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ABSTRACT 

Pulmonary arterial hypertension (PAH) is a rare, complex, and progressive disease 

characterized by abnormal remodelling of the pulmonary arteries that leads to right 

ventricular failure and death. Although our understanding of the causes for abnormal vascular 

remodelling in PAH is limited, accumulating evidence indicates that endothelial cell (EC) 

dysfunction is one of the first triggers initiating this process. EC dysfunction leads to the 

activation of several cellular signalling pathways in the endothelium, resulting in uncontrolled 

proliferation of ECs, pulmonary artery smooth muscle cells and fibroblasts, and eventually 

leads to vascular remodelling and occlusion of the pulmonary blood vessels. Other factors 

that are related to EC dysfunction in PAH are an increase in endothelial to mesenchymal 

transition, inflammation, apoptosis, and thrombus formation. In this review, we outline the 

latest advances on the role of EC dysfunction in PAH and other forms of pulmonary 

hypertension. We also elaborate on the molecular signals that orchestrate EC dysfunction in 

PAH. Understanding the role and mechanisms of EC dysfunction will unravel the therapeutic 

potential of targeting this process in PAH. 

Keywords: Pulmonary hypertension – endothelial cell dysfunction – vasoactive factors – TGF-

β – EndoMT – epigenetics  
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INTRODUCTION 

Pulmonary hypertension (PH) is a condition defined by a mean pulmonary arterial pressure 

of more than 20 mmHg at rest and 30 mmHg during exercise. The range of genetic, molecular, 

and humoral causes that can lead to this increase in pressure is extensive. Therefore, PH is 

grouped into different classes based on clinical and pathological findings as well as 

therapeutic interventions 1,2. The World Health Organization (WHO) classifies PH into five 

groups, namely: 1. Pulmonary arterial hypertension (PAH), 2. Pulmonary hypertension due to 

left heart disease (PH-LHD), 3. Pulmonary hypertension due to lung disease (PH-LD), 4. 

Chronic thromboembolic pulmonary hypertension (CTEPH), 5. Pulmonary hypertension due 

to unclear and/or multifactorial mechanisms 1,3,4. PH is becoming more and more a global 

health issue due to the ageing population. Although PH-LHD and PH-LD are the most prevalent 

PH groups, research and drug development focuses mainly on PAH and CTEPH, which are 

rarer diseases that affect mainly younger people 5. Because of the amount of research 

conducted in PAH compared to the other four groups, this review will focus mostly on PAH.  

PAH is characterized by remodelling of distal pulmonary arteries, causing a progressive 

increase in vascular resistance. Vascular remodelling is associated with alterations in 

vasoconstriction, pulmonary artery- endothelial cells (PAECs) and -smooth muscle cells 

(PASMCs) cell proliferation, inflammation, apoptosis, angiogenesis and thrombosis, which 

leads to muscularization and occlusion of the lumen of pulmonary arteries by formation of  

vascular lesions. Plexiform lesions are the most common lesions in PAH, characterized by 

deregulated endothelial cell (EC) proliferation. Other lesions in PH are thrombotic lesions and 

neointima formation, which form a layer of myofibroblasts and extracellular matrix between 

the endothelium and the external elastic lamina 6. One of the first triggers for development 

of PAH is EC injury triggering the activation of cellular signalling pathways that are not yet 

completely understood.  

In normal conditions the endothelium is in a quiescent and genetically stable state. However, 

different types of injury can activate the endothelium. When activated, the endothelium 

secretes different growth factors and cytokines that affect EC and SMC proliferation, 

apoptosis, coagulation, attract inflammatory cells or affect vasoactivity to restore 

homeostasis. EC dysfunction, the loss of cellular functions leading to pathological changes, is 

crucial in the development of cardiovascular diseases and so too in PAH 7,8. Many different 

2

147261 Smolders LEIDEN BNW.indd   31147261 Smolders LEIDEN BNW.indd   31 30-10-2020   12:1230-10-2020   12:12



Chapter 2 ǀ 

32 

factors have been suggested to be involved in the initiation of EC dysfunction in PAH, like 

shear stress, hypoxia, inflammation, cilia length, and genetic factors (Figure 1) 6,9-11. In PAH 

the endothelium switches from a quiescent to an overactive state where it starts to secrete 

vasoconstrictive factors like endothelin-1 (ET-1) 12 and thromboxane 13, and proliferative 

factors like vascular endothelial growth factor (VEGF) and reduce the secretion of vasodilators 

like nitric oxide (NO) and prostacyclin, indicating that EC dysfunction might play an central 

role in the pathogenesis of PAH 7,14.  

The purpose of this review is to provide a state-of-the-art overview on EC dysfunction in PAH 

and to highlight current progress made in understanding this phenomenon. At last, this 

review discusses several models for studying EC dysfunction in PH and explores possible 

molecular targets and drugs for restoring EC function in PH.  

