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Introduction

Let X be an arithmetic scheme, i.e. separated and of finite type over Spec Z.
The corresponding zeta function is defined by the infinite product

ζ(X, s) := ∏
x∈X0

1
1− N(x)−s ,

where X0 denotes the set of closed points of X, and N(x) denotes the car-
dinality of the residue field at x ∈ X0. This infinite product converges for
Re s > dim X, and conjecturally, it has a meromorphic continuation to the
whole complex plane. I refer to [Ser1965] for the basic results and conjec-
tures.

This thesis is concerned with studying the special values of ζ(X, s): the
goal is to interpret in cohomological terms the vanishing orders and lead-
ing Taylor coefficients at s = n ∈ Z. This is a part of the program that
was envisioned by Stephen Lichtenbaum and initiated in [Lic2005, Lic2009a,
Lic2009b], and the conjectural underlying cohomology theory is known as
Weil-étale cohomology. Later on Matthias Flach and Baptiste Morin gave
a construction of Weil-étale cohomology using Bloch cycle complexes Z(n)
to study ζ(X, s) at s = n ∈ Z, see [Mor2014] and [FM2016]. Their work
concerns proper regular arithmetic schemes, and the goal of this thesis is to
relax these restrictions while studying the case n < 0.

From now on n denotes a strictly negative integer.

In chapter 0 I collect various definitions and results that are used in
the constructions. Most of this material is quite standard. This chapter is
lengthy, but it is needed to set up the stage.

Chapter 1 is dedicated to a construction of Weil-étale complexes

RΓW,c(X, Z(n)).

This will be done in two steps: first I construct complexes RΓfg(X, Z(n)),
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6 Introduction

which by definition give a cone of certain morphism

αX,n : RHom(RΓ(Xét, Zc(n)), Q[−2])→ RΓc(Xét, Z(n))

in the derived category of complexes of abelian groups:

RHom(RΓ(Xét, Zc(n)), Q[−2])
αX,n−−→ RΓc(Xét, Z(n))→ RΓfg(X, Z(n))

→ RHom(RΓ(Xét, Zc(n)), Q[−1])

Then I construct yet another morphism

i∗∞ : RΓfg(X, Z(n))→ RΓc(GR, X(C), (2πi)n Z)

in the derived category and declare its mapping fiber to be RΓW,c(X, Z(n)):

RΓW,c(X, Z(n))→ RΓfg(X, Z(n))
i∗∞−→ RΓc(GR, X(C), (2πi)n Z)

→ RΓW,c(X, Z(n))[1]

Finally, in chapter 2 I formulate the main conjecture. I use the regulator
construction from [KLMS2006]. After reviewing the necessary preliminaries
about Deligne cohomology and homology in §2.1, I define in §2.2 a mor-
phism

Reg∨ : RΓc(GR, X(C), (2πi)n R)[−1]→ RHom(RΓ(Xét, Zc(n)), R),

under the assumption that XC is smooth and quasi-projective. Then Reg∨

is conjectured to be a quasi-isomorphism. This allows us to construct an ad
hoc “cup product”

^ θ : RΓW,c(X, Z(n))⊗R→ RΓW,c(X, Z(n))⊗R[1]

that gives a long exact sequence of Weil-étale cohomology groups with real
coefficients

· · · → Hi
W,c(X, Z(n))⊗R

^θ−−→ Hi+1
W,c (X, Z(n))⊗R

^θ−−→ Hi+2
W,c (X, Z(n))⊗R→ · · ·

Then the general theory of determinants of complexes of Knudsen and Mum-
ford implies the existence of a canonical trivialization morphism

λ : R
∼=−→ (detZ RΓW,c(X, Z(n)))⊗Z R.
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Our main conjecture C(X, n), formulated in §2.3, says that the leading Taylor
coefficient of ζ(X, s) at s = n is given by

λ(ζ∗(X, n)−1) ·Z = detZ RΓW,c(X, Z(n)),

while the corresponding vanishing order is

ords=n ζ(X, s) = ∑
i∈Z

(−1)i · i · rkZ Hi
W,c(X, Z(n)).

If X is proper and regular, then this is equivalent to Conjecture 5.12 and
Conjecture 5.13 from [FM2016]. In particular, it is showed in [FM2016, §5.6]
that if X is projective and smooth over a number ring, then the special value
conjecture is equivalent to the Tamagawa number conjecture.

Finally, I verify in §2.4 that the conjecture is compatible with the opera-
tions of taking disjoint unions of schemes, gluing schemes from an open and
closed part, and passing from X to the affine space Ar

X . This means that
taking as an input the schemes for which the conjecture C(X, n) is known,
it is possible to construct new schemes, possibly singular, for which the con-
jecture C(X, n) holds as well. This is the main unconditional outcome of the
machinery developed in this thesis.
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Chapter 0

Preliminaries

In this chapter we are going to fix some notation and collect several basic
results which we will use later on.

Unless specified otherwise, X will denote an arithmetic scheme, i.e. sep-
arated, of finite type over Spec Z. Its small Zariski and étale sites will be
denoted by XZar and Xét respectively. By X(C) we denote the space of com-
plex points of X equipped with the usual analytic topology. It comes with a
natural action of the Galois group GR := Gal(C/R).

I start with some definitions and facts related to abelian groups in §0.1.
Then in §0.2 I fix some conventions about complexes. In our constructions
there will appear complexes of abelian groups of a very special kind: their
cohomology is conjecturally Q/Z-dual of finitely generated abelian groups,
so in §0.3 I collect some properties that are enjoyed by such complexes. We
will also make use of sheaves of roots of unity, and §0.5 is dedicated to
some observations about µm(C) viewed as GR-modules. We are also going
to use the equivariant cohomology of sheaves on X(C) with an action of GR.
I review the basic definitions in §0.6. Then in §0.7 I recall how a sheaf on Xét
gives rise to a GR-equivariant sheaf on X(C). In §0.8 I recall the definitions of
cohomology with compact support for sheaves on Xét and X(C), and in §0.9
I review a slight modification of cohomology with compact support on Xét
needed for arithmetic duality theorems, which will show up in §1.3. Then
in §0.10 I sketch a proof that for any arithmetic scheme X, the cohomology
groups Hi

c(X(C), Z) are finitely generated (this seems to be very standard,
but I could not find a reference). Finally, §0.11 is dedicated to an overview
of Bloch’s cycle complexes.

11



12 0.1. Abelian groups

0.1 Abelian groups

Let A be an abelian group. Then Ator denotes the maximal torsion subgroup
of A and Acotor denotes the group A/Ator. Similarly, Adiv denotes the max-
imal divisible subgroup of A and Acodiv denotes the group A/Adiv, and we
have short exact sequences

0→ Ator → A→ Acotor → 0,

0→ Adiv → A→ Acodiv → 0.

Note that the image of a divisible group is divisible, so that a group ho-
momorphism f : A → B induces functorially a homomorphism of divisible
groups fdiv : Adiv → Bdiv. If A is a divisible group, then

HomAb(A, B) ∼= HomDivAb(A, Bdiv),

so that taking the maximal divisible subgroup (−)div : Ab→ DivAb is right
adjoint to the inclusion DivAb ↪→ Ab.

For the group of homomorphisms A → B between two abelian groups,
we will write simply Hom(A, B). For m = 1, 2, 3, . . . we denote by

m A := ker(A m−→ A) ∼= Hom(Z/mZ, A)

the m-torsion subgroup of A, and dually,

Am := coker(A m−→ A) = A/mA.

We have thus an exact sequence

0→ m A→ A ×m−−→ A→ Am → 0

The abelian group Q/Z is divisible, hence injective, meaning that the
contravariant functor Hom(−, Q/Z) is exact. For the infinite cyclic group
we have trivially

Hom(Z, Q/Z) ∼= Q/Z,

and for finite cyclic groups

Hom(Z/mZ, Q/Z) ∼= m(Q/Z)

= {[0/m], [1/m], [2/m], . . . , [m− 1/m]} ∼= Z/mZ.

It follows that if A is a finitely generated abelian group, then A ∼= Z⊕r⊕ Ator,
where Ator is the finite maximal torsion subgroup in A, and

Hom(A, Q/Z) ∼= (Q/Z)⊕r ⊕ Ator.

Of course, this isomorphism is not canonical, as it requires a choice of gen-
erators.
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0.1.1. Definition. If B ∼= Hom(A, Q/Z) for a finitely generated abelian
group A, we say that B is of cofinite type.

0.1.2. Observation. If A is a finitely generated abelian group, then there is a
canonical isomorphism

lim−→
m

Hom(A/mA, Q/Z)
∼=−→ Hom(A, Q/Z).

Proof. This isomorphism is induced by A → A/mA, and then applying
the functor Hom(−, Q/Z) and lim−→m

. It comes from the following easy
observation: as Q/Z is a torsion group, if A is finitely generated, any
homomorphism A → Q/Z is killed by some m, hence factors through
A/mA→ Q/Z. �

0.1.3. Lemma. Denote (−)D := Hom(−, Q/Z). Let A and B be finitely gener-
ated abelian groups and let AD and BD be the corresponding groups of cofinite type.
Then every extension of BD by AD is again a group of cofinite type. Namely, any
such extension is equivalent to

(0.1.1) 0→ AD → CD → BD → 0

where

(0.1.2) 0→ B→ C → A→ 0

is an extension of A by B.

The statement seems trivial, especially because Ext(A, B) and Ext(BD, AD)
are easily seen to be isomorphic finite groups. However, there is one sub-
tle issue: it is not obvious why nonequivalent extensions (0.1.2) cannot for
some reason give equivalent extensions (0.1.1). Indeed, between groups of
cofinite type, there are many homomorphisms that are not induced from the
corresponding finitely generated groups; for example,

(0.1.3) HomAb(Z, Z) ∼= Z while HomAb(Z
D, ZD) ∼= Ẑ.

A priori, these extra homomorphisms could give weird equivalences of ex-
tensions. This is not the case, but we need to be a little bit more careful to
justify that.

Proof. Consider the category Abft of finitely generated abelian groups. It is
a full abelian subcategory of the category Ab. The contravariant functor

(−)D := Hom(−, Q/Z) : Ab◦ft → Ab.
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is exact and faithful, but it is very far from being full, as we observed in
(0.1.3). Let us denote the image of the functor (−)D by Abcft. It is the
category whose objects are groups of cofinite type AD for some finitely gen-
erated A, and morphisms BD → AD in Abcft are induced by morphisms
A → B of finitely generated groups. This means that (−)D restricts to an
(anti)equivalence of abelian categories

(0.1.4) (−)D := Hom(−, Q/Z) : Ab◦ft
'−→ Abcft.

The category Abft has enough projective objects (and no nontrivial injec-
tive objects). Dually, Abcft has enough injective objects: they are Q/Z-dual
to the projective objects in Abft:

P

A B
∃

f̃
f  

PD

AD BD

f̃ D

∃
f D

Now assume that for some finitely generated groups A and B we want
to calculate

Ext1
Ab(A, B) ∼= R1 HomAb(−, B)(A) = R1 HomAbft

(−, B)(A) ∼= Ext1
Abft

(A, B).

To do this, we may pick a projective resolution P• � A, and then calculate
the cohomology group H1 Hom(P•, B). Note that we may build this projec-
tive resolution from finitely generated groups, i.e. inside the category Abft.
Then thanks to the (anti)equivalence of categories (0.1.4), we have

(0.1.5) Ext1
Ab(A, B) ∼= Ext1

Abft
(A, B) ∼= Ext1

Abcft
(BD, AD).

The group

Ext1
Abcft

(BD, AD) ∼= R1 HomAbcft
(BD,−)(AD)

may be calculated by taking the same resolution P• � A, dualizing it to
obtain an injective resolution AD � PD

• by groups of cofinite type, and then
calculating H1 HomAbcft

(BD, PD
• ). Note that HomAbcft

(BD, PD
• ) is a subcom-

plex in HomAb(BD, PD
• ), and we have the corresponding homomorphism on

H1

(0.1.6) Ext1
Abcft

(BD, AD)→ Ext1
Ab(BD, AD).

I claim that it is an isomorphism. Indeed, by additivity of Ext1
A (−,−), it

is enough to see this for the only interesting case A = Z/mZ and B = Z.
The projective resolution

0→ Z
×m−−→ Z

1 7→[1]−−−→ Z/mZ→ 0
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gives us the corresponding injective resolution of Z/mZD ∼= Z/mZ:

0→ Z/mZ
[1] 7→[1/m]−−−−−−→ Q/Z

×m−−→ Q/Z→ 0

After applying HomA (Z
D,−) for A = Abcft, Ab, we get two complexes:

0 Z Z 0

0 Ẑ Ẑ 0

×m

×m

On H1 this indeed induces an isomorphism Z/mZ → Ẑ/mẐ ∼= Z/mZ.
Combining the isomorphism (0.1.6) with (0.1.5), we obtain an isomorphism

Ext1
Ab(A, B) ∼= Ext1

Ab(BD, AD).

It remains to pass to the Yoneda Ext, which I suggest to denote for the mo-
ment by YExt1

A (A, B), and which corresponds to the equivalence classes of
extensions

0→ B→ C → A→ 0

with respect to the Baer sum. If we have enough projectives or injectives in
A , so that Ext1

A (A, B) exists, then we have an isomorphism of abelian groups

YExt1
A (A, B) ∼= Ext1

A (A, B)

—see e.g. [Wei1994, §3.4]. In our situation, this gives an isomorphism

YExt1
Ab(A, B)

∼=−→ YExt1
Ab(BD, AD),

[B� C� A] 7→ [AD � CD � BD]

�

0.1.4. Example. If T is a finite abelian group, then

Ext(Q/Z, T) ∼= Ext(T, Z) ∼= T.

Indeed, by additivity of Ext(−,−), it is enough to check this for cyclic groups
T ∼= Z/mZ, and in this case, after applying Hom(−, Z) to the short exact
sequence

0→ Z
×m−−→ Z→ Z/mZ→ 0
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we obtain

0→ Hom(Z/mZ, Z)︸ ︷︷ ︸
=0

→ Z
×m−−→ Z

→ Ext(Z/mZ, Z)→ Ext(Z, Z)︸ ︷︷ ︸
=0

→ Ext(Z, Z)︸ ︷︷ ︸
=0

→ 0

In particular, for prime p, the corresponding p nonequivalent extensions of
Q/Z by Z/pZ arise as follows. First, there is the split extension

0→ Z/pZ→ Q/Z⊕Z/pZ→ Q/Z→ 0

which is dual to the extension

0→ Z→ Z⊕Z/pZ→ Z/pZ→ 0

Then the remaining p− 1 extensions are of the form

0→ Z/pZ
[1] 7→[m/p]−−−−−−→ Q/Z

×p−→ Q/Z→ 0

where m = 1, 2, . . . , p− 1. Here we identify Z/pZ with the cyclic subgroup{
0, 1

p , 2
p , . . . , p−1

p

}
⊂ Q/Z. These extensions are dual to

0→ Z
×p−→ Z

1 7→[m]−−−→ Z/pZ→ 0

They are not equivalent for different m, because if we have a commutative
diagram

Q/Z

0 Z/pZ Q/Z 0

Q/Z

×p

∼=

[1] 7→[m1/p]

[1] 7→[m2/p] ×p

then m1 = m2. N

0.2 Complexes

Let us recall a couple of constructions from homological algebra. For an
abelian category A we denote by C(A) the category of cohomological com-
plexes in A , by K(A) the corresponding homotopy category, and by D(A)
the derived category.
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For a complex C• and p ∈ Z, the shifted complex C•[p] is defined by

(C•[p])i := Ci+p, di
C• [p] := (−1)p di+p.

With this convention, Hi(C•[p]) = Hi+p(C•). (Note that some sources, e.g.
[Wei1994, 1.2.4], use another renumbering (C•[p])i := Ci−p.)

0.2.1. Definition. A (cohomological) double complex (C••, d••h , d••v ) is given
by objects Ci,j ∈ A for i, j ∈ Z, horizontal differentials

di,j
h : Ci,j → Ci+1,j,

and vertical differentials

di,j
v : Ci,j → Ci,j+1,

such that for all i, j ∈ Z

(0.2.1) di+1,j
v ◦ di,j

h + di,j+1
h ◦ di,j

v = 0;

that is, we have a diagram with anti-commutative squares

...
...

...

· · · Ci−1,j+1 Ci,j+1 Ci+1,j+1 · · ·

· · · Ci−1,j Ci,j Ci+1,j · · ·

· · · Ci−1,j−1 Ci,j−1 Ci+1,j−1 · · ·

...
...

...

di,j+1
h

di,j
h

di,j
v di+1,j

v

Assume that in A exist arbitrary products ∏i Ai and coproducts
⊕

i Ai.
Then the corresponding total complexes (with respect to direct sum and
product) are given by

(Tot⊕ C••)m :=
⊕

i+j=m
Ci,j, (TotΠ C••)m := ∏

i+j=m
Ci,j,

together with the obvious differentials dm : (Tot C••)m → (Tot C••)m+1 de-
fined via d••h and d••v . The identity dm+1 ◦ dm = 0 is satisfied thanks to the
condition (0.2.1).
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Note that if Ci,j = 0 for i � 0 and for j � 0, then for each m there are
only finitely many nonzero objects Ci,j such that i + j = m, and in this case
Tot⊕ C•• = TotΠ C••.

0.2.2. Definition. Let (A•, dA
• ) be a homological complex and (B•, d•B) a

cohomological complex. Then the corresponding Hom double complex
Hom••(A•, B•) is the double complex of abelian groups given by

Homi,j(A•, B•) := HomA (Ai, Bj),

together with the differentials for f ∈ HomA (Ai, Bj)

di,j
h f := f ◦ dA

i+1,

di,j
v f := (−1)i+j+1 dj

B ◦ f .(0.2.2)

...
...

...

· · · Hom(Ai−1, Bj+1) Hom(Ai, Bj+1) Hom(Ai+1, Bj+1) · · ·

· · · Hom(Ai−1, Bj) Hom(Ai, Bj) Hom(Ai+1, Bj) · · ·

· · · Hom(Ai−1, Bj−1) Hom(Ai, Bj−1) Hom(Ai+1, Bj−1) · · ·

...
...

...

di,j
h

di,j
v

The sign in (0.2.2) is introduced to make the squares anti-commute, turn-
ing Hom••(A•, B•) into a double complex in the sense of 0.2.1.

0.2.3. Definition. Let (A•, d•A) and (B•, d•B) be two cohomological com-
plexes. Then we may turn A• into a homological complex A• by setting
Ai := A−i and dA

i := d−i
A : Ai → Ai−1. The complex

Hom•(A•, B•) := TotΠ Hom••(A•, B•)

is called the Hom complex.

0.3 Derived category of abelian groups

Most of the time we are going to work in the derived category D(Ab) of com-
plexes of abelian groups, and occasionally the derived category of D(R-Vect)
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of complexes of real vector spaces. The canonical reference for derived cate-
gories is Verdier’s thesis [Verdier-thèse], and in particular I am going to use
Verdier’s original axioms (TR1)–(TR4).

It is rather easy to describe how objects and morphisms in the category
D(Ab) look like, thanks to the fact that Exti

Z(−,−) = 0 for i > 1. Let us
recall the general (well-known) result.

0.3.1. Lemma. Let A be a hereditary abelian category, i.e. an abelian category
such that

Exti
A (A, B) = 0 for all A, B ∈ A , i > 1

(when A = R-Mod, this condition is equivalent to R being a hereditary ring; in
particular, Z and any principal ideal domain is hereditary).

1) In the derived category D(A) every complex A• is isomorphic to the complex

· · · → Hi−1(A•) 0−→ Hi(A•) 0−→ Hi+1(A•)→ · · ·

that is,
A• ∼=

⊕
i∈Z

Hi(A•)[−i] ∼= ∏
i∈Z

Hi(A•)[−i].

2) The morphisms in D(A) are given by

HomD(A)(A•, B•) ∼=

∏
i∈Z

HomA (Hi(A•), Hi(B•))⊕∏
i∈Z

Ext1
A (Hi(A•), Hi−1(B•)).

Proof. For the first part, for each i ∈ Z let us consider the short exact se-
quence

0→ ker di−1 → Ai−1 p−→ im di−1 → 0

Applying the functor HomA (Hi(A•),−) gives us a long exact sequence of
Yoneda Exts

· · · → Ext1
A (Hi(A•), ker di−1)→ Ext1

A (Hi(A•), Ai−1)
p∗−→ Ext1

A (Hi(A•), im di−1)→ Ext2
A (Hi(A•), ker di−1)→ · · ·

where the last Ext vanishes by our assumption on A , and therefore p∗ is sur-
jective, which in particular means that the class of the short exact sequence

0→ im di−1 → ker di → Hi(A•)→ 0
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lies in the image in p∗, so that there exists an object Bi sitting in the following
morphism of short exact sequences:

0 Ai−1 Bi Hi(A•) 0

0 im di−1 ker di Hi(A•) 0

p id

This gives us morphisms of complexes

[Ai−1
i−1
→ Bi

i
]

A• Hi(A•)[−i]

that induce isomorphisms in cohomology in degree i:

· · · Ai−2 Ai−1 Ai Ai+1 · · ·

· · · 0 Ai−1 Bi 0 · · ·

· · · 0 0 Hi(A•) 0 · · ·

id

Passing to direct sums of the complexes Hi(A•)[−i] and [Ai−1
i−1

→ Bi
i
]

gives us quasi-isomorphisms that form the desired isomorphism in D(A):

C•

A•
⊕

i∈Z

Hi(A•)[−i]

' '

We note that
⊕

i∈Z

Hi(A•)[−i] has the universal property of both product

and coproduct in the category of complexes.
Now for the second part, we note that since by our assumptions on A ,

HomD(A)(A, B[i]) =


HomA (A, B), i = 0,
Ext1

A (A, B), i = 1,
0, otherwise,
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we have by the calculation in 1),

HomD(A)(A•, B•) ∼= HomD(A)(
⊕
i∈Z

Hi(A•)[−i], ∏
j∈Z

H j(B•)[−j])

∼= ∏
i∈Z

∏
j∈Z

HomD(A)(Hi(A•), H j(B•)[i− j])

∼= ∏
i∈Z

(
HomA (Hi(A•), Hi(B•))⊕ Ext1

A (Hi(A•), Hi−1(B•))
)

.

�

0.3.2. Remark. One can also obtain information about HomD(A)(A•, B•)
using the following hyperext spectral sequence:

Epq
2 = ∏

i∈Z

Extp
A (Hi(A•), Hq+i(B•)) =⇒ Extp+q

D(A)
(A•, B•)

(see e.g. [Verdier-thèse, Chapitre III, §4.6.10] and [Wei1994, §5.7.9]). For a
hereditary category Extp

A = 0, unless p = 0, 1, and this spectral sequence
consists of two columns and therefore gives us short exact sequences

0→ ∏
i∈Z

Ext1
A (Hi(A•), Hi−1(B•))→ HomD(A)(A•, B•)

→ ∏
i∈Z

HomA (Hi(A•), Hi(B•))→ 0

However, one should be careful with boundedness of A• and B• to make
sure that the spectral sequence exists.

Recall that a complex of abelian groups C• is called perfect if it is quasi-
isomorphic to a bounded complex of finitely generated free (= projective)
abelian groups. This is the same as asking Hi(C•) to be finitely generated
abelian groups, and Hi(C•) = 0 for all but finitely many i. In §1.5 we are
going to construct certain complexes RΓfg(X, Z(n)) that are almost perfect, in
the sense that their cohomology groups Hi

fg(X, Z(n)) are finitely generated,
vanish for i � 0, and for i � 0 they are finite 2-torsion (that is, killed by
multiplication by 2). Let us introduce the following notion.

0.3.3. Definition. Let C• be an object in D(Ab). We say that C• is almost
perfect if

1) Hi(C•) are finitely generated groups,

2) Hi(C•) = 0 for i� 0,

3) Hi(C•) is 2-torsion for i� 0.
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I warn the reader that this terminology was invented by myself and
serves only to simplify the exposition.

0.3.4. Lemma.

1) If C• and C′• are almost perfect, then the group HomD(Ab)(C•, C′•) has no
nontrivial divisible subgroups.

2) If A• is a complex such that Hi(A•) are finite dimensional Q-vector spaces
and C• is a complex such that Hi(C•) are finitely generated abelian groups,
then the group HomD(Ab)(A•, C•) is divisible.

Proof. By 0.3.1 we have

HomD(Ab)(C
•, C′•) ∼=

∏
i∈Z

Hom(Hi(C•), Hi(C′•))⊕∏
i∈Z

Ext(Hi(C•), Hi−1(C′•)).

Note that by our assumptions, both groups ∏i∈Z Hom(Hi(C•), Hi(C′•)) and
∏i∈Z Ext(Hi(C•), Hi−1(C′•)) will be of the form G⊕ T, where G is a finitely
generated abelian group and T is 2-torsion. Assume now that some element
x ∈ HomD(Ab)(C•, C′•) is divisible by all powers of 2. If it lies in the finitely
generated part, then x = 0; if it lies in the 2-torsion part, then again x = 0.

Similarly, in part 2), we have

HomD(Ab)(A•, C•) ∼=

∏
i∈Z

Hom(Hi(A•), Hi(C•))⊕∏
i∈Z

Ext(Hi(A•), Hi−1(C•)).

Now by our assumptions Hom(Hi(A•), Hi(C•)) = 0 for all i. Then each
group Ext(Hi(A•), Hi−1(C•)) is a direct sum of finitely many groups iso-
morphic to Ext(Q, Z) and Ext(Q, Z/mZ), and Ext(Q, Z) is divisible while
Ext(Q, Z/mZ) = 0. This means that the group Ext(Hi(A•), Hi−1(C•)) is
divisible for each i, and hence their direct product over i is divisible. �

Recall that the axiom (TR1) tells us that every morphism v : A• → B• may
be completed to a distinguished triangle A• u−→ B• v−→ C• w−→ A•[1]. Here C•

is called the cone of u. The axiom (TR3) tells that for every commutative
diagram with distinguished rows

(0.3.1)

A• B• C• A•[1]

A′• B′• C′• A′•[1]

u

f

v

g

w

u′ v′ w′
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there exists some morphism h : C• → C′• giving a morphism of distin-
guished triangles

(0.3.2)

A• B• C• A•[1]

A′• B′• C′• A′•[1]

u

f

v

g

w

∃!h f [1]

u′ v′ w′

The cone C• in (TR1) and the morphism h in (TR3) are neither unique
nor canonical. Two different cones of the same morphism are necessarily
isomorphic, but the isomorphism between them is not unique, because it is
provided by (TR3). This is a well-known issue with the derived category
formalism, and in the present text we are going to encounter some problems
related to it. For now, let us recall a useful standard argument which shows
that at least in some special cases, things are uniquely defined.

0.3.5. Observation ((TR3) and (TR1) with uniqueness; ≈ [BBD1982, Propo-
sition 1.1.9, Corollaire 1.1.10]). Consider the derived category D(A) of an abelian
category A .

1) For a commutative diagram (0.3.1), assume that the homomorphism of abelian
groups

w∗ : HomD(A)(A•[1], C′•)→ HomD(A)(C
•, C′•)

induced by w is trivial. Then there exists a unique morphism h : C• → C′•

giving a morphism of triangles (0.3.2).

2) For a distinguished triangle A• u−→ B• v−→ C• w−→ A•[1], assume that for any
other cone C′• of u the morphism w∗ is trivial. Then in fact the cone of u is
unique up to a unique isomorphism.

Proof. In 1), the existence of C• → C′• is the axiom (TR3), and the interest-
ing part is uniqueness. Since HomD(A)(−, C′•) is a cohomological functor,
applied to the first distinguished triangle, it gives us an exact sequence of
abelian groups

HomD(A)(A•[1], C′•) w∗−→ HomD(A)(C
•, C′•) v∗−→ HomD(A)(B•, C′•).

If w∗ = 0, we conclude that v∗ is a monomorphism. This means that there is
a unique morphism h such that h ◦ v = v′ ◦ g. Now in 2), if C• and C′• are
two different cones of u, we have a commutative diagram

A• B• C• A•[1]

A• B• C′• A•[1]

u

id

v

id

w

id

u′ v′ w′
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As always, by the “triangulated 5-lemma”, the dashed arrow is an isomor-
phism, and it is unique thanks to 1). �

Here is a particular case that we are going to use.

0.3.6. Corollary. Consider the derived category D(Ab).

1) Suppose we have a commutative diagram with distinguished rows

A• B• C• A•[1]

A′• B′• C′• A′•[1]

u

f

v

g

w

u′ v′ w′

where A• is a complex such that Hi(A•) are finite dimensional Q-vector
spaces and C• and C′• are almost perfect complexes. Then there exists a
unique (!) morphism h : C• → C′• giving a morphism of triangles

A• B• C• A•[1]

A′• B′• C′• A′•[1]

u

f

v

g

w

∃!h f [1]

u′ v′ w′

2) For a distinguished triangle

A• u−→ B• v−→ C• w−→ A•[1]

assume that A• is a complex such that Hi(A•) are finite dimensional Q-vector
spaces and C• is an almost perfect complex. Then the cone of u is unique up
to a unique isomorphism.

Proof. In this situation, according to 0.3.4, the group HomD(Ab)(C•, C′•) has
no nontrivial divisible subgroups and HomD(Ab)(A•[1], C′•) is divisible. This
means that there are no nontrivial homomorphisms

HomD(Ab)(A•[1], C′•)→ HomD(Ab)(C
•, C′•)

and we may apply 0.3.5. �

We are going to encounter certain complexes whose cohomology groups
are of cofinite type, i.e. Q/Z-dual of finitely generated abelian groups.
Again, they will be bounded below, but may have 2-torsion in higher de-
grees. For this we introduce a definition similar to 0.3.3.

