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Chapter 0

Preliminaries

In this chapter we are going to fix some notation and collect several basic
results which we will use later on.

Unless specified otherwise, X will denote an arithmetic scheme, i.e. sep-
arated, of finite type over Spec Z. Its small Zariski and étale sites will be
denoted by XZar and Xét respectively. By X(C) we denote the space of com-
plex points of X equipped with the usual analytic topology. It comes with a
natural action of the Galois group GR := Gal(C/R).

I start with some definitions and facts related to abelian groups in §0.1.
Then in §0.2 I fix some conventions about complexes. In our constructions
there will appear complexes of abelian groups of a very special kind: their
cohomology is conjecturally Q/Z-dual of finitely generated abelian groups,
so in §0.3 I collect some properties that are enjoyed by such complexes. We
will also make use of sheaves of roots of unity, and §0.5 is dedicated to
some observations about µm(C) viewed as GR-modules. We are also going
to use the equivariant cohomology of sheaves on X(C) with an action of GR.
I review the basic definitions in §0.6. Then in §0.7 I recall how a sheaf on Xét
gives rise to a GR-equivariant sheaf on X(C). In §0.8 I recall the definitions of
cohomology with compact support for sheaves on Xét and X(C), and in §0.9
I review a slight modification of cohomology with compact support on Xét
needed for arithmetic duality theorems, which will show up in §1.3. Then
in §0.10 I sketch a proof that for any arithmetic scheme X, the cohomology
groups Hi

c(X(C), Z) are finitely generated (this seems to be very standard,
but I could not find a reference). Finally, §0.11 is dedicated to an overview
of Bloch’s cycle complexes.
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12 0.1. Abelian groups

0.1 Abelian groups

Let A be an abelian group. Then Ator denotes the maximal torsion subgroup
of A and Acotor denotes the group A/Ator. Similarly, Adiv denotes the max-
imal divisible subgroup of A and Acodiv denotes the group A/Adiv, and we
have short exact sequences

0→ Ator → A→ Acotor → 0,

0→ Adiv → A→ Acodiv → 0.

Note that the image of a divisible group is divisible, so that a group ho-
momorphism f : A → B induces functorially a homomorphism of divisible
groups fdiv : Adiv → Bdiv. If A is a divisible group, then

HomAb(A, B) ∼= HomDivAb(A, Bdiv),

so that taking the maximal divisible subgroup (−)div : Ab→ DivAb is right
adjoint to the inclusion DivAb ↪→ Ab.

For the group of homomorphisms A → B between two abelian groups,
we will write simply Hom(A, B). For m = 1, 2, 3, . . . we denote by

m A := ker(A m−→ A) ∼= Hom(Z/mZ, A)

the m-torsion subgroup of A, and dually,

Am := coker(A m−→ A) = A/mA.

We have thus an exact sequence

0→ m A→ A ×m−−→ A→ Am → 0

The abelian group Q/Z is divisible, hence injective, meaning that the
contravariant functor Hom(−, Q/Z) is exact. For the infinite cyclic group
we have trivially

Hom(Z, Q/Z) ∼= Q/Z,

and for finite cyclic groups

Hom(Z/mZ, Q/Z) ∼= m(Q/Z)

= {[0/m], [1/m], [2/m], . . . , [m− 1/m]} ∼= Z/mZ.

It follows that if A is a finitely generated abelian group, then A ∼= Z⊕r⊕ Ator,
where Ator is the finite maximal torsion subgroup in A, and

Hom(A, Q/Z) ∼= (Q/Z)⊕r ⊕ Ator.

Of course, this isomorphism is not canonical, as it requires a choice of gen-
erators.
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0.1.1. Definition. If B ∼= Hom(A, Q/Z) for a finitely generated abelian
group A, we say that B is of cofinite type.

0.1.2. Observation. If A is a finitely generated abelian group, then there is a
canonical isomorphism

lim−→
m

Hom(A/mA, Q/Z)
∼=−→ Hom(A, Q/Z).

Proof. This isomorphism is induced by A → A/mA, and then applying
the functor Hom(−, Q/Z) and lim−→m

. It comes from the following easy
observation: as Q/Z is a torsion group, if A is finitely generated, any
homomorphism A → Q/Z is killed by some m, hence factors through
A/mA→ Q/Z. �

0.1.3. Lemma. Denote (−)D := Hom(−, Q/Z). Let A and B be finitely gener-
ated abelian groups and let AD and BD be the corresponding groups of cofinite type.
Then every extension of BD by AD is again a group of cofinite type. Namely, any
such extension is equivalent to

(0.1.1) 0→ AD → CD → BD → 0

where

(0.1.2) 0→ B→ C → A→ 0

is an extension of A by B.

The statement seems trivial, especially because Ext(A, B) and Ext(BD, AD)
are easily seen to be isomorphic finite groups. However, there is one sub-
tle issue: it is not obvious why nonequivalent extensions (0.1.2) cannot for
some reason give equivalent extensions (0.1.1). Indeed, between groups of
cofinite type, there are many homomorphisms that are not induced from the
corresponding finitely generated groups; for example,

(0.1.3) HomAb(Z, Z) ∼= Z while HomAb(Z
D, ZD) ∼= Ẑ.

A priori, these extra homomorphisms could give weird equivalences of ex-
tensions. This is not the case, but we need to be a little bit more careful to
justify that.

Proof. Consider the category Abft of finitely generated abelian groups. It is
a full abelian subcategory of the category Ab. The contravariant functor

(−)D := Hom(−, Q/Z) : Ab◦ft → Ab.
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is exact and faithful, but it is very far from being full, as we observed in
(0.1.3). Let us denote the image of the functor (−)D by Abcft. It is the
category whose objects are groups of cofinite type AD for some finitely gen-
erated A, and morphisms BD → AD in Abcft are induced by morphisms
A → B of finitely generated groups. This means that (−)D restricts to an
(anti)equivalence of abelian categories

(0.1.4) (−)D := Hom(−, Q/Z) : Ab◦ft
'−→ Abcft.

The category Abft has enough projective objects (and no nontrivial injec-
tive objects). Dually, Abcft has enough injective objects: they are Q/Z-dual
to the projective objects in Abft:

P

A B
∃

f̃
f  

PD

AD BD

f̃ D

∃
f D

Now assume that for some finitely generated groups A and B we want
to calculate

Ext1
Ab(A, B) ∼= R1 HomAb(−, B)(A) = R1 HomAbft

(−, B)(A) ∼= Ext1
Abft

(A, B).

To do this, we may pick a projective resolution P• � A, and then calculate
the cohomology group H1 Hom(P•, B). Note that we may build this projec-
tive resolution from finitely generated groups, i.e. inside the category Abft.
Then thanks to the (anti)equivalence of categories (0.1.4), we have

(0.1.5) Ext1
Ab(A, B) ∼= Ext1

Abft
(A, B) ∼= Ext1

Abcft
(BD, AD).

The group

Ext1
Abcft

(BD, AD) ∼= R1 HomAbcft
(BD,−)(AD)

may be calculated by taking the same resolution P• � A, dualizing it to
obtain an injective resolution AD � PD

• by groups of cofinite type, and then
calculating H1 HomAbcft

(BD, PD
• ). Note that HomAbcft

(BD, PD
• ) is a subcom-

plex in HomAb(BD, PD
• ), and we have the corresponding homomorphism on

H1

(0.1.6) Ext1
Abcft

(BD, AD)→ Ext1
Ab(BD, AD).

I claim that it is an isomorphism. Indeed, by additivity of Ext1
A (−,−), it

is enough to see this for the only interesting case A = Z/mZ and B = Z.
The projective resolution

0→ Z
×m−−→ Z

1 7→[1]−−−→ Z/mZ→ 0
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gives us the corresponding injective resolution of Z/mZD ∼= Z/mZ:

0→ Z/mZ
[1] 7→[1/m]−−−−−−→ Q/Z

×m−−→ Q/Z→ 0

After applying HomA (Z
D,−) for A = Abcft, Ab, we get two complexes:

0 Z Z 0

0 Ẑ Ẑ 0

×m

×m

On H1 this indeed induces an isomorphism Z/mZ → Ẑ/mẐ ∼= Z/mZ.
Combining the isomorphism (0.1.6) with (0.1.5), we obtain an isomorphism

Ext1
Ab(A, B) ∼= Ext1

Ab(BD, AD).

It remains to pass to the Yoneda Ext, which I suggest to denote for the mo-
ment by YExt1

A (A, B), and which corresponds to the equivalence classes of
extensions

0→ B→ C → A→ 0

with respect to the Baer sum. If we have enough projectives or injectives in
A , so that Ext1

A (A, B) exists, then we have an isomorphism of abelian groups

YExt1
A (A, B) ∼= Ext1

A (A, B)

—see e.g. [Wei1994, §3.4]. In our situation, this gives an isomorphism

YExt1
Ab(A, B)

∼=−→ YExt1
Ab(BD, AD),

[B� C� A] 7→ [AD � CD � BD]

�

0.1.4. Example. If T is a finite abelian group, then

Ext(Q/Z, T) ∼= Ext(T, Z) ∼= T.

Indeed, by additivity of Ext(−,−), it is enough to check this for cyclic groups
T ∼= Z/mZ, and in this case, after applying Hom(−, Z) to the short exact
sequence

0→ Z
×m−−→ Z→ Z/mZ→ 0
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we obtain

0→ Hom(Z/mZ, Z)︸ ︷︷ ︸
=0

→ Z
×m−−→ Z

→ Ext(Z/mZ, Z)→ Ext(Z, Z)︸ ︷︷ ︸
=0

→ Ext(Z, Z)︸ ︷︷ ︸
=0

→ 0

In particular, for prime p, the corresponding p nonequivalent extensions of
Q/Z by Z/pZ arise as follows. First, there is the split extension

0→ Z/pZ→ Q/Z⊕Z/pZ→ Q/Z→ 0

which is dual to the extension

0→ Z→ Z⊕Z/pZ→ Z/pZ→ 0

Then the remaining p− 1 extensions are of the form

0→ Z/pZ
[1] 7→[m/p]−−−−−−→ Q/Z

×p−→ Q/Z→ 0

where m = 1, 2, . . . , p− 1. Here we identify Z/pZ with the cyclic subgroup{
0, 1

p , 2
p , . . . , p−1

p

}
⊂ Q/Z. These extensions are dual to

0→ Z
×p−→ Z

1 7→[m]−−−→ Z/pZ→ 0

They are not equivalent for different m, because if we have a commutative
diagram

Q/Z

0 Z/pZ Q/Z 0

Q/Z

×p

∼=

[1] 7→[m1/p]

[1] 7→[m2/p] ×p

then m1 = m2. N

0.2 Complexes

Let us recall a couple of constructions from homological algebra. For an
abelian category A we denote by C(A) the category of cohomological com-
plexes in A , by K(A) the corresponding homotopy category, and by D(A)
the derived category.
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For a complex C• and p ∈ Z, the shifted complex C•[p] is defined by

(C•[p])i := Ci+p, di
C• [p] := (−1)p di+p.

With this convention, Hi(C•[p]) = Hi+p(C•). (Note that some sources, e.g.
[Wei1994, 1.2.4], use another renumbering (C•[p])i := Ci−p.)

0.2.1. Definition. A (cohomological) double complex (C••, d••h , d••v ) is given
by objects Ci,j ∈ A for i, j ∈ Z, horizontal differentials

di,j
h : Ci,j → Ci+1,j,

and vertical differentials

di,j
v : Ci,j → Ci,j+1,

such that for all i, j ∈ Z

(0.2.1) di+1,j
v ◦ di,j

h + di,j+1
h ◦ di,j

v = 0;

that is, we have a diagram with anti-commutative squares

...
...

...

· · · Ci−1,j+1 Ci,j+1 Ci+1,j+1 · · ·

· · · Ci−1,j Ci,j Ci+1,j · · ·

· · · Ci−1,j−1 Ci,j−1 Ci+1,j−1 · · ·

...
...