 

147261 Smolders LEIDEN BNW.indd   32147261 Smolders LEIDEN BNW.indd   32 30-10-2020   12:1230-10-2020   12:12



ǀ Endothelial Dysfunction in PH 

33 

 

FACTORS CONTRIBUTING TO EC DYSFUNCTION IN PAH 

Approximately 80% of familial PAH (hPAH) and 20% of idiopathic cases of PAH (iPAH) are 

associated with mutations in the bone morphogenic type 2 receptor (BMPR2) but a 

penetrance of 20-30% suggests secondary stimuli such as endothelial to mesenchymal 

transition (EndoMT), inflammation, thrombosis, apoptosis and perturbations in vasoactivity 

as important contributors to EC dysfunction and PAH development 15-17.   

Bone morphogenic type 2 receptor  

BMPR2 encodes for a transmembrane serine/threonine kinase receptor belonging to the 

transforming growth factor-β (TGFβ) family of signalling proteins (Figure 2) 18. BMPR2 

modulates cellular growth, apoptosis, inflammation and differentiation via binding of bone 

morphogenetic proteins (BMPs) to a heteromeric complex of a BMP type-I receptor and 

BMPR2, in a time, concentration and cell type dependent manner 19. Depending on the 

localization in the vascular bed, BMPR2 promotes survival of PAECs, while it has an anti-

proliferative effect on PASMCs 20-22. 

To date over 380 PAH related mutations in BMPR2 are known, mostly loss of function 

mutations 23,24. Low penetrance of disease development associated with BMPR2 mutations 

observed in humans has also been confirmed in experimental models of PH, where BMPR2 

deletion alone does not induce PAH in the majority of the cases 25-27. Interestingly, reduced 

levels of BMPR2 have also been found in PH patients without BMPR2 mutations, suggestion 

additional involvement of genetic modifiers or environmental factors reducing BMPR2 

dependent signaling 28-31.   

Figure 1. Pulmonary artery remodelling, vascular resistance and pulmonary arterial hypertension (PAH) 
development. PAH results from a progressive increase in vascular resistance caused by pulmonary vascular 
remodelling. Molecular mechanisms behind the process of vascular remodelling are still not fully elucidated 
but endothelial cell (EC) injury is thought to be one of the early triggers. EC injury can be caused by shear 
stress, hypoxia and inflammation. Host factors such as genetic mutations and gender but also epigenetic 
factors and comorbidities are thought to play an important role in EC dysfunction. EC dysfunction leads to 
altered cell signalling that induces cellular processes such as EndoMT, apoptosis and proliferation. In 
addition, changes are found in cell metabolism and in the secretion of vasoactive, coagulation and thrombotic 
factors. Also vascular smooth muscle cells and fibroblasts are found to display a diseased cellular phenotype. 
EC dysfunction eventually promotes vasoconstriction, thrombus formation, neointima formation, 
muscularization and development of vascular lesions. As lumen size decreases, pulmonary vascular 
resistance increases and induces right ventricle (RV) hypertrophy with eventually RV failure. 

2
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BMPR2 is predominantly present in ECs lining the vascular lumen in the lung and expression 

is reduced in ECs from PH lung. Therefore mutated BMPR2 is postulated to play a significant 

role in EC dysfunction in PAH 24,28. Association between endothelial BMPR2 and PAH 

development was further supported by the observation that mice with endothelial specific 

deletion of BMPR2 were prone to develop PAH 32,33. PAECs overexpressing a kinase-inactive 

BMPR2 mutant show increased susceptibility to apoptosis and conditioned medium from 

these PAECs stimulated proliferation of PASMCs via increased release of TGFβ1 and fibroblast 

growth factor (FGF)-2 34. BMP9 administration selectively enhanced endothelial BMPR2 and 

reversed PH in rats 35.  In line with these findings, several compounds attenuated EC 

dysfunction via increased BMPR2 signalling and reduced abnormal remodelling in 

experimental PH36-38. Moreover, BMPR2 acts as a gatekeeper to protect ECs from increased 

TGFβ responses and integrin-mediated mechano-transduction 39. 

Loss of endothelial BMPR2 promotes release of pro-inflammatory cytokines in a SOD3-

dependent manner, allowing leukocyte transmigration to underlying tissues, causing further 

vascular remodelling in vivo 25,40,41. Furthermore, loss of BMPR2 signalling in PAECs promotes 

a pro-inflammatory state during normoxia by enhancing mitochondrial biogenesis, 

mitochondrial potential and promoting glycolysis 42. BMPR2 deficiency in iPAH PAECs lacking 

BMPR2 are associated with loss of DNA damage control via reduced DNA repair related genes 

such as BRCA1. Increased DNA damage reciprocally leads to further reduction of BMPR2 

expression and EC dysfunction 43. Transcriptome analysis of PAECs from iPAH patients 

revealed a correlation between reduced BMPR2 levels and downregulation of β-catenin, 

resulting in reduced Collagen-4 (COL4) and ephrinA1 (EFNA1) expression 44. Both COL4 and 

EFNA1 perform intertwining roles in endothelium structure. siRNA mediated silencing of 

BMPR2 in PAECs resulted in increased PAEC proliferation, migration, and disruption of 

cytoskeletal architecture. One of the changes observed was increase in Ras/Raf/ERK 

signalling, and Ras inhibitors, like nintedanib 45, reversed the enhanced proliferation and 

hypermotility of BMPR2 silencing in PAECs 46. 

