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CHAPTER 1 GENERAL INTRODUCTION

1
“�Niets is zonder bloed geboren.” 
(“Nothing is born without blood”- Herwig Hensen, Belgian writer and poet)

 

Red Blood Cell Transfusions

History
Over time it has been recognized that blood loss was frequently associated with 
weakness and death, and as a result the old history of blood transfusion is based 
on the traditional idea of blood being the ‘living-force’ of the body.1 Drinking blood 
was thought of as a magical elixir by the ancient Romans and Greeks. Similarly, 
in the Middle Ages, it was promoted drinking young blood as a means of elderly 
to regain their youthful vigor.2

After discovery of the blood circulation by William Harvey in 1628, the interest in 
blood transfusions increased. In 1667, the first blood transfusion in humans was 
reported. Jean-Baptiste Denis, court physician of King Louis XIV of France, transfused 
25 centiliter blood of a lamb, a so-called ‘innocent’ animal, into a young boy as so 
called treatment for insanity. Unfortunately, the result was not that innocent for the 
young boy because death awaited him. Due to multiple fatal transfusion attempts, 
the Pope announced a ban on blood transfusion procedures in 1679.3

In 1818, the first successful human to human blood transfusion was given by the 
British gynecologist James Blundell in order to treat post-partum hemorrhage. He 
wrote: ‘The patient expressed herself very strongly on the benefits resulting from 
the injection of the blood; her observations are equivalent to this –that she felt as 
if life were infused into her body.’ Blundell further formulated two basic rules for 
blood transfusions: 1) humans can only be transfused with human blood; and 2) 
transfusions are only allowed in case of life-threatening blood loss. Despite these 
precautions half of the transfused patients died.3-5

A major break-through in tackling this high death rate in blood transfusion medicine 
was the discovery of the AB0 blood groups by the Austrian physician Karl Landsteiner 
in 1900, explaining earlier failures due to AB0 mismatched transfusions.6 Together 
with the discovery of the agglutination technique for compatibility testing in 1907 
and the discovery of the Rhesus antigen in 1940, it became possible to safely 
transfuse blood from one human to another. The development of anticoagu-
lant-preservative solutions made it possible to preserve blood in depots, which 
was particularly useful during war-time. This was first used in World War I, where 
transfusions were reported to save lives.7
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In the late nineties of the last century, after publication of a landmark study on 
hemoglobin triggers for RBC transfusion in intensive care patients, the interest in 
RBC transfusion triggers increased rapidly.15 This study of Hébert et al. compared 
a restrictive RBC transfusion trigger (7 g/dL ~ 4.4 mmol/L) with a liberal RBC 
transfusion trigger (10 g/dL ~ 6.3 mmol/L). Although the study showed that the 
30-day mortality was similar in both groups, 30-day mortality rates were 
significantly lower in the restrictive RBC transfusion group as compared with the 
liberal group in patients who were less acutely ill (8.7 vs. 16.1%, p=0.03) and in 
patients who were less than 55 years of age (5.7 vs 13.0%, p=0.02).

Afterwards, many RBC transfusion trigger trials in various patient groups have been 
performed, for example in critically ill children (7 versus 9.5 g/dL), in cardiac 
surgery (7.5 versus 8.5-9.5 g/dL), and hip surgery patients (8 versus 10 g/dL),  
and also in the setting of gastro-intestinal bleeding (7 versus 9 g/dL), septic  
shock (7 versus 9 g/dL), and traumatic brain injury (7 versus 10 g/dL).16-23 All of 
these studies reported no disadvantages of a restrictive compared to liberal 
transfusion strategy, which has led to guidelines recommending restrictive strategies 
for non-hematological patient groups.24,25 However, one must note that due 
to non-blinded study designs, strong selection at inclusion, and non-adherence to 
protocols, the outcome of these trials have to be interpreted with caution.26 
To date, solid data on restrictive RBC transfusion strategies in hematological patients 
is still lacking, although hematological patients are one of the most intensively 
transfused patient groups.27-41

