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The explanation of spot splitting in low energy electron diffraction (LEED) patterns of
surfaces vicinal to low Miller-index planes by Ellis and Schwoebel [1] and Henzler [2]
opened the doors to studying how atomic steps influence adsorption of atoms and molecules.
The earliest papers discussing such topics for macroscopically flat, but microscopically
highly corrugated surfaces, thus stem from the early 1970s, adsorption and reaction initially
being studied by LEED [3], flash desorption [4] and molecular beam techniques [5].

This special issue on Adsorption Phenomena on Stepped Surfaces starts with a historical
perspective by Woodruff from Warwick University [6]—one of the first scientists who also
explored the use of curved single crystals to probe the effects of steps on adsorption and
reaction [7].

One of the most widely accepted ideas resulting from several decades of research on
stepped surfaces is that the low-coordinated atoms in the step have an increased ability
to dissociate adsorbing molecules. The origin of this effect is generally explained by
an increased binding energy of the fragments as compared to the low Miller plane.

Ngrskov et al showed 15 years ago that scaling relations between the adsorption energy

of dissociated diatomics and the activation barrier for dissociative adsorption also hold on
stepped surfaces [8]. Defect sites on catalytic particles, which strongly resemble steps on
single crystals, turn out to be crucial to various industrial catalytic processes

[9, 10]. They may also be important to processes that ultimately change the selvage or bulk
of the material, e.g. in bulk oxidation or metal-hydride formation. This specal issue includes
a paper by Farber ef al that investigates to what extent step defects induce absorption of O
atoms into the selvedge of Pt [11].

The energetics of molecular adsorption does, on the other hand, not always differ much
for adsorption to steps and terraces. An example is provided in this issue in a combined
density functional theory (DFT) and temperature programmed desorption study for CO
adsorbing to Cu surfaces with (100) planes by Kokalj et al [12]. Recently, a similar
combined experimental and theoretical reaction dynamics study also showed that steps can
even lower reactivity—Cu(2 1 1) was shown to be less reactive toward hydrogen dissociation
than Cu(111) [13].

The adsorption of larger molecules on steps has also attracted considerable interest.

For tri-atomics, H,O stands out as the binding and reaction of water with corrugated metal
interfaces is highly relevant to, e.g. electrochemistry [14]. Steps influence the adsorption

of water, often by inducing adsorption structures deviating rather drastically from the
molecular ordering in bulk hexagonal ice, I;,. Steps can induce one-dimensional chain
formation along edges with uncommon structural features on Pt [15], 2D patterning that
includes pentamers, hexamers and octamers on Cu [16] and have even been shown to be the
origin of growth of uncommon 3D cubic ice, Ic [17].

This special issue on Adsorption Phenomena on Stepped Surfaces provides two examples
of studies investigating much larger molecules. Gellman et al use the inherent chirality of
kinked-stepped surfaces and beautifully show how small variations in the interaction with
a chiral cyclohexanone-derivative depends on more than chirality alone [18]. Jiang et al
investigate the influence of benzene adsorption on work function changes [19], showing how
theoretical treatment is progressing by including van der Waals interactions in their DFT
study and using a range of Ag stepped surfaces extending up to seven atom-wide terraces.

The contributions in the issue show that, whereas nearly five decades of research has
taught us much on how steps alter the properties of surfaces, there is still much to learn and
discover. For that reason the recent revival of the use of curved samples is of high interest.
With similar sizes as regular flat samples, the curved ones provide step density variations
that may span up to three orders of magnitude while remaining suitable for study in many
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laboratories. They have recently proven their use in studies of physical aspects, e.g. mapping
of surface electronic state dependencies on stepped surface structure [20], and chemical
aspects, e.g. adsorption and desorption of CO [21, 22] and H,O [23], and chemical reactivity
for elementary dissociative reactions [24] and overall reactivity [25].
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