Carboxylesterase-1 (CES1) promotes BMP signalling by ensuring proper trafficking of BMPR2 

from the endoplasmic reticulum (ER) to the plasma membrane 47. CES1 is reduced in iPAH 

patients and impaired ER trafficking will result in decreased BMPR2 availability 47.  

Pro-inflammatory cytokines, such as IL-6 and TNFα, have also been found to downregulate 

BMPR2 expression in PAECs via a STAT3-miR-(Cluster 17/92) and NF-κB-p65 pathway, 
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respectively 29,48. Finally, miRNA-21, although primarily induced by BMPR2 signalling, 

negatively targets BMPR2 expression 49.  

 

Endothelial to mesenchymal transition  

EndoMT is a phenomenon where ECs acquire a mesenchymal-like phenotype which is 

accompanied with loss of endothelial markers and gain of mesenchymal markers. In addition, 

ECs lose cell-cell contact, change their morphology and adopt a highly migratory and invasive 

phenotype (Figure 3A) 50,51. In lungs of human PAH patients and monocrotaline (MCT) and 

Sugen/hypoxia (SuHx) experimental PH rat models, EndoMT was observed whereby cells 

express high levels of α-SMA and activated phospho-vimentin and VE-cadherin, indicating 

their endothelial origin 52-54. Moreover, TWIST1, a key transcription factor in inducing 

EndoMT, is highly expressed in human PAH lungs compared to healthy lungs 52.  

TGFβ treatment of PAECs induces expression of the EndoMT transcription factors TWIST1 and 

SNAIL150,55 and the mesenchymal markers α-SMA and phospho-vimentin56. TWIST1 increases 

Figure 2. TGF-β superfamily signalling in PAH. The TGF-β superfamily is subdivided into the TGF-β group that 
include TGFβ, Nodal and activins and the BMP group that includes BMPs. Both groups signal through intracellular 
mediators, known as Smads. Receptor-regulated Smads (R-Smads) are phosphorylated by type-1 receptors (e.g. 
ALK1/2/3/6 and ALK4/5/7) and form complexes with a Common mediator Smad (Co-Smad). Subsequently, these 
complexes translocate into the nucleus where they induce transcriptional responses that alter gene expression 
of specific targets that influence apoptosis, cell differentiation, inflammation and proliferation. Inhibitory Smads 
(I-Smads) negatively regulate TGF-β and BMP signalling. Both TGF-β and BMP receptors can also signal 
independently from Smads and alter downstream cell-specific processes. It is know that TGF-β superfamily 
signalling  plays an important role the initiation of EndoMT by triggering overexpression of genes like TWIST1, 
αSMA and phospho-vimentin. 

2
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expression of TGFβ, leading to enhanced  TGFβ signalling57. In addition, reduced BMPR2 

signalling promotes EndoMT via upregulation of the High Mobility Group AT-hook 1 and its 

target gene SLUG, independently of TGFβ signalling 58. More interestingly, BMP-7, a protein 

previously described as having anti-inflammatory and anti-tumour effects in several diseases, 

was attenuated hypoxia-induced EndoMT in PAECs both in vivo and in vitro by inhibiting the 

m-TORC1 signalling pathway59. BMPR2 favours EndoMT allowing cells of myo-fibroblastic 

character to create a vicious feed-forward process leading to hyperactivated TGFβ 

signalling39.  In summary, alterations in TGFβ/BMP signalling are linked to the process of 

EndoMT observed in PAH 60.  

Hypoxia is also an inducer of EndoMT through hypoxia-inducible transcription factor-1α (HIF-

1α) and HIF-2α, and both transcription factors are increased in PAH 61,62. PAH ECs display 

increased expression of HIF-2α, leading to SNAIL upregulation 54. In addition, HIF-1α 

knockdown alone effectively blocks hypoxia-induced EndoMT but also knockdown of its 

downstream target gene TWIST1 showed effective blockage of hypoxia-induced EndoMT in 

microvascular ECs (MVECs), however less pronounced63. Nonetheless, microvascular 

endothelium may differ from arterial endothelial function. 

Inflammation  

Pulmonary arteries of PAH patients showed infiltration of macrophages, dendritic cells and 

lymphocytes into the plexiform lesions and an increased migration of monocytes9,64. 