...

di,j+1
h

di,j
h

di,j
v di+1,j

v

Assume that in A exist arbitrary products ∏i Ai and coproducts
⊕

i Ai.
Then the corresponding total complexes (with respect to direct sum and
product) are given by

(Tot⊕ C••)m :=
⊕

i+j=m
Ci,j, (TotΠ C••)m := ∏

i+j=m
Ci,j,

together with the obvious differentials dm : (Tot C••)m → (Tot C••)m+1 de-
fined via d••h and d••v . The identity dm+1 ◦ dm = 0 is satisfied thanks to the
condition (0.2.1).
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Note that if Ci,j = 0 for i � 0 and for j � 0, then for each m there are
only finitely many nonzero objects Ci,j such that i + j = m, and in this case
Tot⊕ C•• = TotΠ C••.

0.2.2. Definition. Let (A•, dA
• ) be a homological complex and (B•, d•B) a

cohomological complex. Then the corresponding Hom double complex
Hom••(A•, B•) is the double complex of abelian groups given by

Homi,j(A•, B•) := HomA (Ai, Bj),

together with the differentials for f ∈ HomA (Ai, Bj)

di,j
h f := f ◦ dA

i+1,

di,j
v f := (−1)i+j+1 dj

B ◦ f .(0.2.2)

...
...

...

· · · Hom(Ai−1, Bj+1) Hom(Ai, Bj+1) Hom(Ai+1, Bj+1) · · ·

· · · Hom(Ai−1, Bj) Hom(Ai, Bj) Hom(Ai+1, Bj) · · ·

· · · Hom(Ai−1, Bj−1) Hom(Ai, Bj−1) Hom(Ai+1, Bj−1) · · ·

...
...

...

di,j
h

di,j
v

The sign in (0.2.2) is introduced to make the squares anti-commute, turn-
ing Hom••(A•, B•) into a double complex in the sense of 0.2.1.

0.2.3. Definition. Let (A•, d•A) and (B•, d•B) be two cohomological com-
plexes. Then we may turn A• into a homological complex A• by setting
Ai := A−i and dA

i := d−i
A : Ai → Ai−1. The complex

Hom•(A•, B•) := TotΠ Hom••(A•, B•)

is called the Hom complex.

0.3 Derived category of abelian groups

Most of the time we are going to work in the derived category D(Ab) of com-
plexes of abelian groups, and occasionally the derived category of D(R-Vect)
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of complexes of real vector spaces. The canonical reference for derived cate-
gories is Verdier’s thesis [Verdier-thèse], and in particular I am going to use
Verdier’s original axioms (TR1)–(TR4).

It is rather easy to describe how objects and morphisms in the category
D(Ab) look like, thanks to the fact that Exti

Z(−,−) = 0 for i > 1. Let us
recall the general (well-known) result.

0.3.1. Lemma. Let A be a hereditary abelian category, i.e. an abelian category
such that

Exti
A (A, B) = 0 for all A, B ∈ A , i > 1

(when A = R-Mod, this condition is equivalent to R being a hereditary ring; in
particular, Z and any principal ideal domain is hereditary).

1) In the derived category D(A) every complex A• is isomorphic to the complex

· · · → Hi−1(A•) 0−→ Hi(A•) 0−→ Hi+1(A•)→ · · ·

that is,
A• ∼=

⊕
i∈Z

Hi(A•)[−i] ∼= ∏
i∈Z

Hi(A•)[−i].

2) The morphisms in D(A) are given by

HomD(A)(A•, B•) ∼=

∏
i∈Z

HomA (Hi(A•), Hi(B•))⊕∏
i∈Z

Ext1
A (Hi(A•), Hi−1(B•)).

Proof. For the first part, for each i ∈ Z let us consider the short exact se-
quence

0→ ker di−1 → Ai−1 p−→ im di−1 → 0

Applying the functor HomA (Hi(A•),−) gives us a long exact sequence of
Yoneda Exts

· · · → Ext1
A (Hi(A•), ker di−1)→ Ext1

A (Hi(A•), Ai−1)
p∗−→ Ext1

A (Hi(A•), im di−1)→ Ext2
A (Hi(A•), ker di−1)→ · · ·

where the last Ext vanishes by our assumption on A , and therefore p∗ is sur-
jective, which in particular means that the class of the short exact sequence

0→ im di−1 → ker di → Hi(A•)→ 0
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lies in the image in p∗, so that there exists an object Bi sitting in the following
morphism of short exact sequences:

0 Ai−1 Bi Hi(A•) 0

0 im di−1 ker di Hi(A•) 0

p id

This gives us morphisms of complexes

[Ai−1
i−1
→ Bi

i
]

A• Hi(A•)[−i]

that induce isomorphisms in cohomology in degree i:

· · · Ai−2 Ai−1 Ai Ai+1 · · ·

· · · 0 Ai−1 Bi 0 · · ·

· · · 0 0 Hi(A•) 0 · · ·

id

Passing to direct sums of the complexes Hi(A•)[−i] and [Ai−1
i−1

→ Bi
i
]

gives us quasi-isomorphisms that form the desired isomorphism in D(A):

C•

A•
⊕

i∈Z

Hi(A•)[−i]

' '

We note that
⊕

i∈Z

Hi(A•)[−i] has the universal property of both product

and coproduct in the category of complexes.
Now for the second part, we note that since by our assumptions on A ,

HomD(A)(A, B[i]) =


HomA (A, B), i = 0,
Ext1

A (A, B), i = 1,
0, otherwise,
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we have by the calculation in 1),

HomD(A)(A•, B•) ∼= HomD(A)(
⊕
i∈Z

Hi(A•)[−i], ∏
j∈Z

H j(B•)[−j])

∼= ∏
i∈Z

∏
j∈Z

HomD(A)(Hi(A•), H j(B•)[i− j])

∼= ∏
i∈Z

(
HomA (Hi(A•), Hi(B•))⊕ Ext1

A (Hi(A•), Hi−1(B•))
)

.

�

0.3.2. Remark. One can also obtain information about HomD(A)(A•, B•)
using the following hyperext spectral sequence:

Epq
2 = ∏

i∈Z

Extp
A (Hi(A•), Hq+i(B•)) =⇒ Extp+q

D(A)
(A•, B•)

(see e.g. [Verdier-thèse, Chapitre III, §4.6.10] and [Wei1994, §5.7.9]). For a
hereditary category Extp

A = 0, unless p = 0, 1, and this spectral sequence
consists of two columns and therefore gives us short exact sequences

0→ ∏
i∈Z

Ext1
A (Hi(A•), Hi−1(B•))→ HomD(A)(A•, B•)

→ ∏
i∈Z

HomA (Hi(A•), Hi(B•))→ 0

However, one should be careful with boundedness of A• and B• to make
sure that the spectral sequence exists.

Recall that a complex of abelian groups C• is called perfect if it is quasi-
isomorphic to a bounded complex of finitely generated free (= projective)
abelian groups. This is the same as asking Hi(C•) to be finitely generated
abelian groups, and Hi(C•) = 0 for all but finitely many i. In §1.5 we are
going to construct certain complexes RΓfg(X, Z(n)) that are almost perfect, in
the sense that their cohomology groups Hi

fg(X, Z(n)) are finitely generated,
vanish for i � 0, and for i � 0 they are finite 2-torsion (that is, killed by
multiplication by 2). Let us introduce the following notion.

0.3.3. Definition. Let C• be an object in D(Ab). We say that C• is almost
perfect if

1) Hi(C•) are finitely generated groups,

2) Hi(C•) = 0 for i� 0,

3) Hi(C•) is 2-torsion for i� 0.
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I warn the reader that this terminology was invented by myself and
serves only to simplify the exposition.

0.3.4. Lemma.

1) If C• and C′• are almost perfect, then the group HomD(Ab)(C•, C′•) has no
nontrivial divisible subgroups.

2) If A• is a complex such that Hi(A•) are finite dimensional Q-vector spaces
and C• is a complex such that Hi(C•) are finitely generated abelian groups,
then the group HomD(Ab)(A•, C•) is divisible.

Proof. By 0.3.1 we have

HomD(Ab)(C
•, C′•) ∼=

∏
i∈Z

Hom(Hi(C•), Hi(C′•))⊕∏
i∈Z

Ext(Hi(C•), Hi−1(C′•)).

Note that by our assumptions, both groups ∏i∈Z Hom(Hi(C•), Hi(C′•)) and
∏i∈Z Ext(Hi(C•), Hi−1(C′•)) will be of the form G⊕ T, where G is a finitely
generated abelian group and T is 2-torsion. Assume now that some element
x ∈ HomD(Ab)(C•, C′•) is divisible by all powers of 2. If it lies in the finitely
generated part, then x = 0; if it lies in the 2-torsion part, then again x = 0.

Similarly, in part 2), we have

HomD(Ab)(A•, C•) ∼=

∏
i∈Z

Hom(Hi(A•), Hi(C•))⊕∏
i∈Z

Ext(Hi(A•), Hi−1(C•)).

Now by our assumptions Hom(Hi(A•), Hi(C•)) = 0 for all i. Then each
group Ext(Hi(A•), Hi−1(C•)) is a direct sum of finitely many groups iso-
morphic to Ext(Q, Z) and Ext(Q, Z/mZ), and Ext(Q, Z) is divisible while
Ext(Q, Z/mZ) = 0. This means that the group Ext(Hi(A•), Hi−1(C•)) is
divisible for each i, and hence their direct product over i is divisible. �

Recall that the axiom (TR1) tells us that every morphism v : A• → B• may
be completed to a distinguished triangle A• u−→ B• v−→ C• w−→ A•[1]. Here C•

is called the cone of u. The axiom (TR3) tells that for every commutative
diagram with distinguished rows

(0.3.1)

A• B• C• A•[1]

A′• B′• C′• A′•[1]

u

f

v

g

w

u′ v′ w′
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there exists some morphism h : C• → C′• giving a morphism of distin-
guished triangles

(0.3.2)

A• B• C• A•[1]

A′• B′• C′• A′•[1]

u

f

v

g

w

∃!h f [1]

u′ v′ w′

The cone C• in (TR1) and the morphism h in (TR3) are neither unique
nor canonical. Two different cones of the same morphism are necessarily
isomorphic, but the isomorphism between them is not unique, because it is
provided by (TR3). This is a well-known issue with the derived category
formalism, and in the present text we are going to encounter some problems
related to it. For now, let us recall a useful standard argument which shows
that at least in some special cases, things are uniquely defined.

0.3.5. Observation ((TR3) and (TR1) with uniqueness; ≈ [BBD1982, Propo-
sition 1.1.9, Corollaire 1.1.10]). Consider the derived category D(A) of an abelian
category A .

1) For a commutative diagram (0.3.1), assume that the homomorphism of abelian
groups

w∗ : HomD(A)(A•[1], C′•)→ HomD(A)(C
•, C′•)

induced by w is trivial. Then there exists a unique morphism h : C• → C′•

giving a morphism of triangles (0.3.2).

2) For a distinguished triangle A• u−→ B• v−→ C• w−→ A•[1], assume that for any
other cone C′• of u the morphism w∗ is trivial. Then in fact the cone of u is
unique up to a unique isomorphism.

Proof. In 1), the existence of C• → C′• is the axiom (TR3), and the interest-
ing part is uniqueness. Since HomD(A)(−, C′•) is a cohomological functor,
applied to the first distinguished triangle, it gives us an exact sequence of
abelian groups

HomD(A)(A•[1], C′•) w∗−→ HomD(A)(C
•, C′•) v∗−→ HomD(A)(B•, C′•).

If w∗ = 0, we conclude that v∗ is a monomorphism. This means that there is
a unique morphism h such that h ◦ v = v′ ◦ g. Now in 2), if C• and C′• are
two different cones of u, we have a commutative diagram

A• B• C• A•[1]

A• B• C′• A•[1]

u

id

v

id

w

id

u′ v′ w′
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As always, by the “triangulated 5-lemma”, the dashed arrow is an isomor-
phism, and it is unique thanks to 1). �

Here is a particular case that we are going to use.

