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Although stroke and migraine are generally considered to be two very diff erent disease 
enƟ Ɵ es, they actually are closely connected and their pathophysiological overlap becomes 
increasingly clear. In this thesis we invesƟ gate, in a translaƟ onal manner in paƟ ents and 
experimental animal models, the relaƟ onship between migraine and ischemic stroke and 
between migraine and delayed cerebral ischemia aŌ er subarachnoid hemorrhage. 
 
1. Epidemiology of stroke and migraine

1.1 Ischemic stroke 
Stroke is the second most frequent cause of death and the most frequent cause of 
disability worldwide,1 with a global incidence of more than 10 million and a prevalence 
of almost 26 million.2 In the Netherlands, every year approximately 46,000 people 
get a stroke. According to ‘The Stroke Council of the American Heart AssociaƟ on 
/ American Stroke AssociaƟ on’ criteria, the defi niƟ on of stroke is “an episode of 
neurological dysfuncƟ on caused by focal cerebral, spinal, or reƟ nal infarcƟ on”.3 
Roughly, there are two main stroke subtypes: ischemic stroke and hemorrhagic stroke. 
Ischemic stroke is the most common (about 80%) type of stroke. Although hemorrhage stroke 
is less common its long term consequences are oŌ en severe and therefore both subtypes 
have great impact on a paƟ ent’s daily life. 

Ischemic stroke occurs when blood fl ow to the brain is restricted due to occlusion of a cerebral 
artery, typically by a local thrombus or an embolus (Figure 1). The global incidence is almost 
7 million with a prevalence of 18 million.2 In the Netherlands, the incidence is almost 20,000 

Figure 1. SchemaƟ c illustraƟ on of an ischemic stroke (modifi ed from strokecenter.org)
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per year.4 Diff erent subtypes are described, according to their underlying cause, which aff ects 
stroke management. The ‘Trial of Org 10172 in Acute Stroke Treatment’ (TOAST) classifi caƟ on5 
describes fi ve subtypes: (I) large-artery atherosclerosis (embolus / thrombosis), 
(II) cardioembolism, (III) small-vessel occlusion (lacunar infarct), (IV) stroke of other determined 
eƟ ology, and (V) stroke of undetermined eƟ ology. There is a remarkable gender diff erence 
in stroke with men having an overall higher risk for fi rst-ever stroke at medium age,6 where 
women have a higher risk in young (< 55 year) and older (> 75 year) ages.7 Also, the prevalence 
and average age of fi rst-ever stroke is higher in women.6,7 Women have a higher burden aŌ er 
stroke, with more oŌ en physical impairment and depression than men.7

1.2 Migraine
Migraine is a common episodic brain disorder aff ecƟ ng approximately 15% of the populaƟ on.8 
Migraine is characterized by aƩ acks of severe, usually throbbing unilateral headache that are 
accompanied by nausea, vomiƟ ng, photo-, and / or phonophobia.9 AƩ acks typically last 4 to 
72 hours. Because of its high prevalence and major social and economic burden migraine was 
rated one of the most disabling common chronic neurological disorders.10 Two main types 
of migraine can be disƟ nguished: migraine without aura and migraine with aura.9 The laƩ er 
is present in about one third of paƟ ents and is characterized by an aura that can precede 
the headache. An aura consists of transient focal neurological symptoms aff ecƟ ng mainly the 
visual system but that can also include sensory, aphasic and motor symptoms. Migraine is a 
heterogenic disease with an aƩ ack frequency that can vary between and within paƟ ents from 
a few aƩ acks per year up to a few per week; also the same paƟ ent can suff er from migraine 
with and without aura aƩ acks. Migraine aff ects more women than men in a 3:1 raƟ o.9,11

1.3 The stroke-migraine connecƟ on
Evidence is accumulaƟ ng that migraine, especially migraine with aura, is an independent risk 
factor for ischemic stroke,11-15 especially in women. At fi rst this seems unexpected given the 
clinical disease characterisƟ cs that are quite diff erent between both disorders, including the 
sex diff erence. Whereas migraine is a chronic disorder most common in young to middle-
aged women (age 25 to 55 years), stroke is an acute event that typically occurs in middle 
aged men. Regardless, addiƟ onal clinical evidence for the co-morbidity of stroke and migraine 
comes from: (I) the possible existence of migraineous infarcƟ ons,16,17 (II) the co-occurrence of 
migraine and cervical artery dissecƟ on,18 (III) shared risk factors like hypercoagulability19 and 
endothelial dysfuncƟ on,20 (IV) the fact that certain drugs to treat migraine, such as triptans 
and ergotamines, have been associated with increased stroke risk,21 and (V) geneƟ c evidence 
linking stroke and migraine in mulƟ ple monogenic diseases.22,23 

