. So for a distinguished triangle X u−→ Y v−→ Z w−→ X[1], its full rotation by 1 is

not X[1]
u[1]−−→ Y[1]

v[1]−−→ Z[1]
w[1]−−→ X[2] but rather X[1]

−u[1]−−−→ Y[1]
−v[1]−−−→ Z[1]

−w[1]−−−→ X[2]. The

latter is isomorphic to, say, X[1]
u[1]−−→ Y[1]

v[1]−−→ Z[1]
−w[1]−−−→ X[2], so we just have to put a minus

sign somewhere. The usual convention is that in the 3× 3-diagram, the bottom right square
anti-commutes.
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RΓfg(X, Z(n)) and open-closed decompositions

For an open-closed decomposition U ↪→ X ← Z, the cohomology of Zc(n)
gives a distinguished triangle

RΓ(Zét, Zc(n))→ RΓ(Xét, Zc(n))→ RΓ(Uét, Zc(n))→ RΓ(Zét, Zc(n))[1]

(see 0.11.1). Applying to it RHom(−, Q[−2]), we obtain a distinguished
triangle

(1.8.4) RHom(RΓ(Uét, Zc(n)), Q[−2])→ RHom(RΓ(Xét, Zc(n)), Q[−2])

→ RHom(RΓ(Zét, Zc(n)), Q[−2])→ RHom(RΓ(Uét, Zc(n)), Q[−1])

Similarly, for étale cohomology with compact support, we have a distin-
guished triangle
(1.8.5)

RΓc(Uét, Z(n))→ RΓc(Xét, Z(n))→ RΓc(Zét, Z(n))→ RΓc(Uét, Z(n))[1]

Then one can to check that (αU,n, αX,n, αZ,n) give a morphism of triangles
(1.8.4) and (1.8.5).

1.8.3. Lemma. We have the following commutative diagram in the derived cate-
gory:

(1.8.6)

RHom(RΓ(Uét, Zc(n)), Q[−2]) RΓc(Uét, Z(n))

RHom(RΓ(Xét, Zc(n)), Q[−2]) RΓc(Xét, Z(n))

RHom(RΓ(Zét, Zc(n)), Q[−2]) RΓc(Zét, Z(n))

RHom(RΓ(Uét, Zc(n)), Q[−1]) RΓc(Uét, Z(n))[1]

αU,n

αX,n

αZ,n

αU,n [1]

Now in the diagram (1.8.6) we may pick a cone of each arrow αU,n, αX,n,
αZ,n, which is by definition RΓfg(U, Z(n)), RΓfg(X, Z(n)), RΓfg(Z, Z(n)) re-
spectively. According to 1.5.5, each of these is defined up to a unique iso-
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morphism in the derived category.

[RΓ(Uét, Zc(n)), Q[−2]] RΓc(Uét, Z(n)) RΓfg(U, Z(n)) [RΓ(Uét, Zc(n)), Q[−1]]

[RΓ(Xét, Zc(n)), Q[−2]] RΓc(Xét, Z(n)) RΓfg(X, Z(n)) [RΓ(Xét, Zc(n)), Q[−1]]

[RΓ(Zét, Zc(n)), Q[−2]] RΓc(Zét, Z(n)) RΓfg(Z, Z(n)) [RΓ(Zét, Zc(n)), Q[−1]]

[RΓ(Uét, Zc(n)), Q[−1]] RΓc(Uét, Z(n))[1] RΓfg(U, Z(n))[1] [RΓ(Uét, Zc(n)), Q]

αU,n

αX,n

αZ,n

For the above diagram, by the axiom (TR3), there are morphisms

RΓfg(U, Z(n))→ RΓfg(X, Z(n)),

RΓfg(X, Z(n))→ RΓfg(Z, Z(n)),

RΓfg(Z, Z(n))→ RΓfg(U, Z(n))[1]

making everything commute. According to 0.3.6, these arrows are uniquely
defined.