0.3.6. Corollary. Consider the derived category D(Ab).

1) Suppose we have a commutative diagram with distinguished rows

A• B• C• A•[1]

A′• B′• C′• A′•[1]

u

f

v

g

w

u′ v′ w′

where A• is a complex such that Hi(A•) are finite dimensional Q-vector
spaces and C• and C′• are almost perfect complexes. Then there exists a
unique (!) morphism h : C• → C′• giving a morphism of triangles

A• B• C• A•[1]

A′• B′• C′• A′•[1]

u

f

v

g

w

∃!h f [1]

u′ v′ w′

2) For a distinguished triangle

A• u−→ B• v−→ C• w−→ A•[1]

assume that A• is a complex such that Hi(A•) are finite dimensional Q-vector
spaces and C• is an almost perfect complex. Then the cone of u is unique up
to a unique isomorphism.

Proof. In this situation, according to 0.3.4, the group HomD(Ab)(C•, C′•) has
no nontrivial divisible subgroups and HomD(Ab)(A•[1], C′•) is divisible. This
means that there are no nontrivial homomorphisms

HomD(Ab)(A•[1], C′•)→ HomD(Ab)(C
•, C′•)

and we may apply 0.3.5. �

We are going to encounter certain complexes whose cohomology groups
are of cofinite type, i.e. Q/Z-dual of finitely generated abelian groups.
Again, they will be bounded below, but may have 2-torsion in higher de-
grees. For this we introduce a definition similar to 0.3.3.

0.3.7. Definition. Let A• be an object in D(Ab). We say that A• is almost of
cofinite type if
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1) Hi(A•) are groups of cofinite type for all i,

2) Hi(A•) = 0 for i� 0,

3) Hi(A•) is 2-torsion for i� 0 (in fact, finite 2-torsion according to 1)).

0.3.8. Observation. Suppose that A• and B• are almost of cofinite type. Then a
morphism f : A• → B• is torsion in D(Ab) (i.e. a torsion element in the group
HomD(Ab)(A•, B•), i.e. f ⊗Q = 0) if and only if the morphisms

Hi( f ) : Hi(A•)→ Hi(B•)

are torsion, that is, they are trivial on the maximal divisible subgroups:

(Hi( f )div : Hi(A•)div → Hi(B•)div) = 0.

Proof. By 0.3.1 we have

HomD(Ab)(A•, B•) ∼=

∏
i∈Z

Hom(Hi(A•), Hi(B•))⊕∏
i∈Z

Ext(Hi(A•), Hi−1(B•)).

As the groups Hi(A•) and Hi−1(B•) are of the form (Q/Z)⊕r ⊕ T, where T
is finite, we have

Ext((Q/Z)⊕r ⊕ T, (Q/Z)⊕r′ ⊕ T′) ∼=
Ext((Q/Z)⊕r, (Q/Z)⊕r′)︸ ︷︷ ︸

=0

⊕ Ext((Q/Z)⊕r, T′)

⊕ Ext(T, (Q/Z)⊕r′)︸ ︷︷ ︸
=0

⊕ Ext(T, T′),

where Ext((Q/Z)⊕r, (Q/Z)⊕r′) and Ext(T, (Q/Z)⊕r′) are trivial because
Q/Z is a divisible group; then Ext((Q/Z)⊕r, T′) ∼= Ext(Q/Z, T′)⊕r ∼= T′⊕r

by 0.1.4, and Ext(T, T′) is also finite, being a direct sum of

Ext(Z/mZ, Z/nZ) ∼= Z/(m, n)Z.

For i � 0, the groups Hi(A•) and Hi−1(B•) will be finite 2-torsion, and
therefore Ext(Hi(A•), Hi−1(B•)) will be finite 2-torsion as well. It follows
that the whole product ∏i∈Z Ext(Hi(A•), Hi−1(B•)) is of the form G ⊕ T,
where G is finite and T is possibly infinite 2-torsion. We have

(G⊕ T)⊗Z Q = 0.
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Similarly, the group ∏i∈Z Hom(Hi(A•), Hi(B•)) will consist of some part
of the form Ẑ⊕r ⊕ G, where G is finite, and some 2-torsion part, which is
killed by tensoring with Q. It follows that there is an isomorphism

HomD(Ab)(A•, B•)⊗Z Q
∼=−→ ∏

i∈Z

Hom(Hi(A•), Hi(B•))⊗Z Q.

After unwinding the proof of 0.3.1, one sees that this arrow is what it should
be:

f ⊗Q 7→ (Hi( f )⊗Q)i∈Z.

�

0.3.9. Observation. If A• is a complex of Q-vector spaces and B• is a complex
almost of cofinite type, then there is an isomorphism of abelian groups

HomD(Ab)(A•, B•)
∼=−→ ∏

i∈Z

Hom(Hi(A•), Hi(B•)),

f 7→ (Hi( f ))i∈Z.

Proof. I claim that in the formula 0.3.1

HomD(Ab)(A•, B•) ∼= ∏
i∈Z

Hom(Hi(A•), Hi(B•))⊕∏
i∈Z

Ext(Hi(A•), Hi−1(B•))

the summand with Ext groups vanishes. Indeed, each group Hi−1(B•) is of
the form Q/Z⊕r ⊕ T, where Q/Z is injective, hence Ext(−, Q/Z) = 0, and
T is a finite torsion group, hence Ext(V, T) = 0 if V is a Q-vector space. �

0.4 Determinants of complexes

We are going use determinants of complexes defined by Knudsen and Mum-
ford. The reader may consult [GKZ1994, Appendix A] for a nice introduction
and the original paper [KM1976] for the technical details.

For a perfect complex of R-modules P•, or in general for a perfect com-
plex in the derived category D(R-Mod) one may define its determinant

detR P• :=
⊗
i∈Z

detR Hi(P•)(−1)i
.

0.4.1. Fact ([KM1976, p. 43, Corollary 2]). For a distinguished triangle of perfect
complexes in D(R-Mod)

A• → B• → C• → A•[1]
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we have a canonical isomorphism

detR A• ⊗R detR C•
∼=−→ det B•.

It is functorial with respect to isomorphisms of distinguished triangles: for such an
isomorphism

A• B• C• A•[1]

A′• B′• C′• A′•[1]

f∼= g∼= h∼= f [1]∼=

we have a commutative diagram

detR A• ⊗ detR C• detR B•

detR A′• ⊗ detR C′• detR B′•

∼=

∼=det( f )⊗det(h) det(g)∼=
∼=

Note that in particular, if we consider the direct sum of distinguished
triangles

A• id−→ A• → 0→ A•[1] and 0→ B• id−→ B• → 0

then we obtain a distinguished triangle

A• → A• ⊕ B• → B• → A•[1]

and 0.4.1 gives us a canonical isomorphism

detR A• ⊗R detR B•
∼=−→ detR(A• ⊕ B•).

0.5 Roots of unity

The m-th complex roots of unity

µm(C) := {z ∈ C× | zm = 1} = {e2πik/m | k = 0, . . . , m− 1}

form an abelian group with respect to multiplication. It also carries a natural
action of the Galois group GR := Gal(C/R) by complex conjugation, making
µm(C) into a GR-module.

Let us fix some (standard) conventions for G-modules. We write the
action of G on the left. If A and B are G-modules, then we denote by A⊗ B
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the tensor product of A and B over Z together with the action of G defined
by

g(a⊗ b) := g · a⊗ g · b.

This tensor product in the category of G-modules is left adjoint to the inter-
nal Hom, which we denote by Hom(A, B). The action of G on the latter is
given by

(g f )(a) := g · f (g−1 · a)

for a group homomorphism f : A→ B.

Re

Im

The action of GR on µ10(C).

As an abelian group, µm(C) is non-canonically isomorphic to Z/mZ.
Similarly, the group of all roots of unity colimm µm(C) =

⊕
p lim−→r

µpr (C) is
isomorphic to Q/Z ∼=

⊕
p Qp/Zp. Now we are going to write down such

isomorphisms in a canonical way, without forgetting about the action of GR.
Further, we introduce a twist by n. In the setting of this text, n is a negative
integer, but for the sake of completeness, let us do that for any integer n.

0.5.1. Definition (Tate twists). Let n ∈ Z.

• If n = 0, then
µm(C)⊗0 := Z/mZ,

where Z/mZ is taken with the trivial action of GR.

• If n > 0, then
µm(C)⊗n := µm(C)⊗ · · · ⊗ µm(C)︸ ︷︷ ︸

n

is the n-th tensor power of µm(C) with the canonical action of GR.
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• If n < 0, then

µm(C)⊗n := Hom(µm(C)⊗(−n), Z/mZ),

where in this case the action of GR is given by

f (z) := f (z).

0.5.2. Lemma. There is a canonical isomorphism of GR-modules

µm(C)
∼=−→ 2πi Z

m (2πi)Z
,

e2πik/m 7→ 2πik.

Proof. The given explicit map is pretty self-explanatory, but the reader might
appreciate the fact that this comes from the snake lemma. Let us consider
the following morphism of short exact sequences of GR-modules:

0 2πi Z C C× 1

0 2πi Z C C× 1

−×m

z 7→ez

−×m (−)m

z 7→ez

Note that all the involved arrows are GR-equivariant. The map in the
middle has trivial kernel and cokernel, so by the snake lemma, there is a
canonical isomorphism between the kernel of the last map, which is µm(C),
and the cokernel of the first map, which is 2πi Z

m (2πi)Z
:

µm(C)
∼=−→ 2πi Z

m (2πi)Z
.

0 0 0 µm(C)

0 2πi Z C C× 1

0 2πi Z C C× 1

2πi Z
m (2πi)Z

0 1 1

z 7→ ez

z 7→ ez

−×m −×m (−)m

�
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0.5.3. Lemma. For n > 0 we have a canonical isomorphism of GR-modules

µm(C)⊗n ∼=
(2πi)n

m (2πi)n Z
.

Proof. From the previous calculation and the canonical GR-equivariant iso-
morphism

(2πi)Z⊗ · · · ⊗ (2πi)Z︸ ︷︷ ︸
n

∼=−→ (2πi)n Z,

(2πi) a1 ⊗ · · · ⊗ (2πi) an 7→ (2πi)n a1 · · · an

we obtain

µm(C)⊗ · · · ⊗ µm(C)︸ ︷︷ ︸
n

∼=−→ 2πi Z

m (2πi)Z
⊗ · · · ⊗ 2πi Z

m (2πi)Z︸ ︷︷ ︸
n

∼=
(2πi)n Z

m (2πi)n Z
.

�

0.5.4. Lemma. For n < 0 we have a canonical isomorphism of GR-modules

µm(C)⊗n := Hom(µ
⊗(−n)
m (C), Z/mZ) ∼=

(2πi)n Z

m (2πi)n Z
.

Proof. We claim that there is a GR-equivariant isomorphism
(0.5.1)

Hom
(

(2πi)−n Z

m (2πi)−n Z
, Z/mZ

)
∼= Hom

(
(2πi)−n Z, Z/mZ

) ∼=−→ (2πi)n Z

m (2πi)n Z
.

Note that −n got replaced with n, for the reason which will be appar-
ent in a second. A homomorphism f : (2πi)−n Z → Z/mZ is determined
by the image of a generator f ((2πi)−n · 1), so we may define the second
isomorphism in (0.5.1) by

(0.5.2) Φ : f 7→ (2πi)n · f ((2πi)−n · 1).

It is clearly an isomorphism of abelian groups, and it only remains to
check that it is GR-equivariant, i.e. that for all f : (2πi)−n Z→ Z/mZ holds

Φ( f ) = Φ( f ).