2. Primary and secondary ischemic damage in stroke; core and penumbra
MulƟ ple complex mechanisms are responsible for infarct maturaƟ on during and aŌ er vessel 
occlusion. Although the exact mechanisms are sƟ ll largely unknown, a typical temporal paƩ ern 
seems to occur aŌ er a focal perfusion defi cit.24 Within this temporal and spaƟ al conƟ nuum 
the infarct territory can be divided into two main areas: the ischemic core and the penumbra, 
or ‘Ɵ ssue at risk’ (Figure 2).25,26 Within minutes aŌ er the ischemic event, cells contribuƟ ng to 
the core become necroƟ c with membrane breakdown, dysfuncƟ onal cellular metabolism and 
energy supply, disturbed ion homeostasis, and loss of cell integrity. The Ɵ ssue surrounding 
the core, however, is ‘struggling to survive’ due to collateral blood supply being borderline 
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1suffi  cient. Cells in the penumbra are metabolically acƟ ve for some Ɵ me, unƟ l the disrupƟ on 
of the cellular homeostasis in these cells also leads to cell death. It is increasingly clear that 
infl ammatory factors27 and blood-brain-barrier (BBB) breakdown28 play an important role in 
the transiƟ on of penumbra Ɵ ssue into core Ɵ ssue. The transiƟ on process can take up to several 
hours, which has direct impact on the ‘Ɵ me-to-treat’ window of stroke paƟ ents. The fi rst 
destrucƟ ve cascade that is acƟ vated aŌ er a perfusion defi cit is cellular excitotoxicity, which 
contributes to a large extent to the Ɵ ssue damage. Excitotoxicity includes the producƟ on of 
reacƟ ve oxygen and nitrogen species (ROS and RNS) and acidosis. Within minutes, and lasƟ ng 
up to several hours, mulƟ ple pathophysiological events take place: (I) a rise of extracellular 
K+, (II) presynapƟ c terminal depolarizaƟ on, (III) excessive extracellular neurotransmiƩ er 
accumulaƟ on, (IV) N-methyl-D-aspartate (NMDA)-receptor acƟ vaƟ on, (V) loss of ion 
homeostasis (Ca2+, K+, Na+, H+, Cl-, HCO3

-), and (VI) a rise of neuronal and glial intracellular 
Ca2+ resulƟ ng in cytotoxic edema.29-31 Secondary mechanisms contribuƟ ng to increased Ɵ ssue 
damage are BBB breakdown, reperfusion injury, infl ammaƟ on and apoptosis.32 ProtecƟ ve 
and regeneraƟ ve mechanisms to prevent and repair damage of a stroke also occur acƟ vely 
in the peri-acute and chronic phase aŌ er ischemic onset.32 However, the molecular pathways 
involved in these events are sƟ ll to be unraveled. InvesƟ gaƟ ng at the molecular level, by 
elucidaƟ ng the pepƟ des, (amino-) metabolites and lipids that show changes in the various, 
especially the early, stages of a stroke can help us to dissect the pathophysiology of stroke and 
can eventually lead to new therapeuƟ c targets to treat paƟ ents.

3. The role of spreading depolarizaƟ on and neurovascular coupling in the shared patho-
physiology between stroke and migraine

3.1 Spreading depolarizaƟ on
Spreading depolarizaƟ on (SD) is the generic term for a self-propagaƟ ng wave of membrane 
depolarizaƟ on in neuronal and glial cells which travels through cerebral grey maƩ er of the 
central nervous system and which is accompanied by a period of electrical silencing. These 
depolarizaƟ on waves have been described in humans in ischemic stroke,33 in subarachnoid 
hemorrhage (SAH)34 and in traumaƟ c brain injuries35 at the site of the injury where they are 
referred to as anoxic depolarizaƟ ons (ADs) and peri-infarct depolarizaƟ ons (PIDs). SDs are 
also considered to be the underlying pathophysiological mechanism of a migraine aura.36,37 In 
migraine aura a SD that originates in the visual cortex and spreads to frontal corƟ cal regions 
is referred to as corƟ cal spreading depression (CSD), named aŌ er the neuronal depression 
that follows the sharp wave front of hyperexcitaƟ on (with concomitant neuronal and glial 
cell depolarizaƟ on). SDs can therefore be seen as a spectrum that includes PID, AD and CSD 
depending on the disease type and is also referred to as the stroke-migraine depolarizaƟ on 
conƟ nuum.24,38