0.3.7. Definition. Let A• be an object in D(Ab). We say that A• is almost of
cofinite type if
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1) Hi(A•) are groups of cofinite type for all i,

2) Hi(A•) = 0 for i� 0,

3) Hi(A•) is 2-torsion for i� 0 (in fact, finite 2-torsion according to 1)).

0.3.8. Observation. Suppose that A• and B• are almost of cofinite type. Then a
morphism f : A• → B• is torsion in D(Ab) (i.e. a torsion element in the group
HomD(Ab)(A•, B•), i.e. f ⊗Q = 0) if and only if the morphisms

Hi( f ) : Hi(A•)→ Hi(B•)

are torsion, that is, they are trivial on the maximal divisible subgroups:

(Hi( f )div : Hi(A•)div → Hi(B•)div) = 0.

Proof. By 0.3.1 we have

HomD(Ab)(A•, B•) ∼=

∏
i∈Z

Hom(Hi(A•), Hi(B•))⊕∏
i∈Z

Ext(Hi(A•), Hi−1(B•)).

As the groups Hi(A•) and Hi−1(B•) are of the form (Q/Z)⊕r ⊕ T, where T
is finite, we have

Ext((Q/Z)⊕r ⊕ T, (Q/Z)⊕r′ ⊕ T′) ∼=
Ext((Q/Z)⊕r, (Q/Z)⊕r′)︸ ︷︷ ︸

=0

⊕ Ext((Q/Z)⊕r, T′)

⊕ Ext(T, (Q/Z)⊕r′)︸ ︷︷ ︸
=0

⊕ Ext(T, T′),

where Ext((Q/Z)⊕r, (Q/Z)⊕r′) and Ext(T, (Q/Z)⊕r′) are trivial because
Q/Z is a divisible group; then Ext((Q/Z)⊕r, T′) ∼= Ext(Q/Z, T′)⊕r ∼= T′⊕r

by 0.1.4, and Ext(T, T′) is also finite, being a direct sum of

Ext(Z/mZ, Z/nZ) ∼= Z/(m, n)Z.

For i � 0, the groups Hi(A•) and Hi−1(B•) will be finite 2-torsion, and
therefore Ext(Hi(A•), Hi−1(B•)) will be finite 2-torsion as well. It follows
that the whole product ∏i∈Z Ext(Hi(A•), Hi−1(B•)) is of the form G ⊕ T,
where G is finite and T is possibly infinite 2-torsion. We have

(G⊕ T)⊗Z Q = 0.
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Similarly, the group ∏i∈Z Hom(Hi(A•), Hi(B•)) will consist of some part
of the form Ẑ⊕r ⊕ G, where G is finite, and some 2-torsion part, which is
killed by tensoring with Q. It follows that there is an isomorphism

HomD(Ab)(A•, B•)⊗Z Q
∼=−→ ∏

i∈Z

Hom(Hi(A•), Hi(B•))⊗Z Q.

After unwinding the proof of 0.3.1, one sees that this arrow is what it should
be:

f ⊗Q 7→ (Hi( f )⊗Q)i∈Z.

�

0.3.9. Observation. If A• is a complex of Q-vector spaces and B• is a complex
almost of cofinite type, then there is an isomorphism of abelian groups

HomD(Ab)(A•, B•)
∼=−→ ∏

i∈Z

Hom(Hi(A•), Hi(B•)),

f 7→ (Hi( f ))i∈Z.

Proof. I claim that in the formula 0.3.1

HomD(Ab)(A•, B•) ∼= ∏
i∈Z

Hom(Hi(A•), Hi(B•))⊕∏
i∈Z

Ext(Hi(A•), Hi−1(B•))

the summand with Ext groups vanishes. Indeed, each group Hi−1(B•) is of
the form Q/Z⊕r ⊕ T, where Q/Z is injective, hence Ext(−, Q/Z) = 0, and
T is a finite torsion group, hence Ext(V, T) = 0 if V is a Q-vector space. �

0.4 Determinants of complexes

We are going use determinants of complexes defined by Knudsen and Mum-
ford. The reader may consult [GKZ1994, Appendix A] for a nice introduction
and the original paper [KM1976] for the technical details.

For a perfect complex of R-modules P•, or in general for a perfect com-
plex in the derived category D(R-Mod) one may define its determinant

detR P• :=
⊗
i∈Z

detR Hi(P•)(−1)i
.

0.4.1. Fact ([KM1976, p. 43, Corollary 2]). For a distinguished triangle of perfect
complexes in D(R-Mod)

A• → B• → C• → A•[1]
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we have a canonical isomorphism

detR A• ⊗R detR C•
∼=−→ det B•.

It is functorial with respect to isomorphisms of distinguished triangles: for such an
isomorphism

A• B• C• A•[1]

A′• B′• C′• A′•[1]

f∼= g∼= h∼= f [1]∼=

we have a commutative diagram

detR A• ⊗ detR C• detR B•

detR A′• ⊗ detR C′• detR B′•

∼=

∼=det( f )⊗det(h) det(g)∼=
∼=

Note that in particular, if we consider the direct sum of distinguished
triangles

A• id−→ A• → 0→ A•[1] and 0→ B• id−→ B• → 0

then we obtain a distinguished triangle

A• → A• ⊕ B• → B• → A•[1]

and 0.4.1 gives us a canonical isomorphism

detR A• ⊗R detR B•
∼=−→ detR(A• ⊕ B•).

0.5 Roots of unity

The m-th complex roots of unity

µm(C) := {z ∈ C× | zm = 1} = {e2πik/m | k = 0, . . . , m− 1}

form an abelian group with respect to multiplication. It also carries a natural
action of the Galois group GR := Gal(C/R) by complex conjugation, making
µm(C) into a GR-module.

Let us fix some (standard) conventions for G-modules. We write the
action of G on the left. If A and B are G-modules, then we denote by A⊗ B
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the tensor product of A and B over Z together with the action of G defined
by

g(a⊗ b) := g · a⊗ g · b.

This tensor product in the category of G-modules is left adjoint to the inter-
nal Hom, which we denote by Hom(A, B). The action of G on the latter is
given by

(g f )(a) := g · f (g−1 · a)

for a group homomorphism f : A→ B.

Re

Im

The action of GR on µ10(C).

As an abelian group, µm(C) is non-canonically isomorphic to Z/mZ.
Similarly, the group of all roots of unity colimm µm(C) =

⊕
p lim−→r

µpr (C) is
isomorphic to Q/Z ∼=

⊕
p Qp/Zp. Now we are going to write down such

isomorphisms in a canonical way, without forgetting about the action of GR.
Further, we introduce a twist by n. In the setting of this text, n is a negative
integer, but for the sake of completeness, let us do that for any integer n.

0.5.1. Definition (Tate twists). Let n ∈ Z.

• If n = 0, then
µm(C)⊗0 := Z/mZ,

where Z/mZ is taken with the trivial action of GR.

• If n > 0, then
µm(C)⊗n := µm(C)⊗ · · · ⊗ µm(C)︸ ︷︷ ︸

n

is the n-th tensor power of µm(C) with the canonical action of GR.
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• If n < 0, then

µm(C)⊗n := Hom(µm(C)⊗(−n), Z/mZ),

where in this case the action of GR is given by

f (z) := f (z).

0.5.2. Lemma. There is a canonical isomorphism of GR-modules

µm(C)
∼=−→ 2πi Z

m (2πi)Z
,

e2πik/m 7→ 2πik.

Proof. The given explicit map is pretty self-explanatory, but the reader might
appreciate the fact that this comes from the snake lemma. Let us consider
the following morphism of short exact sequences of GR-modules:

0 2πi Z C C× 1

0 2πi Z C C× 1

−×m

z 7→ez

−×m (−)m

z 7→ez

Note that all the involved arrows are GR-equivariant. The map in the
middle has trivial kernel and cokernel, so by the snake lemma, there is a
canonical isomorphism between the kernel of the last map, which is µm(C),
and the cokernel of the first map, which is 2πi Z

m (2πi)Z
:

µm(C)
∼=−→ 2πi Z

m (2πi)Z
.

0 0 0 µm(C)

0 2πi Z C C× 1

0 2πi Z C C× 1

2πi Z
m (2πi)Z

0 1 1

z 7→ ez

z 7→ ez

−×m −×m (−)m

�
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0.5.3. Lemma. For n > 0 we have a canonical isomorphism of GR-modules

µm(C)⊗n ∼=
(2πi)n

m (2πi)n Z
.

Proof. From the previous calculation and the canonical GR-equivariant iso-
morphism

(2πi)Z⊗ · · · ⊗ (2πi)Z︸ ︷︷ ︸
n

∼=−→ (2πi)n Z,

(2πi) a1 ⊗ · · · ⊗ (2πi) an 7→ (2πi)n a1 · · · an

we obtain

µm(C)⊗ · · · ⊗ µm(C)︸ ︷︷ ︸
n

∼=−→ 2πi Z

m (2πi)Z
⊗ · · · ⊗ 2πi Z

m (2πi)Z︸ ︷︷ ︸
n

∼=
(2πi)n Z

m (2πi)n Z
.

�

0.5.4. Lemma. For n < 0 we have a canonical isomorphism of GR-modules

µm(C)⊗n := Hom(µ
⊗(−n)
m (C), Z/mZ) ∼=

(2πi)n Z

m (2πi)n Z
.

Proof. We claim that there is a GR-equivariant isomorphism
(0.5.1)

Hom
(

(2πi)−n Z

m (2πi)−n Z
, Z/mZ

)
∼= Hom

(
(2πi)−n Z, Z/mZ

) ∼=−→ (2πi)n Z

m (2πi)n Z
.

Note that −n got replaced with n, for the reason which will be appar-
ent in a second. A homomorphism f : (2πi)−n Z → Z/mZ is determined
by the image of a generator f ((2πi)−n · 1), so we may define the second
isomorphism in (0.5.1) by

(0.5.2) Φ : f 7→ (2πi)n · f ((2πi)−n · 1).

It is clearly an isomorphism of abelian groups, and it only remains to
check that it is GR-equivariant, i.e. that for all f : (2πi)−n Z→ Z/mZ holds

Φ( f ) = Φ( f ).

We have indeed

Φ( f ) = (2πi)n · f ((2πi)−n · 1) = (2πi)n · f ((2πi)−n · 1)
= (−1)n (2πi)n · f ((2πi)−n · 1)
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and

Φ( f ) = (2πi)n · f ((2πi)−n · 1) = (−1)n (2πi)n · f ((2πi)−n · 1).

�

0.5.5. Lemma. The GR-module of all roots of unity twisted by n is canonically
isomorphic to the GR-module (2πi)n Q

(2πi)n Z
:

colim
m

µm(C)⊗n :=
⊕

p
lim−→

r
µpr (C)⊗n ∼=

(2πi)n Q

(2πi)n Z
.

Proof. Using the previous calculations and observing that the transition mor-
phisms in the colimit are GR-equivariant,

⊕
p

lim−→
r

µpr (C)⊗n ∼=
⊕

p
lim−→

r

(2πi)n Z

pr (2πi)n Z
∼=

(2πi)n Q

(2πi)n Z
.

�

Somewhat abusively, from now on we will write simply “(2πi)n Q/Z”
for (2πi)n Q

(2πi)n Z
.

0.6 G-equivariant sheaves

G-equivariant sheaves on topological spaces are discussed in Grothendieck’s
Tohoku paper [Tôhoku]:

Nous appelerons G-faisceau sur X = X(G) un faisceau (d’ensembles)
A sur X, dans lequel G opère de façon compatible avec ses opéra-
tions sur X. Pour donner un sens à cette définition, on pourra
par exemple considérer A comme espace étalé dans X; nous
n’insisterons pas.

In this section I will give some explanation of the notion of a G-equivariant
sheaf and collect certain relevant results. What follows is a rather straight-
forward generalization of the usual sheaf theory, so I omit some details.
Probably the best way to motivate the definition is to recall the construction
of the sheaf of sections of a continuous map.

0.6.1. Classical example. Let X be a topological space. Consider the category
Top/X of spaces over X where the objects are continuous maps of topological
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spaces p : E→ X and the morphisms are commutative diagrams

(0.6.1)
E E′

X

f

p p′

For a topological space over X given by p : E → X, the corresponding
sheaf of sections is the sheaf of sets defined by

F (U) := HomTop/X
(U, E) =

 U E

X

s

p


for each open subset U ⊂ X. The restriction maps are obvious: an inclusion
of open subsets i : V ↪→ U induces contravariantly

resVU := HomTop/X
(i, E) : F (U)→ F (V),

and the sheaf axiom is also easy to verify. A morphism over X of the form
(0.6.1) gives rise to a morphism of the corresponding sheaves of sections: for
each open subset U ⊂ X we get a map

φU : HomTop/X
(U, E)→ HomTop/X

(U, E′),

U E

X

s

p
7→

U E E′

X

s

p

f

p′

and for each V ⊂ U the diagram

F (U) := HomTop/X
(U, E) HomTop/X

(U, E′) =: F ′(U)

F (V) := HomTop/X
(V, E) HomTop/X

(V, E′) =: F ′(V)

φU

resVU res′VU

φV

clearly commutes. So formation of the sheaf of sections is a functor

Γ : Top/X → Sh(X).

0.6.2. G-equivariant example. For a discrete group G, consider the cate-
gory of G-spaces G-Top where the objects are topological spaces X with a
specified action of G by homeomorphisms σX : G× X → X, and morphisms
f : X → Y are continuous G-equivariant maps:
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G× X G×Y

X Y

id× f

σX σY

f

For a fixed G-space X, the category G-Top/X of G-spaces over X has
as its objects continuous G-equivariant maps p : E → X and as morphisms
continuous G-equivariant maps over X

E E′

X

f

p p′

For a G-space over X given by p : E→ X, the corresponding sheaf of sections
F carries the following extra datum. For each open subset U ⊂ X and each
g ∈ G there is a bijection of sets

αg,U : F (U)
∼=−→ F (g ·U),

(s : U → E) 7→
(

g ·U → E,
g · u 7→ g · s(u)

)
,(

U → E,
u 7→ g−1 · s(g · u)

)
← [ (s : g ·U → E).

Using the fact that p is G-equivariant, one checks that αg,U indeed sends
sections over U to sections over g ·U. We also see that the bijections αg,U
satisfy the following properties:

1) compatibility with restrictions: for open subsets V ⊂ U the diagram

F (U) F (g ·U)

F (V) F (g ·V)

αg,U

∼=
resVU resg·V,g·U

αg,V

∼=

commutes;

2) for the identity element 1 ∈ G and each open subset U ⊂ X we have

α1,U = id : F (U)→ F (U);

3) the cocycle condition: for each open subset U ⊂ X and g, h ∈ G the
diagram

F (h ·U)

F (U) F (gh ·U)

αg,h·Uαh,U

αgh,U
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commutes.

For a morphism of G-spaces over X

E E′

X

f

p p′

the corresponding morphism of sheaves of sections φ : F → F ′ is easily seen
to be compatible with the maps αg,U and α′g,U : for each U ⊂ X the diagram

F (U) F ′(U)

F (g ·U) F ′(g ·U)

φU

αg,U α′g,U
φg·U

commutes.

Now hopefully, the last example makes the following definition look nat-
ural.

0.6.3. Definition. Let G be a discrete group and let X be a G-space. Then a G-
equivariant presheaf (of sets) on X is a presheaf F equipped with bijections
of sets

αg,U : F (U)
∼=−→ F (g ·U)

for each g ∈ G and open subset U ⊂ X that satisfy the following axioms:

1) these bijections are compatible with restrictions:

F (U) F (g ·U)

F (V) F (g ·V)

αg,U

∼=
resVU resg·V,g·U

αg,V

∼=

2) α1,U = id : F (U)→ F (U);

3) for g, h ∈ G the cocycle condition holds:

F (h ·U)

F (U) F (gh ·U)

αg,h·Uαh,U

αgh,U
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A G-equivariant sheaf is a G-equivariant presheaf satisfying the usual
sheaf axiom: for each open covering U =

⋃
i Ui we have an equalizer

F (U)→∏
i

F (Ui)⇒∏
i,j

F (Ui ∩Uj).

A morphism of G-equivariant (pre)sheaves F → F ′ is a morphism of
(pre)sheaves which is compatible with the maps αg,U :

F (U) F ′(U)

F (g ·U) F ′(g ·U)

φU

αg,U α′g,U
φg·U

We denote the category of G-equivariant presheaves (resp. sheaves) on X
by PSh(G, X) (resp. Sh(G, X)).

We may summarize 0.6.2 by saying that taking the sheaf of sections is a
functor

Γ : G-Top/X → Sh(G, X).

It commutes with the forgetful functors:

G-Top/X Sh(G, X)

Top/X Sh(X)

Γ

Γ

0.6.4. Remark. Despite the extra datum coming from the action of G, the cat-
egory Sh(G, X) is still a Grothendieck topos. This can be deduced from Gi-
raud’s characterization of Grothendieck toposes [SGA 4, Exposé IV, 1.2] (see
e.g. [MLM1994, Appendix] for details). However, the underlying Grothendieck
site is not obvious.

0.6.5. Observation. The global sections F (X) of a G-equivariant (pre)sheaf is a
G-set with the action of G given by

αg,X : F (X)
∼=−→ F (g · X) = F (X).

Taking the global sections is a functor

PSh(G, X)→ G-Set.
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Proof. The axioms α1,X = id and αgh,X = αg,h·X ◦ αh,X correspond to the
axioms of a group action. �

0.6.6. Example. Let F be the sheaf of sections of a G-space over X given
by p : E → X. Then the action of g ∈ G on F (X) sends a global section
s : X → E to the global section

X → E,

x 7→ g · s(g−1 · x).

(see the formula for αg,U in 0.6.2). N

0.6.7. Definition. Let S be a G-set. For a G-space X, consider the presheaf
SX defined by SX(U) = S for each open subset U ⊂ X with the identity
restriction maps. The morphisms

αg,U = σg : SX(U)→ SX(g ·U),

x 7→ g · x.

define a structure of a G-equivariant presheaf on SX , called the constant
G-equivariant presheaf associated to S.

0.6.8. Observation. Formation of the constant G-equivariant presheaf is a functor

G-Set→ PSh(G, X),

which is left adjoint to the global section functor:

HomPSh(G,X)(SX , P ) ∼= HomG-Set(S, P (X)).

Proof. A morphism of G-equivariant presheaves SX → P is given by a col-
lection of maps φU : S→ P (U) that are compatible with the restriction maps
and the G-equivariant structure morphisms:

S P (X) S P (U)

P (U) S P (g ·U)

P (V)

φX

φU

φV
resVX

resUX σg

φU

αg,U

resVU

φg·U

From the first diagram we see that φU = resUX ◦φX , so that the map
φX : S → P (X) defines the rest, and from the second diagram we see that it
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is G-equivariant. This shows that the bijection in question is given by

{φU} 7→ φX ,

{φU := resUX ◦φ} ← [ φ.

�

Alternative definition via G-equivariant espaces étalés

One says that a continuous map p : E → X is étale* if it is a local on the
source homeomorphism (for each e ∈ E there exists an open neighborhood
V 3 p such that p(V) is open in X and p|V : V → p(V) is a homeomor-
phism). We have a full subcategory

G-Ét/X ⊂ G-Top/X

formed by G-spaces that are étale over X. We note that if p and p′ are étale
and we have a commutative diagram

E E′

X

f

p p′

then f is étale as well, so that the morphisms in G-Ét/X are automatically
étale. The importance of étale spaces over X is explained by the following
well-known result, which we state G-equivariantly.

0.6.9. Proposition. Let F be a G-equivariant presheaf on X. Consider the disjoint
union of stalks

ä
x∈X

Fx, Fx := lim−→
U3x

F (U).

It carries a natural action of G. For each section s ∈ F (U) such that U 3 x, denote
by sx ∈ Fx the corresponding germ at x. This defines a map between sets (which we
again denote by s)

s : U → ä
x∈X

Fx,

x 7→ sx.

Consider now the topology on äx∈X Fx generated by s(U) for all open subsets
U ⊂ X and all s ∈ F (U). Then the action of G is continuous with respect to this

*This is in fact the topological counterpart of étale morphisms of schemes.
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topology, and the natural projection

p : ä
x∈X

Fx → X,

Fx 3 sx 7→ x.

is an étale G-equivariant map.

Proof. This is a well-known, basic result (see e.g. [MLM1994, Chapter II]);
one just has to check the G-equivariance. �

This leads to an equivalent definition of G-equivariant sheaves.

0.6.10. Alternative definition. Let G be a group and X be a G-space. Then a
G-equivariant sheaf on X is an étale G-space over X

p : E→ X,

and a morphism of G-equivariant sheaves is a morphism over X

E E′

X

f

p p′

0.6.11. Remark. Note that the above definition looks more natural than
0.6.3. It also generalizes to the case a topological group G acting on E and
X continuously. This is not possible in 0.6.3, because there we consider only
how each separate element g ∈ G acts on X.

0.6.12. Example. In these terms, it is easier to describe equivariant sheafifi-
cation and what a constant sheaf is. If S is a G-set and X is a G-space, we
may endow S with the discrete topology and consider the G-space S × X
with the component-wise action of G (which is the product in the category
of G-spaces). Then the projection S× X → X is an étale G-equivariant map,
so it corresponds to some G-equivariant sheaf. We call it the constant G-
equivariant sheaf associated to S. This construction is obviously functorial:
a G-equivariant map S→ S′ induces a morphism in G-Ét/X

S× X S′ × X

X

N
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Abelian G-equivariant sheaves and their cohomology

0.6.13. Proposition. Let X be a G-space. Consider the category Sh(G, X)Ab of
G-equivariant sheaves of abelian groups on X (defined, for instance, as abelian group
objects in the category of G-equivariant sheaves of sets). It is an abelian category
with enough injectives.

Proof. The usual argument of Grothendieck works: any abelian category
which satisfies the axiom AB5) and has generators has enough injectives
[Tôhoku, Ch. I, 1.10]. This is the case for Sh(G, X)Ab (as for the generators,
see [MLM1994, Appendix]). �

0.6.14. Example. Let A be a G-set (resp. G-module). Then the associated
constant sheaf A has a canonical G-equivariant abelian sheaf structure. N

0.6.15. Example. Consider some topological space with an action of the
Galois group GR := Gal(C/R); for instance, the set of complex points of
a scheme X(C) equipped with the analytic topology. Then the complex
m-th roots of unity µm(C) (reviewed above in §0.5) give us a constant GR-
equivariant sheaf on X(C). This is the only example we will be interested
in. N

0.6.16. Definition. The equivariant global section functor

Γ(G, X,−) : Sh(G, X)Ab → Ab,

F  F (X)G

is left exact. Here the global sections

F (X) := {s : X → Ét(F ) | π ◦ s = idX}

come with an action of G by

(g · s)(x) := g · s(g−1 · x).

(Note that in general, F (U) carries such an action of G, whenever U ⊂ X is
closed under the action of G.) The fixed points of this action are precisely
the G-equivariant sections, i.e. sections that satisfy s(g · x) = g · (s(x)). The
right derived functors of Γ(G, X,−) are by definition RΓ(G, X, F ).

This is related to the usual sheaf cohomology by

(0.6.2) RΓ(G, X, F ) ∼= RΓ(G, RΓ(X, F )),
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where the right hand side is the group cohomology. Indeed, Γ(G, X,−) is a
composition of two left exact functors: the usual global section functor and
the fixed points functor

Sh(G, X)Ab F F (X)−−−−−→ G-Mod A AG
−−−−→ Ab

and (0.6.2) are the derived functors of a composition of functors (this is
known as the Grothendieck spectral sequence; see e.g. [Wei1994, §10.8]).
On the level of cohomology, we have a spectral sequence

Epq
2 = Hp(G, Hq(X, F )) =⇒ Hp+q(G, X, F ).

0.7 From étale to analytic sheaves (the morphism α∗)

The canonical reference for comparison between étale and singular coho-
mology is [SGA 4, Exposé XI, §4], so let us to borrow some definitions and
notation from there. Let X be an arithmetic scheme (separated, of finite type
over Spec Z).

1. The base change from Spec Z to Spec C

XC X

Spec C Spec Z

gives us a morphism of sites

γ : XC,ét → Xét.

2. We denote by X(C) the set of complex points of X equipped with the
usual analytic topology.

Let Xcl be the site of étale maps f : U → X(C). A covering family in
Xcl is a family of maps {Ui → U} such that U is the union of images
of Ui. The notation “cl” comes from SGA 4 and stays for “classique”.

As the inclusion of an open subset U ⊂ X(C) is trivially an étale map,
we have a fully faithful functor X(C) ⊂ Xcl, and the topology on X(C)
is induced by the topology on Xcl. This gives us a morphism of sites

δ : Xcl → X(C),

which by the well-known “comparison lemma” [SGA 4, Exposé III,
Théorème 4.1] induces an equivalence of the corresponding categories
of sheaves

δ∗ : Sh(Xcl)→ Sh(X(C)).
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3. A morphism of schemes f : X′C → XC over Spec C is étale if and only if
f (C) : X′(C) → X(C) is étale in the topological sense [SGA 1, Exposé
XII, Proposition 3.1], and therefore the functor X′C  X′(C) gives us a
morphism of sites

ε : Xcl → XC,ét.

We may now consider the composite functor

Sh(Xét) Sh(XC,ét) Sh(Xcl) Sh(X(C))
γ∗ ε∗ δ∗

'

where γ∗ is given by the base change from Spec Z to Spec C, the functor ε∗

is the comparison, and δ∗ is an equivalence of categories. As we start from a
scheme over Spec Z and base change to Spec C, the resulting sheaf on X(C)
is in fact equivariant with respect to the complex conjugation, and the above
composition gives us an “inverse image” functor

α∗ : Sh(Xét)→ Sh(GR, X(C)).

0.8 Cohomology with compact support on Xét and
X(C)

For any arithmetic scheme f : X → Spec Z (separated, of finite type) there
exists a Nagata compactification f = g ◦ j where j is an open immersion and
g is a proper morphism:

X X

Spec Z

j

f g

This is a result of Nagata, and a modern exposition (following Deligne)
may be found in [Con2007, Con2009]. See also [SGA 4, Exposé XVII].

0.8.1. Definition. Let X be an arithmetic scheme and let F • be a complex of
abelian torsion sheaves on Xét. Then we define the cohomology of F • with
compact support via the complex

(0.8.1) RΓc(Xét, F •) := RΓ(Xét, j!F •).

For torsion sheaves, this does not depend on the choice of j : X ↪→ X,
but here we would like to fix this choice to be able to compare j with the
corresponding morphism j(C) : X(C) ↪→ X(C). Note that thanks to the
Leray spectral sequence RΓ(Xét,−) ∼= RΓ(Spec Zét,−) ◦ Rg∗ (that is, the
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Grothendieck spectral sequence coming from Γ(Xét,−) = Γ(Spec Zét,−) ◦
g∗), we have

(0.8.2) RΓc(Xét, F •) ∼= RΓ(Spec Zét, R f!F •),

where by definition
R f!F • := Rg∗ j!F •

(this is just a piece of notation, standard and quite unfortunate; “R f!” does
not mean that we are deriving f!).

The formulas (0.8.1) and (0.8.2) give two equivalent definitions. We are
going to use (0.8.2) in the next section to introduce a slightly different version
of cohomology with compact support, denoted by RΓ̂c(Xét, F •), which is
needed for arithmetic duality theorems. In this section, we need to use (0.8.1)
to define cohomology with compact support on X(C), in a way that allows
us to compare it with cohomology with compact support on Xét.

0.8.2. Definition. If j : X ↪→ X is a Nagata compactification, then we have
the corresponding open immersion

j(C) : X(C)→ X(C),

and for a sheaf F on X(C) we define

Γc(X(C), F ) := Γ(X(C), j(C)!F ).

Similarly, for a GR-equivariant sheaf on X(C) we define

Γc(GR, X(C), F ) := Γ(GR,X(C), j(C)!F ).

0.8.3. Proposition. Let F be a sheaf on Xét.

1) There exists a morphism

Γ(Xét, F )→ Γ(GR, X(C), α∗F ),

which is natural in the sense that every morphism of sheaves F → G gives a
commutative diagram

Γ(Xét, F ) Γ(Xét, G)

Γ(GR, X(C), α∗F ) Γ(GR, X(C), α∗G)

2) Similarly for cohomology with compact support, there is a natural morphism

Γc(Xét, F )→ Γc(GR, X(C), α∗F ).
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The same holds for abelian sheaves on Xét.

Proof. This is standard and follows from the functoriality of α∗, but it is
easier to recall the construction than to find the relevant point in SGA 4. The
morphism in 1) is given by

Γ(Xét, F )
∼=−→ HomSh(Xét)

({∗}, F )→ HomSh(GR,X(C))(α
∗{∗}, α∗F )

∼=−→ HomSh(GR,X(C))({∗}, α∗F )
∼=−→ Γ(GR, X(C), α∗F ).

For abelian sheaves, in the above formula one has to replace the constant
sheaf {∗} with Z. The naturality is easily seen from the above definition.

In 2), if j : X ↪→ X is Nagata compactification, then we have the cor-
responding compactification j(C) : X(C) ↪→ X(C). The extension by zero
morphism j(C)! : Sh(X(C))→ Sh(X(C)) restricts to the subcategory of GR-
equivariant sheaves: if F is a GR-equivariant sheaf on X(C), then j(C)!F is
a GR-equivariant sheaf on X(C) (this is evident from the definition of equiv-
ariant sheaves as equivariant espaces étalés). It should be clear from the
definition of α∗ that there is a commutative diagram

Sh(Xét) Sh(GR, X(C))

Sh(Xét) Sh(GR,X(C))

α∗

j! j(C)!