We have indeed

Φ( f ) = (2πi)n · f ((2πi)−n · 1) = (2πi)n · f ((2πi)−n · 1)
= (−1)n (2πi)n · f ((2πi)−n · 1)



Chapter 0. Preliminaries 31

and

Φ( f ) = (2πi)n · f ((2πi)−n · 1) = (−1)n (2πi)n · f ((2πi)−n · 1).

�

0.5.5. Lemma. The GR-module of all roots of unity twisted by n is canonically
isomorphic to the GR-module (2πi)n Q

(2πi)n Z
:

colim
m

µm(C)⊗n :=
⊕

p
lim−→

r
µpr (C)⊗n ∼=

(2πi)n Q

(2πi)n Z
.

Proof. Using the previous calculations and observing that the transition mor-
phisms in the colimit are GR-equivariant,

⊕
p

lim−→
r

µpr (C)⊗n ∼=
⊕

p
lim−→

r

(2πi)n Z

pr (2πi)n Z
∼=

(2πi)n Q

(2πi)n Z
.

�

Somewhat abusively, from now on we will write simply “(2πi)n Q/Z”
for (2πi)n Q

(2πi)n Z
.

0.6 G-equivariant sheaves

G-equivariant sheaves on topological spaces are discussed in Grothendieck’s
Tohoku paper [Tôhoku]:

Nous appelerons G-faisceau sur X = X(G) un faisceau (d’ensembles)
A sur X, dans lequel G opère de façon compatible avec ses opéra-
tions sur X. Pour donner un sens à cette définition, on pourra
par exemple considérer A comme espace étalé dans X; nous
n’insisterons pas.

In this section I will give some explanation of the notion of a G-equivariant
sheaf and collect certain relevant results. What follows is a rather straight-
forward generalization of the usual sheaf theory, so I omit some details.
Probably the best way to motivate the definition is to recall the construction
of the sheaf of sections of a continuous map.

0.6.1. Classical example. Let X be a topological space. Consider the category
Top/X of spaces over X where the objects are continuous maps of topological
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spaces p : E→ X and the morphisms are commutative diagrams

(0.6.1)
E E′

X

f

p p′

For a topological space over X given by p : E → X, the corresponding
sheaf of sections is the sheaf of sets defined by

F (U) := HomTop/X
(U, E) =

 U E

X

s

p


for each open subset U ⊂ X. The restriction maps are obvious: an inclusion
of open subsets i : V ↪→ U induces contravariantly

resVU := HomTop/X
(i, E) : F (U)→ F (V),

and the sheaf axiom is also easy to verify. A morphism over X of the form
(0.6.1) gives rise to a morphism of the corresponding sheaves of sections: for
each open subset U ⊂ X we get a map

φU : HomTop/X
(U, E)→ HomTop/X

(U, E′),

U E

X

s

p
7→

U E E′

X

s

p

f

p′

and for each V ⊂ U the diagram

F (U) := HomTop/X
(U, E) HomTop/X

(U, E′) =: F ′(U)

F (V) := HomTop/X
(V, E) HomTop/X

(V, E′) =: F ′(V)

φU

resVU res′VU

φV

clearly commutes. So formation of the sheaf of sections is a functor

Γ : Top/X → Sh(X).

0.6.2. G-equivariant example. For a discrete group G, consider the cate-
gory of G-spaces G-Top where the objects are topological spaces X with a
specified action of G by homeomorphisms σX : G× X → X, and morphisms
f : X → Y are continuous G-equivariant maps:
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G× X G×Y

X Y

id× f

σX σY

f

For a fixed G-space X, the category G-Top/X of G-spaces over X has
as its objects continuous G-equivariant maps p : E → X and as morphisms
continuous G-equivariant maps over X

E E′

X

f

p p′

For a G-space over X given by p : E→ X, the corresponding sheaf of sections
F carries the following extra datum. For each open subset U ⊂ X and each
g ∈ G there is a bijection of sets

αg,U : F (U)
∼=−→ F (g ·U),

(s : U → E) 7→
(

g ·U → E,
g · u 7→ g · s(u)

)
,(

U → E,
u 7→ g−1 · s(g · u)

)
← [ (s : g ·U → E).

Using the fact that p is G-equivariant, one checks that αg,U indeed sends
sections over U to sections over g ·U. We also see that the bijections αg,U
satisfy the following properties:

1) compatibility with restrictions: for open subsets V ⊂ U the diagram

F (U) F (g ·U)

F (V) F (g ·V)

αg,U

∼=
resVU resg·V,g·U

αg,V

∼=

commutes;

2) for the identity element 1 ∈ G and each open subset U ⊂ X we have

α1,U = id : F (U)→ F (U);

3) the cocycle condition: for each open subset U ⊂ X and g, h ∈ G the
diagram

F (h ·U)

F (U) F (gh ·U)

αg,h·Uαh,U

αgh,U
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commutes.

For a morphism of G-spaces over X

E E′

X

f

p p′

the corresponding morphism of sheaves of sections φ : F → F ′ is easily seen
to be compatible with the maps αg,U and α′g,U : for each U ⊂ X the diagram

F (U) F ′(U)

F (g ·U) F ′(g ·U)

φU

αg,U α′g,U
φg·U

commutes.

Now hopefully, the last example makes the following definition look nat-
ural.

0.6.3. Definition. Let G be a discrete group and let X be a G-space. Then a G-
equivariant presheaf (of sets) on X is a presheaf F equipped with bijections
of sets

αg,U : F (U)
∼=−→ F (g ·U)

for each g ∈ G and open subset U ⊂ X that satisfy the following axioms:

1) these bijections are compatible with restrictions:

F (U) F (g ·U)

F (V) F (g ·V)

αg,U

∼=
resVU resg·V,g·U

αg,V

∼=

2) α1,U = id : F (U)→ F (U);

3) for g, h ∈ G the cocycle condition holds:

F (h ·U)

F (U) F (gh ·U)

αg,h·Uαh,U

αgh,U
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A G-equivariant sheaf is a G-equivariant presheaf satisfying the usual
sheaf axiom: for each open covering U =

⋃
i Ui we have an equalizer

F (U)→∏
i

F (Ui)⇒∏
i,j

F (Ui ∩Uj).

A morphism of G-equivariant (pre)sheaves F → F ′ is a morphism of
(pre)sheaves which is compatible with the maps αg,U :

F (U) F ′(U)

F (g ·U) F ′(g ·U)

φU

αg,U α′g,U
φg·U

We denote the category of G-equivariant presheaves (resp. sheaves) on X
by PSh(G, X) (resp. Sh(G, X)).

We may summarize 0.6.2 by saying that taking the sheaf of sections is a
functor

Γ : G-Top/X → Sh(G, X).

It commutes with the forgetful functors:

G-Top/X Sh(G, X)

Top/X Sh(X)

Γ

Γ

0.6.4. Remark. Despite the extra datum coming from the action of G, the cat-
egory Sh(G, X) is still a Grothendieck topos. This can be deduced from Gi-
raud’s characterization of Grothendieck toposes [SGA 4, Exposé IV, 1.2] (see
e.g. [MLM1994, Appendix] for details). However, the underlying Grothendieck
site is not obvious.

0.6.5. Observation. The global sections F (X) of a G-equivariant (pre)sheaf is a
G-set with the action of G given by

αg,X : F (X)
∼=−→ F (g · X) = F (X).

Taking the global sections is a functor

PSh(G, X)→ G-Set.
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Proof. The axioms α1,X = id and αgh,X = αg,h·X ◦ αh,X correspond to the
axioms of a group action. �

0.6.6. Example. Let F be the sheaf of sections of a G-space over X given
by p : E → X. Then the action of g ∈ G on F (X) sends a global section
s : X → E to the global section

X → E,

x 7→ g · s(g−1 · x).

(see the formula for αg,U in 0.6.2). N

0.6.7. Definition. Let S be a G-set. For a G-space X, consider the presheaf
SX defined by SX(U) = S for each open subset U ⊂ X with the identity
restriction maps. The morphisms

αg,U = σg : SX(U)→ SX(g ·U),

x 7→ g · x.

define a structure of a G-equivariant presheaf on SX , called the constant
G-equivariant presheaf associated to S.

0.6.8. Observation. Formation of the constant G-equivariant presheaf is a functor

G-Set→ PSh(G, X),

which is left adjoint to the global section functor:

HomPSh(G,X)(SX , P ) ∼= HomG-Set(S, P (X)).

Proof. A morphism of G-equivariant presheaves SX → P is given by a col-
lection of maps φU : S→ P (U) that are compatible with the restriction maps
and the G-equivariant structure morphisms:

S P (X) S P (U)

P (U) S P (g ·U)

P (V)

φX

φU

φV
resVX

resUX σg

φU

αg,U

resVU

φg·U

From the first diagram we see that φU = resUX ◦φX , so that the map
φX : S → P (X) defines the rest, and from the second diagram we see that it
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is G-equivariant. This shows that the bijection in question is given by

{φU} 7→ φX ,

{φU := resUX ◦φ} ← [ φ.

�

Alternative definition via G-equivariant espaces étalés

One says that a continuous map p : E → X is étale* if it is a local on the
source homeomorphism (for each e ∈ E there exists an open neighborhood
V 3 p such that p(V) is open in X and p|V : V → p(V) is a homeomor-
phism). We have a full subcategory

G-Ét/X ⊂ G-Top/X

formed by G-spaces that are étale over X. We note that if p and p′ are étale
and we have a commutative diagram

E E′

X

f

p p′

then f is étale as well, so that the morphisms in G-Ét/X are automatically
étale. The importance of étale spaces over X is explained by the following
well-known result, which we state G-equivariantly.

0.6.9. Proposition. Let F be a G-equivariant presheaf on X. Consider the disjoint
union of stalks

ä
x∈X

Fx, Fx := lim−→
U3x

F (U).

It carries a natural action of G. For each section s ∈ F (U) such that U 3 x, denote
by sx ∈ Fx the corresponding germ at x. This defines a map between sets (which we
again denote by s)

s : U → ä
x∈X

Fx,

x 7→ sx.

Consider now the topology on äx∈X Fx generated by s(U) for all open subsets
U ⊂ X and all s ∈ F (U). Then the action of G is continuous with respect to this

*This is in fact the topological counterpart of étale morphisms of schemes.
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topology, and the natural projection

p : ä
x∈X

Fx → X,

Fx 3 sx 7→ x.

is an étale G-equivariant map.

Proof. This is a well-known, basic result (see e.g. [MLM1994, Chapter II]);
one just has to check the G-equivariance. �

This leads to an equivalent definition of G-equivariant sheaves.

0.6.10. Alternative definition. Let G be a group and X be a G-space. Then a
G-equivariant sheaf on X is an étale G-space over X

p : E→ X,

and a morphism of G-equivariant sheaves is a morphism over X

E E′

X

f

p p′

0.6.11. Remark. Note that the above definition looks more natural than
0.6.3. It also generalizes to the case a topological group G acting on E and
X continuously. This is not possible in 0.6.3, because there we consider only
how each separate element g ∈ G acts on X.

0.6.12. Example. In these terms, it is easier to describe equivariant sheafifi-
cation and what a constant sheaf is. If S is a G-set and X is a G-space, we
may endow S with the discrete topology and consider the G-space S × X
with the component-wise action of G (which is the product in the category
of G-spaces). Then the projection S× X → X is an étale G-equivariant map,
so it corresponds to some G-equivariant sheaf. We call it the constant G-
equivariant sheaf associated to S. This construction is obviously functorial:
a G-equivariant map S→ S′ induces a morphism in G-Ét/X

S× X S′ × X

X

N
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Abelian G-equivariant sheaves and their cohomology

0.6.13. Proposition. Let X be a G-space. Consider the category Sh(G, X)Ab of
G-equivariant sheaves of abelian groups on X (defined, for instance, as abelian group
objects in the category of G-equivariant sheaves of sets). It is an abelian category
with enough injectives.