3.1.1 Spreading depolarizaƟ on in ischemic stroke
In a pathological condiƟ on, for example during ischemic stroke onset, depression of 
spontaneous neuronal acƟ vity is seen 10 -20 seconds aŌ er a blood fl ow reducƟ on below a 
certain threshold (15 - 23 mL / 100g / min).25 Neurobiological mechanisms that are acƟ ve in 
this iniƟ al period are neuronal hyperpolarizaƟ on, loss of synapƟ c acƟ vity, reducƟ on of vesicular 
transmiƩ er release by adenosine mediaƟ on, and reduced energy consumpƟ on (that acts as a 
survival mechanism of the Ɵ ssue to cope with the ischemia). Within 2 -5 minutes, AD occurs 
resulƟ ng in an even further reduced blood fl ow (5 -10 mL / 100 g / min) and depression of 
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acƟ vity.38,39 The AD originates from the core, and spreads via the penumbra into healthy Ɵ ssue. 
This wave is triggered by loss of membrane integrity due to hypoxia and energy depleƟ on. 
Notably, aŌ er this fi rst depolarizaƟ on wave, mulƟ ple PID waves erupt from the penumbra, 
spreading into the penumbra, core and healthy Ɵ ssue. Due to the energy mismatch created 
by these PIDs, each wave will turn part of the penumbra Ɵ ssue into a permanently depolarized 
and necroƟ c state,40-42 and therefore co-determines the severity of stroke outcome.

3.1.2 Spreading depolarizaƟ on in migraine 
Under normal condiƟ ons, neurons and their dendrites have a membrane potenƟ al that 
enables them to fi re acƟ on potenƟ als, which is the way neurons communicate. This membrane 
potenƟ al is maintained by acƟ ve ion pumps. During CSD in a migraine aura, this homeostasis 
is disrupted, resulƟ ng in: (I) a near-complete breakdown of ion gradients,43 (II) increased 
extracellular K+ level, (III) loss of electrical acƟ vity,44 (IV) swelling of neurons,45 (V) sustained 

Figure 2: SchemaƟ c illustraƟ on of SD waves triggered by occlusion of a cerebral vessel (leŌ ) as seen during ischemia 
and triggered by high potassium (right) occurring during a migraine aura, with (A) neuronal depolarizaƟ on, (B) 
Neuronal acƟ vity and (C) Cerebral blood fl ow. (Modifi ed from Dreier et al. 201524 with permission). SD – Spreading 
DepolarizaƟ on.
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1depolarizaƟ on,46 and (VI) a hemodynamic response.47 Unlike SD events in stroke, CSDs in 
migraine are considered rather benign transient disturbances of (corƟ cal) brain funcƟ on 
without permanent damage. Whether SD also occurs in migraine without aura, also referred 
to as ‘silent aura’, is debated.48,49 

3.2 Neurovascular coupling 
Vessels are a major player in the pathology of stroke and likely also in migraine, in the fi rst place 
due to their involvement in neurovascular coupling. As a result of neurovascular coupling, a 
hyperemic response occurs to meet the increased energy demand when PIDs circle around 
the ischemic core (in the case of stroke) or when a CSD wave spreads through the cortex (in 
the case of a migraine aura).50 Briefl y before and prolonged aŌ er this phenomenon, hyperemia 
and oligemia are present.51 In pathological (ischemic) Ɵ ssue, AD and PIDs are accompanied 
with paradoxical vasoconstricƟ on resulƟ ng in oligemia.52,53 The AD / PIDs and addiƟ onal 
decrease in resƟ ng cerebral blood fl ow (rCBF) is also called spreading ischemia,54 due to 
inverse neurovascular coupling (Figure 2).52 In such pathological Ɵ ssue, the hypoperfusion 
wave travels, in contrast with CSD, together with the spreading depolarizaƟ on at the same 
Ɵ me through the Ɵ ssue, where it enters the vicious cycle of an inverse hemodynamic response 
and energy supply / demand mismatch. The trigger for PIDs is the massive misbalance in ion 
homeostasis that induces a vicious circle of ischemia, depolarizaƟ on and vasoconstricƟ on 
with an increased infarct territory as the devastaƟ ng result.39,55 PIDs under ischemic condiƟ ons 
are seen in numerous experimental animal models.56-58 CSD is thought to occur in paƟ ents that 
have migraine with aura, although the most convincing evidence thus far in humans came 
from analyzing indirect vascular responses seen with imaging techniques37 and correlaƟ ons 
with clinical characterisƟ cs,59 adding to the debate on how relevant CSD is in humans.60 In 
contrast, CSD has been studied widely in animal models in which it has been shown that it 
indeed is the likely cause of the aura.61,62