(1.8.7)

[RΓ(Uét, Zc(n)), Q[−2]] RΓc(Uét, Z(n)) RΓfg(U, Z(n)) [RΓ(Uét, Zc(n)), Q[−1]]

[RΓ(Xét, Zc(n)), Q[−2]] RΓc(Xét, Z(n)) RΓfg(X, Z(n)) [RΓ(Xét, Zc(n)), Q[−1]]

[RΓ(Zét, Zc(n)), Q[−2]] RΓc(Zét, Z(n)) RΓfg(Z, Z(n)) [RΓ(Zét, Zc(n)), Q[−1]]

[RΓ(Uét, Zc(n)), Q[−1]] RΓc(Uét, Z(n))[1] RΓfg(U, Z(n))[1] [RΓ(Uét, Zc(n)), Q]

αU,n

(a) ∃!
αX,n

(b) ∃!
αZ,n

(c) ∃!

Obtained this way, the third column
(1.8.8)

RΓfg(U, Z(n))→ RΓfg(X, Z(n))→ RΓfg(Z, Z(n))→ RΓfg(U, Z(n))[1]

is uniquely defined, but a priori it is not a distinguished triangle.

1.8.4. At least in the case X(R) = ∅, as we already observed in 1.5.2,

RHom(RΓ(Xét, Zc(n)), Q/Z[−2]) ' RΓc(Xét, Z(n)),

RΓfg(X, Z(n)) ' RHom(RΓ(Xét, Zc(n)), Z[−1]),
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and one easily sees that this actually gives us an isomorphism between (1.8.8)
and the distinguished triangle

RHom(RΓ(Uét, Zc(n)), Z[−1])→ RHom(RΓ(Xét, Zc(n)), Z[−1])

→ RHom(RΓ(Zét, Zc(n)), Z[−1])→ RHom(RΓ(Uét, Zc(n)), Z).

In particular, (1.8.8) is distinguished.

1.8.5. In general, as we noted in 1.5.6, tensoring the diagram with Q and
Z/mZ, gives us isomorphisms

RΓfg(U, Z(n))⊗Q RHom(RΓ(Uét, Zc(n)), Q[−1])

RΓfg(X, Z(n))⊗Q RHom(RΓ(Xét, Zc(n)), Q[−1])

RΓfg(Z, Z(n))⊗Q RHom(RΓ(Zét, Zc(n)), Q[−1])

RΓfg(U, Z(n))⊗Q[1] RHom(RΓ(Uét, Zc(n)), Q)

∼=

∼=

∼=

∼=

and
RΓc(Uét, Z/m(n)) RΓfg(U, Z(n))⊗L Z/m

RΓc(Xét, Z/m(n)) RΓfg(X, Z(n))⊗L Z/m

RΓc(Zét, Z/m(n)) RΓfg(Z, Z(n))⊗L Z/m

RΓc(Uét, Z/m(n))[1] RΓfg(U, Z(n))⊗L Z/m[1]

∼=

∼=

∼=

∼=

This means that the triangles

(1.8.9) RΓfg(U, Z(n))⊗Q→ RΓfg(X, Z(n))⊗Q

→ RΓfg(Z, Z(n))⊗Q→ RΓfg(U, Z(n))⊗Q[1]

and

(1.8.10) RΓfg(U, Z(n))⊗L Z/m→ RΓfg(X, Z(n))⊗L Z/m

→ RΓfg(Z, Z(n))⊗L Z/m→ RΓfg(U, Z(n))⊗L Z/m[1]

are distinguished.
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1.8.6. Let us make use of (1.8.10). For each prime p we may consider the
“derived p-adic completions”

RΓfg(−, Z(n))∧p := R lim←−
k
(RΓfg(−, Z(n))⊗L Z/pkZ),

as discussed in [BS2013] and [Stacks, Tag 091N]. This will give us a distin-
guished triangle

RΓfg(U, Z(n))∧p → RΓfg(X, Z(n))∧p → RΓfg(Z, Z(n))∧p → RΓfg(U, Z(n))∧p [1]

It induces a long exact sequence in cohomology, which thanks to [Stacks,
0A06] and flatness of Zp may be identified with

...
...