Proof. The usual argument of Grothendieck works: any abelian category
which satisfies the axiom AB5) and has generators has enough injectives
[Tôhoku, Ch. I, 1.10]. This is the case for Sh(G, X)Ab (as for the generators,
see [MLM1994, Appendix]). �

0.6.14. Example. Let A be a G-set (resp. G-module). Then the associated
constant sheaf A has a canonical G-equivariant abelian sheaf structure. N

0.6.15. Example. Consider some topological space with an action of the
Galois group GR := Gal(C/R); for instance, the set of complex points of
a scheme X(C) equipped with the analytic topology. Then the complex
m-th roots of unity µm(C) (reviewed above in §0.5) give us a constant GR-
equivariant sheaf on X(C). This is the only example we will be interested
in. N

0.6.16. Definition. The equivariant global section functor

Γ(G, X,−) : Sh(G, X)Ab → Ab,

F  F (X)G

is left exact. Here the global sections

F (X) := {s : X → Ét(F ) | π ◦ s = idX}

come with an action of G by

(g · s)(x) := g · s(g−1 · x).

(Note that in general, F (U) carries such an action of G, whenever U ⊂ X is
closed under the action of G.) The fixed points of this action are precisely
the G-equivariant sections, i.e. sections that satisfy s(g · x) = g · (s(x)). The
right derived functors of Γ(G, X,−) are by definition RΓ(G, X, F ).

This is related to the usual sheaf cohomology by

(0.6.2) RΓ(G, X, F ) ∼= RΓ(G, RΓ(X, F )),
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where the right hand side is the group cohomology. Indeed, Γ(G, X,−) is a
composition of two left exact functors: the usual global section functor and
the fixed points functor

Sh(G, X)Ab F F (X)−−−−−→ G-Mod A AG
−−−−→ Ab

and (0.6.2) are the derived functors of a composition of functors (this is
known as the Grothendieck spectral sequence; see e.g. [Wei1994, §10.8]).
On the level of cohomology, we have a spectral sequence

Epq
2 = Hp(G, Hq(X, F )) =⇒ Hp+q(G, X, F ).

0.7 From étale to analytic sheaves (the morphism α∗)

The canonical reference for comparison between étale and singular coho-
mology is [SGA 4, Exposé XI, §4], so let us to borrow some definitions and
notation from there. Let X be an arithmetic scheme (separated, of finite type
over Spec Z).

1. The base change from Spec Z to Spec C

XC X

Spec C Spec Z

gives us a morphism of sites

γ : XC,ét → Xét.

2. We denote by X(C) the set of complex points of X equipped with the
usual analytic topology.

Let Xcl be the site of étale maps f : U → X(C). A covering family in
Xcl is a family of maps {Ui → U} such that U is the union of images
of Ui. The notation “cl” comes from SGA 4 and stays for “classique”.

As the inclusion of an open subset U ⊂ X(C) is trivially an étale map,
we have a fully faithful functor X(C) ⊂ Xcl, and the topology on X(C)
is induced by the topology on Xcl. This gives us a morphism of sites

δ : Xcl → X(C),

which by the well-known “comparison lemma” [SGA 4, Exposé III,
Théorème 4.1] induces an equivalence of the corresponding categories
of sheaves

δ∗ : Sh(Xcl)→ Sh(X(C)).
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3. A morphism of schemes f : X′C → XC over Spec C is étale if and only if
f (C) : X′(C) → X(C) is étale in the topological sense [SGA 1, Exposé
XII, Proposition 3.1], and therefore the functor X′C  X′(C) gives us a
morphism of sites

ε : Xcl → XC,ét.

We may now consider the composite functor

Sh(Xét) Sh(XC,ét) Sh(Xcl) Sh(X(C))
γ∗ ε∗ δ∗

'

where γ∗ is given by the base change from Spec Z to Spec C, the functor ε∗

is the comparison, and δ∗ is an equivalence of categories. As we start from a
scheme over Spec Z and base change to Spec C, the resulting sheaf on X(C)
is in fact equivariant with respect to the complex conjugation, and the above
composition gives us an “inverse image” functor

α∗ : Sh(Xét)→ Sh(GR, X(C)).

0.8 Cohomology with compact support on Xét and
X(C)

For any arithmetic scheme f : X → Spec Z (separated, of finite type) there
exists a Nagata compactification f = g ◦ j where j is an open immersion and
g is a proper morphism:

X X

Spec Z

j

f g

This is a result of Nagata, and a modern exposition (following Deligne)
may be found in [Con2007, Con2009]. See also [SGA 4, Exposé XVII].

0.8.1. Definition. Let X be an arithmetic scheme and let F • be a complex of
abelian torsion sheaves on Xét. Then we define the cohomology of F • with
compact support via the complex

(0.8.1) RΓc(Xét, F •) := RΓ(Xét, j!F •).

For torsion sheaves, this does not depend on the choice of j : X ↪→ X,
but here we would like to fix this choice to be able to compare j with the
corresponding morphism j(C) : X(C) ↪→ X(C). Note that thanks to the
Leray spectral sequence RΓ(Xét,−) ∼= RΓ(Spec Zét,−) ◦ Rg∗ (that is, the
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Grothendieck spectral sequence coming from Γ(Xét,−) = Γ(Spec Zét,−) ◦
g∗), we have

(0.8.2) RΓc(Xét, F •) ∼= RΓ(Spec Zét, R f!F •),

where by definition
R f!F • := Rg∗ j!F •

(this is just a piece of notation, standard and quite unfortunate; “R f!” does
not mean that we are deriving f!).

The formulas (0.8.1) and (0.8.2) give two equivalent definitions. We are
going to use (0.8.2) in the next section to introduce a slightly different version
of cohomology with compact support, denoted by RΓ̂c(Xét, F •), which is
needed for arithmetic duality theorems. In this section, we need to use (0.8.1)
to define cohomology with compact support on X(C), in a way that allows
us to compare it with cohomology with compact support on Xét.

0.8.2. Definition. If j : X ↪→ X is a Nagata compactification, then we have
the corresponding open immersion

j(C) : X(C)→ X(C),

and for a sheaf F on X(C) we define

Γc(X(C), F ) := Γ(X(C), j(C)!F ).

Similarly, for a GR-equivariant sheaf on X(C) we define

Γc(GR, X(C), F ) := Γ(GR,X(C), j(C)!F ).

0.8.3. Proposition. Let F be a sheaf on Xét.

1) There exists a morphism

Γ(Xét, F )→ Γ(GR, X(C), α∗F ),

which is natural in the sense that every morphism of sheaves F → G gives a
commutative diagram

Γ(Xét, F ) Γ(Xét, G)

Γ(GR, X(C), α∗F ) Γ(GR, X(C), α∗G)

2) Similarly for cohomology with compact support, there is a natural morphism

Γc(Xét, F )→ Γc(GR, X(C), α∗F ).
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The same holds for abelian sheaves on Xét.

Proof. This is standard and follows from the functoriality of α∗, but it is
easier to recall the construction than to find the relevant point in SGA 4. The
morphism in 1) is given by

Γ(Xét, F )
∼=−→ HomSh(Xét)

({∗}, F )→ HomSh(GR,X(C))(α
∗{∗}, α∗F )

∼=−→ HomSh(GR,X(C))({∗}, α∗F )
∼=−→ Γ(GR, X(C), α∗F ).

For abelian sheaves, in the above formula one has to replace the constant
sheaf {∗} with Z. The naturality is easily seen from the above definition.

In 2), if j : X ↪→ X is Nagata compactification, then we have the cor-
responding compactification j(C) : X(C) ↪→ X(C). The extension by zero
morphism j(C)! : Sh(X(C))→ Sh(X(C)) restricts to the subcategory of GR-
equivariant sheaves: if F is a GR-equivariant sheaf on X(C), then j(C)!F is
a GR-equivariant sheaf on X(C) (this is evident from the definition of equiv-
ariant sheaves as equivariant espaces étalés). It should be clear from the
definition of α∗ that there is a commutative diagram

Sh(Xét) Sh(GR, X(C))

Sh(Xét) Sh(GR,X(C))

α∗

j! j(C)!

α∗X

(For instance, note that this diagram commutes for representable étale sheaves,
and then every étale sheaf is a colimit of representable sheaves, and α∗, j!,
α∗X, j(C)! preserve colimits, as left adjoints.)

Now the morphism in question is now given by

Γc(Xét, F ) := Γ(Xét, j!F )→ Γ(GR,X(C), α∗X j!F )

= Γ(GR,X(C), j(C)! α∗F ) =: Γc(GR, X(C), α∗F ).

�

Finally, we will need the fact that the morphisms

Γc(Xét, F )→ Γc(GR, X(C), α∗F )

are compatible with the distinguished triangles associated to open-closed
decompositions. To check this compatibility, let us recall how such triangles
arise. If we have an open subscheme U ⊂ X and its closed complement
Z := X \U:

Z X U
iZ jU
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then there are the following six functors between the corresponding cate-
gories of abelian sheaves:

Sh(Zét)
Ab Sh(Xét)

Ab Sh(Uét)
AbiZ∗

i∗Z

i!
Z

j∗U

jU!

jU∗

(see e.g. [SGA 4, Exposé 4, §14]). Here each arrow is left adjoint to the arrow
depicted below it. For an abelian sheaf F on Xét, there is a natural short
exact sequence

0→ jU! j∗UF → F → iZ∗i∗ZF → 0

(naturality means that the two arrows are counit and unit of the correspond-
ing adjunctions). Now if j : X → X is a Nagata compactification, then the
above short exact sequence gives us a short exact sequence of abelian sheaves
on Xét (the functor j! is exact):

0→ j! jU! j∗UF → j!F → j!iZ∗i∗ZF → 0

and finally, this gives the distinguished triangle

RΓ(Xét, j! jU! j∗UF )→ RΓ(Xét, j!F )→ RΓ(Xét, j!iZ∗i∗ZF )→ RΓ(Xét, j! jU! j∗UF )[1]

which we may write as

RΓc(Uét, F |U)→ RΓc(Xét, F )→ RΓc(Zét, F |Z)→ RΓc(Uét, F |U)[1]

For (GR-equivariant) sheaves on X(C), such triangles arise in the same man-
ner.

0.8.4. Proposition. For an open-closed decomposition

Z X U
iZ jU

the morphism α∗ gives a morphism of distinguished triangles

(0.8.3)

RΓc(Uét, F |U) RΓc(GR, U(C), α∗F |U(C))

RΓc(Xét, F ) RΓc(GR, X(C), α∗F )

RΓc(Zét, F |Z) RΓc(GR, Z(C), α∗F |Z(C))

RΓc(Uét, F |U)[1] RΓc(GR, U(C), α∗F |U(C))[1]
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Proof. Since α∗ is essentially the inverse image functor associated to a con-
tinuous morphism of sites, it is exact, and therefore the short exact sequence
on Xét

0→ j! jU! j∗UF → j!F → j!iZ∗i∗ZF → 0

gives a short exact sequence of equivariant sheaves on X(C)

0→ α∗X j! jU! j∗UF → α∗X j!F → α∗X j!iZ∗i∗ZF → 0

This gives us the corresponding morphism of triangles

RΓ(Xét, F |U) RΓ(GR,X(C), α∗X j! jU! j∗UF )

RΓ(Xét, F ) RΓ(GR,X(C), α∗X j!F )

RΓ(Xét, F |Z) RΓ(GR,X(C), α∗X j!iZ∗i∗ZF )

RΓ(Xét, F |U)[1] RΓ(GR,X(C), α∗X j! jU! j∗UF )[1]

Then it is possible to verify that the right triangle coincides with the one
obtained from the short exact sequence of GR-equivariant sheaves on X(C)

0→ jU(C)! jU(C)∗α∗F → α∗F → iZ(C)∗iZ(C)∗α∗F → 0

by applying j(C)! : X(C) ↪→ X(C) and RΓ(GR,X(C),−), i.e. the right col-
umn in (0.8.3). �

0.9 Étale cohomology with compact support à la
Milne

Let us first recall the definition of Tate cohomology (see e.g. [Bro1994, Chap-
ter VI]). Let G be a finite group. Then the trivial ZG-module Z admits a
resolution by finitely generated free ZG-modules

(0.9.1) (P• � Z) : · · · → P2 → P1 → P0 → Z→ 0

(for instance, the bar-resolution will do). The group cohomology of G with
coefficients in a G-module A is the cohomology of the complex of abelian
groups

RΓ(G, A) := HomZG(P•, A),
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i.e.,
Hi(G, A) = Hi(RΓ(G, A)).