Advantages of restrictive RBC transfusion policies may be prevention of transfusion-
associated side-effects and reduced costs. However, on an individual level, in some 
patients a restrictive RBC transfusion strategy may not be the best choice and 
probably more precision medicine is needed.24

In general, RBC transfusions can be avoided in most patients with a hemoglobin level 
above 7 to 8 g/dL (4.4 to 5.0 mmol/L), however, there is insufficient evidence yet of 
the safety of restricted transfusion policies in certain clinical subgroups, including 
acute coronary syndrome, myocardial infarction, neurological injury/traumatic 
brain injury, acute neurological disorders, stroke, thrombocytopenia, cancer, hema- 
tological malignancies, and bone marrow failure.24 For the latter subgroups, 
studies are ongoing.25,42

Side-effect of transfusions
While quality of life may be improved by transfusion of RBCs,43 additional beneficial 
effects are unclear. Evidence and quantification of such a benefit is of special 

Currently, clinicians have a diversity of blood products at their disposal, which 
provides the possibility of ‘precision’ blood transfusion for recipients. While blood 
transfusions have been shown to be life saving for many patients regarding 
bleeding after trauma, complicated surgery, and obstetric complications, the 
precise when and how to transfuse, still requests more elucidation.

This thesis will focus on the management of red blood cell transfusions in one 
particular group of patients, namely those with hematological malignancies. As by 
disease and/or treatment hematopoiesis is compromised in these patients, this 
may lead to severe anemia, and consequently to a high need for red blood cell 
transfusions.8,9

Red blood cell transfusion therapy

Clinical practice
Red blood cell (RBC) transfusion is one of the few treatments that adequately 
restores tissue oxygenation when oxygen demand exceeds supply in case of 
anemia. Nevertheless, tissue oxygenation as an indicator for RBC transfusion remains 
controversial as it is not easily assessed by conventional clinical tests. Few clinical  
signs like hypotension, oliguria, and impaired consciousness, reliably predict early 
hypoxemia, and in general, clinicians will not wait for these clinical symptoms to 
occur before starting RBC transfusion treatment.3 New tests that are able to 
indicate failing tissue oxygenation during anemia in clinical patients is of eminent 
importance to better guide RBC transfusion therapy in general. 

Hemoglobin triggers guiding red blood cell transfusion therapy
Currently, clinicians mainly seem to rely on their clinical experience in the decision 
at what hemoglobin trigger to initiate transfusion.3 The additional absence of 
high-grade evidence-based guidelines, therefore effects in a wide variation in 
RBC transfusion practice throughout the world.10-13 

Interestingly, often a less restrictive RBC transfusion policy is applied in patients, which 
likely originates from the still widespread assumption that a high hemoglobin level  
is beneficial for patients in terms of survival and quality of life. The ’10/30-rule’ 
introduced in 1942 by an anesthesiologist, where a RBC transfusion was suggested 
for surgical patients when their hemoglobin levels dropped below 10 g/dL (~6.3 
mmol/L) or their hematocrit below 30%, has contributed to this assumption.14  
This recommendation was later applied to all transfusion settings and resulted  
in the term ‘transfusion trigger’: i.e. the critical hemoglobin value in which a RBC 
transfusion is indicated.3
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Fortunately, attention for this knowledge gap is rapidly increasing over the past 
few years. Patient blood management programs currently focus on various medical 
patient groups, including hemato-oncological patients.25,49

Iron and transfusion 

Physiology
Iron is an essential element for the human body, mainly because of its ability to 
accept and donate electrons by switching between ferrous (Fe2+) and ferric (Fe3+) 
ions.44 The energy production by this redox reaction plays a major role in many 
metabolic pathways as oxygen transport in the hemoglobin molecule, DNA synthesis, 
and the cytochrome P-450 enzymes involved in degradation of potential toxic 
substances.44

The human body contains 2.5 to 4.0 grams of iron.44 Since, our body has no active 
iron secretion system and an excess of iron can be extremely toxic, the quantity of 
iron in the body is tightly regulated, primarily by the rate of iron absorption from  
the gut.51 About 1-2 mg of iron is lost daily through shedding of duodenal enterocytes 
and skin cells.44,52 Additionally, 1 mg of iron is lost daily from menstruation in 
women.44 Only 1-2 mg iron per day needs to be absorbed in order to maintain iron 
homeostasis.52