Hi(RΓfg(U, Z(n))∧p ) Hi
fg(U, Z(n))⊗Zp

Hi(RΓfg(X, Z(n))∧p ) Hi
fg(X, Z(n))⊗Zp

Hi(RΓfg(Z, Z(n))∧p ) Hi
fg(Z, Z(n))⊗Zp

Hi+1(RΓfg(U, Z(n))∧p ) Hi+1
fg (U, Z(n))⊗Zp

...
...

∼=

∼=

∼=

∼=

Now the exactness of

· · · → Hi
fg(U, Z(n))⊗Zp → Hi

fg(X, Z(n))⊗Zp → Hi
fg(Z, Z(n))⊗Zp

→ Hi+1
fg (U, Z(n))⊗Zp → · · ·

for each prime p implies that the sequence

· · · → Hi
fg(U, Z(n))→ Hi

fg(X, Z(n))→ Hi
fg(Z, Z(n))→ Hi+1

fg (U, Z(n))→ · · ·

is exact as well. This uses the fact that the groups Hi
fg(−, Z(n)) are finitely

generated and Zp is flat.
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Indeed, given a morphism of finitely generated abelian groups f : A→ B,
one sees that f is an isomorphism if and only if f ⊗Zp : A⊗Zp → B⊗Zp
is an isomorphism for all p. Now a complex

(C•, f •) : · · · → Ci−1 f i−1

−−→ Ci f i

−→ Ci+1 → · · ·

is acyclic if and only if for each i in the diagram

im f i−1 ker f i

Ci−1 Ci Ci+1

coker f i−1 im f i

∃!

f i−1 f i

∃!

im f i−1 � ker f i is an isomorphism. Therefore, by the above and flatness
of Zp, if C• are finitely generated groups, (C•, f •) is acyclic if and only if
(C• ⊗Zp, f • ⊗Zp) is acyclic for all p.

I suspect that the triangle (1.8.8) is actually distinguished, but the above
argument at least settles that (1.8.8) induces a long exact sequence in coho-
mology, which will be enough for our purposes.

1.8.7. Remark. The argument from 1.8.6 may seem a bit too twisted, but
there is a reason for that. We have to apply first −⊗L Z/pkZ, and then take
the limit R lim←−k

because

RHom(RΓ((−)ét, Zc(n)), Q[−2])⊗L Z/mZ ' 0,

while the complex

RHom(RΓ((−)ét, Zc(n)), Q[−2])⊗Z Zp ' RHom(RΓ((−)ét, Zc(n)), Qp[−2])

is not trivial. Intuitively, the whole argument comes from faithful flatness of
Ẑ := ∏p Zp. We still looked at each p separately to make use of the derived
completion R lim←−k

(−⊗L Z/pkZ), which behaves nicely.

RΓW,c(X, Z(n)) and open-closed decompositions

Recall now that the Weil-étale complex RΓW,c(X, Z(n)) was defined only up
to a non-unique isomorphism in the derived category by the distinguished
triangle

RΓW,c(X, Z(n))→ RΓfg(X, Z(n))
i∗∞−→ RΓc(GR, X(C), (2πi)n Z)

→ RΓW,c(X, Z(n))[1]
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where the morphism i∗∞ is uniquely defined by the commutative triangle

RΓc(Xét, Z(n))

RΓfg(X, Z(n)) RΓc(GR, X(C), (2πi)n Z)

u∗∞

i∗∞
∃!

(see 1.6.1).

1.8.8. Lemma. For an open-closed decomposition U ↪→ X ← Z the morphism u∗∞
gives a morphism between the corresponding distinguished triangles of cohomology
with compact support:

(1.8.11)

RΓc(Uét, Z(n)) RΓc(GR, U(C), (2πi)n Z)

RΓc(Xét, Z(n)) RΓc(GR, X(C), (2πi)n Z)

RΓc(Zét, Z(n)) RΓc(GR, Z(C), (2πi)n Z)

RΓc(Uét, Z(n))[1] RΓc(GR, U(C), (2πi)n Z)[1]

u∗∞,U

(d)

u∗∞,X

(e)

u∗∞,Z

(f)

u∗∞,U [1]

Proof. Follows from the definition of u∗∞ and the fact that α∗ is compatible
with the triangles associated to open-closed decompositions, as we verified
in 0.8.4.