α∗X

(For instance, note that this diagram commutes for representable étale sheaves,
and then every étale sheaf is a colimit of representable sheaves, and α∗, j!,
α∗X, j(C)! preserve colimits, as left adjoints.)

Now the morphism in question is now given by

Γc(Xét, F ) := Γ(Xét, j!F )→ Γ(GR,X(C), α∗X j!F )

= Γ(GR,X(C), j(C)! α∗F ) =: Γc(GR, X(C), α∗F ).

�

Finally, we will need the fact that the morphisms

Γc(Xét, F )→ Γc(GR, X(C), α∗F )

are compatible with the distinguished triangles associated to open-closed
decompositions. To check this compatibility, let us recall how such triangles
arise. If we have an open subscheme U ⊂ X and its closed complement
Z := X \U:

Z X U
iZ jU
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then there are the following six functors between the corresponding cate-
gories of abelian sheaves:

Sh(Zét)
Ab Sh(Xét)

Ab Sh(Uét)
AbiZ∗

i∗Z

i!
Z

j∗U

jU!

jU∗

(see e.g. [SGA 4, Exposé 4, §14]). Here each arrow is left adjoint to the arrow
depicted below it. For an abelian sheaf F on Xét, there is a natural short
exact sequence

0→ jU! j∗UF → F → iZ∗i∗ZF → 0

(naturality means that the two arrows are counit and unit of the correspond-
ing adjunctions). Now if j : X → X is a Nagata compactification, then the
above short exact sequence gives us a short exact sequence of abelian sheaves
on Xét (the functor j! is exact):

0→ j! jU! j∗UF → j!F → j!iZ∗i∗ZF → 0

and finally, this gives the distinguished triangle

RΓ(Xét, j! jU! j∗UF )→ RΓ(Xét, j!F )→ RΓ(Xét, j!iZ∗i∗ZF )→ RΓ(Xét, j! jU! j∗UF )[1]

which we may write as

RΓc(Uét, F |U)→ RΓc(Xét, F )→ RΓc(Zét, F |Z)→ RΓc(Uét, F |U)[1]

For (GR-equivariant) sheaves on X(C), such triangles arise in the same man-
ner.

0.8.4. Proposition. For an open-closed decomposition

Z X U
iZ jU

the morphism α∗ gives a morphism of distinguished triangles

(0.8.3)

RΓc(Uét, F |U) RΓc(GR, U(C), α∗F |U(C))

RΓc(Xét, F ) RΓc(GR, X(C), α∗F )

RΓc(Zét, F |Z) RΓc(GR, Z(C), α∗F |Z(C))

RΓc(Uét, F |U)[1] RΓc(GR, U(C), α∗F |U(C))[1]
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Proof. Since α∗ is essentially the inverse image functor associated to a con-
tinuous morphism of sites, it is exact, and therefore the short exact sequence
on Xét

0→ j! jU! j∗UF → j!F → j!iZ∗i∗ZF → 0

gives a short exact sequence of equivariant sheaves on X(C)

0→ α∗X j! jU! j∗UF → α∗X j!F → α∗X j!iZ∗i∗ZF → 0

This gives us the corresponding morphism of triangles

RΓ(Xét, F |U) RΓ(GR,X(C), α∗X j! jU! j∗UF )

RΓ(Xét, F ) RΓ(GR,X(C), α∗X j!F )

RΓ(Xét, F |Z) RΓ(GR,X(C), α∗X j!iZ∗i∗ZF )

RΓ(Xét, F |U)[1] RΓ(GR,X(C), α∗X j! jU! j∗UF )[1]

Then it is possible to verify that the right triangle coincides with the one
obtained from the short exact sequence of GR-equivariant sheaves on X(C)

0→ jU(C)! jU(C)∗α∗F → α∗F → iZ(C)∗iZ(C)∗α∗F → 0

by applying j(C)! : X(C) ↪→ X(C) and RΓ(GR,X(C),−), i.e. the right col-
umn in (0.8.3). �

0.9 Étale cohomology with compact support à la
Milne

Let us first recall the definition of Tate cohomology (see e.g. [Bro1994, Chap-
ter VI]). Let G be a finite group. Then the trivial ZG-module Z admits a
resolution by finitely generated free ZG-modules

(0.9.1) (P• � Z) : · · · → P2 → P1 → P0 → Z→ 0

(for instance, the bar-resolution will do). The group cohomology of G with
coefficients in a G-module A is the cohomology of the complex of abelian
groups

RΓ(G, A) := HomZG(P•, A),
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i.e.,
Hi(G, A) = Hi(RΓ(G, A)).

If we dualize (0.9.1) by applying the functor (−)∨ := Hom(−, ZG), then
P∨i are also finitely generated free ZG-modules, and we obtain a “backwards
resolution”, which is an acyclic complex

(0.9.2) (Z� P∨• ) : 0→ Z→ P∨0 → P∨1 → P∨2 → · · ·

We may splice together (0.9.1) and (0.9.2) to obtain a so-called complete
resolution (with homological numbering)

P̂• : · · · → P2 → P1 → P0 → P−1 → P−2 → · · ·

where Pi := P∨−i−1 for i < 0, and the morphism P0 → P−1 is given by the
composition of P0 � Z and Z� P∨0 . Then the Tate cohomology of G with
coefficients in a G-module A is given by the cohomology of the complex

RΓ̂(G, A) := HomZG(P̂•, A);

that is,
Ĥi(G, A) := Hi(RΓ̂(G, A)).

This corresponds to the usual cohomology in positive degrees i > 0 and
homology in degrees i < −1:

Ĥi(G, A) =

{
Hi(G, A), i > 0,
H−i−1(G, A), i < −1,

while the groups Ĥ−1(G, A) and Ĥ0(G, A) are given by the exact sequence

0→ Ĥ−1(G, A)→ H0(G, A)
N−→ H0(G, A)→ Ĥ0(G, A)→ 0

where N : H0(G, A)→ H0(G, A) is the norm map induced by N := ∑g∈G g.
Slightly more generally, if A• is a bounded below (cohomological) com-

plex of G-modules, we obtain a double complex of abelian groups Hom••(P•, A•)
(resp. Hom••(P̂•, A•)), and it makes sense to define the corresponding group
hypercohomology (resp. Tate hypercohomology) by the complex

RΓ(G, A•) := Tot⊕(Hom••(P•, A•)),

RΓ̂(G, A•) := Tot⊕(Hom••(P̂•, A•)).

Note that there is an obvious morphism of complexes P̂• → P•
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· · · P2 P1 P0 P−1 P−2 · · ·

· · · P2 P1 P0 0 0 · · ·
id id id

which after applying the contravariant functor Tot⊕Hom••(−, A•) gives a
morphism from the usual cohomology to Tate cohomology:

(0.9.3) RΓ(G, A•)→ RΓ̂(G, A•).

0.9.1. Example. If G is a finite cyclic group of order m generated by an
element t, then it admits a periodic free resolution

· · · → ZG t−1−−→ ZG N−→ ZG t−1−−→ ZG ε−→ Z→ 0

where
N := ∑

g∈G
g = 1 + t + t2 + · · ·+ tm−1

is the norm element, and

ε : ∑
g∈G

ng g 7→ ∑
g∈G

ng

is the augmentation morphism. If we dualize the above resolution, we get
the acyclic complex

0→ Z
ε∨−→ ZG t−1−−→ ZG N−→ ZG t−1−−→ ZG → · · ·

It is easily seen that the morphism ε∨ is given by 1 7→ N, and the composi-
tion ε∨ ◦ ε is the action by N on ZG. The corresponding complete resolution
is
(0.9.4)

P̂• : · · · → ZG
3

t−1−−→ ZG
2

N−→ ZG
1

t−1−−→ ZG
0

N−→ ZG
−1

t−1−−→ ZG
−2

N−→ ZG
−3
→ · · ·

After applying HomZG(−, A), we obtain a periodic cohomological com-
plex

· · · → A
−3

N−→ A
−2

t−1−−→ A
−1

N−→ A
0

t−1−−→ A
1

N−→ A
2

t−1−−→ A
3
→ · · ·

So that

Ĥi(G, A) ∼=
{

AG/NA, i even,
{a ∈ A | N · a = 0}/(t− 1) A, i odd.
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Recall that if G is any finite group, then its homology Hi(G, A) and coho-
mology Hi(G, A) groups are annihilated by multiplication by #G for i > 0.
In fact, this follows from a stronger result: if P• � Z is the bar resolution,
then the morphism

“#G” : P• → P•,

(#G− N) : P0 → P0,

#G : Pi → Pi for i > 1,

which induces multiplication by #G on Hi(G, A) and Hi(G, A) for i > 0, is
null-homotopic—see e.g. [Wei1994, Theorem 6.5.8]. In our case, when G is
cyclic of order m, for the 2-periodic complete resolution (0.9.4), it is easy to
see that the multiplication by m on P̂• is null-homotopic. Indeed, such a null
homotopy is also 2-periodic, and should be given by a family of morphisms

h0 : ZG → ZG, h1 : ZG → ZG

Satisfying

(0.9.5) h0 ◦ (t− 1) + N ◦ h1 = m, h1 ◦ N + (t− 1) ◦ h0 = m.

· · · ZG ZG ZG ZG · · ·

· · · ZG ZG ZG ZG · · ·

t−1

h1
#G

N

h0
#G

h1

N t−1

Let h0 be the multiplication by −x ∈ ZG, where

x := (m− 1) + (m− 2) t + (m− 3) t2 + · · ·+ tm−2,

and let h1 be the identity map. Then

x · (t− 1) = (m− 1) t + (m− 2) t2 + (m− 3) t3 + · · ·+ tm−1

− (m− 1)− (m− 2) t− (m− 3) t2 − · · · − tm−1

= −m + 1 + t + t2 + · · ·+ tm−1 = −m + N,

so that
(−x) · (t− 1) + N = m,

which means that (0.9.5) is satisfied. This implies that the groups Ĥi(G, A)
are annihilated by m for all i, and in general, for any bounded below complex
of G-modules A•, the groups Ĥi(G, A•) are annihilated by m. The latter is
evident from our argument and not so evident from the spectral sequence

Epq
2 = Ĥq(G, Hp(A•)) =⇒ Ĥp+q(G, A•).

N
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We use Tate cohomology to define étale cohomology with compact sup-
port à la Milne [Mil2006, §II.2]. If F • is a bounded below complex of abelian
sheaves on Spec Zét, then by definition, RΓ̂c(Spec Zét, F •) is the complex
sitting in the distinguished triangle

RΓ̂c(Spec Zét, F •)→ RΓ(Spec Zét, F •)→ RΓ̂(GR, F •C )→ RΓ̂c(Spec Zét, F •)[1]

where RΓ̂(GR, F •C ) is the Tate cohomology defined above, and F •C is the
complex of GR-modules obtained by taking the stalks at Spec C → Spec R.
The morphism RΓ(Spec Zét, F •)→ RΓ̂(GR, F •C ) arises as follows.

The canonical morphism v : Spec R→ Spec Z induces a morphism

(0.9.6) RΓ(Spec Zét, F •)→ RΓ(Spec Rét, v∗F •),

and the cohomology on Spec Rét corresponds to the cohomology of the Ga-
lois group GR: specifically, we have an equivalence of categories

Sh(Spec Rét)
Ab '−→ GR-Mod,

F  FC

—see [SGA 4, Exposé VII, 2.3]. We may thus see (0.9.6) as a morphism*

RΓ(Spec Zét, F •)→ RΓ(GR, F •C ),

which we may compose with the morphism (0.9.3) to the Tate cohomology
RΓ̂(GR, F •C ).

The notation “RΓ̂c(Spec Zét,−)” is not standard; for instance, Geisser in
[Gei2010] writes “RΓc(Spec Zét,−)” for the same thing. We will use the
notation “RΓ̂c(Spec Zét,−)” to avoid any confusion with the usual étale co-
homology with compact support, as defined in §0.8.

Note that by definition, we have a morphism of complexes

(0.9.7) RΓ̂c(Spec Zét, F •)→ RΓ(Spec Zét, F •).

*Indeed, let v∗F • '−→ I • be a resolution of v∗F • by injective sheaves on Spec Rét, and let
P• � Z be a resolution of Z by finitely generated free ZG-modules. Then, thanks to the
equivalence of categories Sh(Spec Rét)

Ab '−→ GR-Mod, the complex of GR-modules I •C is an
injective resolution of (v∗F •)C = FC. We have canonical quasi-isomorphisms of complexes

HomSh(Spec Rét)
(Z, I •)→ Tot⊕HomZG(P•, I •C)← Tot⊕Hom••(P•, F •C ),

so in the derived category (!), there is an isomorphism

HomSh(Spec Rét)
(Z, I •)

∼=−→ Tot⊕Hom••(P•, F •C ).
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Now if F • is a bounded below complex of abelian sheaves on Xét, then
we pick a Nagata compactification of X

X X

Spec Z

j

f g

and set
RΓ̂c(Xét, F •) := RΓ̂c(Spec Zét, R f!F •),

where R f! := Rg∗ j!. In particular, the morphism (0.9.7) gives us for any
bounded below complex of abelian sheaves F • on Xét a morphism

(0.9.8) RΓ̂c(Xét, F •)→ RΓc(Xét, F •),

where RΓc(Xét, F •) := RΓ(Spec Zét, R f!F •). By definition of RΓ̂c(Spec Zét,−),
we have a long exact sequence in cohomology

(0.9.9) · · · → Ĥi−1(GR, (R f!F •)C)→ Ĥi
c(Xét, F •)→ Hi

c(Xét, F •)

→ Ĥi(GR, (R f!F •)C)→ · · ·

The groups Ĥi(GR, (R f!F •)C) are annihilated by multiplication by 2 =
#GR, which means that the morphism

Ĥi
c(Xét, F •)→ Hi

c(Xét, F •)

is identity, except for possible 2-torsion.

0.9.2. Remark. If X(R) = ∅, then the canonical map

RΓ̂c(Xét, F ∗)→ RΓc(Xét, F ∗)

is the identity.

0.10 Singular cohomology of complex varieties

We will need the following result.

0.10.1. Proposition. Let X be an arithmetic scheme (separated, of finite type over
Spec Z). Consider the corresponding space of complex points X(C) equipped with
the analytic topology. Then

1) the singular cohomology groups with compact support Hi
c(X(C), Z) are finitely

generated for all i;
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2) the groups Hi
c(X(C), Q/Z) are of cofinite type (Q/Z-dual of finitely gener-

ated groups).

The above groups vanish for i� 0.

The statement is very plausible, but I could not find a good reference, so
I outline a proof.

Proof. Everything relies on the fact that X(C) has homotopy type of a finite
CW-complex. This is a well-known classical result, due to van der Waerden
(see [vdW1930] and [LW1933]).

If X(C) is smooth, then we may reduce the problem to the case of pure
dimension d, and by Poincaré duality,

Hi
c(X(C), Z) ∼= H2d−i(X(C), Z),

where H2d−i(X(C), Z) are finitely generated groups, trivial for all but finitely
many i, as X(C) is homotopy equivalent to a finite CW-complex, and the ho-
mology H•(X(C), Z) is homotopy invariant.

To deal with the general case, we use induction on the dimension. If the
dimension is 0, then the statement is obvious. For induction step, we may
consider the open-closed decomposition

U(C) ↪→ X(C)←↩ Z(C)

where Z(C) is the singular locus, having smaller dimension. This gives us a
distinguished triangle

RΓc(U(C), Z)→ RΓc(X(C), Z)→ RΓc(Z(C), Z)→ RΓc(U(C), Z)[1]

where RΓc(U(C), Z) is a perfect complex by the above argument, and the
complex RΓc(Z(C), Z) is perfect by induction. This implies that RΓc(X(C), Z)
is a perfect complex.

As for Q/Z-coefficients, the statement follows from the distinguished
triangle (keep in mind that tensoring with Q is exact)

RΓc(X(C), Z)→ RΓc(X(C), Z)⊗Z Q→ RΓc(X(C), Q/Z)→ RΓc(X(C), Z)[1]

Indeed, the associated long exact sequence in cohomology

· · · → Hi
c(X(C), Z)→ Hi

c(X(C), Z)⊗Z Q→ Hi
c(X(C), Q/Z)→

Hi+1
c (X(C), Z)→ Hi+1

c (X(C), Z)⊗Z Q→ · · ·



52 0.11. Cycle complexes and motivic cohomology

shows that Hi
c(X(C), Q/Z) is an extension of a finite group by a group of

cofinite type, hence it is of cofinite type as well (see 0.1.3):

0→ coker(Hi
c(X(C), Z)→ Hi

c(X(C), Z)⊗Z Q)→
Hi

c(X(C), Q/Z)→
ker(Hi+1

c (X(C), Z)→ Hi+1
c (X(C), Z)⊗Z Q)→ 0

Finally, Hi
c(X(C), Q/Z) vanishes for i � 0, because Hi

c(X(C), Z) does.
�

0.11 Cycle complexes and motivic cohomology

Bloch’s cycle complexes were introduced in [Blo1986a] to define higher Chow
groups (there was a gap in the proof of the “moving lemma” that was fixed
later in [Blo1994]). A good modern survey of cycle complexes may be found
in [Gei2005], and there is also a useful text [Blo2005] available from Bloch’s
home page.

In this section I will go through various definitions that will be used later
on in the constructions. Let X be an arithmetic scheme (separated, of finite
type over Spec Z) or a variety over a field k (a separated scheme of finite type
over Spec k). Let n ∈ Z be some fixed integer. Then to X we may associate
the following objects:

1a) a homological complex of abelian groups zn(X, •), defined in terms of
cycles of dimension n + i in X× ∆i;

1b) the corresponding cohomological complex of étale and Zariski sheaves

Zc(n) := zn(−,− •−2n);

2a) a homological complex of abelian groups zn(X, •), defined in terms of
cycles of codimension n in X× ∆i, where ∆i is the algebraic i-simplex;

2b) the corresponding cohomological complex of étale and Zariski sheaves

Z(n) := zn(−, 2n− •);

2c) some variation of 2a): a homological complex of abelian groups zn
�(X, •),

defined in terms of cycles of codimension n in X×�i, where �i is the
algebraic i-cube.

In fact, we will use only 1a) and 1b) in our constructions. I discuss 2a),
2b), 2c) simply because at some point (namely, in chapter 2) we will need to
refer to the literature where 2a), 2b), 2c) are used instead of 1a) and 1b).
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Simplicial and cubical complexes

Let us briefly recall some definitions regarding simplicial objects (see [May1992]
and [GJ2009]) and cubical objects (see e.g. [Cis2006] and [BHS2011]). I do
this mostly because of the cubical objects that seem to be less common.

0.11.1. Definition. The simplicial category ∆ is the category where the ob-
jects are finite ordered sets

n := {0 < 1 < · · · < n}

for n = 0, 1, 2, . . . and the morphisms are nondecreasing maps n→ m.
A simplicial (resp. cosimplicial) object in a category C is a contravariant

functor X : ∆◦ → C (resp. covariant functor X : ∆◦ → C ).

For 0 ≤ i ≤ n, let us denote by

∂i
n : n− 1 ↪→ n

the increasing map that skips i:

∂i
n(j) :=

{
j, j < i,
j + 1, j ≥ i;

and let us denote by
σi

n : n + 1� n

the nondecreasing map that applies two elements to i:

σi
n(j) :=

{
j, j ≤ i,
j− 1, j > i.

Sometimes ∂i’s are called coface morphisms and σi’s are called codegener-
acy morphisms. It is easy to see that every morphism in ∆ may be written
as a composition of such maps, and they satisfy the so-called cosimplicial
identitites:

(0.11.1) σ
j
n ◦ ∂i

n+1 =


∂i

n ◦ σ
j−1
n−1, if i < j,

idn, if i = j or i = j + 1,

∂i−1
n ◦ σ

j
n−1, if i > j + 1;

(0.11.2) σ
j
n ◦ σi

n+1 = σi
n ◦ σ

j+1
n+1 if i ≤ j;
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(0.11.3) ∂
j
n ◦ ∂i

n−1 = ∂i
n ◦ ∂

j−1
n−1 if i < j;

in fact, (0.11.1), (0.11.2), (0.11.3) give all possible relations between mor-
phisms in ∆. This means that a simplicial object X : ∆◦ → C is equivalent to
a collection of objects

Xn := X(n) ∈ Ob(C ) (n = 0, 1, 2, . . .)

and a collection of morphisms

∂n
i : Xn → Xn−1, σn

i : Xn → Xn+1 (0 ≤ i ≤ n),

called face and degeneracy morphisms that satisfy the simplicial identities
(dual to the identities (0.11.1), (0.11.2), (0.11.3)):

(0.11.4) ∂n+1
i ◦ σn

j =


σn−1

j−1 ◦ ∂n
i , if i < j,

idXn , if i = j or i = j + 1,
σn−1

j ◦ ∂n
i−1, if i > j + 1,

(0.11.5) σn+1
i ◦ σn

j = σn+1
j+1 ◦ σn

i if i ≤ j.

(0.11.6) ∂n−1
i ◦ ∂n

j = ∂n−1
j−1 ◦ ∂n

i if i < j.

A simplicial object may be visualized as a diagram

X0 X1 X2 · · ·
∂1

0

∂1
1

σ1
0

σ2
0

σ2
1

∂2
0

∂2
1

∂2
2

0.11.2. Lemma (Complex of alternating face maps). Let A : ∆◦ → Ab be a
simplicial abelian group. Then the morphisms of abelian groups

dn := ∑
0≤i≤n

(−1)i ∂n
i : An → An−1

satisfy
dn−1 ◦ dn = 0,

i.e.
(A•, d•) : · · · → A3

d3−→ A2
d2−→ A1

d1−→ A0 → 0

is a chain complex.
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Proof. Easily follows from the simplicial identity (0.11.6). �

0.11.3. Definition ([Cis2006]). The cubical category r is the category where
the objects are finite sets

�n := {0, 1}n = {(x1, . . . , xn) | xi ∈ {0, 1}}

for n = 0, 1, 2, . . . and the morphisms are compositions of the following two
kinds of maps:

1) for n ≥ 1 and 1 ≤ i ≤ n the inclusion

∂i,ε
n : �n−1 ↪→ �n

that inserts ε ∈ {0, 1} into the i-th position:

(0.11.7) ∂i,ε
n (x1, . . . , xn−1) := (x1, . . . , xi−1, ε, xi, . . . , xn−1).

2) for n ≥ 0 and 1 ≤ i ≤ n + 1 the projection

σi
n : �n+1 � �n

that forgets the i-th coordinate:

(0.11.8) σi
n(x1, . . . , xn+1) := (x1, . . . , xi−1, xi+1, . . . , xn+1).

A cubical (resp. cocubical) object in a category C is a contravariant
functor X : r◦ → C (resp. covariant functor X : r→ C ).

All relations between the morphisms in r follow from the so-called cocu-
bical identities:

(0.11.9) σ
j
n ◦ ∂i,ε

n+1 =


∂i,ε

n ◦ σ
j−1
n−1, if i < j,

id�n , if i = j,
∂i−1,ε

n ◦ σ
j
n−1, if i > j;

(0.11.10) σ
j
n ◦ σi

n+1 = σi
n ◦ σ

j+1
n+1 if i ≤ j;

(0.11.11) ∂
j,η
n ◦ ∂i,ε

n−1 = ∂i,ε
n ◦ ∂

j−1,η
n−1 if i < j.

This means that a cubical object X : r◦ → C is just a collection of objects

Xn := X(�n) ∈ Ob(C), n = 0, 1, 2, . . .
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and morphisms
∂n

i,ε : Xn → Xn−1, σn
i : Xn → Xn+1

that satisfy the cubical identities, i.e. the ones dual to (0.11.9), (0.11.10),
(0.11.11):

(0.11.12) ∂n+1
i,ε ◦ σn

j =


σn−1

j−1 ◦ ∂n
i,ε, if i < j,

idXn , if i = j,
σn−1

j ◦ ∂n
i−1,ε, if i > j;

(0.11.13) σn+1
i ◦ σn

j = σn+1
j+1 ◦ σn

i if i ≤ j;

(0.11.14) ∂n−1
i,ε ◦ ∂n

j,η = ∂n−1
j−1,η ◦ ∂n

i,ε if i < j.

0.11.4. Lemma (Reduced cubical complex). Let A : r◦ → Ab be a cubical
abelian group. Consider the morphisms

(0.11.15) dn := ∑
1≤i≤n

(−1)i (∂n
i,1 − ∂n

i,0) : An → An−1.

Then

1) dn−1 ◦ dn = 0, i.e. (A•, d•) is a chain complex.

2) The degenerate cubes defined by

(An)degn := ∑
1≤i≤n

σn−1
i (An−1) ⊂ An

form a subcomplex of (A•, d•).

3) We also have the subcomplex of reduced cubes given by

(An)0 :=
⋂

1≤i≤n
ker ∂n

i,1 ⊂ An.

4) There is a canonical splitting

An = (An)degn ⊕ (An)0.

Sketch of the proof. Writing out all the involved combinatorial identities might
not be very illuminating, but the reader should note how everything resem-
bles the simplicial setting. 1) is deduced from the cubical identity (0.11.14);
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in 2), to show that dn((An)degn) ⊆ (An−1)degn, one should use the cubi-
cal identity (0.11.12); in 3), to show that dn((An)0) ⊆ (An−1)0, one should
again use (0.11.14). Finally, to show 4), one may consider the endomorphism
πn : An → An defined by

πn := (id− σn−1
n ◦ ∂n

n,1) ◦ (id− σn−1
n−1 ◦ ∂n

n−1,1) ◦ · · ·
◦ (id− σn−1

2 ◦ ∂n
2,1) ◦ (id− σn−1

1 ◦ ∂n
1,1).

Then πn defines the splitting

0→ (An)degn → An
πn−→ (An)0 → 0

Namely, it is clear from the definition that πn|(An)0
= id(An)0

, and one
deduces from the cubical identities that ker πn = (An)degn and im πn =
(An)0. �

0.11.5. Definition. In the setting of 0.11.4, the reduced cubical complex
associated to a cubical abelian group A : r◦ → Ab is the quotient complex

(A•/(A•)degn, d•) ∼= ((A•)0, d•).

0.11.6. Remark (Cubical singular complex in topology). It is worth noting
why quotienting out the degenerate cubes is necessary. Everything is mo-
tivated by cubical (co)homology in algebraic topology (see e.g. [Mas1977]
and [EM1953]). We consider the geometric cubes defined for each n =
0, 1, 2, 3, . . . by

�n := {(x1, . . . , xn) ∈ Rn | 0 ≤ xi ≤ 1}.

We naturally have inclusions ∂i,ε
n : �n−1 ↪→ �n and projections σi

n : �n−1 �
�n, defined by the same formulas (0.11.7) and (0.11.8). This gives us a cocu-
bical topological space �• : r → Top. Now for a topological space X, the
sets

Sing�(X)n := HomTop(�
n, X)

form a cubical set Sing�(X)• : r◦ → Set, which is the composition of func-
tors �• : r→ Top and HomTop : Top◦ → Set. Namely, for a continuous map
φ : �n → X, we may consider its restrictions to �n−1 ⊂ �n given by setting
xi = 0 or xi = 1 for i = 1, . . . , n, and also extensions to �n+1 ⊃ �n given by
putting 0 or 1 in i-th position. This gives us face and degeneracy maps

∂i,ε : Sing�(X)n → Sing�(X)n−1,

σi : Sing�(X)n → Sing�(X)n+1

that satisfy the cubical identities. By composing our functor Sing�(X)• : r◦ →
Set with the free abelian group functor Set → Ab, we obtain a cubical
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abelian group Z
〈

Sing�(X)•
〉

: r◦ → Ab. As in 0.11.4, we may build from
it a chain complex.

Now if X = ∗ is just a point, then

Sing�(∗)n = HomTop(�
n, ∗)

are one-element sets, so that the complex will look like

· · · → Z→ Z→ Z→ Z→ 0

However, note that in this case we have ∂n
i,1 = ∂n

i,0 for all n and i, therefore
the differentials (0.11.15) are all trivial, and the point has homology ∼= Z in
all degrees, which is not very desirable. However, the cubes of dimension
n > 0 are all degenerate, so the corresponding reduced cubical complex looks
like

· · · → 0→ 0→ 0→ Z→ 0

Note that for the usual singular complex defined using simplices instead of
cubes (replace �n with ∆n in all the above), the degenerate simplices also
form a subcomplex, but it is easily seen from the simplicial identities that
passing to the corresponding reduced complex does not affect the homology.
E.g. the simplicial singular complex for a point will look like

· · · id−→ Z
0−→ Z

id−→ Z
0−→ Z→ 0

For comparison of the simplicial and cubical approach to defining singu-
lar (co)homology, see [EM1953].

Bloch’s cycle complexes zn(X, •) and zn(X, •)
Now we define several versions of Bloch’s cycle complexes; we refer to
[Gei2005] and [Blo2005] for details; our reference for intersection theory is
[Ful1998].

Let X be a separated scheme of finite type over a base scheme S. For our
particular purposes, we only consider the cases S = Spec k for a field k or
S = Spec Z. For each n = 0, 1, 2, . . . the algebraic n-simplex is given by

∆n := Spec Z[t0, . . . , tn]/(1−∑
i

ti), ∆n
S := ∆n ×Spec Z S.

This is isomorphic to the affine space An, but not canonically; instead, it
comes with canonical “simplicial” coordinates. Each nondecreasing map
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ρ : n → m induces functorially a morphism of schemes ρ̃ : ∆n
S → ∆m

S given
by

ρ̃(ti) :=

{
0, if ρ−1(i) = ∅,

∑ρ(j)=i tj, otherwise.