3.3 Vascular dysfuncƟ on
The connecƟ on of stroke and migraine has also been aƩ ributed to mulƟ ple vascular pathologies, 
such as endothelial dysfuncƟ on and coagulaƟ on abnormaliƟ es.63 Endothelial dysfuncƟ on 
includes reduced vasodilataƟ on, increased endothelial derived vasoconstricƟ on (vasospasm) 
and subsequent impairment of cerebral vascular reacƟ vity. These processes can subsequently 
lead to an increase in coagulaƟ on factors, increased release of infl ammatory factors that 
eventually can lead to atherosclerosis and increased stroke risk. CoagulaƟ on abnormaliƟ es 
(primarily or secondarily due to endothelial dysfuncƟ on) are found in stroke64,65 as well as 
in migraine66-68 paƟ ents and include increased platelet-acƟ vaƟ ng factor (PAF), increased 
VonWillebrand Factor (VWF), both of which are released by or triggered by endothelial cells.

4. Monogenic disorders in stroke and migraine 
There are a number of monogenic diseases in which ischemic stroke and migraine are part 
of the clinical spectrum.69 Understanding the geneƟ cs and molecular mechanisms of these 
diseases provides an unique opportunity to further unravel the pathophysiology of the stroke-
migraine associaƟ on. Here three monogenic diseases will be discussed: (I) Cerebral Autosomal 
Dominant Arteriopathy with SubcorƟ cal Infarcts and Leukoencephalopathy (CADASIL),70 
(II) ReƟ nal Vasculopathy with Cerebral Leukoencephalopathy and Systemic manifestaƟ ons 
(RVCL-S),71 and (III) Familial Hemiplegic Migraine (FHM).72 Both CADASIL and RVCL-S belong to 
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the group of small vessel diseases;69 a condiƟ on in which the walls of small arteries in the brain 
are damaged.73 In contrast, FHM is considered more a disease of neurologic than of vascular 
dysfuncƟ on.

4.1 CADASIL
CADASIL is the most common type of hereditary small vessel disease and characterized by 
progressive development of subcorƟ cal infarcts, starƟ ng at middle age74-77 with cogniƟ ve 
decline even before fi rst stroke onset.78,79 Remarkably, approximately 40% of CADASIL paƟ ents 
suff er from migraine with aura,80 which in many is the fi rst presenƟ ng symptom, someƟ mes 
decades before the onset of other disease characterisƟ cs. As the disease progresses, 
accumulaƟ on of lacunar infarcts, microbleeds and brain atrophy result eventually in severe 
vascular demenƟ a. CADASIL is caused by mutaƟ ons in the NOTCH3 gene, which encodes 
the NOTCH3 protein that is mainly expressed in vascular smooth muscle cells.81 CADASIL 
mutaƟ ons typically alter the number of cysteines that are responsible for correct folding of the 
protein’s extracellular domain (NOTCH3ECD).82,83 Misfolding eventually leads to accumulaƟ on 
of mutant protein in vascular smooth muscle cells (VSMC),77,84 degeneraƟ on of these cells, 
vessel wall thickening, and the occurrence of dense deposits of granular osmophilic material 
(GOM) in the vessel wall. Typically the abnormaliƟ es are observed in small- and medium-
sized arteries.85 Various transgenic mouse models are available that express NOTCH3 protein 
with CADASIL mutaƟ ons, either from a human cDNA overexpression construct,86-88 a rat89 or 
human90 genomic overexpression construct, or a mouse knock-in construct.91,92 To more or 
lesser extent, these animal models exhibit key features of the disease.90,93 However, brain 
imaging abnormaliƟ es seen in CADASIL paƟ ents, have not yet been found in these mice. 

