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Although stroke and migraine are generally considered to be two very diff erent disease 
en   es, they actually are closely connected and their pathophysiological overlap becomes 
increasingly clear. In this thesis we inves  gate, in a transla  onal manner in pa  ents and 
experimental animal models, the rela  onship between migraine and ischemic stroke and 
between migraine and delayed cerebral ischemia a  er subarachnoid hemorrhage. 
 
1. Epidemiology of stroke and migraine

1.1 Ischemic stroke 
Stroke is the second most frequent cause of death and the most frequent cause of 
disability worldwide,1 with a global incidence of more than 10 million and a prevalence 
of almost 26 million.2 In the Netherlands, every year approximately 46,000 people 
get a stroke. According to ‘The Stroke Council of the American Heart Associa  on 
/ American Stroke Associa  on’ criteria, the defi ni  on of stroke is “an episode of 
neurological dysfunc  on caused by focal cerebral, spinal, or re  nal infarc  on”.3 
Roughly, there are two main stroke subtypes: ischemic stroke and hemorrhagic stroke. 
Ischemic stroke is the most common (about 80%) type of stroke. Although hemorrhage stroke 
is less common its long term consequences are o  en severe and therefore both subtypes 
have great impact on a pa  ent’s daily life. 

Ischemic stroke occurs when blood fl ow to the brain is restricted due to occlusion of a cerebral 
artery, typically by a local thrombus or an embolus (Figure 1). The global incidence is almost 
7 million with a prevalence of 18 million.2 In the Netherlands, the incidence is almost 20,000 

Figure 1. Schema  c illustra  on of an ischemic stroke (modifi ed from strokecenter.org)
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per year.4 Diff erent subtypes are described, according to their underlying cause, which aff ects 
stroke management. The ‘Trial of Org 10172 in Acute Stroke Treatment’ (TOAST) classifi ca  on5 
describes fi ve subtypes: (I) large-artery atherosclerosis (embolus / thrombosis), 
(II) cardioembolism, (III) small-vessel occlusion (lacunar infarct), (IV) stroke of other determined 
e  ology, and (V) stroke of undetermined e  ology. There is a remarkable gender diff erence 
in stroke with men having an overall higher risk for fi rst-ever stroke at medium age,6 where 
women have a higher risk in young (< 55 year) and older (> 75 year) ages.7 Also, the prevalence 
and average age of fi rst-ever stroke is higher in women.6,7 Women have a higher burden a  er 
stroke, with more o  en physical impairment and depression than men.7

1.2 Migraine
Migraine is a common episodic brain disorder aff ec  ng approximately 15% of the popula  on.8 
Migraine is characterized by a  acks of severe, usually throbbing unilateral headache that are 
accompanied by nausea, vomi  ng, photo-, and / or phonophobia.9 A  acks typically last 4 to 
72 hours. Because of its high prevalence and major social and economic burden migraine was 
rated one of the most disabling common chronic neurological disorders.10 Two main types 
of migraine can be dis  nguished: migraine without aura and migraine with aura.9 The la  er 
is present in about one third of pa  ents and is characterized by an aura that can precede 
the headache. An aura consists of transient focal neurological symptoms aff ec  ng mainly the 
visual system but that can also include sensory, aphasic and motor symptoms. Migraine is a 
heterogenic disease with an a  ack frequency that can vary between and within pa  ents from 
a few a  acks per year up to a few per week; also the same pa  ent can suff er from migraine 
with and without aura a  acks. Migraine aff ects more women than men in a 3:1 ra  o.9,11