In the circulation, iron is bound to transferrin, the major iron transport protein. 
Iron then enters the intracellular pool, mainly in red blood cells as a component 
of hemoglobin and as ferritin in hepatocytes and macrophages, as part of the 
reticuloendothelial system.53 Iron recycled from damaged or senescent red blood 
cells, remains stored in macrophages or is released back into the circulation 
bound to transferrin for production of new red blood cells in the bone marrow, 
or for storage in hepatocytes.54 Figure 2 demonstrates an overview of the iron 
metabolism.

Hepcidin, a small peptide hormone, produced by the liver, is discovered as the 
key regulator of iron metabolism.55 Hepcidin blocks the iron absorption in the 
duodenal enterocytes and release of iron stored in macrophages by degradation 
and internalization of the cellular iron transporter ferroportin.52,54,55 The hepcidin-
ferroportin interaction is central to iron metabolism in humans, as regulatory 
molecules mainly act by modulating this interaction. Hepcidin production is 
regulated by iron stores through the bone morphogenetic protein (BMP) signalling 
pathway.56 It was only recently that a new hormone involved in hepcidin regulation 

importance, since transfusions may also include negative effects on outcome 
through risk of transmission of infectious diseases, allo-immunization, hemolytic 
reactions, and other transfusion reactions. Moreover, transfusions are associated 
with immuno-modulation and secondary iron overload.3,44 Worldwide scandals 
with transmission of human immunodeficiency virus (hiv) and hepatitis C via 
transfused blood products in the late 80’s and 90’s, gained attention on the 
negative effects of transfusion. Figure 1 depicts the incidence of transfusion-
associated side-effects. The incidence of a chronic, but serious, complication  
of RBC transfusions, like secondary iron overload, still has to be established. 
Estimations in regularly transfused patient groups vary from 25 to 100%.45-48 
With this, iron overload is probably much more common compared to most other 
transfusion-associated side-effects. 

Red blood cell transfusion therapy in hematology patients
To date, RBC transfusion therapy still is the cornerstone of supportive care in 
hematology patients. Almost 20% of all RBC transfusions in Europe are given to 
support treatment and/or disease-related anemia in patients with hematological 
diseases.8,9

Despite the substantial usage of RBC transfusion in hematological patients, there is  
a paucity of good quality data on RBC transfusion strategies in this patient group. 
This may result in a large variation of RBC transfusion strategies throughout countries, 
centers, and even individual physicians.

Figure 1  Adverse effects of RBC transfusion as compared with other unrelated risks.

HIV: Human Immunodeficiency Virus; HCV: Hepatitis C virus; HBV: Hepatitis B virus; AHTR: Acute 
Hemolytic Transfusion Reaction; DHTR: Delayed Hemolytic Transfusion Reaction; TRALI: Transfusion-Related 
Acute Lung Injury; TACO: Transfusion Associated Cardiac Overload. Adapted from Carson et al.50
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ROS are associated with lipid peroxidation and organelle damage, resulting in cell 
death and fibrosis mediated by transforming growth factor-1.60 ROS are also 
known to damage DNA, which could lead to genomic instability, mutagenesis, and 
cell death or neoplasia.58,61 Iron overload and subsequent oxidative stress may 
contribute to genomic instability of the pre-leukemic clone and may result in clonal 
evolution of a myelodysplastic syndrome (MDS) towards acute myeloid leukemia.62

Iron overload can be either acute or chronic. Acute iron overload results from 
intake of iron salts or from an overdose of iron-containing supplements. Chronic 
iron overload is more frequent and could result from long-term intake of iron-con-
taining supplements, chronic liver disease, several hereditary disorders of iron 
metabolism like hereditary hemochromatosis, ineffective erythropoiesis as for 
example seen in thalassemia, and from frequently administered RBC transfusions.58 
One RBC unit approximately contains 200 mg of iron, which is about 100 times the 
quantity of daily absorbed iron.44