4.2 RVCL-S
RVCL-S is a systemic small vessel disease with prominent vasculopathy of, most profoundly, 
reƟ na, brain and kidney that may lead to visual loss, cogniƟ ve disturbances, depression 
and kidney dysfuncƟ on, which starts at middle-age.71,94-96 About half of RVCL-S paƟ ents also 
suff er from migraine (with or without aura), as became clear from invesƟ gaƟ ng all 11 known 
RVCL-S families in the world.71 RVCL-S paƟ ents also have an increased ischemic stroke risk 
as evidenced by the small white maƩ er infarcts seen in many paƟ ents.71 RVCL-S is caused 
by heterozygous C-terminal frameshiŌ  mutaƟ ons in the TREX1 gene,95 which encodes the 
major mammalian 3’ - 5’exonuclease that has mulƟ ple possible funcƟ ons such as acƟ ng as 
cytosolic DNA sensor to prevent autoimmunity.97,98 A study of mutant cells and a transgenic 
mouse model that expresses a TREX1 mutaƟ on pointed at an aberrant release of free glycans 
due to abnormal oligosaccharyltransferase (OST) funcƟ on as a possible mechanism for the 
vasculopathy.99 

4.3. FHM
FHM is a monogenic subtype of migraine with aura and evidence is accumulaƟ ng that it is 
linked to stroke.9 FHM is characterized by long-lasƟ ng hemiparesis during the aura phase,9 with 
headache features100 and trigger factors101 that are similar to those in common migraine with 
aura. Three genes, FHM1 to FHM3, have been idenƟ fi ed that all encode ion transporters.72 
FHM1, the gene that is most prominently linked to stroke, is caused by certain missense 
mutaƟ ons in the CACNA1A gene,102 which encodes the α1A subunit of voltage-gated CaV2.1 (P 
/ Q-type) calcium channels. These channels are located at most, if not all, synapƟ c terminals 
of the central nervous system where they regulate neurotransmiƩ er release.103,104 FHM1 
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mutaƟ ons cause a leŌ -shiŌ  in the acƟ on voltage, prolongaƟ on of opening of CaV2.1 channels, 
and increased neurotransmiƩ er release. In the cortex, this results in an enhanced glutamate 
release that explains the increased SD sensiƟ vity seen in transgenic mice that express CaV2.1 
channels with FHM1 mutaƟ ons.105-109 These transgenic mice also were shown to be a relevant 
model to study the relaƟ on of stroke and migraine.56,110

5. Techniques to invesƟ gate the relaƟ on between stroke and migraine

5.1 Experimental stroke model in mice
Various cerebral stroke models are described in literature, ranging from global (transient 
whole circulatory arrest) to focal (transient or permanent occlusion of a cerebral artery) 
occlusion of cerebral blood fl ow. These models give us the opportunity to study stroke-
induced mechanisms with the fi nal goal of reducing paƟ ent burden aŌ er an infarct.111 One of 
the most common causes of ischemic stroke seen in paƟ ents is the occlusion of the middle 
cerebral artery (MCA) by a thrombus or embolus.112 This stroke subtype is best mimicked by 
the experimental middle cerebral artery occlusion model (MCAO) with reperfusion, which 
therefore, is the most widely used model in experimental stroke research (Figure 3). With this 
model, the MCA is occluded by the temporary introducƟ on of a fi lament into the intracerebral 
artery (ICA) that is maneuvered towards the origin of the MCA where it blocks blood fl ow. 
The MCAO model allows for ischemic core and penumbra development, of which the raƟ o 
and severity is directly dependent on the occlusion Ɵ me. Occlusion of the MCA for 30-60 

Figure 3. Experimental transient intraluminal suture 
model for middle cerebral artery occlusion (MCAO) in 
mice.
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minutes will make the lateral striatum (caudoputamen) ischemic with or without ischemia 
of the frontoparietal corƟ cal region. Advantages of this model over other models, such as 
distal transient / permanent MCAO, is that it is minimally invasive concerning the research 
target area (the brain), since skull integrity is maintained and the occlusion is more stable 
compared to for instance embolic stroke models.113 Therefore, MCAO reduces the amount of 
confounding factors of massive surgery and thus mimics the clinical situaƟ on as accurate as 
possible. 