1.3 The stroke-migraine connec  on
Evidence is accumula  ng that migraine, especially migraine with aura, is an independent risk 
factor for ischemic stroke,11-15 especially in women. At fi rst this seems unexpected given the 
clinical disease characteris  cs that are quite diff erent between both disorders, including the 
sex diff erence. Whereas migraine is a chronic disorder most common in young to middle-
aged women (age 25 to 55 years), stroke is an acute event that typically occurs in middle 
aged men. Regardless, addi  onal clinical evidence for the co-morbidity of stroke and migraine 
comes from: (I) the possible existence of migraineous infarc  ons,16,17 (II) the co-occurrence of 
migraine and cervical artery dissec  on,18 (III) shared risk factors like hypercoagulability19 and 
endothelial dysfunc  on,20 (IV) the fact that certain drugs to treat migraine, such as triptans 
and ergotamines, have been associated with increased stroke risk,21 and (V) gene  c evidence 
linking stroke and migraine in mul  ple monogenic diseases.22,23 

2. Primary and secondary ischemic damage in stroke; core and penumbra
Mul  ple complex mechanisms are responsible for infarct matura  on during and a  er vessel 
occlusion. Although the exact mechanisms are s  ll largely unknown, a typical temporal pa  ern 
seems to occur a  er a focal perfusion defi cit.24 Within this temporal and spa  al con  nuum 
the infarct territory can be divided into two main areas: the ischemic core and the penumbra, 
or ‘  ssue at risk’ (Figure 2).25,26 Within minutes a  er the ischemic event, cells contribu  ng to 
the core become necro  c with membrane breakdown, dysfunc  onal cellular metabolism and 
energy supply, disturbed ion homeostasis, and loss of cell integrity. The  ssue surrounding 
the core, however, is ‘struggling to survive’ due to collateral blood supply being borderline 
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1suffi  cient. Cells in the penumbra are metabolically ac  ve for some  me, un  l the disrup  on 
of the cellular homeostasis in these cells also leads to cell death. It is increasingly clear that 
infl ammatory factors27 and blood-brain-barrier (BBB) breakdown28 play an important role in 
the transi  on of penumbra  ssue into core  ssue. The transi  on process can take up to several 
hours, which has direct impact on the ‘  me-to-treat’ window of stroke pa  ents. The fi rst 
destruc  ve cascade that is ac  vated a  er a perfusion defi cit is cellular excitotoxicity, which 
contributes to a large extent to the  ssue damage. Excitotoxicity includes the produc  on of 
reac  ve oxygen and nitrogen species (ROS and RNS) and acidosis. Within minutes, and las  ng 
up to several hours, mul  ple pathophysiological events take place: (I) a rise of extracellular 
K+, (II) presynap  c terminal depolariza  on, (III) excessive extracellular neurotransmi  er 
accumula  on, (IV) N-methyl-D-aspartate (NMDA)-receptor ac  va  on, (V) loss of ion 
homeostasis (Ca2+, K+, Na+, H+, Cl-, HCO3

-), and (VI) a rise of neuronal and glial intracellular 
Ca2+ resul  ng in cytotoxic edema.29-31 Secondary mechanisms contribu  ng to increased  ssue 
damage are BBB breakdown, reperfusion injury, infl amma  on and apoptosis.32 Protec  ve 
and regenera  ve mechanisms to prevent and repair damage of a stroke also occur ac  vely 
in the peri-acute and chronic phase a  er ischemic onset.32 However, the molecular pathways 
involved in these events are s  ll to be unraveled. Inves  ga  ng at the molecular level, by 
elucida  ng the pep  des, (amino-) metabolites and lipids that show changes in the various, 
especially the early, stages of a stroke can help us to dissect the pathophysiology of stroke and 
can eventually lead to new therapeu  c targets to treat pa  ents.