Increased levels of pro-inflammatory cytokines and chemokines, such as IL-1β, TNFα and IL-

6, known activators of vascular endothelium, were found (Figure 3B) 37,65,66. IL-1β stimulates 

endothelial ET-1 production 67. Administration of IL-6 to experimentally induced PAH in a rat 

model and overexpression of IL-6 in transgenic mice led to occlusion of pulmonary arteries 

and RV hypertrophy 68,69. IL-33 has a dual role as cytokine and a role in the nucleus 70. Nuclear 

IL-33 is expressed in nuclei of healthy ECs but is less expressed in nuclei of ECs from iPAH 

lungs. Nuclear IL-33 modulates gene expression of pro-inflammatory cytokines and IL-33 

knock-down in PAECs upregulates expression of IL-6. Therefore, loss of nuclear IL-33 could 

contribute to EC dysfunction in PAH 70. Additionally IL-33 may contribute to inflammatory 

activation of the endothelium by promoting endothelial production of granulocyte 

macrophage-colony stimulating factor (GM-CSF) and macrophage-CSF 71. Hypoxia induces 
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expression of IL-33 and its receptor ST2 on ECs, leading to EC and SMC dysfunction with 

concomitant PH development 72.  

 

Thrombosis and coagulation  

In situ pulmonary artery thrombosis is regularly found in PAH. However, it remains unclear if 

thrombosis due to EC dysfunction causes progression of PAH or whether it forms as a result 

of it. Various factors, e.g. von Willebrand factor, plasminogen activator inhibitor-1 and tissue 

factor (TF), secreted by EC, have been implicated in coagulation and are found differently 

expressed in PAH (Figure 3B) 73-75.  

Figure 3. Endothelial to mesenchymal transition (EndoMT) and endothelial dysfunction in PAH. A) Upon 
activation by transcriptional factors, hypoxia, haemodynamic forces, inflammation and TGF-β/BMP pathway 
signaling pulmonary endothelial cells (PAECs) undergo cellular transition to a mesenchymal phenotype. 
During transition, PAECs lose endothelial markers and gain mesenchymal markers such as αSMA and TWIST. 
These mesenchymal-like cells also gain mesenchymal characteristics that trigger vascular remodeling and 
PAH pathogenesis. B) Upon endothelial cell injury, PAECs become dysfunctional and alter their secretion of 
cytokines and other factors that regulate coagulation, thrombosis and vascular tone. A failure of PAECs in 
maintaining vessel homeostasis promotes vasoconstriction, thrombosis and inflammation that initiate PAH 
disease progression.  

2
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Recently TF has emerged as an interesting target involved in the pathogenesis of PAH. TF is a 

glycoprotein expressed on the cell surface of SMCs, macrophages, monocytes and ECs 76. It 

plays a role in initiation of coagulation, facilitation of angiogenesis and mediation of arterial 

injury in the circulation 77,78. Interestingly, TF is rarely expressed in healthy cells, but is highly 

expressed in PAECs in PAH, predominantly in plexiform lesions 79. In PAH animal models , 

increased TF expression correlates with formation of plexiform-lesions 79. Furthermore, in 

PAH patients elevated levels of thrombin, a downstream target of TF and essential for clot 

formation, are detected 74,80. Elevated levels of fibrinopeptide-A (FPA) which increases 

thrombin activity (downstream of TF) are observed in PAH patients 74.  PAH patients have 

lower thrombomodulin levels, consistent with the hypercoagulable state observed in PAH 

patients81. However, the role of EC dysfunction in this is still unclear. 

Apoptosis  

EC apoptosis may also play a role in PH development via vascular dropout and selection 

pressure on ECs, contributing to the apoptosis-resistant phenotype of ECs in vascular lesions 
82. Several attempts were made to elucidate the molecular pathways involved in regulation 

of PAEC apoptosis. The hypothesis is that disturbed responses to VEGF signalling in 

combination with hypoxia cause an initial increase in apoptosis in PAECs, leading to the 

emergence of aggressive apoptosis resistant and hyperproliferative ECs that cause formation 

of intimal lesions 83-85. A possible explanation for the initial increase in apoptosis of PAECs is 

that loss of BMPR2 signalling promotes mitochondrial dysfunction and subsequent PAEC 

apoptosis 42. White et al., interestingly, proposes a model in which the pro-apoptotic factor 

programmed cell death-4 (PDCD4) activates cleavage of caspase-3, inducing PAEC apoptosis. 

Interestingly, they show that reducing PDCD4 levels in vivo by overexpressing miRNA-21 

prevents PH development in SuHx rats 86. Besides an initial increase in apoptosis, PAH is also 

characterized by PAECs that are hyperproliferative and apoptosis resistant 85. PAECs from 

iPAH patients showed increased expression of pro-survival factors IL-15, BCL-2 and Mcl-1, 

together with persistent activation of the pro-survival STAT3 signalling pathway 85. 