If we dualize (0.9.1) by applying the functor (−)∨ := Hom(−, ZG), then
P∨i are also finitely generated free ZG-modules, and we obtain a “backwards
resolution”, which is an acyclic complex

(0.9.2) (Z� P∨• ) : 0→ Z→ P∨0 → P∨1 → P∨2 → · · ·

We may splice together (0.9.1) and (0.9.2) to obtain a so-called complete
resolution (with homological numbering)

P̂• : · · · → P2 → P1 → P0 → P−1 → P−2 → · · ·

where Pi := P∨−i−1 for i < 0, and the morphism P0 → P−1 is given by the
composition of P0 � Z and Z� P∨0 . Then the Tate cohomology of G with
coefficients in a G-module A is given by the cohomology of the complex

RΓ̂(G, A) := HomZG(P̂•, A);

that is,
Ĥi(G, A) := Hi(RΓ̂(G, A)).

This corresponds to the usual cohomology in positive degrees i > 0 and
homology in degrees i < −1:

Ĥi(G, A) =

{
Hi(G, A), i > 0,
H−i−1(G, A), i < −1,

while the groups Ĥ−1(G, A) and Ĥ0(G, A) are given by the exact sequence

0→ Ĥ−1(G, A)→ H0(G, A)
N−→ H0(G, A)→ Ĥ0(G, A)→ 0

where N : H0(G, A)→ H0(G, A) is the norm map induced by N := ∑g∈G g.
Slightly more generally, if A• is a bounded below (cohomological) com-

plex of G-modules, we obtain a double complex of abelian groups Hom••(P•, A•)
(resp. Hom••(P̂•, A•)), and it makes sense to define the corresponding group
hypercohomology (resp. Tate hypercohomology) by the complex

RΓ(G, A•) := Tot⊕(Hom••(P•, A•)),

RΓ̂(G, A•) := Tot⊕(Hom••(P̂•, A•)).

Note that there is an obvious morphism of complexes P̂• → P•
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· · · P2 P1 P0 P−1 P−2 · · ·

· · · P2 P1 P0 0 0 · · ·
id id id

which after applying the contravariant functor Tot⊕Hom••(−, A•) gives a
morphism from the usual cohomology to Tate cohomology:

(0.9.3) RΓ(G, A•)→ RΓ̂(G, A•).

0.9.1. Example. If G is a finite cyclic group of order m generated by an
element t, then it admits a periodic free resolution

· · · → ZG t−1−−→ ZG N−→ ZG t−1−−→ ZG ε−→ Z→ 0

where
N := ∑

g∈G
g = 1 + t + t2 + · · ·+ tm−1

is the norm element, and

ε : ∑
g∈G

ng g 7→ ∑
g∈G

ng

is the augmentation morphism. If we dualize the above resolution, we get
the acyclic complex

0→ Z
ε∨−→ ZG t−1−−→ ZG N−→ ZG t−1−−→ ZG → · · ·

It is easily seen that the morphism ε∨ is given by 1 7→ N, and the composi-
tion ε∨ ◦ ε is the action by N on ZG. The corresponding complete resolution
is
(0.9.4)

P̂• : · · · → ZG
3

t−1−−→ ZG
2

N−→ ZG
1

t−1−−→ ZG
0

N−→ ZG
−1

t−1−−→ ZG
−2

N−→ ZG
−3
→ · · ·

After applying HomZG(−, A), we obtain a periodic cohomological com-
plex

· · · → A
−3

N−→ A
−2

t−1−−→ A
−1

N−→ A
0

t−1−−→ A
1

N−→ A
2

t−1−−→ A
3
→ · · ·

So that

Ĥi(G, A) ∼=
{

AG/NA, i even,
{a ∈ A | N · a = 0}/(t− 1) A, i odd.
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Recall that if G is any finite group, then its homology Hi(G, A) and coho-
mology Hi(G, A) groups are annihilated by multiplication by #G for i > 0.
In fact, this follows from a stronger result: if P• � Z is the bar resolution,
then the morphism

“#G” : P• → P•,

(#G− N) : P0 → P0,

#G : Pi → Pi for i > 1,

which induces multiplication by #G on Hi(G, A) and Hi(G, A) for i > 0, is
null-homotopic—see e.g. [Wei1994, Theorem 6.5.8]. In our case, when G is
cyclic of order m, for the 2-periodic complete resolution (0.9.4), it is easy to
see that the multiplication by m on P̂• is null-homotopic. Indeed, such a null
homotopy is also 2-periodic, and should be given by a family of morphisms

h0 : ZG → ZG, h1 : ZG → ZG

Satisfying

(0.9.5) h0 ◦ (t− 1) + N ◦ h1 = m, h1 ◦ N + (t− 1) ◦ h0 = m.

· · · ZG ZG ZG ZG · · ·

· · · ZG ZG ZG ZG · · ·

t−1

h1
#G

N

h0
#G

h1

N t−1

Let h0 be the multiplication by −x ∈ ZG, where

x := (m− 1) + (m− 2) t + (m− 3) t2 + · · ·+ tm−2,

and let h1 be the identity map. Then

x · (t− 1) = (m− 1) t + (m− 2) t2 + (m− 3) t3 + · · ·+ tm−1

− (m− 1)− (m− 2) t− (m− 3) t2 − · · · − tm−1

= −m + 1 + t + t2 + · · ·+ tm−1 = −m + N,

so that
(−x) · (t− 1) + N = m,

which means that (0.9.5) is satisfied. This implies that the groups Ĥi(G, A)
are annihilated by m for all i, and in general, for any bounded below complex
of G-modules A•, the groups Ĥi(G, A•) are annihilated by m. The latter is
evident from our argument and not so evident from the spectral sequence

Epq
2 = Ĥq(G, Hp(A•)) =⇒ Ĥp+q(G, A•).

N
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We use Tate cohomology to define étale cohomology with compact sup-
port à la Milne [Mil2006, §II.2]. If F • is a bounded below complex of abelian
sheaves on Spec Zét, then by definition, RΓ̂c(Spec Zét, F •) is the complex
sitting in the distinguished triangle

RΓ̂c(Spec Zét, F •)→ RΓ(Spec Zét, F •)→ RΓ̂(GR, F •C )→ RΓ̂c(Spec Zét, F •)[1]

where RΓ̂(GR, F •C ) is the Tate cohomology defined above, and F •C is the
complex of GR-modules obtained by taking the stalks at Spec C → Spec R.
The morphism RΓ(Spec Zét, F •)→ RΓ̂(GR, F •C ) arises as follows.

The canonical morphism v : Spec R→ Spec Z induces a morphism

(0.9.6) RΓ(Spec Zét, F •)→ RΓ(Spec Rét, v∗F •),

and the cohomology on Spec Rét corresponds to the cohomology of the Ga-
lois group GR: specifically, we have an equivalence of categories

Sh(Spec Rét)
Ab '−→ GR-Mod,

F  FC

—see [SGA 4, Exposé VII, 2.3]. We may thus see (0.9.6) as a morphism*

RΓ(Spec Zét, F •)→ RΓ(GR, F •C ),

which we may compose with the morphism (0.9.3) to the Tate cohomology
RΓ̂(GR, F •C ).

The notation “RΓ̂c(Spec Zét,−)” is not standard; for instance, Geisser in
[Gei2010] writes “RΓc(Spec Zét,−)” for the same thing. We will use the
notation “RΓ̂c(Spec Zét,−)” to avoid any confusion with the usual étale co-
homology with compact support, as defined in §0.8.

Note that by definition, we have a morphism of complexes

(0.9.7) RΓ̂c(Spec Zét, F •)→ RΓ(Spec Zét, F •).

*Indeed, let v∗F • '−→ I • be a resolution of v∗F • by injective sheaves on Spec Rét, and let
P• � Z be a resolution of Z by finitely generated free ZG-modules. Then, thanks to the
equivalence of categories Sh(Spec Rét)

Ab '−→ GR-Mod, the complex of GR-modules I •C is an
injective resolution of (v∗F •)C = FC. We have canonical quasi-isomorphisms of complexes

HomSh(Spec Rét)
(Z, I •)→ Tot⊕HomZG(P•, I •C)← Tot⊕Hom••(P•, F •C ),

so in the derived category (!), there is an isomorphism

HomSh(Spec Rét)
(Z, I •)

∼=−→ Tot⊕Hom••(P•, F •C ).
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Now if F • is a bounded below complex of abelian sheaves on Xét, then
we pick a Nagata compactification of X

X X

Spec Z

j

f g

and set
RΓ̂c(Xét, F •) := RΓ̂c(Spec Zét, R f!F •),

where R f! := Rg∗ j!. In particular, the morphism (0.9.7) gives us for any
bounded below complex of abelian sheaves F • on Xét a morphism

(0.9.8) RΓ̂c(Xét, F •)→ RΓc(Xét, F •),

where RΓc(Xét, F •) := RΓ(Spec Zét, R f!F •). By definition of RΓ̂c(Spec Zét,−),
we have a long exact sequence in cohomology

(0.9.9) · · · → Ĥi−1(GR, (R f!F •)C)→ Ĥi
c(Xét, F •)→ Hi

c(Xét, F •)

→ Ĥi(GR, (R f!F •)C)→ · · ·

The groups Ĥi(GR, (R f!F •)C) are annihilated by multiplication by 2 =
#GR, which means that the morphism

Ĥi
c(Xét, F •)→ Hi

c(Xét, F •)

is identity, except for possible 2-torsion.

0.9.2. Remark. If X(R) = ∅, then the canonical map

RΓ̂c(Xét, F ∗)→ RΓc(Xét, F ∗)

is the identity.

0.10 Singular cohomology of complex varieties

We will need the following result.

0.10.1. Proposition. Let X be an arithmetic scheme (separated, of finite type over
Spec Z). Consider the corresponding space of complex points X(C) equipped with
the analytic topology. Then

1) the singular cohomology groups with compact support Hi
c(X(C), Z) are finitely

generated for all i;
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2) the groups Hi
c(X(C), Q/Z) are of cofinite type (Q/Z-dual of finitely gener-

ated groups).

The above groups vanish for i� 0.

The statement is very plausible, but I could not find a good reference, so
I outline a proof.

Proof. Everything relies on the fact that X(C) has homotopy type of a finite
CW-complex. This is a well-known classical result, due to van der Waerden
(see [vdW1930] and [LW1933]).

If X(C) is smooth, then we may reduce the problem to the case of pure
dimension d, and by Poincaré duality,

Hi
c(X(C), Z) ∼= H2d−i(X(C), Z),

where H2d−i(X(C), Z) are finitely generated groups, trivial for all but finitely
many i, as X(C) is homotopy equivalent to a finite CW-complex, and the ho-
mology H•(X(C), Z) is homotopy invariant.

To deal with the general case, we use induction on the dimension. If the
dimension is 0, then the statement is obvious. For induction step, we may
consider the open-closed decomposition

U(C) ↪→ X(C)←↩ Z(C)

where Z(C) is the singular locus, having smaller dimension. This gives us a
distinguished triangle

RΓc(U(C), Z)→ RΓc(X(C), Z)→ RΓc(Z(C), Z)→ RΓc(U(C), Z)[1]

where RΓc(U(C), Z) is a perfect complex by the above argument, and the
complex RΓc(Z(C), Z) is perfect by induction. This implies that RΓc(X(C), Z)
is a perfect complex.