�

We now may assemble everything into the commutative prism displayed
on the next page.
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(1
.8

.1
2)

R
Γ c
(U

ét
,Z

(n
))

R
Γ W

,c
(U

,Z
(n
))

R
Γ f

g(
U

,Z
(n
))

R
Γ c
(G

R
,U

(C
),
(2

π
i)

n
Z
)

R
Γ W

,c
(U

,Z
(n
))
[1
]

R
Γ c
(X

ét
,Z

(n
))

R
Γ W

,c
(X

,Z
(n
))

R
Γ f

g(
X

,Z
(n
))

R
Γ c
(G

R
,X

(C
),
(2

π
i)

n
Z
)

R
Γ W

,c
(X

,Z
(n
))
[1
]

R
Γ c
(Z

ét
,Z

(n
))

R
Γ W

,c
(Z

,Z
(n
))

R
Γ f

g(
Z

,Z
(n
))

R
Γ c
(G

R
,Z

(C
),
(2

π
i)

n
Z
)

R
Γ W

,c
(Z

,Z
(n
))
[1
]

R
Γ c
(U

ét
,Z

(n
))
[1
]

R
Γ W

,c
(U

,Z
(n
))
[1
]

R
Γ f

g(
U

,Z
(n
))
[1
]

R
Γ c
(G

R
,U

(C
),
(2

π
i)

n
Z
)[

1]
R

Γ W
,c
(U

,Z
(n
))
[2
]

u∗ ∞
,U

i∗ ∞
,U ∃!

(a
)

u∗ ∞
,X

(d
)

i∗ ∞
,X ∃!

(b
)

u∗ ∞
,Z

(e
)

i∗ ∞
,Z ∃!

(c
)

u∗ ∞
,U
[1
]

(f
)

i∗ ∞
,U
[1
]

∃!
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Here the squares (a), (b), (c) are the ones that appear in the diagram
(1.8.7); (d), (e), (f) are the ones that appear in (1.8.11); the arrows i∗∞,U , i∗∞,X , i∗∞,Z
are the unique morphisms in the derived category that make the triangles
commute.

Morally, we should have a distinguished triangle of perfect complexes

RΓW,c(U, Z(n))→ RΓW,c(X, Z(n))→ RΓW,c(Z, Z(n))→ RΓW,c(U, Z(n))[1]

which would give us then a canonical isomorphism of determinants (1.8.1).
However, the diagram (1.8.12) a priori does not give a distinguished triangle
for Weil-étale cohomology, it gives only a sequence of morphisms that is
not necessarily distinguished (again, recall the discussion in 1.8.2). Let us
instead give an ad hoc workaround on the level of determinants.

1.8.9. First let us assume for simplicity that X(R) = ∅. Then the complexes

RΓfg(U, Z(n)), RΓfg(X, Z(n)), RΓfg(Z, Z(n)),

RΓc(GR, U(C), (2πi)n Z), RΓc(GR, X(C), (2πi)n Z), RΓc(GR, Z(C), (2πi)n Z)

are perfect (they do not have 2-torsion in arbitrarily high degrees), and
it makes sense to talk about their determinants. From the corresponding
columns in (1.8.12) we obtain canonical isomorphisms

detZ RΓfg(X, Z(n)) ∼= detZ RΓfg(U, Z(n))⊗Z detZ RΓfg(Z, Z(n)),

detZ RΓc(GR, X(C), (2πi)n Z) ∼=
detZ RΓc(GR, U(C), (2πi)n Z)⊗Z detZ RΓc(GR, Z(C), (2πi)n Z);

and the rows give us isomorphisms

detZ RΓW,c(U, Z(n)) ∼=
detZ RΓfg(U, Z(n))⊗Z (detZ RΓc(GR, U(C), (2πi)n Z))−1,

detZ RΓW,c(X, Z(n)) ∼=
detZ RΓfg(X, Z(n))⊗Z (detZ RΓc(GR, X(C), (2πi)n Z))−1,

detZ RΓW,c(Z, Z(n)) ∼=
detZ RΓfg(Z, Z(n))⊗Z (detZ RΓc(GR, Z(C), (2πi)n Z))−1.