Furthermore, in lungs from iPAH patients and from SuHx rats Notch1 was elevated. Notch1 

contributes to PAH pathogenesis by increasing EC proliferation and inhibiting apoptosis via 

p21downregulation and regulating BCL-2 and survivin expression. Furthermore, HIF1α 

expression promotes Notch signalling human PAECs 87.  
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VASOACTIVE FACTORS CONTRIBUTING TO EC DYSFUNCTION  

PAH is characterized by an activated endothelium of which the balance between vasodilation 

and vasoconstriction, but also growth factor production, is altered, causing perturbations in 

pulmonary vascular homeostasis that promote vascular remodelling (Figure 3B). 

Nitric oxide  

NO is a fast-reacting endogenous free radical produced by endothelial NO Synthase (eNOS). 

NO is essential for vasorelaxation via PASMCs but also has antithrombotic effects and controls 

EC differentiation and growth 88-90. NO has long been implicated in the pathogenesis of PAH, 

and lungs of PAH patients have reduced NO expression 91. However, other studies reported 

contradictory results and some PH patients even show an increase in eNOS expression 91,92. 

Furthermore, eNOS-/- mice show reduced vascular remodelling after chronic hypoxia caused 

by reduced vascular proliferation 93.  

Next to hypoxia as a known regulator of eNOS expression, increasing evidence supports the 

involvement of epigenetic regulations such as histone acetylation and DNA methylation in 

expression eNOS. This is independent of the initial hypoxic environment. Experimental 

models of persistent pulmonary hypertension of the new-born (PPHN) and PPHN PAECs 

showed that epigenetic modifications can contribute to reduced eNOS expression and 

subsequent PPHN pathogenesis 94,95. However, it is unclear whether such mechanisms exist 

in PAH pathogenesis 96-100.    

Reduced NO availability can also be caused by freely circulating endogenous eNOS inhibitors 
101, such as asymmetric dimethylarginine (ADMA) 102. The metabolism of this protein is 

facilitated by dimethylarginine dimethylaminohydrolase (DDAH) 103. Increased levels of ADMA 

are associated with the pathogenesis of PH 101,103,104, and hypoxia-induced increase of miRNA-

21 is found to reduce DDAH activity 49,104.  

Prostacyclin  

Prostacyclin is another important vasodilator produced by EC with additional antithrombotic 

and antiproliferative properties 7,105-107. Prostacyclin is synthesized from arachidonic acid, by 

prostacyclin synthase and cyclo-oxygenase (COX) 108. Decreased prostacyclin levels are 

measured in various patients with different forms of PAH, like iPAH and HIV-associated PAH 
7,109 explaining in part the increase in pulmonary vasoconstriction, SMC proliferation and 

2
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coagulation occurring in these patients. In experimental PAH models, mice overexpressing 

prostacyclin synthase are protected from developing chronic hypoxia-induced PAH 110. 

Endothelin-1 

ET-1 is a potent vasoconstrictor, mainly synthesized in EC, but also in smaller amounts in 

vSMCs, macrophages, fibroblasts, myocytes and epithelial cells 7,111,112. The lungs show the 

highest level of ET-1 in the entire body 113. ET-1 stimulates vSMCs proliferation and platelet 

aggregation 7,106. ET-1 exhibits its effects by binding to the ETA and ETB receptors, which 

activate signalling pathways in vSMCs regulating proliferation, vasorelaxation and 

vasoconstriction 107,113. ETA is predominantly expressed on vSMCs and is involved in 

vasoconstriction and proliferation of these cells, while ETB is expressed on vSMCs and PAECs, 

and is involved in stimulating the release of vasodilators, like NO and prostacyclin, and 

inhibition of apoptosis 67,107,111,113,114. Expression of ET-1 and its receptors is increased in lungs 

of PAH patients and experimental PH models 115-118. Furthermore, a correlation exists 

between expression of ET-1 and increase in pulmonary resistance in PAH 117. Multiple PAH 

associated factors are able to increase ET-1 expression including  hypoxia, cytokines, growth 

factors, TGFβ/BMP signalling and shear stress 119-123. Increased synthesis of endothelial ET-1, 

accompanied with an increase in expression of ETA on PASMCs likely contributes to the 

increased vasoconstriction and vascular remodelling observed in PAH 106,118,124.  

Thromboxane  

Thromboxane A2, produced by ECs and platelets, is a vasoconstrictor, inducer of platelet 

aggregation and a vSMCs mitogen 7,13. Its production is increased by hypoxia and oxygen 

metabolites 125,126.  In PAH  thromboxane A2 is increased, creating an imbalance that might 

contribute to excessive platelet aggregation and vascular remodelling observed in PAH 13.  

Vascular endothelial growth factor  

VEGF is an angiogenic factor secreted by ECs. VEGF has multiple roles in maintaining lung 

structure and homeostasis but also is associated with several vascular disorders 7,127,128. The 

pulmonary endothelium does not secrete VEGF during normal homeostasis but iPAH ECs from 

plexiform lesions show increased expression of VEGF and VEGF receptor 2 129, and also VEGF 

plasma levels of PH patients are elevated 130. The relation between PAH and increased VEGF 

expression is still poorly understood. It is suggested that VEGF levels in PAECs are elevated in 

early stages of PAH as a protective response, while during disease progression VEGF keeps 
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promoting growth of PAECs, causing the formation of plexiform lesions 7. Rats treated with a 

VEGF receptor blocker in combination with hypoxia develop angio-obliterative PAH 131. 