As for Q/Z-coefficients, the statement follows from the distinguished
triangle (keep in mind that tensoring with Q is exact)

RΓc(X(C), Z)→ RΓc(X(C), Z)⊗Z Q→ RΓc(X(C), Q/Z)→ RΓc(X(C), Z)[1]

Indeed, the associated long exact sequence in cohomology

· · · → Hi
c(X(C), Z)→ Hi

c(X(C), Z)⊗Z Q→ Hi
c(X(C), Q/Z)→

Hi+1
c (X(C), Z)→ Hi+1

c (X(C), Z)⊗Z Q→ · · ·
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shows that Hi
c(X(C), Q/Z) is an extension of a finite group by a group of

cofinite type, hence it is of cofinite type as well (see 0.1.3):

0→ coker(Hi
c(X(C), Z)→ Hi

c(X(C), Z)⊗Z Q)→
Hi

c(X(C), Q/Z)→
ker(Hi+1

c (X(C), Z)→ Hi+1
c (X(C), Z)⊗Z Q)→ 0

Finally, Hi
c(X(C), Q/Z) vanishes for i � 0, because Hi

c(X(C), Z) does.
�

0.11 Cycle complexes and motivic cohomology

Bloch’s cycle complexes were introduced in [Blo1986a] to define higher Chow
groups (there was a gap in the proof of the “moving lemma” that was fixed
later in [Blo1994]). A good modern survey of cycle complexes may be found
in [Gei2005], and there is also a useful text [Blo2005] available from Bloch’s
home page.

In this section I will go through various definitions that will be used later
on in the constructions. Let X be an arithmetic scheme (separated, of finite
type over Spec Z) or a variety over a field k (a separated scheme of finite type
over Spec k). Let n ∈ Z be some fixed integer. Then to X we may associate
the following objects:

1a) a homological complex of abelian groups zn(X, •), defined in terms of
cycles of dimension n + i in X× ∆i;

1b) the corresponding cohomological complex of étale and Zariski sheaves

Zc(n) := zn(−,− •−2n);

2a) a homological complex of abelian groups zn(X, •), defined in terms of
cycles of codimension n in X× ∆i, where ∆i is the algebraic i-simplex;

2b) the corresponding cohomological complex of étale and Zariski sheaves

Z(n) := zn(−, 2n− •);

2c) some variation of 2a): a homological complex of abelian groups zn
�(X, •),

defined in terms of cycles of codimension n in X×�i, where �i is the
algebraic i-cube.

In fact, we will use only 1a) and 1b) in our constructions. I discuss 2a),
2b), 2c) simply because at some point (namely, in chapter 2) we will need to
refer to the literature where 2a), 2b), 2c) are used instead of 1a) and 1b).
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Simplicial and cubical complexes

Let us briefly recall some definitions regarding simplicial objects (see [May1992]
and [GJ2009]) and cubical objects (see e.g. [Cis2006] and [BHS2011]). I do
this mostly because of the cubical objects that seem to be less common.

0.11.1. Definition. The simplicial category ∆ is the category where the ob-
jects are finite ordered sets

n := {0 < 1 < · · · < n}

for n = 0, 1, 2, . . . and the morphisms are nondecreasing maps n→ m.
A simplicial (resp. cosimplicial) object in a category C is a contravariant

functor X : ∆◦ → C (resp. covariant functor X : ∆◦ → C ).

For 0 ≤ i ≤ n, let us denote by

∂i
n : n− 1 ↪→ n

the increasing map that skips i:

∂i
n(j) :=

{
j, j < i,
j + 1, j ≥ i;

and let us denote by
σi

n : n + 1� n

the nondecreasing map that applies two elements to i:

σi
n(j) :=

{
j, j ≤ i,
j− 1, j > i.

Sometimes ∂i’s are called coface morphisms and σi’s are called codegener-
acy morphisms. It is easy to see that every morphism in ∆ may be written
as a composition of such maps, and they satisfy the so-called cosimplicial
identitites:

(0.11.1) σ
j
n ◦ ∂i

n+1 =


∂i

n ◦ σ
j−1
n−1, if i < j,

idn, if i = j or i = j + 1,

∂i−1
n ◦ σ

j
n−1, if i > j + 1;

(0.11.2) σ
j
n ◦ σi

n+1 = σi
n ◦ σ

j+1
n+1 if i ≤ j;
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(0.11.3) ∂
j
n ◦ ∂i

n−1 = ∂i
n ◦ ∂

j−1
n−1 if i < j;

in fact, (0.11.1), (0.11.2), (0.11.3) give all possible relations between mor-
phisms in ∆. This means that a simplicial object X : ∆◦ → C is equivalent to
a collection of objects

Xn := X(n) ∈ Ob(C ) (n = 0, 1, 2, . . .)

and a collection of morphisms

∂n
i : Xn → Xn−1, σn

i : Xn → Xn+1 (0 ≤ i ≤ n),

called face and degeneracy morphisms that satisfy the simplicial identities
(dual to the identities (0.11.1), (0.11.2), (0.11.3)):

(0.11.4) ∂n+1
i ◦ σn

j =


σn−1

j−1 ◦ ∂n
i , if i < j,

idXn , if i = j or i = j + 1,
σn−1

j ◦ ∂n
i−1, if i > j + 1,

(0.11.5) σn+1
i ◦ σn

j = σn+1
j+1 ◦ σn

i if i ≤ j.

(0.11.6) ∂n−1
i ◦ ∂n

j = ∂n−1
j−1 ◦ ∂n

i if i < j.

A simplicial object may be visualized as a diagram

X0 X1 X2 · · ·
∂1

0

∂1
1

σ1
0

σ2
0

σ2
1

∂2
0

∂2
1

∂2
2

0.11.2. Lemma (Complex of alternating face maps). Let A : ∆◦ → Ab be a
simplicial abelian group. Then the morphisms of abelian groups

dn := ∑
0≤i≤n

(−1)i ∂n
i : An → An−1

satisfy
dn−1 ◦ dn = 0,

i.e.
(A•, d•) : · · · → A3

d3−→ A2
d2−→ A1

d1−→ A0 → 0

is a chain complex.
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Proof. Easily follows from the simplicial identity (0.11.6). �

0.11.3. Definition ([Cis2006]). The cubical category r is the category where
the objects are finite sets

�n := {0, 1}n = {(x1, . . . , xn) | xi ∈ {0, 1}}

for n = 0, 1, 2, . . . and the morphisms are compositions of the following two
kinds of maps:

1) for n ≥ 1 and 1 ≤ i ≤ n the inclusion

∂i,ε
n : �n−1 ↪→ �n

that inserts ε ∈ {0, 1} into the i-th position:

(0.11.7) ∂i,ε
n (x1, . . . , xn−1) := (x1, . . . , xi−1, ε, xi, . . . , xn−1).

2) for n ≥ 0 and 1 ≤ i ≤ n + 1 the projection

σi
n : �n+1 � �n

that forgets the i-th coordinate:

(0.11.8) σi
n(x1, . . . , xn+1) := (x1, . . . , xi−1, xi+1, . . . , xn+1).

A cubical (resp. cocubical) object in a category C is a contravariant
functor X : r◦ → C (resp. covariant functor X : r→ C ).

All relations between the morphisms in r follow from the so-called cocu-
bical identities:

(0.11.9) σ
j
n ◦ ∂i,ε

n+1 =


∂i,ε

n ◦ σ
j−1
n−1, if i < j,

id�n , if i = j,
∂i−1,ε

n ◦ σ
j
n−1, if i > j;

(0.11.10) σ
j
n ◦ σi

n+1 = σi
n ◦ σ

j+1
n+1 if i ≤ j;

(0.11.11) ∂
j,η
n ◦ ∂i,ε

n−1 = ∂i,ε
n ◦ ∂

j−1,η
n−1 if i < j.

This means that a cubical object X : r◦ → C is just a collection of objects

Xn := X(�n) ∈ Ob(C), n = 0, 1, 2, . . .
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and morphisms
∂n

i,ε : Xn → Xn−1, σn
i : Xn → Xn+1

that satisfy the cubical identities, i.e. the ones dual to (0.11.9), (0.11.10),
(0.11.11):

(0.11.12) ∂n+1
i,ε ◦ σn

j =


σn−1

j−1 ◦ ∂n
i,ε, if i < j,

idXn , if i = j,
σn−1

j ◦ ∂n
i−1,ε, if i > j;

(0.11.13) σn+1
i ◦ σn

j = σn+1
j+1 ◦ σn

i if i ≤ j;

(0.11.14) ∂n−1
i,ε ◦ ∂n

j,η = ∂n−1
j−1,η ◦ ∂n

i,ε if i < j.

0.11.4. Lemma (Reduced cubical complex). Let A : r◦ → Ab be a cubical
abelian group. Consider the morphisms

(0.11.15) dn := ∑
1≤i≤n

(−1)i (∂n
i,1 − ∂n

i,0) : An → An−1.

Then

1) dn−1 ◦ dn = 0, i.e. (A•, d•) is a chain complex.

2) The degenerate cubes defined by

(An)degn := ∑
1≤i≤n

σn−1
i (An−1) ⊂ An

form a subcomplex of (A•, d•).

3) We also have the subcomplex of reduced cubes given by

(An)0 :=
⋂

1≤i≤n
ker ∂n

i,1 ⊂ An.

4) There is a canonical splitting

An = (An)degn ⊕ (An)0.

Sketch of the proof. Writing out all the involved combinatorial identities might
not be very illuminating, but the reader should note how everything resem-
bles the simplicial setting. 1) is deduced from the cubical identity (0.11.14);
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in 2), to show that dn((An)degn) ⊆ (An−1)degn, one should use the cubi-
cal identity (0.11.12); in 3), to show that dn((An)0) ⊆ (An−1)0, one should
again use (0.11.14). Finally, to show 4), one may consider the endomorphism
πn : An → An defined by

πn := (id− σn−1
n ◦ ∂n

n,1) ◦ (id− σn−1
n−1 ◦ ∂n

n−1,1) ◦ · · ·
◦ (id− σn−1

2 ◦ ∂n
2,1) ◦ (id− σn−1

1 ◦ ∂n
1,1).

Then πn defines the splitting

0→ (An)degn → An
πn−→ (An)0 → 0

Namely, it is clear from the definition that πn|(An)0
= id(An)0

, and one
deduces from the cubical identities that ker πn = (An)degn and im πn =
(An)0. �

0.11.5. Definition. In the setting of 0.11.4, the reduced cubical complex
associated to a cubical abelian group A : r◦ → Ab is the quotient complex

(A•/(A•)degn, d•) ∼= ((A•)0, d•).

0.11.6. Remark (Cubical singular complex in topology). It is worth noting
why quotienting out the degenerate cubes is necessary. Everything is mo-
tivated by cubical (co)homology in algebraic topology (see e.g. [Mas1977]
and [EM1953]). We consider the geometric cubes defined for each n =
0, 1, 2, 3, . . . by

�n := {(x1, . . . , xn) ∈ Rn | 0 ≤ xi ≤ 1}.

We naturally have inclusions ∂i,ε
n : �n−1 ↪→ �n and projections σi

n : �n−1 �
�n, defined by the same formulas (0.11.7) and (0.11.8). This gives us a cocu-
bical topological space �• : r → Top. Now for a topological space X, the
sets

Sing�(X)n := HomTop(�
n, X)

form a cubical set Sing�(X)• : r◦ → Set, which is the composition of func-
tors �• : r→ Top and HomTop : Top◦ → Set. Namely, for a continuous map
φ : �n → X, we may consider its restrictions to �n−1 ⊂ �n given by setting
xi = 0 or xi = 1 for i = 1, . . . , n, and also extensions to �n+1 ⊃ �n given by
putting 0 or 1 in i-th position. This gives us face and degeneracy maps

∂i,ε : Sing�(X)n → Sing�(X)n−1,

σi : Sing�(X)n → Sing�(X)n+1

that satisfy the cubical identities. By composing our functor Sing�(X)• : r◦ →
Set with the free abelian group functor Set → Ab, we obtain a cubical



58 0.11. Cycle complexes and motivic cohomology

abelian group Z
〈

Sing�(X)•
〉

: r◦ → Ab. As in 0.11.4, we may build from
it a chain complex.