3. The role of spreading depolariza  on and neurovascular coupling in the shared patho-
physiology between stroke and migraine

3.1 Spreading depolariza  on
Spreading depolariza  on (SD) is the generic term for a self-propaga  ng wave of membrane 
depolariza  on in neuronal and glial cells which travels through cerebral grey ma  er of the 
central nervous system and which is accompanied by a period of electrical silencing. These 
depolariza  on waves have been described in humans in ischemic stroke,33 in subarachnoid 
hemorrhage (SAH)34 and in trauma  c brain injuries35 at the site of the injury where they are 
referred to as anoxic depolariza  ons (ADs) and peri-infarct depolariza  ons (PIDs). SDs are 
also considered to be the underlying pathophysiological mechanism of a migraine aura.36,37 In 
migraine aura a SD that originates in the visual cortex and spreads to frontal cor  cal regions 
is referred to as cor  cal spreading depression (CSD), named a  er the neuronal depression 
that follows the sharp wave front of hyperexcita  on (with concomitant neuronal and glial 
cell depolariza  on). SDs can therefore be seen as a spectrum that includes PID, AD and CSD 
depending on the disease type and is also referred to as the stroke-migraine depolariza  on 
con  nuum.24,38

3.1.1 Spreading depolariza  on in ischemic stroke
In a pathological condi  on, for example during ischemic stroke onset, depression of 
spontaneous neuronal ac  vity is seen 10 -20 seconds a  er a blood fl ow reduc  on below a 
certain threshold (15 - 23 mL / 100g / min).25 Neurobiological mechanisms that are ac  ve in 
this ini  al period are neuronal hyperpolariza  on, loss of synap  c ac  vity, reduc  on of vesicular 
transmi  er release by adenosine media  on, and reduced energy consump  on (that acts as a 
survival mechanism of the  ssue to cope with the ischemia). Within 2 -5 minutes, AD occurs 
resul  ng in an even further reduced blood fl ow (5 -10 mL / 100 g / min) and depression of 
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ac  vity.38,39 The AD originates from the core, and spreads via the penumbra into healthy  ssue. 
This wave is triggered by loss of membrane integrity due to hypoxia and energy deple  on. 
Notably, a  er this fi rst depolariza  on wave, mul  ple PID waves erupt from the penumbra, 
spreading into the penumbra, core and healthy  ssue. Due to the energy mismatch created 
by these PIDs, each wave will turn part of the penumbra  ssue into a permanently depolarized 
and necro  c state,40-42 and therefore co-determines the severity of stroke outcome.

3.1.2 Spreading depolariza  on in migraine 
Under normal condi  ons, neurons and their dendrites have a membrane poten  al that 
enables them to fi re ac  on poten  als, which is the way neurons communicate. This membrane 
poten  al is maintained by ac  ve ion pumps. During CSD in a migraine aura, this homeostasis 
is disrupted, resul  ng in: (I) a near-complete breakdown of ion gradients,43 (II) increased 
extracellular K+ level, (III) loss of electrical ac  vity,44 (IV) swelling of neurons,45 (V) sustained 

Figure 2: Schema  c illustra  on of SD waves triggered by occlusion of a cerebral vessel (le  ) as seen during ischemia 
and triggered by high potassium (right) occurring during a migraine aura, with (A) neuronal depolariza  on, (B) 
Neuronal ac  vity and (C) Cerebral blood fl ow. (Modifi ed from Dreier et al. 201524 with permission). SD – Spreading 
Depolariza  on.
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1depolariza  on,46 and (VI) a hemodynamic response.47 Unlike SD events in stroke, CSDs in 
migraine are considered rather benign transient disturbances of (cor  cal) brain func  on 
without permanent damage. Whether SD also occurs in migraine without aura, also referred 
to as ‘silent aura’, is debated.48,49 