Furthermore, overexpression of VEGFA slows down the development of hypoxia-induced 

PAH, and improves endothelial function by increasing eNOS activity among others 132.  

EPIGENETICS  

In recent years epigenetics has become a growing field of interest in PAH research. Currently 

the main focus of study for targeting PAH are the following three mechanisms of epigenetic 

regulation; DNA methylation, histone modifications and RNA interference (Figure 4) 14.  

DNA methylation profiling of PAECs from iPAH and hPAH patients revealed differences in 

expression of several genes involved in inflammatory processes, remodelling and lipid 

metabolism compared to controls 133. Among those genes ABCA1 was found most differently 

methylated/ downregulated in the discrimination between PAH and controls. ABCA1 belongs 

to the family of ATP binding cassette (ABC) transporters that are important for pulmonary 

homeostasis 133. Furthermore, ABCA1 is linked to PAH pathophysiology in a MCT animal model 

of PAH where activation of ABCA1 improved RV hypertrophy and pulmonary haemodynamics 
14,133.  

Figure 4. Epigenetics in  PAH. In addition to genetic variations and other risk factors such as gender, 
comorbidities and environmental factors, epigenetic variations in PAH gain interest. Differences in DNA 
methylation profiles, increased histone acetylation and dysregulated miRNA expression in PAH patients 
point out a growing field in PAH research that provides better understanding of disease pathology. 

2
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Increased histone acetylation through histone-deacetylases (HDAC) is associated with 

vascular remodelling found in PAH 134,135. In humans, HDAC enzymes are divided into 4 classes: 

class-1 HDACs (HDAC-1, -2, -3 and -8), class-2a HDACs (HDAC-4, -5, -7 and -9), class-2b HDACs 

(HDAC-6 and -10), class-3 HDACs (Sir2-like proteins) and class-4 HDACs (HDAC-11) 136. HDAC-

1 and -5 show increased expression in both lungs of iPAH patients and chronic hypoxic rats 

whereas HDAC-4 was only increased in human iPAH lungs 135. More recently HDAC-6 is linked 

to PAH pathogenesis, possibly through upregulation of HSP90 137. HDAC-6 was overexpressed 

in PAECs and PASMCs of  PAH patients and PH experimental models 138. In the SuHx and MCT 

rat model pharmacological HDAC-6 inhibition improved PH 138. Several other studies showed 

that class-1 HDAC inhibitors attenuate PAH by suppressing arterial remodelling in a chronic 

hypoxia model and by reducing inflammation in PH-fibroblasts 135,139,140. In PAECs class-2a 

HDAC inhibitors restore the levels of myocyte-enhancer-factor-2 and attenuate PAH in both 

the MCT and SuHx PAH rat models 141. 

The epigenetic regulator bromodomain-containing-protein-4 (BRD4) is linked to the 

pathogenesis of PAH 38. BRD4 is a member of the Bromodomain and Extra-Terminal (BET) 

motif family that binds histones to influence gene expression 142. BRD4 is overexpressed in 

lungs of PAH patients in a miR-204 dependent manner. It inhibits apoptosis by sending cell 

survival signals 38,143, and stimulates proliferation of PAEC and PASMC proliferation at these 

sites 14,143. Selective inhibition of BRD4 with RVX-208 restored EC function, reversed PAH in 

the MCT and SuHx rat models, and supported the RV function in pulmonary artery banding 

model of PAH 38.  

EC DYSFUNCTION IN OTHER PH GROUPS 

Group 2 PH  

Group 2 PH is due to a complication of left heart disease and is most common in patients with 

heart failure (HF). Therefore research in group 2 PH focuses mostly on left ventricular 

dysfunction and not so much the lung vasculature. However, EC dysfunction is also associated 

with PH-LHD 144. An experimental model of chronic HF showed reduced NO activity and 

responsiveness to NO in pulmonary arteries 145. Moreover, ET-1 is elevated in certain PH-LHD 

phenotypes and ET-1 activity is increased in plasma of patients with chronic HF. Blocking the 

ETA receptor caused pulmonary vasodilation in these patients 146,147. Furthermore, 

polymorphisms found eNOS also contribute to PH development in patients with LHD 148. 
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Unfortunately, treating PH-LHD patients with drugs used to treat PAH patients was not 

beneficial and even harmful 144,149 . 