Combining all the above, we obtain the desired isomorphism (1.8.1).
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1.8.10. Now let us treat the general case, when possibly X(R) 6= ∅. The
above argument does not quite make sense, because the involved complexes
are not bounded above. We consider the morphism of long exact sequences
in cohomology given by H•(i∗∞). We know that Hi(i∗∞) is an isomorphism for
i � 0, so truncating the long exact sequences at a sufficiently large degree
m� 0, we obtain

(1.8.13)

...
...

Hi
fg(U, Z(n)) Hi

c(GR, U(C), (2πi)n Z)

Hi
fg(X, Z(n)) Hi

c(GR, X(C), (2πi)n Z)

Hi
fg(Z, Z(n)) Hi

c(GR, Z(C), (2πi)n Z)

Hi+1
fg (U, Z(n)) Hi+1

c (GR, U(C), (2πi)n Z)

...
...

Hm
fg (U, Z(n)) Hm

c (GR, U(C), (2πi)n Z)

Hm
fg (X, Z(n)) Hm

c (GR, X(C), (2πi)n Z)

Hm
fg (Z, Z(n)) Hm

c (GR, Z(C), (2πi)n Z)

coker δm
fg coker δm

c

0 0

δi
fg δi

c

∼=

∼=

∼=

δm
fg δm

c
∼=

Note that the horizontal arrows that are isomorphisms induce canonical
isomorphisms between the determinants. In particular, there is a canonical
isomorphism

detZ coker δm
fg
∼= detZ coker δm

c ,

and hence a canonical isomorphism

(1.8.14) detZ coker δm
fg ⊗Z (detZ coker δm

c )
−1 ∼= Z.
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Now the exact columns of (1.8.13) give us canonical isomorphisms

(1.8.15)
⊗
i≤m

detZ Hi
fg(X, Z(n))(−1)i ∼=

⊗
i≤m

detZ Hi
fg(U, Z(n))(−1)i ⊗Z

⊗
i≤m

detZ Hi
fg(Z, Z(n))(−1)i ⊗Z detZ coker δm

fg

and

(1.8.16)
⊗
i≤m

detZ Hi
c(GR, X(C), (2πi)n Z)(−1)i ∼=

⊗
i≤m

detZ Hi
c(GR, U(C), (2πi)n Z)(−1)i ⊗Z

⊗
i≤m

detZ Hi
c(GR, Z(C), (2πi)n Z)(−1)i ⊗Z detZ coker δm

c .

For fixed distinguished rows as in (1.8.12), we have canonical isomor-
phisms

detZ RΓW,c(X, Z(n)) ∼=
⊗
i≤m

detZ Hi
W,c(X, Z(n))(−1)i

∼=
⊗
i≤m

detZ Hi
fg(X, Z(n))(−1)i ⊗Z

⊗
i≤m

detZ Hi
c(GR, X(C), (2πi)n Z)(−1)i+1

,

and similarly for U and Z in place of X. Combining these with (1.8.15),
(1.8.16), and (1.8.14), gives us a canonical isomorphism (1.8.1).

1.8.11. Remark. A cheap way to get around the above technical problems is
to consider the Weil-étale cohomology with coefficients in Z[1/2], i.e. tensor
the distinguished triangle defining RΓW,c(X, Z(n)) with the flat Z-module
Z[1/2]. Then the resulting distinguished triangle

RΓW,c(X, Z(n))⊗Z Z[1/2]→ RΓfg(U, Z(n))⊗Z Z[1/2]

→ RΓc(GR, Z(C), (2πi)n Z[1/2])→ RΓW,c(X, Z(n))⊗Z Z[1/2][1]

consists of perfect complexes, as we just killed the 2-torsion. But then in the
next chapter, we would be able to state the special value conjecture only up
to some power of 2.