3.2 Neurovascular coupling 
Vessels are a major player in the pathology of stroke and likely also in migraine, in the fi rst place 
due to their involvement in neurovascular coupling. As a result of neurovascular coupling, a 
hyperemic response occurs to meet the increased energy demand when PIDs circle around 
the ischemic core (in the case of stroke) or when a CSD wave spreads through the cortex (in 
the case of a migraine aura).50 Briefl y before and prolonged a  er this phenomenon, hyperemia 
and oligemia are present.51 In pathological (ischemic)  ssue, AD and PIDs are accompanied 
with paradoxical vasoconstric  on resul  ng in oligemia.52,53 The AD / PIDs and addi  onal 
decrease in res  ng cerebral blood fl ow (rCBF) is also called spreading ischemia,54 due to 
inverse neurovascular coupling (Figure 2).52 In such pathological  ssue, the hypoperfusion 
wave travels, in contrast with CSD, together with the spreading depolariza  on at the same 
 me through the  ssue, where it enters the vicious cycle of an inverse hemodynamic response 

and energy supply / demand mismatch. The trigger for PIDs is the massive misbalance in ion 
homeostasis that induces a vicious circle of ischemia, depolariza  on and vasoconstric  on 
with an increased infarct territory as the devasta  ng result.39,55 PIDs under ischemic condi  ons 
are seen in numerous experimental animal models.56-58 CSD is thought to occur in pa  ents that 
have migraine with aura, although the most convincing evidence thus far in humans came 
from analyzing indirect vascular responses seen with imaging techniques37 and correla  ons 
with clinical characteris  cs,59 adding to the debate on how relevant CSD is in humans.60 In 
contrast, CSD has been studied widely in animal models in which it has been shown that it 
indeed is the likely cause of the aura.61,62

3.3 Vascular dysfunc  on
The connec  on of stroke and migraine has also been a  ributed to mul  ple vascular pathologies, 
such as endothelial dysfunc  on and coagula  on abnormali  es.63 Endothelial dysfunc  on 
includes reduced vasodilata  on, increased endothelial derived vasoconstric  on (vasospasm) 
and subsequent impairment of cerebral vascular reac  vity. These processes can subsequently 
lead to an increase in coagula  on factors, increased release of infl ammatory factors that 
eventually can lead to atherosclerosis and increased stroke risk. Coagula  on abnormali  es 
(primarily or secondarily due to endothelial dysfunc  on) are found in stroke64,65 as well as 
in migraine66-68 pa  ents and include increased platelet-ac  va  ng factor (PAF), increased 
VonWillebrand Factor (VWF), both of which are released by or triggered by endothelial cells.

4. Monogenic disorders in stroke and migraine 
There are a number of monogenic diseases in which ischemic stroke and migraine are part 
of the clinical spectrum.69 Understanding the gene  cs and molecular mechanisms of these 
diseases provides an unique opportunity to further unravel the pathophysiology of the stroke-
migraine associa  on. Here three monogenic diseases will be discussed: (I) Cerebral Autosomal 
Dominant Arteriopathy with Subcor  cal Infarcts and Leukoencephalopathy (CADASIL),70 
(II) Re  nal Vasculopathy with Cerebral Leukoencephalopathy and Systemic manifesta  ons 
(RVCL-S),71 and (III) Familial Hemiplegic Migraine (FHM).72 Both CADASIL and RVCL-S belong to 
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the group of small vessel diseases;69 a condi  on in which the walls of small arteries in the brain 
are damaged.73 In contrast, FHM is considered more a disease of neurologic than of vascular 
dysfunc  on.

4.1 CADASIL
CADASIL is the most common type of hereditary small vessel disease and characterized by 
progressive development of subcor  cal infarcts, star  ng at middle age74-77 with cogni  ve 
decline even before fi rst stroke onset.78,79 Remarkably, approximately 40% of CADASIL pa  ents 
suff er from migraine with aura,80 which in many is the fi rst presen  ng symptom, some  mes 
decades before the onset of other disease characteris  cs. As the disease progresses, 
accumula  on of lacunar infarcts, microbleeds and brain atrophy result eventually in severe 
vascular demen  a. CADASIL is caused by muta  ons in the NOTCH3 gene, which encodes 
the NOTCH3 protein that is mainly expressed in vascular smooth muscle cells.81 CADASIL 
muta  ons typically alter the number of cysteines that are responsible for correct folding of the 
protein’s extracellular domain (NOTCH3ECD).82,83 Misfolding eventually leads to accumula  on 
of mutant protein in vascular smooth muscle cells (VSMC),77,84 degenera  on of these cells, 
vessel wall thickening, and the occurrence of dense deposits of granular osmophilic material 
(GOM) in the vessel wall. Typically the abnormali  es are observed in small- and medium-
sized arteries.85 Various transgenic mouse models are available that express NOTCH3 protein 
with CADASIL muta  ons, either from a human cDNA overexpression construct,86-88 a rat89 or 
human90 genomic overexpression construct, or a mouse knock-in construct.91,92 To more or 
lesser extent, these animal models exhibit key features of the disease.90,93 However, brain 
imaging abnormali  es seen in CADASIL pa  ents, have not yet been found in these mice. 