Group 3 PH 

Chronic obstructive lung disease (COPD) associated PH is the best described form of PH in 

group 3. EC dysfunction is  one of the causes for these patients to develop PH 150. Cigarette 

smoke decreases eNOS and prostacyclin expression in PAECs 151,152. COPD patients can show 

overexpression of VEGF and ET-1 in pulmonary arteries 153,154. These findings have led to the 

hypothesis that cigarette smoke may be one of the initiating factors for PH in COPD 150. A role 

for HIF1α and EndoMT has also been suggested in COPD 155,156. Although there are similarities 

in EC dysfunction, drugs used to treat PAH are currently not recommend for group 3 PH, due 

to lack of evidence how these drugs may influence PH progression in combination with the 

underlying lung diseases 157. 

Group 4 PH  

CTEPH develops as a result of a pulmonary embolism (PE) that does not resolve 158. These 

organized pulmonary thrombi in the lungs are associated with distal vascular remodelling of 

non-occluded vessels similar to the remodelling observed in PAH lungs 158. Activated platelets 

with a hyper-responsiveness to thrombin are likely to contribute to the CTEPH pathogenesis 

and progression via enhancing inflammatory responses of pulmonary ECs 159. EC dysfunction-

associated vascular remodelling has been suggested as a common mechanism between 

CTEPH and PAH 158,160. Primary cell cultures isolated from endarterectomized tissue co-

expressed both EC and SMC markers, suggesting a role for EndoMT in intimal 

remodelling/lesion development in CTEPH 161. The existence of endothelial dysfunction in 

CTEPH pathogenesis is further supported by the fact that conditioned medium from CTEPH 

derived PAECs, containing high levels of growth factors and inflammatory cytokines, 

increased PASMC proliferation and monocyte migration 162. In addition, PAECs from CTEPH 

patients show an increased proliferation, altered angiogenic potential and metabolism, and 

apoptosis resistance 163-167. Increased levels of soluble intracellular adhesion molecule-1 

(ICAM1) in PAECs from CTEPH patients and in endarterectomy may contribute to EC 

proliferation and apoptosis resistance through its effect on cell survival pathways 166. Also 

FoxO1, in a PI3K/Akt dependent manner, is a possible contributor to the loss of balance 

between cell survival and death and was downregulated after PE in a rat model of CTEPH 168. 

2

147261 Smolders LEIDEN BNW.indd   43147261 Smolders LEIDEN BNW.indd   43 30-10-2020   12:1230-10-2020   12:12



Chapter 2 ǀ 

44 

At last, PAECs isolated from CTEPH patients showed a significant rise in basal calcium levels, 

which is an important regulatory molecule for EC function 169. This imbalance in calcium 

homeostasis is caused by angiostatic factors such as PF4, IP-10 and collagen type 1, that are 

formed in the microenvironment created by the unresolved clot and eventually lead to EC 

dysfunction 169. So far, a soluble guanylate cyclase stimulator (Riociguat) is the only PAH based 

therapy that has been approved in patients with CTEPH that are not eligible for surgery 170. 

CURRENT AND FUTURE PERSPECTIVES  

Although much progress has been made to understand EC dysfunction in PAH, to date there 

is still no definitive cure and patients only have a median survival rate of 2.8 years 171. Current 

therapies for PAH, consisting of calcium channel blockers, ET-1 receptor antagonists, 

phosphodiesterase type 5 inhibitors, prostacyclin-derivatives and more recently also 

Riociguat, focus on SMC relaxation with limited or no effect on EC dysfunction and subsequent 

progressive pulmonary vascular remodelling 172-174. The effects of EC dysfunction are 

neglected thus far. Therefore, research on EC dysfunction and its stimuli to target structural 

changes that narrow lumen size in PAH is vital to find a cure.  

A first step towards reversing vascular remodelling in PAH is the use of apoptosis-inducing 

drugs, such as anthracyclines and proteasome inhibitors. They are already used in 

combination with cardio-protectants such as p53 inhibitors to reduce pulmonary pressure 

and restore blood flow in experimental models of PAH 175,176. The combinatorial use is 

essential to circumvent the lack of cell-type/organ specificity of cell-killing drugs. Cancer 

patients but also experimental PAH animals treated with only cell-killing drugs show signs of 

cardiotoxicity which should be prevented in PAH patients that already suffer from reduced 

right heart function  175,177-179.  

Another way to target progressive pulmonary vascular remodelling focuses on restoring 

signalling pathways and EC function,  e.g. using TGFβ inhibitors, like kallistatin, known to 

inhibit EndoMT in HUVECs, stimulate eNOS expression and prevent TGFβ induced miRNA-21 

synthesis 180. Blocking inflammation to restore normal EC function in PAH, however, was not 

successful. One explanation might be the complexity of the immune system and by inhibiting 

the bad side, one also suppresses beneficial inflammatory pathways 181,182.  