Similarly, for an S-scheme X, a nondecreasing map ρ : n → m induces
functorially a morphism of schemes (id × ρ̃) : X ×S ∆n

S → X ×S ∆m
S . This

defines a cosimplicial S-scheme

X×S ∆•S : ∆→ Sch/S.

Now for a fixed n ∈ Z, one considers the following two series of free
abelian groups indexed by i ∈ Z:

1) we let zn(X, i) be the free abelian group generated by closed integral
subschemes Z ⊂ X ×S ∆i

S of dimension n + i that meet all faces of ∆i
S

properly.

2) if X is an equidimensional scheme, we let zn(X, i) be the free abelian
group generated by closed integral subschemes Z ⊂ X×∆i of codimen-
sion n that meet all faces of ∆i

S properly.

We note that the first definition is in fact more natural in some sense: it
does not require X to be equidimensional. If X is of pure dimension d, then
we see that

(0.11.16) zn(X, i) = zd−n(X, i).

Both zn(X, •) and zn(X, •) are simplicial abelian groups ∆◦ → Ab. Namely,
for a morphism ρ : i→ j in ∆,

1) if ρ is injective, then id× ρ̃ : X×S ∆i
S → X×S ∆j

S is a closed immersion,

and for a cycle V ⊂ X×S ∆j
S we may consider the intersection

(id× ρ̃)(X×S ∆i
S) ·V;

2) if ρ is surjective, then id× ρ̃ : X ×S ∆i
S → X ×S ∆j

S is a flat morphism,
for which we have the corresponding flat pullback of cycles;

in both cases, we obtain morphisms

ρ∗ : zn(X, j)→ zn(X, i), ρ∗ : zn(X, j)→ zn(X, i).

In particular, as we noted in 0.11.2, zn(X, •) and zn(X, •) give us chain
complexes

· · · → zn(X, i)
di−→ zn(X, i− 1)

di−1−−→ zn(X, i− 2)→ · · ·
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and
· · · → zn(X, i)

di−→ zn(X, i− 1)
di−1−−→ zn(X, i− 2)→ · · ·

with the differentials
di := ∑

0≤`≤i
(−1)` ∂`.

Let us recall Bloch’s definition of higher Chow groups, for which he in-
troduced the complexes zn(X, •).

0.11.7. Definition ([Blo1986a]). If X is an equidimensional scheme as above,
its higher Chow groups are given by

CHn(X, i) := Hi(zn(X, •)).

The usual Chow groups (algebraic cycles on X modulo rational equiva-
lence) correspond to i = 0:

CHn(X) = CHn(X, 0).

Cubical cycle complexes zn
�(X, •)

We briefly recall the cubical version of zn(X, •), which is often used in the
literature, e.g. in [Lev1994]. If k is a field, we consider the algebraic cube

�n
k := (P1

k \ {1})
n

with coordinates (x1, . . . , xn). Setting some xi to 0 or ∞ gives us a codimen-
sion 1 face of �n

k . In general, setting xi1 , . . . , xis to 0 or ∞ gives a codimen-
sion s face. We have a cocubical variety �•k in the sense of 0.11.3. Namely,

1) for each n ≥ 1 we have the inclusion maps

∂i,ε
n : �n−1

k ↪→ �n
k , (1 ≤ i ≤ n, ε = 0, ∞)

(x1, . . . , xn−1) 7→ (x1, . . . , xi−1, ε, xi, . . . , xn−1);

2) for n ≥ 0 we have the projection maps

σi
n : �n+1

k � �n
k (1 ≤ i ≤ n + 1),

(x1, . . . , xn+1) 7→ (x1, . . . , xi−1, xi+1, . . . , xn+1);

and these maps satisfy the cocubical identities.
Now if X is an equidimensional variety over k, we denote by zn

�(X, i) the
free abelian group generated by the irredicible subvarieties

V ⊂ X×k �
i
k, codimk V = n,
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meeting all faces properly. The maps id× ∂`,ε
i and id× σ`

i induce pullback
morphisms

∂i
`,ε : zn

�(X, i)→ zn
�(X, i− 1),

σi
` : zn
�(X, i)→ zn

�(X, i + 1)

which satisfy the cubical identities and thus turn zn
�(X, •) into a cubical

abelian group. As in 0.11.5, we form from this a chain complex zn
�(X, •),

where the differentials are given by

di := ∑
1≤`≤i

(−1)` (∂i
`,∞ − ∂i

`,0) : zn
�(X, i)→ zn

�(X, i− 1),

and the degenerate cubes are quotiented out. The following is proved in
[Lev1994].

0.11.8. Theorem. There is an isomorphism in the derived category

zr
�(X, •) ∼= zr(X, •).

Complexes of sheaves Zc(n)

The cycle complexes may be “sheafified” as follows. The presheaves

U 7→ zn(U, i), U 7→ zn(U, i)

are in fact sheaves on Xét or XZar (this is verified e.g. in [Gei2004, Lemma
3.1]). We will use the opposite numbering and denote

ZX
n := zn(−,−•), Zn

X := zn(−,−•).

These are cohomological complexes of abelian sheaves on Xét or XZar.

We will also need the following result, saying that the cohomology of the
cycle complexes zn(X,−•) coincides with the Zariski hypercohomology of
Zn

X .

0.11.9. Theorem. If X is a scheme of finite type over a field, we have a quasi-
isomorphism of complexes of abelian groups

RΓ(XZar, Zn
X) ' zn(X,−•).

Proof. See [Gei2005, §1.2.4.] for details. �

Finally, in terms of ZX
n , one defines complexes Zc(n), which will be one

of the most important objects in our constructions.
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0.11.10. Definition ([Gei2010]). The dualizing cycle complex is given by

Zc(n) := ZX
n [2n].

It is a cohomological complex of sheaves with zn(−,−i− 2n) sitting in i-th
degree. In general, for any abelian group A, one defines

Ac(n) := Zc(n)⊗L
Z A = Zc(n)⊗Z A.

(As Zc(n) is a complex of flat sheaves, the derived tensor product coincides
with the usual tensor product.)

For the sake of completeness, I also recall the the related definition based
on zn(−, •):

Z(n) := Zn
X [−2n].

It is a cohomological complex of sheaves with zn(−, 2n− i) in degree i. If X
is equidimensional of dimension d, then (0.11.16) gives us the corresponding
relation for complexes of sheaves

ZX
n = Zd−n

X ,

which allows us to express Zc(n) in terms of Zn
X :

Zc(n) = Zd−n
X [2n] = Z(d− n)[2d].

Now the reader should actually forget about this Z(n), because later on
“Z(n)” will denote a completely different complex of sheaves, to be defined
in §1.2.

Zc(n) as a dualizing complex

0.11.11. Topological digression. Let us recall that for a locally compact topo-
logical space X, one may define Borel–Moore homology groups HBM

i (X, Z)
(see [Ive1986, Chapter IX]). These will make their appearance in §2.1, but
now they will serve us as a motivating example of duality.

Local Verdier duality [Ive1986, §VII.5] tells that if f : X → Y is a contin-
uous map between locally compact topological spaces of finite dimension,
then there is a natural isomorphism in the derived category D+(Y)

RHom(R f!F •, G•) ∼= R f∗RHom(F •, f !G•)

where F • ∈ D+(X), G• ∈ D+(Y), and f ! : D+(Y) → D+(X) is the right
adjoint functor to R f! : D+(X) → D+(Y). In particular, for the projection to
the point p : X → ∗ the above reads

RHom(RΓc(X, F •), G•) ∼= RΓ(X, RHom(F •, p!G•))
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for F ∈ D+(X) and G• ∈ D(Ab). If we take G• to be the complex consisting
of a single constant sheaf Z, the object p!Z ∈ D+(X) is called the dualizing
sheaf on X, and Borel–Moore homology is defined by

HBM
i (X, Z) := H−i(RΓBM(X, Z)),

RΓBM(X, Z) := RΓ(X, p!Z) ∼= RHom(RΓc(X, Z), Z).

This means that Borel–Moore homology is covariantly functorial for proper
maps and contravariantly functorial for inclusions of open subsets U ↪→ X:

1) a proper continuous map of locally compact topological spaces f : X →
Y induces a morphism RΓc(Y, Z)→ RΓc(X, Z), and therefore on Borel–
Moore homology we have the proper pushforward morphism

RΓBM(X, Z)→ RΓBM(Y, Z).

2) an inclusion of an open subset U ↪→ X induces a morphism RΓc(U, Z)→
RΓc(X, Z), and therefore the corresponding pullback on Borel–Moore
homology

RΓBM(X, Z)→ RΓBM(U, Z).

Moreover, if U ⊂ X is an open subset and Z := X \ U is its closed
complement, then the corresponding pushforwards and pullbacks fit into a
distinguished triangle

RΓBM(Z, Z)→ RΓBM(X, Z)→ RΓBM(U, Z)→ RΓBM(X, Z)[1]

This is dual to the triangle

RΓc(U, Z)→ RΓc(X, Z)→ RΓc(Z, Z)→ RΓc(U, Z)[1]

The cycle complex Zc(n) behaves similarly to Borel–Moore homology.

0.11.1. Fact ([Gei2010, Corollary 7.2]).

1) a proper morphism of schemes f : X → Y induces a pushforward morphism

R f∗Zc
X(n)→ Zc

Y(n);

2) an open immersion of schemes f : U ↪→ X induces a flat pullback morphism

f ∗Zc
X(n)→ Zc

U(n).

If U ⊂ X is an open subscheme and Z := X \U is its closed complement, then
the proper pushforward associated to Z ↪→ X and the flat pullback associated to
U ↪→ X give a distinguished triangle

RΓ(Zét, Zc(n))→ RΓ(Xét, Zc(n))→ RΓ(Uét, Zc(n))→ RΓ(Zét, Zc(n))[1]
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Weil-étale complexes

For an arithmetic scheme X (separated, of finite type over Spec Z) and
a strictly negative integer n, we are going to construct certain complexes
RΓW,c(X, Z(n)), following Flach and Morin [Mor2014, FM2016]. Here “W”
stays for “Weil-étale” and “c” stays for “compact support”.

The constructions are based on complexes of sheaves Zc(n) on Xét, dis-
cussed in §0.11. The basic properties of motivic cohomology for arithmetic
schemes are still conjectural, and in order to make sense of all our construc-
tions, we will need to assume in 1.1.1 that the groups Hi(Xét, Zc(n)) are
finitely generated.

It is worth mentioning that the constructions in [FM2016] use other cycle
complexes Z(n), mentioned in §0.11. If X has pure dimension d, then all
this amounts to the renumbering

(1.0.1) Zc(n) = Z(d− n)[2d],

which should be taken into account when comparing formulas that will ap-
pear below with the formulas from [FM2016]. We use Zc(n) instead of Z(n)
precisely to avoid any references to the dimension of X (which is not as-
sumed anymore to be equidimensional). Indeed, the dimensions of coho-
mology groups in many formulas in [FM2016] have terms “2d”, and if one
rewrites everything using (1.0.1), they magically disappear. This suggests
that Zc(n) is a more natural object than Z(n) in our situation.

In fact, §1.2 introduces a special definition of Z(n), motivated by [FM2016],
which is unrelated to the cycle complexes. In our setting n < 0, the complex
Z(n) will consist of a single étale sheaf, rather easy to define and under-
stand.

Both Zc(n) and Z(n) will appear in a certain arithmetic duality theorem
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in §1.3, which is stated as a quasi-isomorphism of complexes

RΓ̂c(Xét, Z(n))
∼=−→ RHom(RΓ(Xét, Zc(n)), Q/Z[−2]).

In §1.4 I take a look at RΓ̂c(Xét, Z(n)) and related complexes. Then using the
duality theorem, I define in §1.5 a morphism in the derived category D(Ab)

αX,n : RHom(RΓ(Xét, Zc(n)), Q[−2])→ RΓc(Xét, Z(n))

and declare RΓfg(X, Z(n)) to be its cone:

RHom(RΓ(Xét, Zc(n)), Q[−2])
αX,n−−→ RΓc(Xét, Z(n))→ RΓfg(X, Z(n))

→ RHom(RΓ(Xét, Zc(n)), Q[−1])

The complex RΓfg(X, Z(n)) is almost perfect in the sense of 0.3.3 (i.e. a per-
fect complex modulo possible 2-torsion in arbitrarily high degrees), canoni-
cal and functorial (despite being defined as a cone in the derived category).

Then §1.6 is dedicated to the definition of RΓW,c(X, Z(n)). For this we
will need a morphism

i∗∞ : RΓfg(X, Z(n))→ RΓc(GR, X(C), (2πi)n Z),

where RΓc(GR, X(C), (2πi)n Z) stays for the GR-equivariant cohomology
with compact support on X(C). Then RΓW,c(X, Z(n)) will be given (sadly,
up to a non-unique isomorphism in D(Ab)) by the distinguished triangle

RΓW,c(X, Z(n))→ RΓfg(X, Z(n))
i∗∞−→ RΓc(GR, X(C), (2πi)n Z)

→ RΓW,c(X, Z(n))[1]

The sheaf (2πi)n Z is the constant GR-equivariant sheaf on X(C), which is
the image of Z(n) under the morphism α∗ from §0.7 (see 1.6.2). The existence
of i∗∞ relies on a rather nontrivial argument (theorem 1.6.4).

I show in §1.7 that there is a (non-canonical) splitting

RΓW,c(X, Z(n))⊗Z Q ∼=
RHom(RΓ(Xét, Zc(n)), Q)[−1]⊕ RΓc(GR, X(C), (2πi)n Q)[−1].

Finally, §1.8 is dedicated to verifying that RΓW,c(X, Z(n)) is well-behaved
with respect to open-closed decompositions of schemes U ↪→ X ← Z. With
the present definition, this cannot be shown for the complex itself, but we
are going to establish a canonical isomorphism of the determinants

detZ RΓW,c(X, Z(n)) ∼= detZ RΓW,c(U, Z(n))⊗Z detZ RΓW,c(Z, Z(n)),

which will be enough for our purposes.
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1.1 Conjecture Lc(Xét, n)

Practically all our constructions will make use of the following hypothesis
for an arithmetic scheme X and a strictly negative integer n < 0.

1.1.1. Conjecture Lc(Xét, n). The groups Hi(Xét, Zc(n)) are finitely gener-
ated for all i ∈ Z.

This is analogous to “L(Xét, n)” (Conjecture 3.2) in [FM2016], but in our
setting we need a statement for the dualizing cycle complexes Zc(n). As
we are going to see in 1.5.3, the conjecture Lc(Xét, n) actually implies that
for any arithmetic scheme X the complex Zc(n) is bounded from below and
has some finite 2-torsion in higher degrees. This is related to the Beilinson–
Soulé vanishing conjecture, which has not been proved yet.

1.2 Complexes of étale sheaves Z(n) for n < 0

For our construction, we need to make sense of “cycle complexes” Z(n) for
n < 0. Here we recall a good definition of such an object, coming from
[FM2016, §6.2].

First of all, if Z(n) is defined, then for any abelian group A and n ≥ 0,
one can define the corresponding complex with coefficients in A by

A(n) := Z(n)⊗L
Z A.

The usual distinguished triangle

Z→ Q→ Q/Z→ Z[1]

should give after tensoring with Z(n) a distinguished triangle of complexes
of sheaves

Q/Z(n)[−1]→ Z(n)→ Q(n)→ Q/Z(n)

and we can use this to define the cycle complex Z(n) for n < 0. In this case
we should have Q(n) = 0, so the triangle above suggests that we should put

Z(n) := Q/Z(n)[−1] for n < 0.

The complex Q/Z(n) still does not make sense for n < 0, but we should
have something like

Q/Z(n) =
⊕

p
Z/p∞Z(n) =

⊕
p

lim−→
r

Z/prZ(n),

and we define for n < 0

Z/prZ(n) := jp!µ
⊗n
pr ,

where
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1) jp is the open immersion X[1/p]→ X, and jp! : Sh(X[1/p]ét)→ Sh(Xét)
denotes the extension by zero functor;

2) µpr is the sheaf of roots of unity on X[1/p]ét represented by the com-
mutative group scheme

X[1/p] ×
Spec Z[1/p]

Spec Z[1/p][t]/(tpr − 1)→ X[1/p];

3) µ⊗n
pr is the sheaf on X[1/p]ét defined by

µ⊗n
pr := HomX[1/p](µ

⊗(−n)
pr , Z/pr).

Therefore we are going to use the following definition.

1.2.1. Definition. For each n < 0 we consider the complex of sheaves on Xét

Z(n) := Q/Z(n)[−1] :=
⊕

p
lim−→

r
jp!µ

⊗n
pr [−1].

1.3 An Artin–Verdier-like duality

At the heart of our constructions is a certain arithmetic duality theorem for
cycle complexes obtained by Thomas Geisser in [Gei2010]. It generalizes
the classical Artin–Verdier duality (originating from one of the Woods Hole
seminars [AV1964]; one of the few thorough discussions in the literature is
the second chapter of Milne’s book [Mil2006]).

1.3.1. Proposition (“Artin–Verdier duality”). For any n < 0 we have a quasi-
isomorphism of complexes

RΓ̂c(Xét, Z(n)) ∼= lim−→
m

RHom(RΓ(Xét, Z/mZc(n)), Q/Z[−2]).

Proof. We unwind our definition of Z(n) for n < 0 and reduce everything to
the results from [Gei2010]. It is worth remarking that Geisser uses notation
“RΓc” for our “RΓ̂c” (see §0.9).

As we have Z(n) :=
⊕

p lim−→r
jp!µ

⊗n
pr [−1], it will be enough to show that

for every prime p and r = 1, 2, 3, . . . there is a quasi-isomorphism of com-
plexes

RΓ̂c(Xét, jp!µ
⊗n
pr [−1]) ∼= RHom(RΓ(Xét, Zc/pr(n)), Q/Z[−2]),

and then pass to the corresponding filtered colimits.
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As in §1.2, the morphism jp : X[1/p] ↪→ X denotes the canonical open
immersion. We further denote by f : X → Spec Z the structure morphism of
X and by fp the morphism X[1/p]→ Spec Z[1/p]:

X[1/p] X

Spec Z[1/p] Spec Z

jp

fp f

As we are going to change the base scheme, let us write “HomX(−,−)”
for the Hom between sheaves on Xét (and “HomX(−,−)” for the internal
Hom). Instead of “HomSpec R”, we will simply write “HomR”.

By [Gei2010, Proposition 7.10, (c)], we have the following “exchange for-
mulas”. If we work with complexes of constructible sheaves on the étale site
of schemes over the spectrum of a number ring Spec OK, then for a morphism
φ of such schemes we have

Rφ∗D(F ) ∼= D(Rφ!F ),(1.3.1)

Rφ!D(G) ∼= D(φ∗G),(1.3.2)

where the dualization is given by

D(F •) := RHomX(F
•, Zc(0)).

Applying the exchange formula (1.3.1) to our situation, we get
(1.3.3)

RHomX(jp!µ
⊗n
pr [−1], Zc

X(0)) ∼= Rjp∗RHomX[1/p](µ
⊗n
pr [−1], Zc

X[1/p](0)).

Using the other exchange formula (1.3.2), we may identify the sheaf
RHomX[1/p](µ

⊗n
pr [−1], Zc

X[1/p](0)):

RHomX[1/p](µ
⊗n
pr [−1], Zc

X[1/p](0))
∼= RHomX[1/p]( f ∗p µ⊗n

pr [−1], Zc
X[1/p](0))

(1.3.4)

∼= R f !
pRHomZ[1/p](µ

⊗n
pr [−1], Zc

Z[1/p](0))(1.3.5)

∼= R f !
pRHomZ[1/p](µ

⊗n
pr [−1], Gm[1])(1.3.6)

∼= R f !
pRHomZ[1/p](µ

⊗n
pr , Gm)[2](1.3.7)

∼= R f !
pµ
⊗(1−n)
pr [2](1.3.8)

Here (1.3.4) simply means that the sheaf µ⊗n
pr on X[1/p] is the same as

the inverse image of the corresponding sheaf on Spec Z[1/p]. The quasi-
isomorphism (1.3.5) is the first exchange formula. Then, (1.3.6) is the fact that
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the complex Zc
Z[1/p](0) is quasi-isomorphic to Gm[1] according to [Gei2010,

Lemma 7.4]. Thanks to [Gei2004, Theorem 1.2], we may identify the sheaf
µ
⊗(1−n)
pr :

(1.3.9) µ
⊗(1−n)
pr

∼= ZZ[1/p]/pr(1− n) = Zc
Z[1/p]/pr(n)[−2].

Then [Gei2010, Corollary 7.9] tells us that

(1.3.10) R f !
pZc

Z[1/p]/pr(n) ∼= Zc
X[1/p]/pr(n).

Finally, thanks to [Gei2010, Theorem 7.2 (a)] and [Gei2010, Proposition
2.3], we have Zc

X[1/p]/pr(n) ∼= j∗pZc
X/pr(n), and all the above gives

(1.3.11) RHomX(jp!µ
⊗n
pr [−1], Zc

X(0)) ∼= Rjp∗ j∗pZc
X/pr(n) ∼= Zc

X/pr(n).

After applying RΓ(Xét,−), we get a quasi-isomorphism of complexes of
abelian groups

(1.3.12) RHom(jp!µ
⊗n
pr [−1], Zc

X(0)) ∼= RΓ(Xét, Zc
X/pr(n)).

Now according to the generalization of Artin–Verdier duality by Geisser
[Gei2010, Theorem 7.8], we have
(1.3.13)

RHom(jp!µ
⊗n
pr [−1], Zc(0)) ∼= RHom(RΓ̂c(Xét, jp!µ

⊗n
pr [−1]), Q/Z[−2]).

So what we obtain at the end is a quasi-isomorphism

RΓ(Xét, Zc/pr(n)) ∼= RHom(RΓ̂c(Xét, jp!µ
⊗n
pr [−1]), Q/Z[−2]).

This is almost what we need: if we apply RHom(−, Q/Z[−2]), then, as
Ĥi

c(Xét, jp!µ
⊗n
pr [−1]) are finite groups (because the sheaves jp!µ

⊗n
pr are con-

structible), we have

RHom(RΓ(Xét, Zc/pr(n)), Q/Z[−2]) ∼=
RHom(RHom(RΓ̂c(Xét, jp!µ

⊗n
pr [−1]), Q/Z[−2]), Q/Z[−2])

∼= RΓ̂c(Xét, jp!µ
⊗n
pr [−1]).

�

The quasi-isomorphism

RΓ̂c(Xét, Z(n)) ∼= lim−→
m

RHom(RΓ(Xét, Z/mZc(n)), Q/Z[−2])
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that we just saw means that on the level of cohomology, we get

Ĥi
c(Xét, Z(n)) ∼= lim−→

m
Hom(H2−i(Xét, Z/mZc(n)), Q/Z)

(note that the group Q/Z is divisible, so Hom(−, Q/Z) is an exact functor,
and the filtered colimit lim−→m

is exact as well).

1.3.2. Proposition. Assuming the conjecture Lc(Xét, n) (see 1.1.1), there is a
quasi-isomorphism of complexes

lim−→
m

RHom(RΓ(Xét, Z/mZc(n)), Q/Z[−2]) ∼=

RHom(RΓ(Xét, Zc(n)), Q/Z[−2]).

Proof. As Zc(n) is a complex of flat sheaves, the short exact sequence of
abelian groups

0→ Z
×m−−→ Z→ Z/mZ→ 0

induces a short exact sequence of sheaves

(1.3.14) 0→ Zc(n) ×m−−→ Zc(n)→ Z/mZc(n)→ 0

The morphism Zc(n) → Z/mZc(n) induces some morphisms in coho-
mology

Hi(Xét, Zc(n))→ Hi(Xét, Z/mZc(n)).

We claim that if we pass to the duals Hom(−, Q/Z) and then to the filtered
colimits lim−→m

, then we obtain an isomorphism. (Note that both Hom(−, Q/Z)
and lim−→m

are exact.)
The short exact sequence (1.3.14) induces a long exact sequence in coho-

mology

· · · Hi(Xét, Zc(n)) Hi(Xét, Zc(n)) Hi(Xét, Z/mZc(n))

Hi+1(Xét, Zc(n)) Hi+1(Xét, Zc(n)) Hi+1(Xét, Z/mZc(n)) · · ·

×m

δi
×m

We further have exact sequences

ker δi

Hi(Xét, Zc(n)) Hi(Xét, Zc(n)) Hi(Xét, Zc(n))m 0

0 m Hi+1(Xét, Zc(n)) Hi+1(Xét, Zc(n)) Hi+1(Xét, Zc(n))

im δi

×m

×m
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that give us

0→ Hi(Xét, Zc(n))m → Hi(Xét, Z/mZc(n))→ m Hi+1(Xét, Zc(n))→ 0

Now if we take Hom(−, Q/Z) and filtered colimits lim−→m
, we get

(1.3.15) 0→ lim−→
m

Hom(mHi+1(Xét, Zc(n)), Q/Z)→

lim−→
m

Hom(Hi(Xét, Z/mZc(n)), Q/Z)→ lim−→
m

Hom(Hi(Xét, Zc(n))m, Q/Z)→ 0

By the conjecture Lc(Xét, n), the group Hi+1(Xét, Zc(n)) is finitely gener-
ated, and therefore

m Hi+1(Xét, Zc(n)) = 0 for m� 0,

which means that the first lim−→m
in the short exact sequence (1.3.15) vanishes,

and we obtain isomorphisms

lim−→
m

Hom(Hi(Xét, Zc(n))m, Q/Z)
∼=−→ lim−→

m
Hom(Hi(Xét, Z/mZc(n)), Q/Z).

It remains to note that the first lim−→m
above is canonically isomorphic to

Hom(Hi(Xét, Zc(n)), Q/Z),

as we observed in 0.1.2 (again, thanks to finite generation of Hi(Xét, Zc(n))).
�

Let us summarize the results of this section.

1.3.3. Theorem. Assuming the conjecture Lc(Xét, n), there is a quasi-isomorphism

RΓ̂c(Xét, Z(n))
∼=−→ RHom(RΓ(Xét, Zc(n)), Q/Z[−2]).

In particular, the conjecture Lc(Xét, n) implies that the cohomology of RΓ̂c(Xét, Z(n))
is of cofinite type.

1.4 Complexes RΓ̂(GR, (R f!Z(n))C)

The duality theorem 1.3.3 deals with the complex RΓ̂c(Xét, Z(n)), so let us
make a little digression to understand it. By the definition from §0.9, it sits
in the distinguished triangle

RΓ̂c(Xét, Z(n))→ RΓc(Xét, Z(n))→ RΓ̂(GR, (R f!Z(n))C)

→ RΓ̂c(Xét, Z(n))[1]
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To define cohomology with compact support, we pick a Nagata compact-
ification

X X

Spec Z

j

f g

where j is an open immersion and g is proper. Then by definition, R f!Z(n) :=
Rg∗ j!Z(n). As we are interested in the stalk of R f!Z(n) at Spec C→ Spec Z,
let us consider the base change to C. The schemes f : X → Spec Z and
g : X → Spec Z give us fC : XC → Spec C and gC : XC → Spec C, and the
open immersion j : X ↪→ X induces an open immersion jC : XC ↪→ XC. We
have the following commutative prism:

XC XC

Spec C

X X

Spec Z

jC

fC
gC

j

f g

Note that the back face is also a pullback. The proper base change the-
orem [SGA 4, Exposé XII, Theéorème 5.1] applied to the right face of the
prism (recall that the morphism g is proper) and the abelian torsion sheaf
j!Z(n) on Xét, gives us an isomorphism

(1.4.1) RgC,∗(j!Z(n))C
∼= (Rg∗ j!Z(n))C.

Here (j!Z(n))C denotes the inverse image of j!Z(n) with respect to XC →
X, and (Rg∗ j!Z(n))C denotes the inverse image of Rg∗ j!Z(n) with respect to
Spec C → Spec Z. Extension by zero commutes with base change, so we
have

(j!Z(n))C
∼= jC,!(Z(n)C),

and we may rewrite (1.4.1) as

(1.4.2) RgC,∗ jC,!(Z(n)C)︸ ︷︷ ︸
=:R fC,!(Z(n)C)

∼= (Rg∗ j!Z(n)︸ ︷︷ ︸
=:R f!Z(n)

)C.
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Now we would like to apply Artin’s comparison theorem [SGA 4, Exposé
XVI, Théorème 4.1]. We have the following commutative square of sites:

XC,ét XC,cl

(Spec C)ét (Spec C)cl

gC,ét

εX

gC,cl

εC

and for the sheaf jC,!(Z(n)C), Artin’s theorem gives

RgC,cl,∗ε
∗
X jC,!(Z(n)C) ∼= ε∗CRgC,ét,∗ jC,!(Z(n)C).

Note that we have

ε∗X jC,!(Z(n)C) ∼= jC,cl,!ε
∗
X(Z(n)C),

where εX denotes the corresponding morphism of sites XC,cl → XC,ét. Now

R fC,cl,!ε
∗
X(Z(n)C) := RgC,cl,∗ jC,cl,!ε

∗
X(Z(n)C)

∼= ε∗CRgC,ét,∗ jC,!(Z(n)C)

(1.4.2)∼= ε∗C(Rg∗ j!Z(n))C

=: ε∗C(R f!Z(n))C.

Note that ε∗C is just an equivalence of categories, and both R fC,cl,!ε
∗
X(Z(n)C)

and ε∗C(R f!Z(n))C may be viewed as complexes of abelian groups or, more
precisely, of GR-modules.