4.2 RVCL-S
RVCL-S is a systemic small vessel disease with prominent vasculopathy of, most profoundly, 
re  na, brain and kidney that may lead to visual loss, cogni  ve disturbances, depression 
and kidney dysfunc  on, which starts at middle-age.71,94-96 About half of RVCL-S pa  ents also 
suff er from migraine (with or without aura), as became clear from inves  ga  ng all 11 known 
RVCL-S families in the world.71 RVCL-S pa  ents also have an increased ischemic stroke risk 
as evidenced by the small white ma  er infarcts seen in many pa  ents.71 RVCL-S is caused 
by heterozygous C-terminal frameshi   muta  ons in the TREX1 gene,95 which encodes the 
major mammalian 3’ - 5’exonuclease that has mul  ple possible func  ons such as ac  ng as 
cytosolic DNA sensor to prevent autoimmunity.97,98 A study of mutant cells and a transgenic 
mouse model that expresses a TREX1 muta  on pointed at an aberrant release of free glycans 
due to abnormal oligosaccharyltransferase (OST) func  on as a possible mechanism for the 
vasculopathy.99 

4.3. FHM
FHM is a monogenic subtype of migraine with aura and evidence is accumula  ng that it is 
linked to stroke.9 FHM is characterized by long-las  ng hemiparesis during the aura phase,9 with 
headache features100 and trigger factors101 that are similar to those in common migraine with 
aura. Three genes, FHM1 to FHM3, have been iden  fi ed that all encode ion transporters.72 
FHM1, the gene that is most prominently linked to stroke, is caused by certain missense 
muta  ons in the CACNA1A gene,102 which encodes the α1A subunit of voltage-gated CaV2.1 (P 
/ Q-type) calcium channels. These channels are located at most, if not all, synap  c terminals 
of the central nervous system where they regulate neurotransmi  er release.103,104 FHM1 
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muta  ons cause a le  -shi   in the ac  on voltage, prolonga  on of opening of CaV2.1 channels, 
and increased neurotransmi  er release. In the cortex, this results in an enhanced glutamate 
release that explains the increased SD sensi  vity seen in transgenic mice that express CaV2.1 
channels with FHM1 muta  ons.105-109 These transgenic mice also were shown to be a relevant 
model to study the rela  on of stroke and migraine.56,110

5. Techniques to inves  gate the rela  on between stroke and migraine

5.1 Experimental stroke model in mice
Various cerebral stroke models are described in literature, ranging from global (transient 
whole circulatory arrest) to focal (transient or permanent occlusion of a cerebral artery) 
occlusion of cerebral blood fl ow. These models give us the opportunity to study stroke-
induced mechanisms with the fi nal goal of reducing pa  ent burden a  er an infarct.111 One of 
the most common causes of ischemic stroke seen in pa  ents is the occlusion of the middle 
cerebral artery (MCA) by a thrombus or embolus.112 This stroke subtype is best mimicked by 
the experimental middle cerebral artery occlusion model (MCAO) with reperfusion, which 
therefore, is the most widely used model in experimental stroke research (Figure 3). With this 
model, the MCA is occluded by the temporary introduc  on of a fi lament into the intracerebral 
artery (ICA) that is maneuvered towards the origin of the MCA where it blocks blood fl ow. 
The MCAO model allows for ischemic core and penumbra development, of which the ra  o 
and severity is directly dependent on the occlusion  me. Occlusion of the MCA for 30-60 

Figure 3. Experimental transient intraluminal suture 
model for middle cerebral artery occlusion (MCAO) in 
mice.