Now if X = ∗ is just a point, then

Sing�(∗)n = HomTop(�
n, ∗)

are one-element sets, so that the complex will look like

· · · → Z→ Z→ Z→ Z→ 0

However, note that in this case we have ∂n
i,1 = ∂n

i,0 for all n and i, therefore
the differentials (0.11.15) are all trivial, and the point has homology ∼= Z in
all degrees, which is not very desirable. However, the cubes of dimension
n > 0 are all degenerate, so the corresponding reduced cubical complex looks
like

· · · → 0→ 0→ 0→ Z→ 0

Note that for the usual singular complex defined using simplices instead of
cubes (replace �n with ∆n in all the above), the degenerate simplices also
form a subcomplex, but it is easily seen from the simplicial identities that
passing to the corresponding reduced complex does not affect the homology.
E.g. the simplicial singular complex for a point will look like

· · · id−→ Z
0−→ Z

id−→ Z
0−→ Z→ 0

For comparison of the simplicial and cubical approach to defining singu-
lar (co)homology, see [EM1953].

Bloch’s cycle complexes zn(X, •) and zn(X, •)
Now we define several versions of Bloch’s cycle complexes; we refer to
[Gei2005] and [Blo2005] for details; our reference for intersection theory is
[Ful1998].

Let X be a separated scheme of finite type over a base scheme S. For our
particular purposes, we only consider the cases S = Spec k for a field k or
S = Spec Z. For each n = 0, 1, 2, . . . the algebraic n-simplex is given by

∆n := Spec Z[t0, . . . , tn]/(1−∑
i

ti), ∆n
S := ∆n ×Spec Z S.

This is isomorphic to the affine space An, but not canonically; instead, it
comes with canonical “simplicial” coordinates. Each nondecreasing map
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ρ : n → m induces functorially a morphism of schemes ρ̃ : ∆n
S → ∆m

S given
by

ρ̃(ti) :=

{
0, if ρ−1(i) = ∅,

∑ρ(j)=i tj, otherwise.

Similarly, for an S-scheme X, a nondecreasing map ρ : n → m induces
functorially a morphism of schemes (id × ρ̃) : X ×S ∆n

S → X ×S ∆m
S . This

defines a cosimplicial S-scheme

X×S ∆•S : ∆→ Sch/S.

Now for a fixed n ∈ Z, one considers the following two series of free
abelian groups indexed by i ∈ Z:

1) we let zn(X, i) be the free abelian group generated by closed integral
subschemes Z ⊂ X ×S ∆i

S of dimension n + i that meet all faces of ∆i
S

properly.

2) if X is an equidimensional scheme, we let zn(X, i) be the free abelian
group generated by closed integral subschemes Z ⊂ X×∆i of codimen-
sion n that meet all faces of ∆i

S properly.

We note that the first definition is in fact more natural in some sense: it
does not require X to be equidimensional. If X is of pure dimension d, then
we see that

(0.11.16) zn(X, i) = zd−n(X, i).

Both zn(X, •) and zn(X, •) are simplicial abelian groups ∆◦ → Ab. Namely,
for a morphism ρ : i→ j in ∆,

1) if ρ is injective, then id× ρ̃ : X×S ∆i
S → X×S ∆j

S is a closed immersion,

and for a cycle V ⊂ X×S ∆j
S we may consider the intersection

(id× ρ̃)(X×S ∆i
S) ·V;

2) if ρ is surjective, then id× ρ̃ : X ×S ∆i
S → X ×S ∆j

S is a flat morphism,
for which we have the corresponding flat pullback of cycles;

in both cases, we obtain morphisms

ρ∗ : zn(X, j)→ zn(X, i), ρ∗ : zn(X, j)→ zn(X, i).

In particular, as we noted in 0.11.2, zn(X, •) and zn(X, •) give us chain
complexes

· · · → zn(X, i)
di−→ zn(X, i− 1)

di−1−−→ zn(X, i− 2)→ · · ·
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and
· · · → zn(X, i)

di−→ zn(X, i− 1)
di−1−−→ zn(X, i− 2)→ · · ·

with the differentials
di := ∑

0≤`≤i
(−1)` ∂`.

Let us recall Bloch’s definition of higher Chow groups, for which he in-
troduced the complexes zn(X, •).

0.11.7. Definition ([Blo1986a]). If X is an equidimensional scheme as above,
its higher Chow groups are given by

CHn(X, i) := Hi(zn(X, •)).

The usual Chow groups (algebraic cycles on X modulo rational equiva-
lence) correspond to i = 0:

CHn(X) = CHn(X, 0).

Cubical cycle complexes zn
�(X, •)

We briefly recall the cubical version of zn(X, •), which is often used in the
literature, e.g. in [Lev1994]. If k is a field, we consider the algebraic cube

�n
k := (P1

k \ {1})
n

with coordinates (x1, . . . , xn). Setting some xi to 0 or ∞ gives us a codimen-
sion 1 face of �n

k . In general, setting xi1 , . . . , xis to 0 or ∞ gives a codimen-
sion s face. We have a cocubical variety �•k in the sense of 0.11.3. Namely,

1) for each n ≥ 1 we have the inclusion maps

∂i,ε
n : �n−1

k ↪→ �n
k , (1 ≤ i ≤ n, ε = 0, ∞)

(x1, . . . , xn−1) 7→ (x1, . . . , xi−1, ε, xi, . . . , xn−1);

2) for n ≥ 0 we have the projection maps

σi
n : �n+1

k � �n
k (1 ≤ i ≤ n + 1),

(x1, . . . , xn+1) 7→ (x1, . . . , xi−1, xi+1, . . . , xn+1);

and these maps satisfy the cocubical identities.
Now if X is an equidimensional variety over k, we denote by zn

�(X, i) the
free abelian group generated by the irredicible subvarieties

V ⊂ X×k �
i
k, codimk V = n,
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meeting all faces properly. The maps id× ∂`,ε
i and id× σ`

i induce pullback
morphisms

∂i
`,ε : zn

�(X, i)→ zn
�(X, i− 1),

σi
` : zn
�(X, i)→ zn

�(X, i + 1)

which satisfy the cubical identities and thus turn zn
�(X, •) into a cubical

abelian group. As in 0.11.5, we form from this a chain complex zn
�(X, •),

where the differentials are given by

di := ∑
1≤`≤i

(−1)` (∂i
`,∞ − ∂i

`,0) : zn
�(X, i)→ zn

�(X, i− 1),

and the degenerate cubes are quotiented out. The following is proved in
[Lev1994].

0.11.8. Theorem. There is an isomorphism in the derived category

zr
�(X, •) ∼= zr(X, •).

Complexes of sheaves Zc(n)

The cycle complexes may be “sheafified” as follows. The presheaves

U 7→ zn(U, i), U 7→ zn(U, i)

are in fact sheaves on Xét or XZar (this is verified e.g. in [Gei2004, Lemma
3.1]). We will use the opposite numbering and denote

ZX
n := zn(−,−•), Zn

X := zn(−,−•).

These are cohomological complexes of abelian sheaves on Xét or XZar.

We will also need the following result, saying that the cohomology of the
cycle complexes zn(X,−•) coincides with the Zariski hypercohomology of
Zn

X .

0.11.9. Theorem. If X is a scheme of finite type over a field, we have a quasi-
isomorphism of complexes of abelian groups

RΓ(XZar, Zn
X) ' zn(X,−•).

Proof. See [Gei2005, §1.2.4.] for details. �

Finally, in terms of ZX
n , one defines complexes Zc(n), which will be one

of the most important objects in our constructions.
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0.11.10. Definition ([Gei2010]). The dualizing cycle complex is given by

Zc(n) := ZX
n [2n].

It is a cohomological complex of sheaves with zn(−,−i− 2n) sitting in i-th
degree. In general, for any abelian group A, one defines

Ac(n) := Zc(n)⊗L
Z A = Zc(n)⊗Z A.

(As Zc(n) is a complex of flat sheaves, the derived tensor product coincides
with the usual tensor product.)

For the sake of completeness, I also recall the the related definition based
on zn(−, •):

Z(n) := Zn
X [−2n].

It is a cohomological complex of sheaves with zn(−, 2n− i) in degree i. If X
is equidimensional of dimension d, then (0.11.16) gives us the corresponding
relation for complexes of sheaves

ZX
n = Zd−n

X ,

which allows us to express Zc(n) in terms of Zn
X :

Zc(n) = Zd−n
X [2n] = Z(d− n)[2d].

Now the reader should actually forget about this Z(n), because later on
“Z(n)” will denote a completely different complex of sheaves, to be defined
in §1.2.

Zc(n) as a dualizing complex

0.11.11. Topological digression. Let us recall that for a locally compact topo-
logical space X, one may define Borel–Moore homology groups HBM

i (X, Z)
(see [Ive1986, Chapter IX]). These will make their appearance in §2.1, but
now they will serve us as a motivating example of duality.

Local Verdier duality [Ive1986, §VII.5] tells that if f : X → Y is a contin-
uous map between locally compact topological spaces of finite dimension,
then there is a natural isomorphism in the derived category D+(Y)

RHom(R f!F •, G•) ∼= R f∗RHom(F •, f !G•)

where F • ∈ D+(X), G• ∈ D+(Y), and f ! : D+(Y) → D+(X) is the right
adjoint functor to R f! : D+(X) → D+(Y). In particular, for the projection to
the point p : X → ∗ the above reads

RHom(RΓc(X, F •), G•) ∼= RΓ(X, RHom(F •, p!G•))
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for F ∈ D+(X) and G• ∈ D(Ab). If we take G• to be the complex consisting
of a single constant sheaf Z, the object p!Z ∈ D+(X) is called the dualizing
sheaf on X, and Borel–Moore homology is defined by

HBM
i (X, Z) := H−i(RΓBM(X, Z)),

RΓBM(X, Z) := RΓ(X, p!Z) ∼= RHom(RΓc(X, Z), Z).

This means that Borel–Moore homology is covariantly functorial for proper
maps and contravariantly functorial for inclusions of open subsets U ↪→ X:

1) a proper continuous map of locally compact topological spaces f : X →
Y induces a morphism RΓc(Y, Z)→ RΓc(X, Z), and therefore on Borel–
Moore homology we have the proper pushforward morphism

RΓBM(X, Z)→ RΓBM(Y, Z).

2) an inclusion of an open subset U ↪→ X induces a morphism RΓc(U, Z)→
RΓc(X, Z), and therefore the corresponding pullback on Borel–Moore
homology

RΓBM(X, Z)→ RΓBM(U, Z).

Moreover, if U ⊂ X is an open subset and Z := X \ U is its closed
complement, then the corresponding pushforwards and pullbacks fit into a
distinguished triangle

RΓBM(Z, Z)→ RΓBM(X, Z)→ RΓBM(U, Z)→ RΓBM(X, Z)[1]

This is dual to the triangle

RΓc(U, Z)→ RΓc(X, Z)→ RΓc(Z, Z)→ RΓc(U, Z)[1]

The cycle complex Zc(n) behaves similarly to Borel–Moore homology.

0.11.1. Fact ([Gei2010, Corollary 7.2]).

1) a proper morphism of schemes f : X → Y induces a pushforward morphism

R f∗Zc
X(n)→ Zc

Y(n);

2) an open immersion of schemes f : U ↪→ X induces a flat pullback morphism

f ∗Zc
X(n)→ Zc

U(n).

If U ⊂ X is an open subscheme and Z := X \U is its closed complement, then
the proper pushforward associated to Z ↪→ X and the flat pullback associated to
U ↪→ X give a distinguished triangle

RΓ(Zét, Zc(n))→ RΓ(Xét, Zc(n))→ RΓ(Uét, Zc(n))→ RΓ(Zét, Zc(n))[1]