Modulating BMPR2 has been proposed as therapeutic approach to reverse endothelial 

dysfunction in PAH too. A recent study comparing human induced pluripotent stem cell-
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derived ECs (iPSC-ECs) from unaffected BMPR2-mutation carriers with iPSC-ECs from BMPR2-

mutation carriers that present PAH identified several BMPR2 modifiers and differentially 

expressed genes in unaffected iPSC-ECs. These BMPR2 modifiers exert a protective response 

against PAH by improving downstream signalling, which compensates against BMPR2 

mutation-induced EC dysfunction and offer insights towards new strategies to rescue BMPR2 

signalling 183. A potential therapy for stimulating BMPR2 signalling is through pharmaceuticals 
184. Direct enhancement of endothelial BMPR2 signalling using recombinant BMP9 protein 

prevents and reverses established experimental PAH 35. However, in contrast to Long et al, Tu 

et al (2019) showed that deletion or inhibition of BMP9, protects against experimental PH via 

its effect on endothelial production of ET-1, apelin and adrenomedullin 185. These studies 

show the BMP receptor family complexity as therapeutics in PAH. More recently, ACTRIIA-Fc, 

an activin and growth and differentiation factor (GDF) ligand trap, prevented and reversed 

existing PH in experimental PAH models. ACTRIIA-Fc inhibited SMAD2/3 activation and 

restored a favourable balance of BMP signalling versus TGFB/activin/GDF signalling. ACTRIIA-

Fc is currently tested in a phase-2 clinical trial for efficacy and safety in PAH patients 

(NCT03496207) 186.  Spiekerkoetter et al. uncovered a molecular mechanism where FK506 

(tacrolimus) restores defective BMPR2 signalling in PAECs from iPAH patients, and reverses 

severe PAH in several rat models 184. Based on improvements in clinical parameters and 

stabilization of cardiac function of end-stage PAH patients in a phase-2a clinical trial, low dose 

of FK506 was proposed as potential beneficial in the treatment of end-stage PAH 187.These 

findings open-up an area in which correcting BMPR2 mutations in combination with other 

therapies might be more successful in curing PAH. A proposed hypothesis to cure PAH 

describes collecting iPSCs from PAH patients, restoring the BMPR2 mutation with 

CRISPR/Cas9  and reinjecting  those iPSCs in the patient to normalize EC function and signalling 

along with administration of drugs that could restore the protective gene expression profile 

of unaffected BMPR2 mutation carriers 188. 6-Mercaptopurine (MP), a well-established 

immunosuppressive drug, inhibits EC dysfunction and reverses development of PH in the SuHx 

rat model by restoring BMP signalling through upregulation of nuclear receptor Nur77 189. A 

recent proof-of-concept study with MP in a small group of PAH patients showed a significant 

reduction pulmonary vascular resistance, accompanied by increased BMPR2 mRNA 

expression in the patients’ peripheral blood mononuclear cells. However, unexpected severe 

side-effects require further dose optimisation and/or use of other thiopurine analogues 36. 
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Transplantation of mesenchymal cells in rats from the SuHx model improved haemodynamic 

parameters but more interestingly reduced EndoMT (partially) through modulation of HIF2α 

expression 190. Furthermore, mesenchymal stem cells are also suggested to reduce 

inflammation through secretion of paracrine factors and to attenuate vascular remodelling 

by lowering collagen deposition 190-192. However the underlying mechanisms for this 

observation remain unclear 190.   

At last, epigenetic modulation has received growing interests as potential therapeutic 

intervention. Especially specific HDAC inhibition shows great promise in reversing pulmonary 

remodelling and pressure 135. A problem with  broad-spectrum HDAC drugs is that they show 

severe side effects on the right ventricle, which can have fatal consequences in PAH patients 

with RV failure 139,193,194. Therefore, searches for more selective HDAC inhibitors that do not 

show cardiotoxicity are still being done. One example is MGCD0103, a HDAC inhibitor that 

selectively inhibits class-1 HDACs, which has been tested in a chronic hypoxia rat model. This 

inhibitor showed improved haemodynamics, reduced wall thickening while RV function was 

maintained 139. Also BET inhibitors such as RVX208 seem promising in the treatment of PAH 

through its beneficial effect on reducing the apoptosis-resistant and pro-inflammatory 

phenotype in PASMCs and MVECs isolated from PAH patients but also on vascular remodelling 

and the RV in several experimental models of PH 38. Finally, miRNA-21 has been associated 

with multiple pathogenic features, such as TGFB signalling, EndoMT and apoptosis, central to 

PAH. Therefore, therapeutic modulation of miRNA-21 may be an important issue for future 

research to restore pathogenic signalling.  

CONCLUSION   

To date we still do not fully understand what triggers the onset and progression of PAH. We 

do know that BMPR2 mutations, epigenetics, physiological conditions, and inflammation are 

important triggers. EC dysfunction plays a central role in all of this, through EC proliferation, 

EndoMT and a misbalanced production of vasoactive factors resulting in the disorganized 

growth of PASMCs. However, the question still remains whether EC dysfunction is a cause or 

consequence of PAH. Despite advancements made in treating this disease, no focus on 

targeting PAH at its core. A better understanding of the molecular mechanisms involved in EC 

dysfunction in PAH is of utmost importance for developing successful therapies to save the 

lung as well as the heart, and maybe cure PAH in the future.  
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