18

G  I

minutes will make the lateral striatum (caudoputamen) ischemic with or without ischemia 
of the frontoparietal cor  cal region. Advantages of this model over other models, such as 
distal transient / permanent MCAO, is that it is minimally invasive concerning the research 
target area (the brain), since skull integrity is maintained and the occlusion is more stable 
compared to for instance embolic stroke models.113 Therefore, MCAO reduces the amount of 
confounding factors of massive surgery and thus mimics the clinical situa  on as accurate as 
possible. 

5.2 State-of-the-art imaging techniques in mice 
5.2.1 Magne  c Resonance Imaging
Using magne  c resonance imaging (MRI) as a readout technique for infarct characteris  cs, 
avoids disadvantages such as: (I) histological valida  on (the current golden standard) that 
introduces errors as there will be changes in brain morphology from processing brain sec  ons 
(swelling / shrinkage of  ssue), (II) the manual-labor-intensive nature of infarct volume 
analysis, and (III) the necessity to sacrifi ce the animal making longitudinal studies and mul  ple 
readout  mes unfeasible. Anatomical spin-spin relaxa  on  me contrast T2 MRI sequence can 
detect ischemic lesions in a way that they can be analyzed in a longitudinal manner.114-116 This 
T2 sequence is shown to be sensi  ve to vasogenic edema which is one of the mechanisms 
ac  ve during infarct development.117 In clinical research, mul  ple algorithms for automa  c 
detec  on, segmenta  on and classifi ca  on of stroke areas in the brain have been developed.118 
However, segmenta  on of brain lesion in mouse MRI data s  ll heavily relies on manual  me-
consuming protocols.119 

5.2.2 Mass Spectrometry Imaging 
To simultaneously analyze the distribu  on of hundreds of molecules from a  ssue sample120 
within its histological context,121 mass spectrometry imaging (MSI) can be used.122 MSI can 
dis  nguish molecules from diff erent classes such as pep  des, (amino-) metabolites, proteins 
and lipids. The iden  ty of molecules is determined using their unique mass-to-charge ra  o 
(m/z). Matrix-Assisted-Laser-Desorp  on / Ioniza  on (MALDI) MSI is a method to ionize 
molecules in the target  ssue. MSI involves matrix deposi  on onto a  ssue sec  on, where 
a  er a laser beam allows desorp  on and ioniza  on of molecules that subsequently are 
detected by the mass analyzer. From this data, 2D images are reconstructed that provide 
detailed informa  on on the spa  al distribu  on of the respec  ve metabolites. To avoid 
confounding distor  on of sec  ons from diff erent samples by the various procedures (e.g. 
cu   ng, processing), 2D MSI images can be co-registered with for example histological images, 
MRI images or brain atlases.123,124 Arguably,  ssue prepara  on is the most important factor 
determining the success of a MSI experiment, especially for molecular classes that are highly 
suscep  ble to post mortem changes, foremost ATP and ADP,120,121,125,126 that are important 
to evaluate molecular mechanisms relevant to stroke. Mul  ple  ssue prepara  on methods 
have been reported that have their advantages and limita  ons concerning diff erent molecular 
classes,120 but at present none of them is ideal. 