Let us calculate the sheaf ε∗X(Z(n)C) on XC,cl. Recall that by definition,

Z(n) := Q/Z(n)[−1] :=
⊕

p
lim−→

r
jp!µ

⊗n
pr [−1],

where
µ⊗n

pr := HomX[1/p](µ
⊗(−n)
pr , Z/prZ).

Base change to XC and the inverse image ε∗X commute with colimits. The
sheaves µ⊗n

pr become constant sheaves µ⊗n
pr (C) on X(C), and their colimit is

given by 0.5.5.

1.4.1. Proposition. There is an isomorphism of constant GR-equivariant sheaves
on XC,cl

ε∗X(Z(n))C
∼= (2πi)n Q/Z[−1].
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This implies that the complex R fC,cl,!ε
∗
X(Z(n)C) may be identified with

RΓc(X(C), (2πi)n Q/Z[−1]), and in particular, we have a quasi-isomorphism
of complexes

(1.4.3) RΓ̂c(GR, X(C), (2πi)n Q/Z[−1]) ∼= RΓ̂(GR, (R f!Z(n))C),

where

RΓ̂c(GR, X(C), (2πi)n Q/Z[−1]) := RΓ̂(GR, RΓc(X(C), (2πi)n Q/Z[−1])).

1.4.2. Proposition. We have a quasi-isomorphism of complexes

RΓ̂c(GR, X(C), (2πi)n Q/Z[−1]) ∼= RΓ̂c(GR, X(C), (2πi)n Z).

Proof. Consider the short exact sequence of GR-equivariant sheaves on X(C)

0→ (2πi)n Z→ (2πi)n Q→ (2πi)n Q/Z→ 0

which gives us a distinguished triangle

RΓ̂c(GR, X(C), (2πi)n Z)→ RΓ̂c(GR, X(C), (2πi)n Q)

→ RΓ̂c(GR, X(C), (2πi)n Q/Z)→ RΓ̂c(GR, X(C), (2πi)n Z)[1]

and the corresponding long exact sequence in cohomology

· · · → Ĥi−1
c (GR, X(C), (2πi)n Q)→ Ĥi−1

c (GR, X(C), (2πi)n Q/Z)→
Ĥi

c(GR, X(C), (2πi)n Z)→ Ĥi
c(GR, X(C), (2πi)n Q)→ · · ·

Now in the spectral sequence

Epq
2 = Ĥp(GR, Hq

c (X(C), (2πi)n Q)) =⇒ Ĥp+q
c (GR, X(C), (2πi)n Q),

the groups Ĥp(GR, Hq
c (X(C), (2πi)n Q)) are Q-vector spaces, and they are

2-torsion for all p ∈ Z (keep in mind that we are working with Tate coho-
mology). This means that Epq

2 = 0 for all p, q ∈ Z, and

Ĥi
c(GR, X(C), (2πi)n Q) = 0.

We conclude that the morphism

RΓ̂c(GR, X(C), (2πi)n Q/Z[−1])→ RΓ̂c(GR, X(C), (2πi)n Z)

induces isomorphisms on cohomology. �
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Combining the last proposition with (1.4.3), we obtain the following re-
sult.

1.4.3. Theorem. There is a quasi-isomorphism of complexes

RΓ̂(GR, (R f!Z(n))C) ∼= RΓ̂c(GR, X(C), (2πi)n Z).

The cohomology of these complexes is given by finite 2-torsion groups.

Proof. Tate (hyper)cohomology groups of GR are always killed by #GR = 2
(see 0.9.1). To see that in our case these 2-torsion groups are finite, we may
consider the spectral sequence

Epq
2 = Ĥp(GR, Hq

c (X(C), (2πi)n Z)) =⇒ Ĥp+q
c (GR, X(C), (2πi)n Z).

According to 0.10.1, the groups Hq
c (X(C), (2πi)n Z) are finitely generated

for all q, and they vanish for q � 0 and q < 0. This means that the second
page of the spectral sequence looks like

q

p

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

where all objects are finite 2-torsion. �

For the sake of completeness and for further reference, let us look at
spectral sequences similar to the one in the last proof, but with the usual
group cohomology instead of Tate cohomology. If we replace Ĥ with H,
then Hp(GR, Hq

c (X(C), (2πi)n Z)) is not necessarily 2-torsion for p = 0, and
the second page of the spectral sequence

Epq
2 = Hp(GR, Hq

c (X(C), (2πi)n Z)) =⇒ Hp+q
c (GR, X(C), (2πi)n Z)

looks like
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q

p

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

where the shaded part Epq
2 , p > 0 consists of finitely generated 2-torsion

groups, the line E0q
2 consists of finitely generated groups, and the objects Epq

2
are zero for q � 0. It follows that the groups Hi(GR, X(C), (2πi)n Z) are
all finitely generated as well, and they are torsion for i � 0. This is in fact
2-torsion, and we may see this as follows. If P• � Z is the bar-resolution of
Z by free ZGR-modules, then the morphism of complexes

· · · P3 P2 P1 P0 0

· · · P3 P2 P1 P0 0

2 2 2 2−N

“2” : P• → P•,

(2− N) : P0 → P0,

2 : Pi → Pi for i > 1,

which induces multiplication by 2 on Hi(G,−) for i > 0 is null-homotopic
[Wei1994, Theorem 6.5.8]. It is not multiplication by 2 in degree 0, but as the
complex RΓc(GR, X(C), (2πi)n Z) is bounded, we see that it induces multi-
plication by 2 on Hi(GR, X(C), (2πi)n Z) for i � 0. So we just proved the
following.

1.4.4. Lemma. The complex

RΓc(GR, X(C), (2πi)n Z) = RΓ(GR, RΓc(X(C), (2πi)n Z))

is almost perfect in the sense of 0.3.3.

As for Q/Z-coefficients, we may analyze a similar spectral sequence

Epq
2 = Hp(GR, Hq

c (X(C), (2πi)n Q/Z)) =⇒ Hp+q(GR, X(C), (2πi)n Q/Z).
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The second page will have groups of cofinite type on the line E0q
2 (see 0.10.1)

and finite 2-torsion groups Epq
2 for p > 0. We have filtrations

(1.4.4) Hp+q = F0(Hp+q) ⊇ F1(Hp+q) ⊇ F2(Hp+q) ⊇ · · ·
⊇ Fp+q(Hp+q) ⊃ Fp+q+1(Hp+q) = 0

where
0→ Fp+1(Hp+q)→ Fp(Hp+q)→ Epq

∞ → 0

Note that E0q
∞ will be groups of cofinite type, and Epq

∞ will be finite 2-torsion
groups for p > 0, as we are going to have

0→ E0q
r+1 → E0q

r → T → 0

where T is finite 2-torsion, and similarly,

Epq
r+1
∼= ker dpq

r / im dp−r,q+r−1
r

Ep−r,q+r−1
r

dp−r,q+r−1
r−−−−−→ Epq

r
dpq

r−→ Ep+r,q−r+1
r

where Epq
r is finite 2-torsion for p > 0. It follows by induction that all the

members of the filtration (1.4.4) are finite groups, except for F0(Hp+q) =
Hp+q itself, which is of cofinite type, being an extension of a group of cofinite
type E0q

∞ by a finite group F1(Hp+q) (see 0.1.3). We also see that Hp+q is 2-
torsion for p + q� 0. This gives us the following result.

1.4.5. Lemma. The complex

RΓc(GR, X(C), (2πi)n Q/Z) = RΓ(GR, RΓc(X(C), (2πi)n Q/Z))

is almost of cofinite type in the sense of 0.3.7.

1.5 Complexes RΓfg(X, Z(n))

1.5.1. Definition. The morphism αX,n in D(Ab) is given by the composition
of morphisms

RHom(RΓ(Xét, Zc(n)), Q[−2])→ RHom(RΓ(Xét, Zc(n)), Q/Z[−2])
∼=←− RΓ̂c(Xét, Z(n))→ RΓc(Xét, Z(n))

Here the first arrow is induced by RHom(RΓ(Xét, Zc(n)),−) and the
canonical projection Q � Q/Z. The second arrow is a quasi-isomorphism
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given by theorem 1.3.3. The third arrow is the morphism (0.9.8) from co-
homology with compact support à la Milne to the usual cohomology with
compact support.

Then the complex RΓfg(X, Z(n)) is defined as a cone of αX,n in D(Ab):

RHom(RΓ(Xét, Zc(n)), Q[−2])
αX,n−−→ RΓc(Xét, Z(n))→ RΓfg(X, Z(n))

→ RHom(RΓ(Xét, Zc(n)), Q[−1])

1.5.2. Remark. If X(R) = ∅, then RΓ̂c(Xét, Z(n)) is the same as RΓc(Xét, Z(n))
(see 0.9.2), so that in this case we have an isomorphism of distinguished tri-
angles

RHom(RΓ(Xét, Zc(n)), Q[−2]) RHom(RΓ(Xét, Zc(n)), Q[−2])

RHom(RΓ(Xét, Zc(n)), Q/Z[−2]) RΓc(Xét, Z(n))

RHom(RΓ(Xét, Zc(n)), Z[−1]) RΓfg(X, Z(n))

RHom(RΓ(Xét, Zc(n)), Q[−1]) RHom(RΓ(Xét, Zc(n)), Q[−1])

id

'

'

id

where the left column is the result of application of RHom(RΓ(Xét, Zc(n)),−)
to an appropriate rotation of the triangle

Z→ Q→ Q/Z→ Z[1]

We conclude that

RΓfg(X, Z(n)) ' RHom(RΓ(Xét, Zc(n)), Z[−1]).

However, this holds only if X(R) = ∅. In what follows, we are not going
to make such an assumption on X, even though it would save quite some
technical work. It is still helpful to keep in mind the special case X(R) = ∅.

The complex of sheaves Zc(n) is bounded from below, under the as-
sumption that their cohomology groups are finitely generated (which is our
conjecture Lc(Xét, n), stated in 1.1.1).

1.5.3. Lemma. Assuming the conjecture Lc(Xét, n), we have

Hi(Xét, Zc(n)) = 0 for i < −2 dim X.
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Proof. The complex of sheaves Zc(n) is flat, so the short exact sequence of
abelian groups

0→ Z→ Q→ Q/Z→ 0

gives us a short exact sequence of étale sheaves

0→ Zc(n)→ Qc(n)→ Q/Zc(n)→ 0

and then applying RΓ(Xét,−), we obtain a distinguished triangle in D(Ab)

RΓ(Xét, Zc(n))→ RΓ(Xét, Qc(n))→ RΓ(Xét, Q/Zc(n))→ RΓ(Xét, Zc(n))[1]

Now according to [Mor2014, Lemma 5.12] (note that the proof there also
uses Geisser’s duality), we have

Hi(Xét, Q/Zc(n)) = 0 for i < −2 dim X,

and the above triangle implies that

Hi(Xét, Qc(n)) ∼= Hi(Xét, Zc(n)) for i < −2 dim X.

However, Hi(Xét, Qc(n)) is a Q-vector space, and according to the conjecture
Lc(Xét, n), the groups Hi(Xét, Zc(n)) are finitely generated over Z. This
means that for i < −2 dim X these groups are trivial. �

1.5.4. Proposition. The complex RΓfg(X, Z(n)) is almost perfect in the sense of
0.3.3, i.e. its cohomology groups Hi

fg(X, Z(n)) := Hi(RΓfg(X, Z(n))) are finitely
generated, trivial for i� 0, and only have 2-torsion for i� 0.

Proof. By the definition of RΓfg(X, Z(n)), we have a long exact sequence in
cohomology

· · · Hom(H2−i(Xét, Zc(n)), Q) Hi
c(Xét, Z(n)) Hi

fg(X, Z(n))

Hom(H1−i(Xét, Zc(n)), Q) Hi+1
c (Xét, Z(n)) · · ·

Hi(αX,n)

δi
Hi+1(αX,n)

We consider short exact sequences

0 ker δi Hi
fg(X, Z(n)) im δi 0

coker Hi(αX,n) ker Hi+1(αX,n)
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By the definition of αX,n, the morphism Hi(αX,n) factors as

Hom(H2−i(Xét, Zc(n)), Q)→ Hom(H2−i(Xét, Zc(n)), Q/Z)
∼=−→ Ĥi

c(Xét, Z(n))→ Hi
c(Xét, Z(n))

Here the morphism Ĥi
c(Xét, Z(n))→ Hi

c(Xét, Z(n)) is identity, except for
some finite 2-torsion. Indeed, this morphism sits in the long exact sequence
(0.9.9):

· · · → Ĥi−1(GR, (R f!Z(n))C)→ Ĥi
c(Xét, Z(n))→ Hi

c(Xét, Z(n))

→ Ĥi(GR, (R f!Z(n))C)→ · · ·

and Ĥi(GR, (R f!Z(n))C) is finite 2-torsion according to 1.4.3.
The group H2−i(Xét, Zc(n)) is finitely generated according to the conjec-

ture Lc(Xét, n) (see 1.1.1). If this group is of the form Z⊕r ⊕ T, the morphism
Hi(αX,n) is given by

Q⊕r � (Q/Z)⊕r � Ĥi
c(Xét, Z(n))→ Hi

c(Xét, Z(n))

where (Q/Z)⊕r � Ĥi
c(Xét, Z(n)) is the inclusion of the maximal divisible

subgroup in the group of cofinite type

Ĥi
c(Xét, Z(n)) ∼= Hom(H2−i(Xét, Zc(n)), Q/Z).

Both kernel and cokernel of the above map are finitely generated, hence
Hi

fg(X, Z(n)) is finitely generated.
As we observed in 1.5.3, again assuming the conjecture Lc(Xét, n), we

may deduce that the complex Zc(n) is bounded from below. This means
that for i� 0 we have

ker Hi+1(αX,n) = 0, Hi
fg(X, Z(n)) ∼= coker Hi(αX,n) = Hi

c(Xét, Z(n)).

For i < 1 we have Hi
c(Xét, Z(n)) = 0, and for i� 0 we know that

Ĥi
c(Xét, Z(n)) ∼= Hom(H2−i(Xét, Zc(n)), Q/Z) = 0,

again by boundedness of Zc(n) from below. The only difference between
Hi

c(Xét, Z(n)) and Ĥi
c(Xét, Z(n)) is some finite 2-torsion. �

1.5.5. Observation. RΓfg(X, Z(n)) is defined up to a unique isomorphism in
D(Ab).

Proof. The complex RHom(RΓ(Xét, Zc(n)), Q[−2]) consists of Q-vector spaces,
and RΓfg(X, Z(n)) is almost perfect, so we are in the situation of 0.3.6. �
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1.5.6. Observation. Fix a distinguished triangle defining RΓfg(X, Z(n)):

RHom(RΓ(Xét, Zc(n)), Q[−2])
αX,n−−→ RΓc(Xét, Z(n))

f−→ RΓfg(X, Z(n))
g−→ RHom(RΓ(Xét, Zc(n)), Q[−1])

1) For each m = 1, 2, 3, . . . the morphism

f ⊗Z/mZ : RΓc(Xét, Z(n))⊗L
Z Z/mZ

∼=−→ RΓfg(X, Z(n))⊗L
Z Z/mZ

is iso. Further, we have

RΓc(Xét, Z(n))⊗L
Z Z/mZ ∼= RΓc(Xét, Z/mZ(n))

:= RΓc(Xét, Z(n)⊗L Z/mZ).

2) The morphism

g⊗Q : RΓfg(X, Z(n))⊗Z Q
∼=−→ RHom(RΓ(Xét, Zc(n)), Q[−1])

is iso.

Proof. The statement 1) follows from the fact that the complexes

RHom(RΓ(Xét, Zc(n)), Q[. . .])

consist of Q-vector spaces, and thus

RHom(RΓ(Xét, Zc(n)), Q[. . .])⊗L
Z Z/mZ

' RHom(RΓ(Xét, Zc(n)), Q[. . .])⊗Z Z/mZ ' 0.

Next, 2) follows from the fact that the cohomology of the étale sheaf Z(n) is
torsion, and therefore

Hi(RΓc(Xét, Z(n))⊗Z Q) ∼= Hi
c(Xét, Z(n))⊗Z Q = 0,

RΓc(Xét, Z(n))⊗Z Q ' 0.

�

1.6 Complexes RΓW,c(X, Z(n))

To define complexes RΓW,c(X, Z(n)), we first construct a morphism

i∗∞ : RΓfg(X, Z(n))→ RΓc(GR, X(C), (2πi)n Z).
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By definition, it sits in the morphism of distinguished triangles

(1.6.1)

RHom(RΓ(X, Zc(n)), Q[−2]) 0

RΓc(Xét, Z(n)) RΓc(GR, X(C), (2πi)n Z)

RΓfg(X, Z(n)) RΓc(GR, X(C), (2πi)n Z)

RHom(RΓ(X, Zc(n)), Q[−1]) 0

αX,n

u∗∞

id
i∗∞

Here
u∗∞ : RΓ(Xét, Z(n))→ RΓc(GR, X(C), (2πi)n Z)

is some morphism, to be defined below, such that the composition u∗∞ ◦ αX,n
is zero. Then by the axiom (TR3) there exists some morphism i∗∞. The fact
that u∗∞ ◦ αX,n = 0 will be a delicate issue, which is the main goal of this
section. However, once we know that, i∗∞ is automatically unique.

1.6.1. Observation. If i∗∞ exists, then it is unique.

Proof of 1.6.1. We may apply 0.3.6, because RHom(RΓ(X, Zc(n)), Q[−2]) is a
complex of Q-vector spaces and both

RΓfg(X, Z(n)) and RΓc(GR, X(C), (2πi)n Z)

are almost perfect complexes by 1.5.4 and 1.4.4. �

1.6.2. Proposition. Consider the morphism

α∗ : Sh(Xét)→ Sh(GR, X(C)),

as described in §0.7. For the sheaf

Q/Z(n) :=
⊕

p
lim−→

r
jp!µ

⊗n
pr

defined in §1.2 we have an isomorphism of GR-equivariant constant sheaves on
X(C)

α∗Q/Z(n) ∼=
(2πi)n Q

(2πi)n Z
=: (2πi)n Q/Z.
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Proof. First of all, since α∗ is the composition of certain inverse image func-
tors γ∗ and ε∗ (which are left adjoint) and an equivalence of categories δ∗,
the functor α∗ preserves colimits, and in particular

(1.6.2) α∗Q/Z(n) ∼=
⊕

p
lim−→

r
α∗ jp!µ

⊗n
pr .

Another formal observation is that the base change from Spec Z to Spec C

factors through the base change to Spec Z[1/p], and then j∗p ◦ jp! = idSh(X[1/p]ét)
:

Sh(X[1/p]ét) Sh(Xét) Sh(XC,ét)

Sh(X[1/p]ét)

jp!

id

γ∗

j∗p

which means that we may safely erase “jp!” in (1.6.2), and everything boils
down to calculating the sheaves

α∗µ⊗n
pr = α∗HomX[1/p](µ

⊗(−n)
pr , Z/prZ).

As we base change to Spec C, the étale sheaf µpr simply becomes the constant
sheaf µpr (C) on X(C), and

α∗µ⊗n
pr = HomX(C)(µ

⊗(−n)
pr (C), Z/prZ).

In 0.5.5 we calculated the colimit of such things to be (2πi)n Q/Z. �

1.6.3. Definition. The morphism

u∗∞ : RΓc(Xét, Z(n))→ RΓc(GR, X(C), (2πi)n Z)

is given by the composition

RΓc(Xét, Z(n)) := RΓc(Xét, Q/Z(n))[−1]
v∗∞ [−1]−−−−→ RΓc(GR, X(C), (2πi)n Q/Z)[−1]→ RΓc(GR, X(C), (2πi)n Z)

Here the last arrow is induced by (2πi)n Q/Z[−1]→ (2πi)n Z, which comes
from the distinguished triangle of constant GR-equivariant sheaves

(2πi)n Z→ (2πi)n Q→ (2πi)n Q/Z→ (2πi)n Z[1]

and the arrow

v∗∞ : RΓc(Xét, Q/Z(n))→ RΓc(GR, X(C), (2πi)n Q/Z)
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is induced by the morphism

Γc(Xét, Q/Z(n))→ Γc(GR, X(C), α∗Q/Z(n)) ∼= Γc(GR, X(C), (2πi)n Q/Z)

(see 0.8.3 and 1.6.2).

1.6.4. Theorem. For any arithmetic scheme X one has u∗∞ ◦ αX,n = 0 in the derived
category.

This seems to be rather nontrivial; our proof will be based on the follow-
ing result about `-adic cohomology.

1.6.5. Proposition. Let f : X → Spec Z be an arithmetic scheme (that is, with f
separated, of finite type). Let n < 0. Then for any prime ` we have

(Hi
c(X

Q,ét, Q`/Z`(n))GQ)div = 0.

Proof. Let us recall some facts about `-adic cohomology. We refer to [SGA 5,
Exposé VI] for details. Let us first consider the sheaf Z`(n). It is a con-
structible Z`-sheaf* on X in the sense of [SGA 5, Exposé VI, 1.1.1]. We
would like to compare the cohomology of Z`(n) on X

Q,ét and XFp ,ét, where
p is some prime different from `, to be determined later. For this we fix
some algebraic closures Q/Q and Fp/Fp and consider the corresponding
morphisms

η : Spec Q→ Spec Z, x : Spec Fp → Spec Z.

Let X
Q,ét and XFp ,ét be the pullbacks of X along the above morphisms:

X
Q

X XFp

Spec Q Spec Z Spec Fp

y
f
Q

f f
Fp

x

η x

According to [SGA 5, Exposé VI, 2.2.3], the proper base change theorem
holds for constructible Z`-sheaves. It gives us isomorphisms

Hi
c(X

Q,ét, Z`(n)) ∼= (Ri f!Z`(n))η , Hi
c(XFp ,ét, Z`(n)) ∼= (Ri f!Z`(n))x,

where Ri f!Z`(n) is the same sheaf on Spec Z, and we take its different stalks
to get cohomology with compact support on different fibers. The construc-
tion of higher direct images with proper support Ri f!F for `-adic sheaves
is given in [SGA 5, Exposé VI, §2.2]. The key nontrivial fact that we need

*Or simply Z`-sheaf in the terminology of [SGA 4 1
2 , Rapport].
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is that for every morphism (of locally noetherian schemes) f : X → Y, sep-
arated of finite type, if F is a constructible Z`-sheaf on X, then Ri f!F is a
constructible Z`-sheaf on Y.

According to [SGA 5, Exposé VI, 1.2.6], for a projective system of abelian
sheaves F = (Fn)n∈N on Xét, the following are equivalent:

1) F is a constructible Z`-sheaf,

2) every open subscheme U ⊂ X is a finite union of locally closed pieces
Zi where F |Zi

is a twisted constant constructible Z`-sheaf*.

Being “twisted constant” means that each sheaf Fn in the projective sys-
tem (Fn)n∈N is locally constant. The importance of twisted constant sheaves
is explained by the following property [SGA 5, Exposé VI, 1.2.4, 1.2.5]: for
a connected locally noetherian scheme X, the category of twisted constant
Z`-constructible sheaves on X is equivalent to the category of finitely gen-
erated Z`-modules with a continuous action of the étale fundamental group
πét

1 (X).
In our setting, all this means that there exists an open subscheme

U = Spec ZS ⊂ Spec Z,

where ZS denotes the localization of Z at a finite set of primes S, such
that the sheaves Ri f!Z`(n) are twisted constant on U. By removing all the
necessary bad primes, we can make sure this holds for all i.

Now according to [Elements, Book IX, Proposition 20], there exists some
prime p /∈ S (that is, (p) ∈ U), for which we may consider the following
picture:

X
Q

XU XFp

Spec Q U Spec Fp

y
f
Q fU f

Fp
x

η x

It follows that we have isomorphisms
(1.6.3)

Hi
c(X

Q,ét, Z`(n)) ∼= (Ri fU,!Z`(n))η
∼= (Ri fU,!Z`(n))x ∼= Hi

c(XFp ,ét, Z`(n)),

of finitely generated Z`-modules with continuous action of

πét
1 (U) ∼= Gal(QS/Q),

where QS/Q denotes a maximal extension of Q unramified outside of S.
We note that (Ri fU,!Z`(n))η naturally carries an action of πét

1 (U, η), while

*A faisceau lisse in the terminology of [SGA 4 1
2 , Rapport].
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(Ri fU,!Z`(n))x carries an action of πét
1 (U, x), and the isomorphism in the

middle of (1.6.3) sweeps under the rug an identification of πét
1 (U, η) with

πét
1 (U, x).

To state this more accurately, note that the Z`-module Hi
c(X

Q,ét, Z`(n))
carries a natural action of GQ while Hi

c(XFp ,ét, Z`(n)) carries a natural action
of GFp . After making the necessary choices, we have GQp ⊂ GQ and a short
exact sequence

1→ Ip → GQp → GFp → 1

where Ip is the inertia subgroup, acting trivially on Hi
c(X

Q,ét, Z`(n)). We
have thus isomorphisms of finitely generated Z`-modules

Hi
c(X

Q,ét, Z`(n)) ∼= Hi
c(XFp ,ét, Z`(n)),

equivariant under the action of GQp /Ip on the left hand side and of GFp on
the right hand side. To relate all this to Q`(n) and Q`/Z`(n)-coefficients,
note that we have the following isomorphic long exact sequences in coho-
mology

(1.6.4)

...
...

Hi−1
c (X

Q,ét, Q`/Z`(n)) Hi−1
c (XFp ,ét, Q`/Z`(n))

Hi
c(X

Q,ét, Z`(n)) Hi
c(XFp ,ét, Z`(n))

Hi
c(X

Q,ét, Q`(n)) Hi
c(XFp ,ét, Q`(n))

Hi
c(X

Q,ét, Q`/Z`(n)) Hi
c(XFp ,ét, Q`/Z`(n))

...
...

δ

∼=

δ

φ

∼=

φ

ψ

∼=

ψ

∼=

Here

Hi
c(X

Q,ét, Q`(n)) = Hi
c(X

Q,ét, Z`(n))⊗Z`
Q`,

Hi
c(XFp ,ét, Q`(n)) = Hi

c(XFp ,ét, Z`(n))⊗Z`
Q`,
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and the arrows φ above are canonical localization morphisms. The horizontal
arrows are equivariant isomorphisms in the above sense. Note that we have

Hi
c(X

Q,ét, Q`/Z`(n))GQ � Hi
c(X

Q,ét, Q`/Z`(n))
GQp /Ip

∼= Hi
c(XFp ,ét, Q`/Z`(n))

GFp ,

so in order to prove that

(Hi
c(X

Q,ét, Q`/Z`(n))GQ)div = 0,

it will be enough to show that

(Hi
c(XFp ,ét, Q`/Z`(n))

GFp )div = 0.

From now on we move to the characteristic p and consider the fixed points
of GFp acting on the Z`-module Hi

c(XFp ,ét, Q`/Z`(n)). In the long exact
sequence (1.6.4), we have (keeping in mind that φ is merely the localization
morphism):

ker φ = Hi
c(XFp ,ét, Z`(n))tor,

ker ψ = im φ ∼= Hi
c(XFp ,ét, Z`(n))/ ker φ

=
Hi

c(XFp ,ét, Z`(n))

Hi
c(XFp ,ét, Z`(n))tor

=: Hi
c(XFp ,ét, Z`(n))cotor,

im ψ = Hi
c(XFp ,ét, Q`/Z`(n))div.

This gives us a short exact sequence

0→ Hi
c(XFp ,ét, Z`(n))cotor → Hi

c(XFp ,ét, Q`(n))

→ Hi
c(XFp ,ét, Q`/Z`(n))div → 0

After taking the GFp -invariants, we obtain a long exact sequence of cohomol-
ogy groups

(1.6.5) 0→ (Hi
c(XFp ,ét, Z`(n))cotor)

GFp → Hi
c(XFp ,ét, Q`(n))

GFp

→ (Hi
c(XFp ,ét, Q`/Z`(n))div)

GFp → H1(GFp , Hi
c(XFp ,ét, Z`(n))cotor)→ · · ·

We claim that

(1.6.6) Hi
c(XFp ,ét, Q`(n))

GFp = 0.
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Indeed, according to [SGA 7, Exposé XXI, 5.5.3], the eigenvalues of the
geometric Frobenius acting on Hi

c(XFp ,ét, Q`) are algebraic integers. We are

twisting Q` by n, so the eigenvalues of Frobenius lie in p−n Z. Since n < 0
by our assumption, this implies that 1 does not occur as an eigenvalue.

Now (1.6.6) and the long exact sequence (1.6.5) imply that there is a
monomorphism

(Hi
c(XFp ,ét, Q`/Z`(n))div)

GFp � H1(GFp , Hi
c(XFp ,ét, Z`(n))cotor),

which restricts to a monomorphism between the maximal divisible sub-
groups

((Hi
c(XFp ,ét, Q`/Z`(n))div)

GFp )div � H1(GFp , Hi
c(XFp ,ét, Z`(n))cotor)div.

However, H1(GFp , Hi
c(XFp ,ét, Z`(n))cotor) is a finitely generated Z`-module,

and therefore its maximal divisible subgroup is trivial. We have therefore

(Hi
c(XFp ,ét, Q`/Z`(n))

GFp )div = ((Hi
c(XFp ,ét, Q`/Z`(n))div)

GFp )div = 0.

(For the first equality, note that for any G-module A one has ((Adiv)
G)div =

(AG)div.) �

Now we are ready to prove 1.6.4. The morphism αX,n is defined on

RHom(RΓ(Xét, Zc(n)), Q[−2]),

which is a complex of Q-vector spaces, so it will be enough to show that v∗∞
is a torsion element in the abelian group

HomD(Ab)(RΓc(Xét, Q/Z(n)), RΓc(GR, X(C), (2πi)n Q/Z)).