Secondary iron overload due to multiple RBC transfusions is a potential threat to 
frequently transfused patients as it may cause significant organ damage e.g. to 
liver, heart, and endocrine organs.63,64 Adverse effects of iron overload, specific 
for patients with hematological malignancies, include: inferior survival after 
hematopoietic stem cell transplantation (HSCT), increased risk of bacterial and 
fungal infections, and impaired hematopoiesis.65-70 Moreover, patients with 
hematological malignancies may be more prone to develop iron toxicity-related 
cardiac disease than other patients. Cardiac remodelling, may be additionally 
induced by long-standing anemia and cardiomyopathy by various chemothera-
peutical agents.71 Cardiac failure is indeed the most common non-leukemic cause 
of death (51%) among MDS patients, and fatal cardiac failure is significantly more 
frequent in transfusion-dependent patients.72

Secondary iron overload already occurs in patients who received about 20 RBC 
transfusions, while after 30 RBC transfusions, the positive predictive value for 
significant hepatic iron overload reaches 96%.69,73

Despite increasing evidence for iron toxicity, monitoring and management of 
secondary iron overload in patients receiving multiple RBC transfusion, such as 
patients with hematological malignancies, is still not common practice.74 This may 
be due to the fact that only in hemoglobinopathies treatment of transfusion-
associated iron overload has shown to be beneficial in limiting organ damage  
and even mortality. Clinicians on the other hand, may perceive secondary iron 
overload in hemato-oncological patients of minor importance as a contributable 

was identified: erythroferrone.57 Erythroferrone is produced by erythroblasts in 
response to erythropoietin and mediates hepcidin suppression during stress 
erythropoiesis.57 Hepcidin production is increased in case of iron overload and 
decreased in iron deficiency, anemia, and hypoxia.55

Pathophysiology
Iron overload occurs when the binding capacity of transferrin for iron is exceeded, 
resulting in non-transferrin bound iron (NTBI). NTBI and its redox active component 
labile plasma iron (LPI) are small molecules which are readily absorbed by body 
tissues where it leads to increased levels of storage iron and labile cellular iron. 
The liver, endocrine system, and myocardium are the most susceptible to toxic 
iron accumulation.58 When the amount of the labile cellular iron exceeds the 
capacity of the cell to produce new ferritin molecules, reactive oxygen species 
(ROS) are being formed.58,59

Figure 2  Short overview of  iron metabolism, previously published in TvB 2015, Hoeks et al, 
published with the courtesy of N. Sonneveld.
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Assessment of the liver iron concentration by liver biopsy is still the golden 
standard in the detection of iron overload.76 However, tissue biopsies of liver or 
even myocardium are not likely to be performed in hematological patients due to 
its risk of complications.54 Currently, the use of the T2* magnetic resonance 
imaging (MRI) is increasing for non-invasive assessment of liver and myocardial 
iron concentration. T2* MRI values of less than 20 milliseconds are associated 
with high liver iron content and a significant decrease in left ventricular function in 
thalassemia patients.77 Additionally, a correlation between the total RBC 
transfusion burden and increased liver T2* values was demonstrated in patients 
with MDS.78

Treatment of secondary iron overload 
Phlebotomy is a safe and cost-effective treatment for secondary iron overload in 
many conditions like, for example, hereditary hemochromatosis.79 Due to anemia, 
the use of phlebotomies is often of limited value in patients with hematological 
malignancies. Therefore, iron chelation therapy can be considered in case of 
secondary iron overload in anemic patients. Three iron chelating agents are 
available: desferoxamine (Desferal®), deferiprone (Ferriprox®), and deferasirox 
(Exjade®) of which the first is administered subcutaneously or intravenously and 
the latter two are administered orally.80 Iron chelation therapy is known to improve 
outcome in multi-transfused hemoglobinopathy patients,81-83 but whether it actually 
decreases morbidity and mortality in patients hematological malignancies needs 
to be further investigated as most studies were executed in small or highly selected 
patient groups or suffered from methodological problems.84-87

Thesis outline

This thesis focuses on the variability of RBC transfusion management and the 
screening and management of transfusion-associated iron overload in patients 
with hematological malignancies.