5.3 State-of-the-art CT techniques in pa  ents
Ini  al triage and management in ischemic stroke is crucial in pa  ents who come to 
the emergency room with signs and symptoms of acute ischemic stroke, since  me to 
reperfusion is highly important for the outcome of the pa  ent. Along with the neurologic 
exam, radiological imaging is eminent for diagnos  c and therapeu  c purposes. In today’s 
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1clinic, a CT-scan is made to visualize the possible infarct territory. Non-contrast CT (NCCT) 
is used to diff eren  ate between ischemic and hemorrhagic stroke, and to exclude other 
possible causes for the presen  ng symptoms, such as a subdural hematoma. Addi  onally, CT 
angiography (CTA) is increasingly performed, which gives important informa  on concerning 
the presence and loca  on of a thrombus and func  onal collateral and anastomo  c func  on, 
which is crucial informa  on for mechanical thrombectomy management.127,128 Upcoming 
is the opportunity for CT perfusion (CTP) in acute stroke management. This rela  vely new 
technique can provide addi  onal informa  on on the viability of the infarcted  ssue. CTP 
includes informa  on concerning  ssue perfusion, such as cerebral blood volume and fl ow 
(CBV and CBF, respec  vely), mean transit  me (MTT),  me -to -peak (TTP) and blood-brain-
barrier permeability (BBBP).129-132 

6. Scope and outline of the thesis
In this thesis, studies of experimental ischemic infarct rodent models and results from 
epidemiological human studies inves  ga  ng ischemic stroke pa  ents are combined to 
inves  gate relevant mechanisms that (possibly) underlie migraine and stroke. Understanding 
the molecular mechanisms underlying this comorbidity will eventually help us to iden  fy 
possible therapeu  c targets to reduce infarct size and improve clinical outcome.

Part I of the thesis describes advances in the methodology to obtain and analyze infarct data 
of experimental stroke in mul  ple monogene  c stroke and migraine mouse models. Chapter 
2 describes a renewed sacrifi cing method, which is now used for mouse  ssue collec  on 
a  er experimental stroke in order to reduce post-mortem molecular degrada  on as much as 
possible. This method is applied in Chapter 3 to inves  gate, with state-of-the-art MALDI-MSI 
techniques, brain  ssue of transgenic mice with an FHM1 missense muta  on in the CACNA1A 
gene that underwent experimental MCAO. Lipids are analyzed with respect to the core and 
penumbra at diff erent  me points a  er experimental infarct induc  on in order to fi nd poten  al 
altered molecular pathways in these infarct areas which might be responsible for infarct 
enlargement and matura  on. In Chapter 4 an automated method for MRI lesion segmenta  on 
in mice is developed to overcome current obstacles of tedious manual segmenta  on that, in 
principle, is error-prone. The segmenta  on tool is used for data analysis in Chapters 5 and 6. In 
Chapter 5 the tool is used to inves  gate infarct volume, in addi  on to parameters of vascular 
func  onality, in transgenic mice with a human RVCL-S muta  on to inves  gate whether, and to 
what extent, these mice show vascular dysfunc  on seen in pa  ents with RVCL-S. In Chapter 6 
transgenic RVCL-S, CADASIL, and FHM1 mice are inves  gated and compared, aimed to iden  fy 
possible stroke vulnerability changes in these animal models, as seen in pa  ents with the 
same muta  on. Here we also included neuronal hyper-excitability experiments by examining 
CSD characteris  cs as possible mechanism for stroke vulnerability.

Part II describes data of clinical studies in which state-of-the-art CT techniques are used to 
detect radiological infarct characteris  cs in pa  ents with migraine or headache and stroke. 
In Chapter 7 we used modern CTA and CTP techniques to inves  gate whether radiologic 
stroke features and occurrence of secondary brain damage diff ered in stroke pa  ents with 
and without migraine and whether this resulted in diff erent outcomes a  er intravenous-
thrombolysis and / or thrombectomy. In Chapter 8 we inves  gated the associa  on between 
migraine and cerebrovascular atherosclerosis in pa  ents with acute ischemic stroke. A general 
discussion about the interpreta  on of the experimental and clinical studies and sugges  ons 
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for future research is presented in Chapter 9.
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