The complexes RΓc(Xét, Q/Z(n)) and RΓc(GR, X(C), (2πi)n Q/Z) are al-
most of cofinite type in the sense of 0.3.7. Indeed, we observed it in 1.4.5 for
RΓc(GR, X(C), (2πi)n Q/Z), and for RΓc(Xét, Q/Z(n)), by the duality theo-
rem 1.3 we have

Hi
c(Xét, Q/Z(n)) = Hi−1

c (Xét, Z(n))
up to 2-torsion

≈ Ĥi−1
c (Xét, Z(n))

∼= Hom(H3−i(Xét, Zc(n)), Q/Z(n))

and the groups H3−i(Xét, Zc(n)) are finitely generated by our conjecture
Lc(Xét, n) (see 1.1.1), trivial for i � 0 by 1.5.3 (again, assuming Lc(Xét, n))
and finite 2-torsion for i � 0. Therefore, according to 0.3.8, to show that
v∗∞ : RΓc(Xét, Q/Z(n)) → RΓc(GR, X(C), (2πi)n Q/Z) is torsion in D(Ab),
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it is enough to show that the corresponding morphisms on the maximal
divisible subgroups

Hi
c(v
∗
∞)div : Hi

c(Xét, Q/Z(n))div → Hi
c(GR, X(C), (2πi)n Q/Z)div

are all trivial.
The morphism Hi

c(v∗∞) factors through Hi
c(X

Q,ét, µ⊗n)GQ , where µ⊗n is
the sheaf of all roots of unity on X

Q,ét twisted by n. We have therefore

Hi
c(Xét, Q/Z(n))div Hi

c(GR, X(C), (2πi)n Q/Z)div

(
Hi

c(X
Q,ét, µ⊗n)GQ

)
div

Hi
c(v∗∞)div

Now(
Hi

c(X
Q,ét, µ⊗n)GQ

)
div
∼=
(⊕

`

Hi
c(X

Q,ét, Q`/Z`(n))GQ

)
div

∼=

⊕
`

(
Hi

c(X
Q,ét, Q`/Z`(n))GQ

)
div

,

where all summands are trivial according to 1.6.5. �

1.6.6. Corollary. The morphism i∗∞ is torsion in the derived category, i.e. i∗∞⊗Q =
0.

Proof. Let us examine the morphism of distinguished triangles (1.6.1) that
defines i∗∞; in particular, the commutative diagram

RΓc(Xét, Z(n)) RΓfg(X, Z(n))

RΓc(GR, X(C), (2πi)n Z)

u∗∞
i∗∞

According to 0.3.6, the morphism

HomD(Ab)(RΓfg(X, Z(n)), RΓc(GR, X(C), (2πi)n Z))→
HomD(Ab)(RΓc(Xét, Z(n)), RΓc(GR, X(C), (2πi)n Z))

induced by the composition with RΓc(Xét, Z(n))→ RΓfg(X, Z(n)), is mono,
and therefore

HomD(Ab)(RΓfg(X, Z(n)), RΓc(GR, X(C), (2πi)n Z))⊗Z Q→
HomD(Ab)(RΓc(Xét, Z(n)), RΓc(GR, X(C), (2πi)n Z))⊗Z Q
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is mono as well. However, we just saw in the proof of 1.6.4 that u∗∞ ⊗Q = 0,
and this implies that i∗∞ ⊗Q = 0. �

Now that we know that i∗∞ exists (and is unique), we are ready to define
Weil-étale complexes.

1.6.7. Definition. RΓW,c(X, Z(n)) is an object in the derived category D(Ab)
which is a mapping fiber of i∗∞:

RΓW,c(X, Z(n))→ RΓfg(X, Z(n))
i∗∞−→ RΓc(GR, X(C), (2πi)n Z)

→ RΓW,c(X, Z(n))[1]

The Weil-étale cohomology with compact support is given by

Hi
W,c(X, Z(n)) := Hi(RΓW,c(X, Z(n))).

Note that this defines RΓW,c(X, Z(n)) up to a non-unique isomorphism
in D(Ab), and the groups Hi

W,c(X, Z(n)) are also defined up to a non-unique
isomorphism.

1.6.8. Proposition. The conjecture Lc(Xét, n) implies that RΓW,c(X, Z(n)) is a
perfect complex.

Proof. By definition, we have a long exact sequence in cohomology

· · · → Hi−1
c (GR, X(C), (2πi)n Z)→ Hi

W,c(X, Z(n))→

Hi
fg(X, Z(n))

Hi(i∗∞)−−−→ Hi
c(GR, X(C), (2πi)n Z)→ · · ·

The groups Hi
c(GR, X(C), (2πi)n Z) and Hi

fg(X, Z(n)) are finitely gener-
ated by 1.4.4 and 1.5.4. They vanish for i � 0, but they are finite 2-torsion
for i � 0. I claim that Hi(i∗∞) is an isomorphism for i � 0, meaning that
this 2-torsion in higher degrees does not appear in Hi

W,c(X, Z(n)). We have
a commutative diagram

Hi
c(Xét, Z(n)) Hi

fg(X, Z(n))

Hi
c(GR, X(C), (2πi)n Z)

Hi(u∗∞)
Hi(i∗∞)

The morphism Hi(u∗∞) is iso for i � 0, hence Hi(i∗∞) is surjective for
i � 0. However, Hi

fg(X, Z(n)) and Hi
c(GR, X(C), (2πi)n Z) have the same

2-torsion for i� 0,and Hi(i∗∞) is iso for i� 0.
�
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1.6.9. Proposition. The determinant detZ RΓW,c(X, Z(n)) is well-defined up to a
canonical isomorphism.

Proof. For two different choices of a mapping fiber of i∗∞, we obtain an iso-
morphism of distinguished triangles

RΓW,c(X, Z(n)) RΓW,c(X, Z(n))′

RΓfg(X, Z(n)) RΓfg(X, Z(n))

RΓc(GR, X(C), (2πi)n Z) RΓc(GR, X(C), (2πi)n Z)

RΓW,c(X, Z(n))[1] RΓW,c(X, Z(n))′[1]

∼=

i∗∞

id

i∗∞

id

∼=

Here the dashed arrows are not canonical, but this does not affect the de-
terminants, because these are functorial with respect to isomorphisms of tri-
angles (see 0.4.1). The only technical issue is that the complexes RΓfg(X, Z(n))
and RΓc(GR, X(C), (2πi)n Z) may have unbounded 2-torsion, unless X(R) =
∅. However, we know that the arrow

Hi(i∗∞) : Hi
fg(X, Z(n))→ Hi

c(GR, X(C), (2πi)n Z)

is an isomorphism for i� 0. Therefore, taking the truncations τ≤m for m big
enough, we obtain a commutative diagram where the columns still induce
long exact sequences in cohomology:

RΓW,c(X, Z(n)) RΓW,c(X, Z(n))′

τ≤mRΓfg(X, Z(n)) τ≤mRΓfg(X, Z(n))

τ≤mRΓc(GR, X(C), (2πi)n Z) τ≤mRΓc(GR, X(C), (2πi)n Z)

RΓW,c(X, Z(n))[1] RΓW,c(X, Z(n))′[1]

∼=

i∗∞

id

i∗∞

id

∼=

which gives us the desired canonical isomorphism

detZ RΓW,c(X, Z(n)) ∼=
detZ τ≤mRΓfg(X, Z(n))⊗Z (detZ τ≤mRΓc(GR, X(C), (2πi)n Z))−1

∼= detZ RΓW,c(X, Z(n))′.
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�

1.6.10. Remark. Our methods establish existence of i∗∞ only as a morphism
in the derived category and RΓW,c(X, Z(n)) is defined only up to a non-
canonical quasi-isomorphism. It is probably possible to construct i∗∞ as a
canonical morphism in the category of complexes. This would give us a
canonical construction of RΓW,c(X, Z(n)) as a complex. Another possibility
to make things canonical is to work with the derived ∞-category [Lur2006].

The reader will note that the non-canonicity of RΓW,c(X, Z(n)) in the
present construction is not only aesthetically unpleasant, but will also give
us some technical troubles later on, for instance in §1.8.

1.7 Splitting of RΓW,c(X, Z(n))⊗Z Q

The following result will be crucial in the next chapter.

1.7.1. Proposition. There is a direct sum decomposition

RΓW,c(X, Z(n))⊗Z Q ∼=
RHom(RΓ(Xét, Zc(n)), Q)[−1]⊕ RΓc(GR, X(C), (2πi)n Q)[−1].

This isomorphism is not canonical, but induces a canonical isomorphism

(detZ RΓW,c(X, Z(n)))⊗Z Q ∼= detQ(RΓW,c(X, Z(n))⊗Z Q)
∼= detQ RHom(RΓ(Xét, Zc(n)), Q)[−1]⊗Q detQ RΓc(GR, X(C), (2πi)n Q)[−1].

Proof. Everything has to do with the cohomology of RΓc(Xét, Z(n)) and the
morphism i∗∞ being torsion. In fact we already noted in 1.5.6 that the distin-
guished triangle defining RΓfg(X, Z(n))

RHom(RΓ(Xét, Zc(n)), Q[−2])
αX,n−−→ RΓc(Xét, Z(n))→ RΓfg(X, Z(n))

g−→ RHom(RΓ(Xét, Zc(n)), Q[−1])

after tensoring with Q gives us an isomorphism

g⊗Q : RΓfg(X, Z(n))⊗Z Q
∼=−→ RHom(RΓ(Xét, Zc(n)), Q[−1]).

Now examine the triangle that defines RΓW,c(X, Z(n)):

RΓW,c(X, Z(n)) h−→ RΓfg(X, Z(n))
i∗∞−→ RΓc(GR, X(C), (2πi)n Q)

→ RΓW,c(X, Z(n))[1]
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According to 1.6.6, the morphism i∗∞ is torsion, so that i∗∞ ⊗ Q = 0 and
tensoring with Q gives a distinguished triangle

RΓW,c(X, Z(n))⊗Z Q
h⊗Q−−→ RΓfg(X, Z(n))⊗Z Q

0−→ RΓc(GR, X(C), (2πi)n Q)→ RΓW,c(X, Z(n))⊗Z Q[1]

To shorten the notation, let us write [−,−] instead of RHom(−,−) and (−)Q

instead of −⊗Z Q. We have an isomorphism of distinguished triangles

(1.7.1)

RΓW,c(X, Z(n))Q RΓW,c(X, Z(n))Q

[RΓ(Xét, Zc(n)), Q[−1]]
⊕

RΓc(GR, X(C), (2πi)n Q)[−1]

RΓfg(X, Z(n))Q [RΓ(Xét, Zc(n)), Q[−1]] [RΓ(Xét, Zc(n)), Q[−1]]

RΓc(GR, X(C), (2πi)n Q) RΓc(GR, X(C), (2πi)n Q) RΓc(GR, X(C), (2πi)n Q)

RΓW,c(X, Z(n))Q[1] RΓW,c(X, Z(n))Q[1]
[RΓ(Xét, Zc(n)), Q]

⊕
RΓc(GR, X(C), (2πi)n Q)

h⊗Q

id

(h◦g)⊗Q

∼=

0

g⊗Q

∼=
0

id

id id

id ∼=

Here the right triangle is distinguished, being the direct sum of the dis-
tinguished triangles

RHom(RΓ(Xét, Zc(n)), Q[−1]) id−→ RHom(RΓ(Xét, Zc(n)), Q[−1])

→ 0→ RHom(RΓ(Xét, Zc(n)), Q)

and

RΓc(GR, X(C), (2πi)n Q)[−1]→ 0→ RΓc(GR, X(C), (2πi)n Q)

id−→ RΓc(GQ, X(C), (2πi)n Q)

The two dashed arrows in (1.7.1) exist thanks to the axiom (TR3), and they
are isomorphisms by the triangulated 5-lemma. We note that these arrows
are by no means unique*. To see that the obtained splitting is canonical on

*It is a well-known lemma that in a triangulated category, a distinguished triangle X u−→
Y v−→ Z w−→ X[1] splits whenever one of the morphisms u, v, w is zero—[Verdier-thèse, Chapitre
II, Corollaire 1.2.6]. I basically recalled the proof for our case to stress that such a splitting is
not canonical.
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the level of determinants, we argue as in 1.6.9. The isomorphism of triangles

RΓc(GR, X(C), (2πi)n Q)[−1] RΓc(GR, X(C), (2πi)n Q)[−1]

RΓW,c(X, Z(n))Q

[RΓ(Xét, Zc(n)), Q[−1]]
⊕

RΓc(GR, X(C), (2πi)n Q)[−1]

RΓfg(X, Z(n))Q [RΓ(Xét, Zc(n)), Q[−1]]

RΓc(GR, X(C), (2πi)n Q) RΓc(GR, X(C), (2πi)n Q)

id

f
∼=

0

g⊗Q

∼=

id

induces by 0.4.1 a commutative diagram

detQ RΓc(GR, X(C), (2πi)n Q)[−1]
⊗Q

detQ RΓfg(X, Z(n))⊗Z Q

detQ RΓW,c(X, Z(n))⊗Z Q

detQ RΓc(GR, X(C), (2πi)n Q)[−1]
⊗Q

detQ RHom(RΓ(Xét, Zc(n)), Q)[−1]
detQ

RHom(RΓ(Xét, Zc(n)), Q)[−1]
⊕

RΓc(GR, X(C), (2πi)n Q)[−1]



∼=

∼=id⊗det(g⊗Q)
det( f )∼=

∼=

Here the top arrow is canonical, and the left arrow as well; composing
them, we obtain a canonical isomorphism

detQ(RΓW,c(X, Z(n))⊗Z Q) ∼=
detQ RΓc(GQ, X(C), (2πi)n Q)[−1]⊗Q detQ RHom(RΓ(Xét, Zc(n)), Q)[−1].

�

1.7.2. Remark. This means that for the Weil-étale cohomology with rational
coefficients, we could take as the definition

RHom(RΓ(Xét, Zc(n)), Q)[−1]⊕ RΓc(GR, X(C), (2πi)n Q)[−1],

which would simplify things a lot. However, it is crucial for us to work
with RΓW,c(X, Z(n)). In the next chapter, this will mean that we will state
conjectures about special values of ζ(X, s) up to a sign ±1 and not merely
up to a multiplier x ∈ Q×. Of course the latter would be much easier.
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1.8 Compatibilities with open-closed decompo-
sitions

We say that we have an open-closed decomposition of a scheme X if there
are given morphisms

U ↪→ X ← Z

where U ↪→ X is an inclusion of an open subscheme of X and Z → X is a
closed immersion where Z = X \U. The goal of this section is to prove the
following result.

1.8.1. Proposition. An open-closed decomposition of arithmetic schemes

U ↪→ X ← Z

induces a canonical isomorphism
(1.8.1)

detZ RΓW,c(X, Z(n)) ∼= detZ RΓW,c(U, Z(n))⊗Z detZ RΓW,c(Z, Z(n)).

Morally, an open-closed decomposition should induce a distinguished
triangle of Weil-étale complexes

(1.8.2) RΓW,c(U, Z(n))→ RΓW,c(X, Z(n))→ RΓW,c(Z, Z(n))

→ RΓW,c(U, Z(n))[1]

and the corresponding long exact sequence in cohomology

· · · → Hi
W,c(U, Z(n))→ Hi

W,c(X, Z(n))→ Hi
W,c(Z, Z(n))

→ Hi+1
W,c (U, Z(n))→ · · ·

However, with the definition of RΓW,c(−, Z(n)) that we have at the moment,
obtaining such a distinguished triangle seems to be a nontrivial task, and
even the complexes in (1.8.2) are defined only up to a non-unique isomor-
phism in the derived category.

1.8.2. Remark. The main technical issue is the following. Given a morphism
of distinguished triangles

(1.8.3)

X Y Z X[1]

X′ Y′ Z′ X′[1]
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sometimes it is tempting to consider its “cone”, i.e. complete the above
diagram to a 3× 3-diagram with distinguished rows and columns

X Y Z X[1]

X′ Y′ Z′ X′[1]

X′′ Y′′ Z′′ X′′[1]

X[1] Y[1] Z[1] X[2]

(ac)

where all squares commute, except for the bottom right square, which anti-
commutes*. Whenever it is possible, Neeman in [Nee1991] says that (1.8.3) is
middling good. Unfortunately, not every morphism of triangles is middling
good (see [Nee1991, Example 2.6]). It seems like the best result one can
obtain in general is that given a diagram with distinguished rows

X Y Z X[1]

X′ Y′ Z′ X′[1]

there exists some morphism Z → Z′ making the above diagram into a mid-
dling good morphism of triangles (this is done using the axiom (TR4); see
e.g. [BBD1982, Proposition 1.1.11] or [May2001, Lemma 2.6]).

The reader may consult [Nee1991] for a thorough discussion of this issue.
The bottom line is that we should be careful and never expect an arbitrary
morphism of distinguished triangles to be completed to a 3× 3-diagram.

*The anti-commutativity comes from the following sign issue. The rotation axiom (TR2)

says that X u−→ Y v−→ Z w−→ X[1] is distinguished if and only if Y v−→ Z w−→ X[1]
−u[1]−−−→ Y[1] is

distinguished. So for a distinguished triangle X u−→ Y v−→ Z w−→ X[1], its full rotation by 1 is

not X[1]
u[1]−−→ Y[1]

v[1]−−→ Z[1]
w[1]−−→ X[2] but rather X[1]

−u[1]−−−→ Y[1]
−v[1]−−−→ Z[1]

−w[1]−−−→ X[2]. The

latter is isomorphic to, say, X[1]
u[1]−−→ Y[1]

v[1]−−→ Z[1]
−w[1]−−−→ X[2], so we just have to put a minus

sign somewhere. The usual convention is that in the 3× 3-diagram, the bottom right square
anti-commutes.
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RΓfg(X, Z(n)) and open-closed decompositions

For an open-closed decomposition U ↪→ X ← Z, the cohomology of Zc(n)
gives a distinguished triangle

RΓ(Zét, Zc(n))→ RΓ(Xét, Zc(n))→ RΓ(Uét, Zc(n))→ RΓ(Zét, Zc(n))[1]

(see 0.11.1). Applying to it RHom(−, Q[−2]), we obtain a distinguished
triangle

(1.8.4) RHom(RΓ(Uét, Zc(n)), Q[−2])→ RHom(RΓ(Xét, Zc(n)), Q[−2])

→ RHom(RΓ(Zét, Zc(n)), Q[−2])→ RHom(RΓ(Uét, Zc(n)), Q[−1])

Similarly, for étale cohomology with compact support, we have a distin-
guished triangle
(1.8.5)

RΓc(Uét, Z(n))→ RΓc(Xét, Z(n))→ RΓc(Zét, Z(n))→ RΓc(Uét, Z(n))[1]

Then one can to check that (αU,n, αX,n, αZ,n) give a morphism of triangles
(1.8.4) and (1.8.5).

1.8.3. Lemma. We have the following commutative diagram in the derived cate-
gory:

(1.8.6)

RHom(RΓ(Uét, Zc(n)), Q[−2]) RΓc(Uét, Z(n))

RHom(RΓ(Xét, Zc(n)), Q[−2]) RΓc(Xét, Z(n))

RHom(RΓ(Zét, Zc(n)), Q[−2]) RΓc(Zét, Z(n))

RHom(RΓ(Uét, Zc(n)), Q[−1]) RΓc(Uét, Z(n))[1]

αU,n

αX,n

αZ,n

αU,n [1]

Now in the diagram (1.8.6) we may pick a cone of each arrow αU,n, αX,n,
αZ,n, which is by definition RΓfg(U, Z(n)), RΓfg(X, Z(n)), RΓfg(Z, Z(n)) re-
spectively. According to 1.5.5, each of these is defined up to a unique iso-



Chapter 1. Weil-étale complexes 99

morphism in the derived category.

[RΓ(Uét, Zc(n)), Q[−2]] RΓc(Uét, Z(n)) RΓfg(U, Z(n)) [RΓ(Uét, Zc(n)), Q[−1]]

[RΓ(Xét, Zc(n)), Q[−2]] RΓc(Xét, Z(n)) RΓfg(X, Z(n)) [RΓ(Xét, Zc(n)), Q[−1]]

[RΓ(Zét, Zc(n)), Q[−2]] RΓc(Zét, Z(n)) RΓfg(Z, Z(n)) [RΓ(Zét, Zc(n)), Q[−1]]

[RΓ(Uét, Zc(n)), Q[−1]] RΓc(Uét, Z(n))[1] RΓfg(U, Z(n))[1] [RΓ(Uét, Zc(n)), Q]

αU,n

αX,n

αZ,n

For the above diagram, by the axiom (TR3), there are morphisms

RΓfg(U, Z(n))→ RΓfg(X, Z(n)),

RΓfg(X, Z(n))→ RΓfg(Z, Z(n)),

RΓfg(Z, Z(n))→ RΓfg(U, Z(n))[1]

making everything commute. According to 0.3.6, these arrows are uniquely
defined.

(1.8.7)

[RΓ(Uét, Zc(n)), Q[−2]] RΓc(Uét, Z(n)) RΓfg(U, Z(n)) [RΓ(Uét, Zc(n)), Q[−1]]

[RΓ(Xét, Zc(n)), Q[−2]] RΓc(Xét, Z(n)) RΓfg(X, Z(n)) [RΓ(Xét, Zc(n)), Q[−1]]

[RΓ(Zét, Zc(n)), Q[−2]] RΓc(Zét, Z(n)) RΓfg(Z, Z(n)) [RΓ(Zét, Zc(n)), Q[−1]]

[RΓ(Uét, Zc(n)), Q[−1]] RΓc(Uét, Z(n))[1] RΓfg(U, Z(n))[1] [RΓ(Uét, Zc(n)), Q]

αU,n

(a) ∃!
αX,n

(b) ∃!
αZ,n

(c) ∃!

Obtained this way, the third column
(1.8.8)

RΓfg(U, Z(n))→ RΓfg(X, Z(n))→ RΓfg(Z, Z(n))→ RΓfg(U, Z(n))[1]

is uniquely defined, but a priori it is not a distinguished triangle.

1.8.4. At least in the case X(R) = ∅, as we already observed in 1.5.2,

RHom(RΓ(Xét, Zc(n)), Q/Z[−2]) ' RΓc(Xét, Z(n)),

RΓfg(X, Z(n)) ' RHom(RΓ(Xét, Zc(n)), Z[−1]),
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and one easily sees that this actually gives us an isomorphism between (1.8.8)
and the distinguished triangle

RHom(RΓ(Uét, Zc(n)), Z[−1])→ RHom(RΓ(Xét, Zc(n)), Z[−1])

→ RHom(RΓ(Zét, Zc(n)), Z[−1])→ RHom(RΓ(Uét, Zc(n)), Z).

In particular, (1.8.8) is distinguished.

1.8.5. In general, as we noted in 1.5.6, tensoring the diagram with Q and
Z/mZ, gives us isomorphisms

RΓfg(U, Z(n))⊗Q RHom(RΓ(Uét, Zc(n)), Q[−1])

RΓfg(X, Z(n))⊗Q RHom(RΓ(Xét, Zc(n)), Q[−1])

RΓfg(Z, Z(n))⊗Q RHom(RΓ(Zét, Zc(n)), Q[−1])

RΓfg(U, Z(n))⊗Q[1] RHom(RΓ(Uét, Zc(n)), Q)

∼=

∼=

∼=

∼=

and
RΓc(Uét, Z/m(n)) RΓfg(U, Z(n))⊗L Z/m

RΓc(Xét, Z/m(n)) RΓfg(X, Z(n))⊗L Z/m

RΓc(Zét, Z/m(n)) RΓfg(Z, Z(n))⊗L Z/m

RΓc(Uét, Z/m(n))[1] RΓfg(U, Z(n))⊗L Z/m[1]

∼=

∼=

∼=

∼=

This means that the triangles

(1.8.9) RΓfg(U, Z(n))⊗Q→ RΓfg(X, Z(n))⊗Q

→ RΓfg(Z, Z(n))⊗Q→ RΓfg(U, Z(n))⊗Q[1]

and

(1.8.10) RΓfg(U, Z(n))⊗L Z/m→ RΓfg(X, Z(n))⊗L Z/m

→ RΓfg(Z, Z(n))⊗L Z/m→ RΓfg(U, Z(n))⊗L Z/m[1]

are distinguished.
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1.8.6. Let us make use of (1.8.10). For each prime p we may consider the
“derived p-adic completions”

RΓfg(−, Z(n))∧p := R lim←−
k
(RΓfg(−, Z(n))⊗L Z/pkZ),

as discussed in [BS2013] and [Stacks, Tag 091N]. This will give us a distin-
guished triangle

RΓfg(U, Z(n))∧p → RΓfg(X, Z(n))∧p → RΓfg(Z, Z(n))∧p → RΓfg(U, Z(n))∧p [1]

It induces a long exact sequence in cohomology, which thanks to [Stacks,
0A06] and flatness of Zp may be identified with

...
...

Hi(RΓfg(U, Z(n))∧p ) Hi
fg(U, Z(n))⊗Zp

Hi(RΓfg(X, Z(n))∧p ) Hi
fg(X, Z(n))⊗Zp

Hi(RΓfg(Z, Z(n))∧p ) Hi
fg(Z, Z(n))⊗Zp

Hi+1(RΓfg(U, Z(n))∧p ) Hi+1
fg (U, Z(n))⊗Zp

...
...

∼=

∼=

∼=

∼=

Now the exactness of

· · · → Hi
fg(U, Z(n))⊗Zp → Hi

fg(X, Z(n))⊗Zp → Hi
fg(Z, Z(n))⊗Zp

→ Hi+1
fg (U, Z(n))⊗Zp → · · ·

for each prime p implies that the sequence

· · · → Hi
fg(U, Z(n))→ Hi

fg(X, Z(n))→ Hi
fg(Z, Z(n))→ Hi+1

fg (U, Z(n))→ · · ·

is exact as well. This uses the fact that the groups Hi
fg(−, Z(n)) are finitely

generated and Zp is flat.
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Indeed, given a morphism of finitely generated abelian groups f : A→ B,
one sees that f is an isomorphism if and only if f ⊗Zp : A⊗Zp → B⊗Zp
is an isomorphism for all p. Now a complex

(C•, f •) : · · · → Ci−1 f i−1

−−→ Ci f i

−→ Ci+1 → · · ·

is acyclic if and only if for each i in the diagram

im f i−1 ker f i

Ci−1 Ci Ci+1

coker f i−1 im f i

∃!

f i−1 f i

∃!

im f i−1 � ker f i is an isomorphism. Therefore, by the above and flatness
of Zp, if C• are finitely generated groups, (C•, f •) is acyclic if and only if
(C• ⊗Zp, f • ⊗Zp) is acyclic for all p.

I suspect that the triangle (1.8.8) is actually distinguished, but the above
argument at least settles that (1.8.8) induces a long exact sequence in coho-
mology, which will be enough for our purposes.

1.8.7. Remark. The argument from 1.8.6 may seem a bit too twisted, but
there is a reason for that. We have to apply first −⊗L Z/pkZ, and then take
the limit R lim←−k

because

RHom(RΓ((−)ét, Zc(n)), Q[−2])⊗L Z/mZ ' 0,

while the complex

RHom(RΓ((−)ét, Zc(n)), Q[−2])⊗Z Zp ' RHom(RΓ((−)ét, Zc(n)), Qp[−2])

is not trivial. Intuitively, the whole argument comes from faithful flatness of
Ẑ := ∏p Zp. We still looked at each p separately to make use of the derived
completion R lim←−k

(−⊗L Z/pkZ), which behaves nicely.

RΓW,c(X, Z(n)) and open-closed decompositions

Recall now that the Weil-étale complex RΓW,c(X, Z(n)) was defined only up
to a non-unique isomorphism in the derived category by the distinguished
triangle

RΓW,c(X, Z(n))→ RΓfg(X, Z(n))
i∗∞−→ RΓc(GR, X(C), (2πi)n Z)

→ RΓW,c(X, Z(n))[1]
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where the morphism i∗∞ is uniquely defined by the commutative triangle

RΓc(Xét, Z(n))

RΓfg(X, Z(n)) RΓc(GR, X(C), (2πi)n Z)

u∗∞

i∗∞
∃!

(see 1.6.1).

1.8.8. Lemma. For an open-closed decomposition U ↪→ X ← Z the morphism u∗∞
gives a morphism between the corresponding distinguished triangles of cohomology
with compact support:

(1.8.11)

RΓc(Uét, Z(n)) RΓc(GR, U(C), (2πi)n Z)

RΓc(Xét, Z(n)) RΓc(GR, X(C), (2πi)n Z)

RΓc(Zét, Z(n)) RΓc(GR, Z(C), (2πi)n Z)

RΓc(Uét, Z(n))[1] RΓc(GR, U(C), (2πi)n Z)[1]

u∗∞,U

(d)

u∗∞,X

(e)

u∗∞,Z

(f)

u∗∞,U [1]

Proof. Follows from the definition of u∗∞ and the fact that α∗ is compatible
with the triangles associated to open-closed decompositions, as we verified
in 0.8.4.