Since evidence-based guidelines for RBC transfusion support in patients with 
hematological malignancies are currently lacking, we expect a large variation in 
clinical practice. Therefore, in chapter 2, the Dutch RBC transfusion practice 
among hematologists is evaluated by means of a survey. Assessing the actual 
RBC transfusion practice and management of secondary iron overload of patients  
with hematological malignancies, could be the starting point for further research  
and eventually improvement of current RBC transfusion guidelines for these patients. 

factor for overall survival and may experience treatment by iron chelation therapy 
(ICT) too much of a burden. Finally, imprecision of serum markers for monitoring 
iron overload, the invasiveness (biopsy) or unavailability (MRI) of accurate 
diagnostics might also play a role.54 All of these factors contribute to a lack of 
studies on secondary iron overload and low enrollment of patients in studies 
investigating this side-effect of RBC transfusion. Furthermore, uniform guidelines 
on monitoring and treatment of iron overload are absent.54,73

Diagnosis of secondary iron overload
Detection of secondary iron overload is challenging since early symptoms, like 
fatigue and abdominal discomfort, are nonspecific. This may delay its diagnosis 
until organ damage and dysfunction are clinically apparent.44,58

The most frequently used parameter to detect iron overload in clinical practice is 
serum ferritin. Generally, serum ferritin is indicative for iron stored in macrophages, 
which is proportional to the total body iron.58 However, it may lack clinical 
significance as iron toxicity usually occurs at the time that transferrin capacity is 
exceeded and NTBI and consequently LPI are produced. This may occur after 
chronic RBC transfusion therapy, but recently it has been recognized that in 
lower-risk MDS patients LPI production is already frequently seen early after 
patients becoming transfusion-dependent and before serum ferritin levels are 
elevated.75 LPI is suggested to be a predictive factor for inferior survival in 
lower-risk MDS patients.75 

A drawback of serum ferritin is its lack of specificity for detecting iron overload 
because of its property of being an acute phase protein. Specificity can be improved 
by serial measurements and concurrent measurement of C-reactive protein.

Another parameter for detecting secondary iron overload is transferrin saturation. It is 
especially useful to detect the location of iron overload. Elevated values of 
transferrin saturation indicate parenchymal iron overload, whereas a transferrin 
saturation values within the reference range could indicate reticuloendothelial 
iron overload.54 This distinction between location of iron overload is not merely 
academic, but has considerable clinical consequences. Reticuloendothelial iron 
loading is relatively safe as the iron is contained inside, for example, macrophages. 
Iron loading in parenchymal cells is, however, extremely toxic resulting in organ 
damage.44,58
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chapter 3 provides a summary and meta-analysis of all available literature on this 
important topic. 
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transfusions with bone marrow iron scores as an indicator of secondary overload 
and whether bone marrow iron scores obtained from routinely performed bone 
marrow aspirate samples could be clinically applicable to assess bone marrow 
iron overload. 
The knowledge of temporal changes in iron parameters in transfused lower-risk 
myelodysplastic syndrome patients is scarce. Similarly, the impact of toxic iron 
species as NTBI and LPI on survival in lower-risk MDS patients remains unclear. 
Chapter 5 describes the results of a sub study within a large European dataset: 
the EUMDS registry, in order to gain -by means of repeated monitoring of iron 
parameters- more insight in the pathophysiology of secondary iron overload and 
the impact of toxic iron species on survival in lower-risk MDS patients.

As mentioned in the introduction, secondary iron overload results in morbidity 
and mortality in intensively transfused patients. Iron chelation therapy evidently 
improves outcomes in hemoglobinopathy patients. However, whether iron depletion 
by the use of iron chelation therapy also improves outcome in patients with hema- 
tological malignancies has still to be elucidated. In chapter 6 the effect of iron 
chelation therapy on clinical outcome in patients with lower-risk myelodyplastic 
syndromes is evaluated with two different statistical models in the EUMDS registry. 
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perspectives for future research within the field.
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