�

We now may assemble everything into the commutative prism displayed
on the next page.
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(1
.8

.1
2)

R
Γ c
(U

ét
,Z

(n
))

R
Γ W

,c
(U

,Z
(n
))

R
Γ f

g(
U

,Z
(n
))

R
Γ c
(G

R
,U

(C
),
(2

π
i)

n
Z
)

R
Γ W

,c
(U

,Z
(n
))
[1
]

R
Γ c
(X

ét
,Z

(n
))

R
Γ W

,c
(X

,Z
(n
))

R
Γ f

g(
X

,Z
(n
))

R
Γ c
(G

R
,X

(C
),
(2

π
i)

n
Z
)

R
Γ W

,c
(X

,Z
(n
))
[1
]

R
Γ c
(Z

ét
,Z

(n
))

R
Γ W

,c
(Z

,Z
(n
))

R
Γ f

g(
Z

,Z
(n
))

R
Γ c
(G

R
,Z

(C
),
(2

π
i)

n
Z
)

R
Γ W

,c
(Z

,Z
(n
))
[1
]

R
Γ c
(U

ét
,Z

(n
))
[1
]

R
Γ W

,c
(U

,Z
(n
))
[1
]

R
Γ f

g(
U

,Z
(n
))
[1
]

R
Γ c
(G

R
,U

(C
),
(2

π
i)

n
Z
)[

1]
R

Γ W
,c
(U

,Z
(n
))
[2
]

u∗ ∞
,U

i∗ ∞
,U ∃!

(a
)

u∗ ∞
,X

(d
)

i∗ ∞
,X ∃!

(b
)

u∗ ∞
,Z

(e
)

i∗ ∞
,Z ∃!

(c
)

u∗ ∞
,U
[1
]

(f
)

i∗ ∞
,U
[1
]

∃!
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Here the squares (a), (b), (c) are the ones that appear in the diagram
(1.8.7); (d), (e), (f) are the ones that appear in (1.8.11); the arrows i∗∞,U , i∗∞,X , i∗∞,Z
are the unique morphisms in the derived category that make the triangles
commute.

Morally, we should have a distinguished triangle of perfect complexes

RΓW,c(U, Z(n))→ RΓW,c(X, Z(n))→ RΓW,c(Z, Z(n))→ RΓW,c(U, Z(n))[1]

which would give us then a canonical isomorphism of determinants (1.8.1).
However, the diagram (1.8.12) a priori does not give a distinguished triangle
for Weil-étale cohomology, it gives only a sequence of morphisms that is
not necessarily distinguished (again, recall the discussion in 1.8.2). Let us
instead give an ad hoc workaround on the level of determinants.

1.8.9. First let us assume for simplicity that X(R) = ∅. Then the complexes

RΓfg(U, Z(n)), RΓfg(X, Z(n)), RΓfg(Z, Z(n)),

RΓc(GR, U(C), (2πi)n Z), RΓc(GR, X(C), (2πi)n Z), RΓc(GR, Z(C), (2πi)n Z)

are perfect (they do not have 2-torsion in arbitrarily high degrees), and
it makes sense to talk about their determinants. From the corresponding
columns in (1.8.12) we obtain canonical isomorphisms

detZ RΓfg(X, Z(n)) ∼= detZ RΓfg(U, Z(n))⊗Z detZ RΓfg(Z, Z(n)),

detZ RΓc(GR, X(C), (2πi)n Z) ∼=
detZ RΓc(GR, U(C), (2πi)n Z)⊗Z detZ RΓc(GR, Z(C), (2πi)n Z);

and the rows give us isomorphisms

detZ RΓW,c(U, Z(n)) ∼=
detZ RΓfg(U, Z(n))⊗Z (detZ RΓc(GR, U(C), (2πi)n Z))−1,

detZ RΓW,c(X, Z(n)) ∼=
detZ RΓfg(X, Z(n))⊗Z (detZ RΓc(GR, X(C), (2πi)n Z))−1,

detZ RΓW,c(Z, Z(n)) ∼=
detZ RΓfg(Z, Z(n))⊗Z (detZ RΓc(GR, Z(C), (2πi)n Z))−1.

Combining all the above, we obtain the desired isomorphism (1.8.1).
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1.8.10. Now let us treat the general case, when possibly X(R) 6= ∅. The
above argument does not quite make sense, because the involved complexes
are not bounded above. We consider the morphism of long exact sequences
in cohomology given by H•(i∗∞). We know that Hi(i∗∞) is an isomorphism for
i � 0, so truncating the long exact sequences at a sufficiently large degree
m� 0, we obtain

(1.8.13)

...
...

Hi
fg(U, Z(n)) Hi

c(GR, U(C), (2πi)n Z)

Hi
fg(X, Z(n)) Hi

c(GR, X(C), (2πi)n Z)

Hi
fg(Z, Z(n)) Hi

c(GR, Z(C), (2πi)n Z)

Hi+1
fg (U, Z(n)) Hi+1

c (GR, U(C), (2πi)n Z)

...
...

Hm
fg (U, Z(n)) Hm

c (GR, U(C), (2πi)n Z)

Hm
fg (X, Z(n)) Hm

c (GR, X(C), (2πi)n Z)

Hm
fg (Z, Z(n)) Hm

c (GR, Z(C), (2πi)n Z)

coker δm
fg coker δm

c

0 0

δi
fg δi

c

∼=

∼=

∼=

δm
fg δm

c
∼=

Note that the horizontal arrows that are isomorphisms induce canonical
isomorphisms between the determinants. In particular, there is a canonical
isomorphism

detZ coker δm
fg
∼= detZ coker δm

c ,

and hence a canonical isomorphism

(1.8.14) detZ coker δm
fg ⊗Z (detZ coker δm

c )
−1 ∼= Z.
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Now the exact columns of (1.8.13) give us canonical isomorphisms

(1.8.15)
⊗
i≤m

detZ Hi
fg(X, Z(n))(−1)i ∼=

⊗
i≤m

detZ Hi
fg(U, Z(n))(−1)i ⊗Z

⊗
i≤m

detZ Hi
fg(Z, Z(n))(−1)i ⊗Z detZ coker δm

fg

and

(1.8.16)
⊗
i≤m

detZ Hi
c(GR, X(C), (2πi)n Z)(−1)i ∼=

⊗
i≤m

detZ Hi
c(GR, U(C), (2πi)n Z)(−1)i ⊗Z

⊗
i≤m

detZ Hi
c(GR, Z(C), (2πi)n Z)(−1)i ⊗Z detZ coker δm

c .

For fixed distinguished rows as in (1.8.12), we have canonical isomor-
phisms

detZ RΓW,c(X, Z(n)) ∼=
⊗
i≤m

detZ Hi
W,c(X, Z(n))(−1)i

∼=
⊗
i≤m

detZ Hi
fg(X, Z(n))(−1)i ⊗Z

⊗
i≤m

detZ Hi
c(GR, X(C), (2πi)n Z)(−1)i+1

,

and similarly for U and Z in place of X. Combining these with (1.8.15),
(1.8.16), and (1.8.14), gives us a canonical isomorphism (1.8.1).

1.8.11. Remark. A cheap way to get around the above technical problems is
to consider the Weil-étale cohomology with coefficients in Z[1/2], i.e. tensor
the distinguished triangle defining RΓW,c(X, Z(n)) with the flat Z-module
Z[1/2]. Then the resulting distinguished triangle

RΓW,c(X, Z(n))⊗Z Z[1/2]→ RΓfg(U, Z(n))⊗Z Z[1/2]

→ RΓc(GR, Z(C), (2πi)n Z[1/2])→ RΓW,c(X, Z(n))⊗Z Z[1/2][1]

consists of perfect complexes, as we just killed the 2-torsion. But then in the
next chapter, we would be able to state the special value conjecture only up
to some power of 2.





Chapter 2

Conjecture about zeta-values

The regulator morphism is introduced in §2.2, using the constructions from
[KLMS2006]. It is more naturally defined with its target in Deligne homol-
ogy, and all the necessary preliminaries about it are included in §2.1. Then in
everything is put together to formulate the conjectural relation of Weil-étale
complexes RΓW,c(X, Z(n)) to the special values ζ∗X(n). Finally, it is verified
in §2.4 that the conjecture is compatible with disjoint unions, open-closed
decompositions and taking the affine bundle Ar

X → X.

2.1 Deligne cohomology and homology

Now we are going review the definitions of Deligne cohomology and ho-
mology. These were introduced in Beı̆linson’s seminal paper [Bei1984], so
they are also known in the literature as “Deligne–Beı̆linson (co)homology”,
but I will use the term “Deligne (co)homology” for brevity. For the technical
details, the reader may consult [EV1988] and [Jan1988].

For this section, X denotes a smooth complex algebraic variety over C,
and Z ⊂ A ⊆ R denotes a subring of the ring of real numbers (eventually
we will be interested in A = Z and R). For a parameter k ∈ Z one can
define (co)homology groups

Hi
D(X , A(k)), HD

i (X , A(k)).

Here k is a “twist” that may be any integer. In fact, for certain values of k the
above groups have simpler description, and it will be our case.

We are going to assume that X is connected, of dimension dC. A good

109
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compactification of X is given by

(2.1.1) X X D
j

where j : X ↪→ X is an embedding into a proper smooth algebraic variety
X , and the complement D := X \ X is a normal crossing divisor (meaning
that locally in the analytic topology, D has smooth components intersecting
transversally). Such a good compactification always exists (this follows from
Hironaka’s resolution of singularities), and we fix one.

Deligne cohomology

We denote by Ω•X (C) the de Rham complex of holomorphic differential forms
on X (C):

0→ OX (C) → Ω1
X (C) → Ω2

X (C) → · · · → ΩdC

X (C)
→ 0

Further, let Ω•X (C)
(log D) be the de Rham complex of meromorphic differ-

ential forms on X (C), holomorphic on X (C), with at most logarithmic poles
along D(C). We consider the descending filtration of Ω•X (C)

(log D) by sub-
complexes

Ω>k
X (C)

(log D) : 0→ · · · → 0→ Ωk
X (C)

(log D)→ Ωk+1
X (C)

(log D)

→ · · · → ΩdC

X (C)
(log D)→ 0

Let us fix some conventions related to the cones of complexes. If u : A• →
B• is a morphism of complexes, the corresponding cone complex is given by

Cone(u) := A•[1]⊕ B•,

together with the differentials

di : Ai+1 ⊕ Bi → Ai+2 ⊕ Bi+1,

(a, b) 7→ (−di+1
A (a), u(a) + di

B(b)).

This gives us a short exact sequence of complexes

B•� Cone(u)� A•[1]

and the corresponding distinguished triangle in the derived category

A• → B• → Cone(u)→ A•[1]
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2.1.1. Definition. Let A be a subring of R. For k ∈ Z we denote

A(k) := (2πi)k A ⊂ C.

This is a GR-module, and we will also denote by A(k) the corresponding
(GR-equivariant) sheaf on X (C). For a fixed good compactification (2.1.1),
the corresponding Deligne–Beı̆linson complex is the complex of sheaves on
X (C) given by

A(k)D-Á,(X ,X ) := Cone
(

Rj∗A(k)⊕Ω>k
X (C)

(log D)
ε−ι−−→ Rj∗Ω•X (C)

)
[−1],

where
ε : Rj∗A(k)→ Rj∗Ω•X (C)

is induced by the canonical morphism of sheaves A(k)→ OX (C) and

ι : Ω>k
X (C)

(log D)→ Rj∗Ω•X (C)

is induced by a natural inclusion

Ω•X (C)
(log D)

'−→ j∗Ω•X (C) = Rj∗Ω•X (C),

which is a quasi-isomorphism of filtered complexes (see [Del1971, §3.1]).
The corresponding Deligne cohomology groups are given by the hyperco-
homology of A(k)D-Á,(X ,X ):

Hi
D(X , A(k)) := Hi(RΓ(X (C), A(k)D-Á,(X ,X ))).

The distinguished triangle of sheaves on X (C)

A(k)D-Á,(X ,X ) → Rj∗A(k)⊕Ω>k
X (C)

(log D)
ε−ι−−→ Rj∗Ω•X (C) → A(k)D-Á,(X ,X )[1]

induces the (hyper)cohomology long exact sequence

(2.1.2)

· · · → Hi
D(X , A(k))→ Hi(X (C), A(k))⊕ Fk Hi

dR(X (C))
ε−ι−−→ Hi

dR(X (C))

→ Hi+1
D (X , A(k))→ · · ·

where

Fk Hi
dR(X (C)) :=

im
(

Hi(X (C), Ω>k
X (C)

(log D)) ↪→Hi(X (C), Ω•X (C)
(log D)) ∼= Hi

dR(X (C))
)
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denotes the Hodge filtration on the de Rham cohomology of X (C) (for de-
tails about this, see [Del1971] and [Voi2002, Chapter 8]). Using the above
distinguished triangle / long exact sequence, one may show that the groups
Hi

D(X , A(k)) in fact do not depend on the choice of a good compactifica-
tion j : X ↪→ X (see [EV1988, Lemma 2.8]). For this we will write simply
“A(k)D-Á” instead of “A(k)D-Á,(X ,X )” if X is clear from the context and a
specific good compactification does not matter.

Eventually we will be interested in a very special case when Deligne
cohomology is particularly easy to describe.

2.1.2. Lemma. For k > dC and A = R we have a quasi-isomorphism of complexes

RΓ(X (C), R(k)D-Á) ' RΓ(X (C), (2πi)k−1 R)[−1].

Proof. We have Ω>k
X (C)

(log D) = 0 for k > dC, so that in this case

A(k)D-Á = Cone(Rj∗A(k) ε−→ Rj∗Ω•X (C))[−1] ∼= Rj∗ Cone(A(k) ε−→ Ω•X (C))[−1],

and we easily see that the complex of sheaves Cone(A(k) ε−→ Ω•X (C))[−1] on
X (C) is given by

[A(k)→ Ω•X (C)[−1]] :=0→ A(k)
0
→ OX (C)

1
→ Ω1

X (C)
2

→ Ω2
X (C)
3

→ · · · → ΩdC

X (C)
dC+1

→ 0


—that is, we have the constant sheaf A(k) := (2πi)k A in degree 0, followed
by the whole holomorphic de Rham complex on X (C), shifted by one posi-
tion. By the Poincaré lemma, we have a quasi-isomorphism of complexes of
sheaves on X (C)

(2.1.3) C
'−→ Ω•X (C),

and we also have a short exact sequence of GR-modules

(2.1.4) (2πi)k R� C� (2πi)k−1 R.

Now (2.1.3) and (2.1.4) give us a quasi-isomorphism of complexes of
sheaves on X (C)

[R(k)→ Ω•X (C)[−1]] ' (2πi)k−1 R[−1].
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Putting all this together, we have

RΓ(X (C), R(k)D-Á) ' RΓ(X (C), Rj∗[(2πi)k R→ Ω•X (C)[−1]])

' RΓ(X (C), Rj∗(2πi)k−1 R)[−1]

' RΓ(X (C), (2πi)k−1 R)[−1].

�

Deligne homology

Deligne homology HD
• (X , A(k)) is constructed in such a way that there is an

isomorphism with Deligne cohomology

Hi
D(X , A(k))

∼=−→ HD
2dC−i(X , A(dC − k)).

To do this, Jannsen in his article [Jan1988] replaces the singular cohomol-
ogy H•(X (C), A(k)) with Borel–Moore homology HBM

• (X (C), A(k)), and de
Rham cohomology H•dR(X (C)) with the corresponding object, which he calls
“de Rham homology”. It would be probably more correct to call HD

• (X , A(k))
“Deligne–Borel–Moore homology”.

We would like to compare homological and cohomological complexes,
and for this the following convention will be used. To pass from a homolog-
ical complex C• to a cohomological complex ′C•, we set

′Ci := C−i,

and the differentials are given by

(′Ci di
−→ ′Ci+1) := (C−i

(−1)i+1 d−−−−−→ C−i−1)

(note the alternating signs).
As before, we fix a good compactification (2.1.1). Here are the ingredients

for the definition of Deligne homology (we refer to [Jan1988] for details).

1. We consider the quotient complex

′C•(X , D, A(k)) := ′C•(X (C), A(k))/′C•D(X (C), A(k)),

where C•(X (C), A(k)) denotes the complex of singular C∞-chains on
X (C) with coefficients in A(k) := (2πi)k A, and CD

• (X (C), A(k)) is the
subcomplex of chains with support on D(C). We put ′C• instead of C•
to pass to cohomological complexes.
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2. We denote by Ωp,q
X (C)∞ the sheaf of C∞-(p, q)-forms on X (C) (sometimes

also denoted by A p,q
X (C)

).

3. We denote by ′Ωp,q
X (C)∞ the sheaf of distributions over Ω−p,−q

X (C)∞ . That is,
for an open subset U ⊆ X we have

′Ωp,q
X (C)∞(U) := {continuous linear functionals on Γc(U, Ω−p,−q

X (C)∞)}.

4. Both Ω•,•X (C)∞ and ′Ω•,•X (C)∞ naturally form double complexes. We denote
by Ω•X (C)∞ and ′Ω•X (C)∞ the total complexes associated to Ω•,•X (C)∞ and
′Ω•,•X (C)∞ respectively:

Ωn
X (C)∞ :=

⊕
p+q=n

Ωp,q
X (C)∞ , ′Ωn

X (C)∞ :=
⊕

p+q=n

′Ωp,q
X (C)∞ .

5. As before, we consider the corresponding logarithmic de Rham com-
plexes and their filtrations:

Ω•X (C)∞(log D) := Ω•X (C)
(log D)⊗Ω•X (C)

Ω•X (C)∞ ,

Ω>k
X (C)∞(log D) := Ω>k

X (C)
(log D)⊗Ω•X (C)

Ω•X (C)∞ ,

and similarly for ′Ω instead of Ω.

2.1.3. Definition. In the above setting, for a fixed good compactification
(2.1.1), consider the complex of abelian groups

′C•D(X , D, A(k)) :=

Cone


′C•(X , D, A(k))

⊕
Γ(X (C), ′Ω>k

X (C)∞(log D))

ε−ι−−→ Γ(X (C), ′Ω•X (C)∞(log D))

 [−1],

where ι is induced by the inclusion ′Ω>k
X (C)∞(log D) ⊂ ′Ω•X (C)∞(log D), and

ε is given by the integration over chains (see [Jan1988] for details). The
corresponding Deligne homology groups are given by

′Hi
D(X , A(k)) := Hi(′C•D(X , D, A(k))).

To understand the above definition, we should examine what each com-
plex computes.
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1. According to [Jan1988, Lemma 1.11], the complex ′C•(X , D, A(k)) cal-
culates Borel–Moore homology of X (C) with coefficients in A(k): there
are canonical isomorphisms

Hi(′C•(X , D, A(k))) ∼= ′Hi
BM(X (C), A(k)) = HBM

−i (X (C), A(−k))

(see loc. cit. and [Ver1976, §1] for details on Borel–Moore homology).

2. According to [Jan1988, Corollary 1.13], there are quasi-isomorphisms
of fine sheaves

Rj∗ ′Ω•X (C)∞ = j∗ ′Ω•X (C)∞
'←− j∗Ω•X (C)∞ [2dC]

'←− Ω•X (C)∞(log D)[2dC]

'−→ ′Ω•X (C)∞(log D)

and then Jannsen defines

′Hi
dR(X (C)) := Hi(Γ(X (C), ′Ω•X (C)∞)) ∼= Hi(Γ(X (C), ′Ω•X (C)∞(log D)))

to be the de Rham homology of X (C) (this is by no means standard
terminology).

3. De Rham homology carries a Hodge filtration defined by

Fk ′Hi
dR(X (C)) :=

im
(

Hi(Γ(X (C), ′Ω>k
X (C)∞(log D))) ↪→ Hi(Γ(X (C), ′Ω•X (C)∞(log D)))

∼= ′Hi
dR(X (C))

)
(the fact that this map is injective is in a sense dual to the corresponding
fact for the Hodge filtration on de Rham cohomology).

The above considerations and the definition of Deligne homology give us
the long exact sequence

(2.1.5) · · · → ′Hi
D(X , A(k))→ ′Hi

BM(X (C), A(k))⊕ Fk ′Hi
dR(X (C))

ε−ι−−→ ′Hi
dR(X (C))→ ′Hi+1

D (X , A(k))→ · · ·

from which one may see that the groups ′Hi
D(X , A(k)) do not depend on

the choice of a good compactification X ↪→ X (again, see [Jan1988, Corollary
1.13]).
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Twisted Poincaré duality

According to [Jan1988, Theorem 1.15], Deligne cohomology and homology
are related through the “twisted Poincaré duality”*

(2.1.6) H2dC+i
D (X , A(dC + k))

∼=−→ ′Hi
D(X , A(k)).

In fact, Jannsen establishes a quasi-isomorphism of complexes of abelian
groups

(2.1.7) RΓ(X (C), A(k + dC)D-Á,(X ,X )[2dC]) ' ′C•D(X , D, A(k)),

where the left hand side computes H2dC+i
D (X , A(dC + k)) (definition 2.1.1)

and the right hand side computes ′Hi
D(X , A(k)) (definition 2.1.3). The dual-

ity is best understood if we use the homological numbering

HD
i (X , A(k)) := ′H−i

D (X , A(−k))

(sic! the sign of the twist gets flipped as well), and also look at the isomor-
phism of the long exact sequences (2.1.2) and (2.1.5) (see [Jan1988, Remark
1.16 b)]). The duality takes the familiar form

Hi
D(X , A(k))

∼=−→ HD
2dC−i(X , A(dC − k)).

...
...

Hi
D (X , A(k)) HD

2dC−i(X , A(dC − k))

Hi(X (C), A(k))⊕ Fk Hi
dR(X (C)) HBM

2dC−i(X (C), A(dC − k))⊕ FdC−k HdR
2dC−i(X (C))

Hi
dR(X (C)) HdR

2dC−i(X (C))

...
...

∼=

ε−ι

∼=

ε−ι

∼=

As in 2.1.2, eventually we will be interested in a very special case where
the Hodge filtration part does not enter.

*The word “twisted” means that the isomorphism takes into account the twist k ∈ Z. How-
ever, this duality is also twisted in the sense that, unlike the usual Poincaré duality, it does not
come from some nondegenerate pairing.
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2.1.4. Lemma. For k > 0 and A = R we have a quasi-isomorphism of complexes

′C•D(X , D, A(k)) ' RHom(RΓc(X (C), (2πi)1−k R), R)[−1]

=: RΓBM(X (C), (2πi)1−k R)[−1].

Proof. The right hand side calculates Bore–Moore homology, which is by
definition dual to cohomology with compact support. In case k > 0 we have
′Ω≥k

X (C)∞(log D) = 0, and the Deligne homology complex is defined by

′C•D(X , D, R(k))

:= Cone
(
′C•(X , D, (2πi)k R)

ε−→ Γ(X (C), ′Ω•X (C)∞(log D))
)
[−1]

Probably the correct way to obtain the result would be to analyze this di-
rectly and argue as in 2.1.2. There the map ε was essentially the comparison
between singular cohomology and de Rham cohomology of X (C), and in
the present situation there should be a similar comparison between Borel–
Moore homology and cohomology of ′Ω•, which is dual to the de Rham
cohomology with compact support.

As a shortcut, let us assume that X (C) is connected of dimension 2dC.
The quasi-isomorphism (2.1.7) together with the quasi-isomorphism from
2.1.2 and the Poincaré duality (in the correct version that takes into account
the twists) give us

′C•D(X , D, R(k)) ' RΓ(X (C), (2πi)dC−(1−k) R)[2dC − 1]

' RHom(RΓc(X (C), (2πi)1−k R), R)[−1].

If X is not connected, the above may be done separately for the connected
components. �

I still note that the above argument does the trick and uses only the
arguments from Jannsen’s paper, but it is morally wrong: Jannsen derives
(2.1.7) from the Poincaré duality, and in the above proof we applied the
duality again.

2.2 The regulator morphism

Now as always in this text, X denotes a scheme over Spec Z; separated of
finite type. At this point we also assume that XC is smooth, quasi-projective.
Let us also assume for the moment that X is of pure dimension d, so that

dC := dimC XC = d− 1.
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However, later on we will see that this assumption is superficial. We fix a
good compactification

XC XC D
j

The regulators for higher Chow groups CHn(X, p) := H2n−p(Xét, Z(n))
were introduced by Bloch in [Blo1986b] as morphisms

H•(Xét, Z(n))→ H•(XC, Z(n))→ H•D(XC, R(n)).

Here we are going to use the construction from [KLMS2006] which is given
on the level of complexes, not merely separate cohomology groups. The
reader is advised to review §0.11 for the definitions of different cycle com-
plexes zr(−,−•), zr(−,−•), zr

�(−,−•), which will all be used now.
The construction from [KLMS2006, §5.9] gives us a morphism of com-

plexes

zr
�,R(XC,−•)/zr−1

�,R(D,−•)→ ′C2r−2dC+•
D (XC, X, Z(r− dC)).

Here zr
�,R(−,−•) are certain subcomplexes of the cubical cycle complexes

zr
�(−,−•); I refer to [KLMS2006, §5.4] for the precise definition. According

to [KLMS2006, §5.9], there are quasi-isomorphisms

zr
�,R(XC,−•)/zr−1

�,R(D,−•) '−→ zr
�(XC,−•)/zr−1

� (D,−•) '−→ zr
�(XC,−•),

and finally, we have an isomorphism in the derived category

zr
�(XC,−•) ∼= zr(XC,−•).

All this means that in the derived category, we may treat the morphism of
Kerr, Lewis, and Müller-Stach as

(2.2.1) zr(XC,−•)→ ′C2r−2dC+•
D (XC, D, Z(r− dC)).

It gives a “regulator” in the following sense. Taking the corresponding
(−i)-th cohomology groups and using the duality (2.1.6), we obtain

AJ : CHr(XC, i)→ ′H2r−2dC−i
D (XC, Z(r− dC))

∼=←− H2r−i
D (XC, Z(r)).

According to [KLMS2006, §5.5], if XC is projective, then the composition

CHr(XC, i)
AJ−→ H2r−i

D (XC, Z(r))
πR−→ H2r−i

D (XC, R(r))

coincides with the regulator defined by Goncharov in [Gon1995].
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We consider (2.2.1) for r = d − n, where d is the dimension of X and
n < 0 as always denotes a strictly negative integer. We obtain

zd−n(XC,−•)→ ′C2−2n+•
D (XC, D, Z(1− n)),

which we may also write as

RΓ(XC,Zar, Zd−n
XC

[2n]) ∼= zd−n(XC,−•) [2n]→ ′C2+•
D (XC, D, Z(1− n))

(the first isomorphism is 0.11.9). We consider now the composition

RΓ(Xét, Zc(n)) = RΓ(Xét, Zd−n
X [2n])→ RΓ(XZar, Zd−n

X [2n])

→ RΓ(XC,Zar, Zd−n
XC

[2n])→ ′C2+•
D (XC, D, Z(1− n))

πR−→ ′C2+•
D (XC, D, R(1− n))

As n < 0, the target complex may be simplified thanks to 2.1.4:

′C2+•
D (XC, D, Z(1− n)) ' RΓBM(X (C), (2πi)n R)[1]

Taking GR-invariants (all the complexes involved in the definitions of
Deligne (co)homology and all statements about them are GR-equivariant)
we obtain a morphism

(2.2.2) Reg : RΓ(Xét, Zc(n))→ RΓBM(GR, X(C), (2πi)n R)[1].

2.2.1. Remark. This suggests that in our situation n < 0 the regulator prob-
ably has en easier definition which could work under weaker assumptions
on XC.

In what follows, we are going to use the R-dual to (2.2.2):

(2.2.3) Reg∨ : RΓc(GR, X(C), (2πi)n R)[−1]→ RHom(RΓ(Xét, Zc(n)), R).

Compatibility of the regulator with basic operations on schemes

2.2.2. Lemma (Compatibility of the regulator with open-closed decompo-
sitions). Suppose that we have an open-closed decomposition of arithmetic schemes
U ↪→ X ← Z such that UC, XC, ZC are smooth, quasi-projective varieties. Then
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the corresponding regulator morphisms yield a morphism of distinguished triangles

RΓ(Zét, Zc(n)) RΓBM(GR, Z(C), (2πi)n R)[1]

RΓ(Xét, Zc(n)) RΓBM(GR, X(C), (2πi)n R)[1]

RΓ(Uét, Zc(n)) RΓBM(GR, U(C), (2πi)n R)[1]

RΓ(Zét, Zc(n))[1] RΓBM(GR, Z(C), (2πi)n R)[2]

RegZ

RegX

RegU

RegZ [1]

Proof. This follows from the functoriality of the construction of Kerr, Lewis,
and Müller-Stach with respect to proper and flat morphisms, as discussed in
[Wei2017, §3]. �

2.2.3. Lemma (Compatibility of the regulator with affine bundles). For an
arithmetic scheme X such that XC is smooth and quasi-projective, consider the affine
space of dimension r over X and the corresponding set of complex points:

Ar
X Ar Ar

X(C) Ar(C)

X Spec Z X(C) ∗

p p

There is a commutative diagram

RΓc(GR, Ar
X(C), (2πi)n R)[−1] RΓc(GR, X(C), (2πi)n−r R)[−2r− 1]

RHom(RΓ(Ar
X,ét, Zc(n)), R) RHom(RΓ(Xét, Zc(n− r)), R)[−2r]

∼=

Reg∨
Ar

X ,n Reg∨X,n−r [−2r]

∼=

Proof. The diagram is the R-dual to

RΓBM(GR, Ar
X(C), (2πi)n Z)[1] RΓBM(GR, X(C), (2πi)n−r Z)[2r + 1]

RΓ(Ar
X,ét, Zc(n)) RΓ(Xét, Zc(n− r))[2r]

∼=

RegAr
X ,n RegX,n−r [2r]

∼=

so it will be enough to check that the latter tensored with R commutes,
which amounts to the commutativity of the following diagrams of R-vector
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spaces:

H•+1
BM (GR, Ar

X(C), (2πi)n R) H•+2r+1
BM (GR, X(C), (2πi)n−r R)

H•(Ar
X , Rc(n)) H•+2r(X, Rc(n− r))

∼=

RegAr
X ,n RegX,n−r [2r]

∼=

Now on the level of separate cohomology groups, we may use Bloch’s
construction from [Blo1986b]. Namely, after unwinding our definitions, ev-
erything amounts to checking that Bloch’s regulator is compatible with the
“homotopy isomorphisms” for the cycle complex cohomology and Deligne
cohomology:

H•D(A1 × XC, R(n)) H•D(XC, R(n))

H•(A1 × XC, R(n)) H•(XC, R(n))

∼=

Bloch’s reg. Bloch’s reg.

∼=

�

The regulator conjecture

In order to relate the regulator to our machinery, we need make the following
assumption.

2.2.4. Conjecture B(X, n). For an arithmetic scheme X and n < 0, the mor-
phism Reg∨ (the R-dual of the regulator) is an isomorphism in the derived
category.

2.2.5. Remark. This is a standard but very strong assumption. For instance,
if X is defined over a finite field, then X(C) = ∅, and the conjecture implies
that the cohomology groups Hi(Xét, Zc(n)) are torsion.

2.2.6. Theorem. Let X be an arithmetic scheme such that XC is a smooth quasi-
projective variety. Let n < 0 be a strictly negative integer for which the conjecture
B(X, n) holds. Then there exists a morphism

^ θ : RΓW,c(X, Z(n))⊗R→ RΓW,c(X, Z(n))⊗R[1]

giving a long exact sequence

· · · → Hi
W,c(X, Z(n))⊗R

^θ−−→ Hi+1
W,c (X, Z(n))⊗R

^θ−−→ Hi+2
W,c (X, Z(n))⊗R→ · · ·

i.e. turning H•W,c(X, Z(n))⊗R into an acyclic complex of finite dimensional vector
spaces.
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Proof. Recall that according to 1.7.1, we have isomorphisms

(2.2.4) RΓW,c(X, Z(n))⊗Z R ∼=
RHom(RΓ(Xét, Zc(n)), R)[−1]⊕ RΓc(GR, X(C), (2πi)n R)[−1].

Using this and the morphism Reg∨, we may define θ in the obvious way:

RΓW,c(X, Z(n))⊗R

RHom(RΓ(Xét, Zc(n)), R)[−1] ⊕ RΓc(GR, X(C), (2πi)n R)[−1]

RΓc(GR, X(C), (2πi)n R)[−1]

RHom(RΓ(Xét, Zc(n)), R)

RHom(RΓ(Xét, Zc(n)), R) ⊕ RΓc(GR, X(C), (2πi)n R)

RΓW,c(X, Z(n))⊗R[1]

∼=

Reg∨

∼=

On the level of cohomology, these morphisms give us

^ θ : Hi
W,c(X, Z(n))⊗R→ Hi+1

W,c (X, Z(n))⊗R.

If Reg∨ is a quasi-isomorphism, we obtain an exact sequence

· · · → Hi
W,c(X, Z(n))⊗R

^θ−−→ Hi+1
W,c (X, Z(n))⊗R

^θ−−→ Hi+2
W,c (X, Z(n))⊗R→ · · ·

Indeed, let us denote for brevity

A• := RHom(RΓ(Xét, Zc(n)), R)[−1],

B• := RΓc(GR, X(C), (2πi)n R)[−1].

Then Reg∨ conjecturally gives isomorphisms Hi(B•)
∼=−→ Hi+1(A•), and the

above sequence looks like
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Hi(A•) Hi+1(A•) Hi+2(A•)

· · · ⊕ ⊕ ⊕ · · ·

Hi(B•) Hi+1(B•) Hi+2(B•)

∼= ∼=

which is clearly exact. �

2.3 The conjecture C(X, n)

In the previous section we built a morphism

^ θ : RΓW,c(X, Z(n))⊗R→ RΓW,c(X, Z(n))⊗R[1]

that produces an acyclic complex of finitely generated R-vector spaces

H•W,c(X, Z(n))⊗R.

This means that there is a canonical trivialization isomorphism

(2.3.1) λ : R
∼=−→ detR H•W,c(X, Z(n))⊗R

∼=−→ detR RΓW,c(X, Z(n))⊗R

∼=−→ (detZ RΓW,c(X, Z(n)))⊗R.

Another way to get the same morphism is to go back to the definition of
^ θ and recall that it uses the splitting

(2.3.2) RHom(RΓ(Xét, Zc(n)), R[−1])⊕ RΓc(GR, X(C), (2πi)n R)[−1]
∼=−→ RΓW,c(X, Z(n))⊗R

and the quasi-isomorphism

Reg∨ : RΓc(GR, X(C), (2πi)n R)[−1] '−→ RHom(RΓ(Xét, Zc(n)), R).

These two give us an isomorphism
(2.3.3)

RΓc(GR, X(C), (2πi)n R)[−2]
⊕

RΓc(GR, X(C), (2πi)n R)[−1]

RHom(RΓ(Xét, Zc(n)), R[−1])
⊕

RΓc(GR, X(C), (2πi)n R)[−1]

RΓW,c(X, Z(n))⊗Z R

Reg∨ [−1]⊕id
∼=

(2.3.2)∼=
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which after taking the determinants gives us a canonical isomorphism

(2.3.4)

λ : R
∼=−→ (detR RΓc(GR, X(C), (2πi)n R))⊗R (detR RΓc(GR, X(C), (2πi)n R))−1

∼=−→ (detZ RΓW,c(X, Z(n)))⊗Z R.

Now in terms of the trivialization morphism λ, we are ready to formu-
late our main conjecture, which is similar to [Mor2014, Conjecture 4.2] and
[FM2016, Conjecture 5.12, 5.13].

2.3.1. Conjecture C(X, n). For an arithmetic scheme X and n < 0

a) assume that the conjecture Lc(Xét, n) holds;

b) assume that XC is smooth, quasi-projective, so that the regulator mor-
phism Reg∨ exists; assume that the conjecture B(X, n) holds;

c) assume that the zeta-function of X

ζ(X, s) := ∏
x∈X0

1
1− N(x)−s

has a meromorphic continuation near s = n.

Then

1) the leading coefficient ζ∗(X, n) of the Taylor expansion of ζ(X, s) at
s = n is given up to sign by

λ(ζ∗(X, n)−1) ·Z = detZ RΓW,c(X, Z(n)),

where λ is the trivialization morphism defined in (2.3.1);

2) the vanishing order of ζ(X, n) at s = n is given by the weighted alter-
nating sum of ranks of Hi

W,c(X, Z(n)):

(2.3.5) ords=n ζ(X, s) = ∑
i∈Z

(−1)i · i · rkZ Hi
W,c(X, Z(n)).

2.3.2. Remark. The sum in (2.3.5) is finite, because as we saw in 1.6.8, the
conjecture Lc(Xét, n) implies that the complex RΓW,c(X, Z(n)) is perfect.

Since the conjectures Lc(Xét, n) and B(X, n) imply that the groups

Hi
W,c(X, Z(n))⊗R
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form an acyclic complex, the usual Euler characteristic of RΓW,c(X, Z(n))
vanishes:

χ(RΓW,c(X, Z(n))) = ∑
i∈Z

(−1)i rkZ Hi
W,c(X, Z(n))

= ∑
i∈Z

(−1)i dimR Hi
W,c(X, Z(n))⊗R = 0.

The sum in (2.3.5) is known as the secondary Euler characteristic:

χ′(C•) := ∑
i∈Z

(−1)i · i · rk Hi(C•).

For a distinguished triangle

A• → B• → C• → A•[1]

usually
χ′(B•) 6= χ′(A•) + χ′(C•),

unless the triangle is split, but the secondary Euler characteristic is still a nat-
ural invariant for acyclic complexes and it arises in various natural contexts;
see [Ram2016].

2.3.3. Remark. The parts 1) and 2) of the conjecture C(X, n) are equivalent
to Conjecture 5.12 and Conjecture 5.13 from [FM2016] if X is proper and
regular. This is rather straightforward to see by going through the construc-
tions of Flach and Morin and comparing them to our constructions. Then it
is showed in [FM2016, §5.6] that their conjecture 5.12 is compatible with the
Tamagawa number conjecture.

2.3.4. Proposition. Assuming the conjectures Lc(Xét, n) and B(X, n), the weighted
sum of ranks of Hi

W,c(X, Z(n)) equals the Euler characteristic of

RΓc(GR, X(C), (2πi)n R);

that is,

∑
i∈Z

(−1)i · i · rkZ Hi
W,c(X, Z(n)) = ∑

i∈Z

(−1)i dimR Hi
c(GR, X(C), (2πi)n R)

=: χ(RΓc(GR, X(C), (2πi)n R)).

Proof. Thanks to the splitting

RΓW,c(X, Z(n))⊗Z R ∼=
RHom(RΓ(Xét, Zc(n)), R)[−1]⊕ RΓc(GR, X(C), (2πi)n R)[−1]
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and the quasi-isomorphism

Reg∨ : RΓc(GR, X(C), (2πi)n R)[−1]
∼=−→ RHom(RΓ(Xét, Zc(n)), R),

we have

RΓW,c(X, Z(n))⊗R ∼=
RΓc(GR, X(C), (2πi)n R)[−1]⊕ RΓc(GR, X(C), (2πi)n R)[−2],

so that

Hi
W,c(X, Z(n))⊗R ∼= Hi−1

c (GR, X(C), (2πi)n R)⊕Hi−2
c (GR, X(C), (2πi)n R).

Now

∑
i∈Z

(−1)i · i · dimR Hi
W,c(X, Z(n))⊗R

= ∑
i∈Z

(−1)i · i · dimR(Hi−1
c (GR, X(C), (2πi)n R)

+ ∑
i∈Z

(−1)i · i · dimR(Hi−2
c (GR, X(C), (2πi)n R)

= ∑
i∈Z

(−1)i · i · dimR Hi−1
c (GR, X(C), (2πi)n R)

− ∑
i∈Z

(−1)i · (i + 1) · dimR Hi−1
c (GR, X(C), (2πi)n R)

= − ∑
i∈Z

(−1)i dimR Hi−1
c (GR, X(C), (2πi)n R)

= ∑
i∈Z

(−1)i dimR Hi
c(GR, X(C), (2πi)n R).

�

2.3.5. Elementary example. Here is one easy illustration for 2.3.4. If X =
Spec OK is a number ring, then the space X(C) consists of r1 + 2 r2 points,
corresponding to the real places of K and complex places coming in conju-
gate pairs:

• • · · · •

• • · · · •

• • · · · •

r1 points 2 r2 points
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Now RΓc(X(C), (2πi)n R) in this case may be identified with the complex
having just a single GR-module in degree 0, namely

((2πi)n R)⊕r1 ⊕ ((2πi)n R⊕ (2πi)n R)⊕r2 ,

where GR acts on ((2πi)n R)⊕r1 by complex conjugation, while the action on
((2πi)n R⊕ (2πi)n R)⊕r2 is given by (z1, z2) 7→ (z2, z1) on each summand
(2πi)n R⊕ (2πi)n R. If n is odd, then the action of GR on ((2πi)n R)⊕r1 has
no fixed points, and if n is even, this action is trivial. As for the other part
((2πi)n R⊕ (2πi)n R)⊕r2 , we see that the space of GR-fixed points has real
dimension r2, regardless of the parity of n. Thus in this case

Hi
c(GR, X(C), (2πi)n R) =


r2, n odd, i = 0;
r1 + r2, n even, i = 0;
0 i 6= 0.

Therefore

χ(RΓc(GR, X(C), (2πi)n R)) =

{
r2, n odd,
r1 + r2, n even.

This agrees with the vanishing order of the Dedekind zeta function ζ(Spec OK, s)
at strictly negative integers.

2.3.6. Trivial example. If X is a variety over Fq, then

ζ(X, s) = Z(X, q−s),

where

Z(X, t) := exp

(
∑
k≥1

#X(Fqk )

k
tk

)

is Weil zeta function. Now if ζ(X, s) has a zero or pole at s, we have neces-
sarily

Re s = i/2, 0 ≤ i ≤ 2 dim X

—this may be seen from Weil’s conjectures (see e.g. [Kat1994, p. 26–27]). In
particular, there are no zeros nor poles for s < 0, and the identity (2.3.4) is
trivially correct in this case:

ords=n ζ(X, s) = 0 = χ(RΓc(GR, X(C), (2πi)n R)).
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2.4 Stability of the conjecture under some oper-
ations on schemes

The following properties are clear from the definition of the zeta function of
an arithmetic scheme:

1) If U ↪→ X ←↩ Z is an open-closed decomposition, then

(2.4.1) ζ(X, s) = ζ(U, s) · ζ(Z, s).

2) For r ≥ 0, consider the affine space Ar
X := Ar

Z × X. Then

(2.4.2) ζ(Ar
X , s) = ζ(X, s− r).

This suggests that our conjecture C(X, n) should also be compatible with
open-closed decompositions and considering the affine space over X. Our
goal is to verify that. We need to establish several lemmas.

2.4.1. Lemma. The morphism λ is compatible with open-closed decompositions
U ↪→ X ←↩ Z. Such a decomposition gives a commutative diagram

R⊗R R R

(detZ RΓW,c(U, Z(n)))⊗Z R

⊗R

(detZ RΓW,c(Z, Z(n)))⊗Z R

(detZ RΓW,c(X, Z(n)))⊗Z R

∼=λU⊗λZ

x⊗y 7→xy
∼=

λX∼=

∼=

Where the bottom row is induced by the canonical isomorphism from 1.8.1.

Proof. This follows from the compatibility of the regulator with open-closed
decompositions (see 2.2.2) and the ad-hoc isomorphism

detZ RΓW,c(U, Z(n))⊗Z detZ RΓW,c(Z, Z(n)) ∼= detZ RΓW,c(X, Z(n))

constructed in 1.8.1. �

2.4.2. Lemma. The morphism λ is compatible with affine bundles. We have a
commutative diagram

R

(detZ RΓW,c(A
r
X , Z(n))⊗R (detZ RΓW,c(X, Z(n− r))⊗R

λAr
X λX

∼=



Chapter 2. Conjecture about zeta-values 129

Proof. Follows from 2.2.3. �

2.4.3. Lemma. There is a quasi-isomorphism

RΓBM(GR, Cr × X(C), (2πi)n R) ' RΓBM(GR, X(C), (2πi)n−r R)[2r]

or dually,

(2.4.3) RΓc(GR, Cr × X(C), (2πi)n R) ' RΓc(GR, X(C), (2πi)n−r R)[−2r].

Proof. We already assumed that XC is smooth to formulate the conjecture.
Further, let us assume for simplicity that X(C) is connected of dimension
dC. Then Poincaré duality tells us that

RΓc(GR, Cr × X(C), (2πi)n R) '
RHom(RΓ(GR, Cr × X(C), (2πi)dC+r−n R), R[−2dC − 2r])

and

RΓc(GR, X(C), (2πi)n−r R)

' RHom(RΓ(GR, Cr × X(C), (2πi)dC+r−n R), R[−2dC])

' RHom(RΓ(GR, X(C), (2πi)dC+r−n R), R[−2dC]).

If X(C) is not connected, we may apply the same argument to each con-
nected component separately. This gives us (2.4.3). �

2.4.4. Proposition.

0) If X = ä0≤i≤r Xi is a finite disjoint union of arithmetic schemes, then

0a) the conjecture Lc(Xét, n) is equivalent to the conjunction of conjectures
Lc(Xi,ét, n) for i = 0, . . . , r;

0b) the conjecture B(X, n) is equivalent to the conjunction of conjectures
B(Xi, n) for i = 0, . . . , r.

1) If U ↪→ X ←↩ Z is an open-closed decomposition, then

1a) if two out of three conjectures Lc(Uét, n), Lc(Zét, n), Lc(Xét, n) hold,
then the other one holds as well;

1b) if two out of three conjectures B(U, n), B(Z, n), B(X, n) hold, then the
other one holds as well.
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2) For r ≥ 0, consider the affine space Ar
X :

Ar
X Ar

Z

X Spec Z

p

2a) the conjectures Lc(Ar
X,ét, n) and Lc(Xét, n− r) are equivalent;

2b) the conjectures B(Ar
X , n) and B(X, n− r) are equivalent.

Proof. Part 0) really deserved to be numbered by 0, because it is quite obvi-
ous: for finite disjoint unions X := ä0≤i≤r Xi we have

RΓ(Xét, Zc(n)) ∼=
⊕

0≤i≤r
RΓ(Xi,ét, Zc(n)),

which implies 0a). Similarly, for 0b), we note that the regulator morphism
and its dual decompose as

RegX ∼=
⊕

0≤i≤r
RegXi and Reg∨X ∼=

⊕
0≤i≤r

Reg∨Xi
.

As for open-closed decompositions, recall that in this situation we have a
distinguished triangle (see 0.11.1)

RΓ(Zét, Zc(n))→ RΓ(Xét, Zc(n))→ RΓ(Uét, Zc(n))→ RΓ(Zét, Zc(n))[1]

The associated long exact sequence in cohomology

· · · → Hi(Zét, Zc(n))→ Hi(Xét, Zc(n))→ Hi(Uét, Zc(n))

→ Hi+1(Zét, Zc(n))→ · · ·

implies 1a). For 1b), we apply RHom(−, R) to the morphism of triangles
from 2.2.2:

RΓc(GR, U(C), (2πi)n R)[−1] RHom(RΓ(Uét, Zc(n)), R)

RΓc(GR, X(C), (2πi)n R)[−1] RHom(RΓ(Xét, Zc(n)), R)

RΓc(GR, Z(C), (2πi)n R)[−1] RHom(RΓ(Zét, Zc(n)), R)

RΓc(GR, U(C), (2πi)n R) RHom(RΓ(Uét, Zc(n)), R)[1]

Reg∨U

Reg∨X

Reg∨Z

Reg∨U [1]
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Here if two of the arrows Reg∨U , Reg∨X , Reg∨Z is a quasi-isomorphism, the
third one is also a quasi-isomorphism by the triangulated 5-lemma.

In 2), we have according to [Mor2014, Lemma 5.11] a quasi-isomorphism
of complexes of sheaves on Xét

Rp∗Zc(n) ' Zc(n− r)[2r],

so that there is a quasi-isomorphism

(2.4.4) RΓ(Ar
X,ét, Zc(n)) '−→ RΓ(Xét, Zc(n− r))[2r].

This establishes 2a). As for 2b), it follows from commutativity of the
diagram from 2.2.3:

RΓc(GR, Ar
X(C), (2πi)n R)[−1] RΓc(GR, X(C), (2πi)n−r R)[−2r− 1]

RHom(RΓ(Ar
X,ét, Zc(n)), R) RHom(RΓ(Xét, Zc(n− r)), R)[−2r]

∼=

Reg∨
Ar

X ,n Reg∨X,n−r [−2r]

∼=

Here the left vertical arrow is a quasi-isomorphism if and only if the right
vertical arrow is a quasi-isomorphism. �

2.4.5. Theorem.

0) If X = ä0≤i≤r Xi is a disjoint union of arithmetic schemes, then the conjec-
tures C(Xi, n) for i = 0, . . . , r together imply C(X, n).

1) If U ↪→ X ←↩ Z is an open-closed decomposition of an arithmetic scheme,
then if two out of three conjectures C(U, n), C(Z, n), C(X, n) hold, the other
one holds as well.

2) The conjecture C(Ar
X , n) is equivalent to C(X, n− r).

Proof. The conjecture C(X, n) has two different parts: one about the special
value ζ∗(X, n) and the other one about the vanishing order of ζ(X, s) at
s = n. For the special value part of the conjecture, the claim holds thanks to
2.4.1 and 2.4.2. The vanishing order part is actually easier, because it is just
about counting ranks of cohomology groups.

In the view of (2.4.1) and (2.4.2), we have

ords=n ζ(X, s) = ords=n ζ(U, s) + ords=n ζ(Z, s)

and
ords=n ζ(Ar

X , s) = ords=n−r ζ(X, s).

This means that 0), 1), 2) would follow respectively from the identities
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(2.4.5)

∑
j∈Z

(−1)j · j · rkZ H j
W,c(X, Z(n)) ?

= ∑
0≤i≤r

∑
j∈Z

(−1)j · j · rkZ H j
W,c(Xi, Z(n)),

(2.4.6) ∑
i∈Z

(−1)i · i · rkZ Hi
W,c(X, Z(n)) ?

=

∑
i∈Z

(−1)i · i · rkZ Hi
W,c(U, Z(n)) + ∑

i∈Z

(−1)i · i · rkZ Hi
W,c(Z, Z(n)),

(2.4.7)

∑
i∈Z

(−1)i · i · rkZ Hi
W,c(A

r
X , Z(n)) ?

= ∑
i∈Z

(−1)i · i · rkZ Hi
W,c(X, Z(n− r)).

As for (2.4.5), it is enough to revise the construction of Weil-étale com-
plexes and note that

RΓW,c( ä
0≤i≤r

Xi, Z(n)) ∼=
⊕

0≤i≤r
RΓW,c(Xi, Z(n)).

Alternatively, thanks to 2.3.4, we may rewrite (2.4.5) as

χ(RΓc(GR, X(C), (2πi)n R))
?
= ∑

0≤i≤r
χ(RΓc(GR, Xi(C), (2πi)n R)),

which is evident, as Euler characteristic is additive with respect to direct
sums of complexes:

χ(RΓc(GR, X(C), (2πi)n R)) = χ(RΓc(GR, ä
0≤i≤r

Xi(C), (2πi)n R))

= χ(
⊕

0≤i≤r
RΓc(GR, Xi(C), (2πi)n R))

= ∑
0≤i≤r

χ(RΓc(GR, Xi(C), (2πi)n R)).

Similarly, (2.4.6) is equivalent to

χ(RΓc(GR, X(C), (2πi)n R))
?
=

χ(RΓc(GR, U(C), (2πi)n R)) + χ(RΓc(GR, Z(C), (2πi)n R)),

which is now obviously true, being the additivity of the usual Euler charac-
teristic for the distinguished triangle

RΓc(GR, U(C), (2πi)n R)→ RΓc(GR, X(C), (2πi)n R)

→ RΓc(GR, Z(C), (2πi)n R)→ RΓc(GR, U(C), (2πi)n R)[1]
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Similarly, the identity (2.4.7) is equivalent to

χ(RΓc(GR, Cr × X(C), (2πi)n R))
?
= χ(RΓc(GR, X(C), (2πi)n−r R)).

The two complexes

RΓc(GR, Cr × X(C), (2πi)n R) and RΓc(GR, X(C), (2πi)n−r R)

are quasi-isomorphic according to (2.4.3), modulo the shift by 2r, which is
an even number, so it does not affect the Euler characteristic. �

Similarly to the relation (2.4.2), for projective spaces Pr
X := Pr

Z × X we
have

ζ(Pr
X , s) = ∏

0≤i≤r
ζ(X, s− i).

Note that this follows by induction from (2.4.1) and (2.4.2). For r = 0, this
is trivial. For the induction step, assume that the above formula holds for
Pr−1

X . Then for Pr
X we may consider the open-closed decomposition

Ar
X ↪→ Pr

X ←↩ Pr−1
X

and then

ζ(Pr
X , s) = ζ(Ar

X , s) · ζ(Pr−1
X , s)

= ζ(X, s− r) · ∏
0≤i≤r−1

ζ(X, s− i) = ∏
0≤i≤r

ζ(X, s− i).

Applying the same inductive reasoning, we immediately deduce from
2.4.5 the compatibility of our main conjecture with taking the projective
space.

2.4.6. Corollary. For each arithmetic scheme X, assume C(X, n − i) holds for
i = 0, . . . , r. Then C(Pr

X , n) holds.

Conclusion

The conjecture C(X, n) is known for some special cases, e.g. thanks to its
equivalence to the Tamagawa number conjecture in case when X is proper
and regular (see the remark 2.3.3). It is now possible to take these cases as an
input, and then formally deduce C(X, n) for new schemes constructed using
the operations of disjoint unions, open-closed gluing and affine bundles.
Note that these operations allow us to obtain non-smooth schemes.
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Abstract

This work is dedicated to interpreting in cohomological terms the special
values of zeta functions of arithmetic schemes.

This is a part of the program envisioned and started by Stephen Lichten-
baum (see e.g. Ann. of Math. vol. 170, 2009), and the conjectural underlying
cohomology theory is known as Weil-étale cohomology. Later on Baptiste
Morin and Matthias Flach gave a construction of Weil-étale cohomology us-
ing Bloch’s cycle complex and stated a precise conjecture for the special val-
ues of proper regular arithmetic schemes at any integer argument s = n. The
goal is to extend the above mentioned result and conjecture to special val-
ues of arbitrary arithmetic schemes (possible singular or non-proper) while
restricting to the case n < 0.

Following the ideas of Flach and Morin, the Weil-étale complexes are de-
fined for n < 0 for arbitrary arithmetic schemes, under standard conjectures
about finite generation of motivic cohomology. Then it is stated as a conjec-
ture how these complexes are related to the special values. For proper and
regular schemes, this conjecture is equivalent to the conjecture of Flach and
Morin, which also corresponds to the Tamagawa number conjecture.

We prove that the conjecture stated in this work is compatible with the
decomposition of an arbitrary scheme into an open subscheme and its closed
complement. We also show that this conjecture for an arithmetic scheme X
at s = n is equivalent to the conjecture for Ar

X at s = n− r, for any r ≥ 0.
It follows that, taking as an input the schemes for which the conjecture is
known, it is possible to construct new schemes, possibly singular or non-
proper, for which the conjecture holds as well. This is the main unconditional
outcome of the machinery developed in this thesis.
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Résumé

Ce travail est dédié à l’interprétation en termes cohomologiques des valeurs
spéciales des fonctions zêta des schémas arithmétiques.

C’est une partie d’un programme envisagé et initié par Stephen Lichten-
baum (voir par ex. Ann. of Math. vol. 170, 2009), et la théorie cohomologique
sous-jacente s’appelle la cohomologie Weil-étale. Plus tard, Baptiste Morin et
Matthias Flach ont donné une construction de la cohomologie Weil-étale en
utilisant les complexes de cycles de Bloch, et ont énoncé une conjecture pré-
cise pour les valeurs spéciales des schémas arithmétiques propres et régu-
liers, en tout entier s = n. Le but de cette thèse est de généraliser le résultat et
la conjecture mentionnés ci-dessus aux valeurs spéciales des schémas arith-
métiques arbitraires (éventuellement singuliers ou non-propres) lorsque l’on
se restreint au cas n < 0.

Suivant les idées de Flach et Morin, les complexes Weil-étale sont définis
pour n < 0 pour les schémas arithmétiques arbitraires, sous des conjectures
standards sur la génération finie de la cohomologie motivique. Ensuite, il
est énoncé comme une conjecture de quelle manière ces complexes sont liés
aux valeurs spéciales. Pour les schémas propres et réguliers, cette conjecture
est équivalente a la conjecture de Flach et Morin, qui correspond aussi à la
conjecture du nombre de Tamagawa.

On prouve que la conjecture énoncée dans ce travail est compatible avec
la décomposition d’un schéma arbitraire en un sous-schéma ouvert et son
complémentaire fermé. On montre aussi que cette conjecture pour un schéma
arithmétique X en s = n est équivalente à cette même conjecture pour Ar

X en
s = n− r, pour tout r ≥ 0. Il suit que, en partant des schémas pour lesquels
la conjecture est connue, on peut construire de nouveaux schémas, éventuel-
lement singuliers ou non-propres, pour lesquels la conjecture est également
vraie. C’est le principal résultat inconditionnel issu de la machinerie déve-
loppée dans cette thèse.

147





Samenvatting

Dit werk is gewijd aan het interpreteren in cohomologische termen van de
speciale waarden van zeta-functies van aritmetische schema’s. Dit is deel
van een programma voorgesteld en gestart door Stephen Lichtenbaum (zie
bijvoorbeeld Ann. of Math. vol. 170, 2009), en de conjecturale cohomologie-
theorie staat bekend als Weil-étale cohomologie. Later gaven Baptiste Morin
en Matthias Flach een constructie van Weil-étale cohomologie gebruikma-
kend van het cykelcomplex van Bloch, en stelden zij een precies vermoeden
op voor de speciale waarden in willekeurige gehele getallen s = n van zeta
functies van propere reguliere aritmetische schema’s. Het doel van dit proef-
schrift is het bovengenoemde resultaat en vermoeden uit te breiden naar
speciale waarden van willekeurige aritmetische schema’s (mogelijk singulier
of niet-proper) onder de beperking dat n < 0.

In navolging van de ideeën van Flach en Morin definiëren we Weil-étale
complexen voor n < 0 voor willekeurige aritmetische schema’s, onder stan-
daardvermoedens over eindige voortgebrachtheid van motivische cohomo-
logie. Vervolgens formuleren we een vermoeden hoe deze complexen gere-
lateerd zijn een speciale waarden. Voor propere en reguliere schema’s is dit
vermoeden equivalent aan dat van Flach en Morin, dat ook correspondeert
met het zogenaamde ‘Tamagawa getal vermoeden’.

We bewijzen dat ons vermoeden compatibel is met decomposities van een
willekeurig schema in een open deelschema en het gesloten complement er-
van. We laten ook zien dat het vermoeden voor een aritmetisch schema X in
s = n equivalent is met het vermoeden voor Ar

X in s = n− r, voor elke r ≥ 0.
Daaruit volgt dat, vanuit schema’s waarvoor het vermoeden bekend is, het
mogelijk is nieuwe schema’s, mogelijk singulier of niet-proper, te constru-
eren waarvoor het vermoeden dan ook waar is. Dit is de het belangrijkste
gevolg dat onafhankelijk is van vermoedens, van de in dit proefschrift ont-
wikkelde machinerie.
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