5.2 State-of-the-art imaging techniques in mice 
5.2.1 MagneƟ c Resonance Imaging
Using magneƟ c resonance imaging (MRI) as a readout technique for infarct characterisƟ cs, 
avoids disadvantages such as: (I) histological validaƟ on (the current golden standard) that 
introduces errors as there will be changes in brain morphology from processing brain secƟ ons 
(swelling / shrinkage of Ɵ ssue), (II) the manual-labor-intensive nature of infarct volume 
analysis, and (III) the necessity to sacrifi ce the animal making longitudinal studies and mulƟ ple 
readout Ɵ mes unfeasible. Anatomical spin-spin relaxaƟ on Ɵ me contrast T2 MRI sequence can 
detect ischemic lesions in a way that they can be analyzed in a longitudinal manner.114-116 This 
T2 sequence is shown to be sensiƟ ve to vasogenic edema which is one of the mechanisms 
acƟ ve during infarct development.117 In clinical research, mulƟ ple algorithms for automaƟ c 
detecƟ on, segmentaƟ on and classifi caƟ on of stroke areas in the brain have been developed.118 
However, segmentaƟ on of brain lesion in mouse MRI data sƟ ll heavily relies on manual Ɵ me-
consuming protocols.119 

5.2.2 Mass Spectrometry Imaging 
To simultaneously analyze the distribuƟ on of hundreds of molecules from a Ɵ ssue sample120 
within its histological context,121 mass spectrometry imaging (MSI) can be used.122 MSI can 
disƟ nguish molecules from diff erent classes such as pepƟ des, (amino-) metabolites, proteins 
and lipids. The idenƟ ty of molecules is determined using their unique mass-to-charge raƟ o 
(m/z). Matrix-Assisted-Laser-DesorpƟ on / IonizaƟ on (MALDI) MSI is a method to ionize 
molecules in the target Ɵ ssue. MSI involves matrix deposiƟ on onto a Ɵ ssue secƟ on, where 
aŌ er a laser beam allows desorpƟ on and ionizaƟ on of molecules that subsequently are 
detected by the mass analyzer. From this data, 2D images are reconstructed that provide 
detailed informaƟ on on the spaƟ al distribuƟ on of the respecƟ ve metabolites. To avoid 
confounding distorƟ on of secƟ ons from diff erent samples by the various procedures (e.g. 
cuƫ  ng, processing), 2D MSI images can be co-registered with for example histological images, 
MRI images or brain atlases.123,124 Arguably, Ɵ ssue preparaƟ on is the most important factor 
determining the success of a MSI experiment, especially for molecular classes that are highly 
suscepƟ ble to post mortem changes, foremost ATP and ADP,120,121,125,126 that are important 
to evaluate molecular mechanisms relevant to stroke. MulƟ ple Ɵ ssue preparaƟ on methods 
have been reported that have their advantages and limitaƟ ons concerning diff erent molecular 
classes,120 but at present none of them is ideal. 

5.3 State-of-the-art CT techniques in paƟ ents
IniƟ al triage and management in ischemic stroke is crucial in paƟ ents who come to 
the emergency room with signs and symptoms of acute ischemic stroke, since Ɵ me to 
reperfusion is highly important for the outcome of the paƟ ent. Along with the neurologic 
exam, radiological imaging is eminent for diagnosƟ c and therapeuƟ c purposes. In today’s 
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1clinic, a CT-scan is made to visualize the possible infarct territory. Non-contrast CT (NCCT) 
is used to diff erenƟ ate between ischemic and hemorrhagic stroke, and to exclude other 
possible causes for the presenƟ ng symptoms, such as a subdural hematoma. AddiƟ onally, CT 
angiography (CTA) is increasingly performed, which gives important informaƟ on concerning 
the presence and locaƟ on of a thrombus and funcƟ onal collateral and anastomoƟ c funcƟ on, 
which is crucial informaƟ on for mechanical thrombectomy management.127,128 Upcoming 
is the opportunity for CT perfusion (CTP) in acute stroke management. This relaƟ vely new 
technique can provide addiƟ onal informaƟ on on the viability of the infarcted Ɵ ssue. CTP 
includes informaƟ on concerning Ɵ ssue perfusion, such as cerebral blood volume and fl ow 
(CBV and CBF, respecƟ vely), mean transit Ɵ me (MTT), Ɵ me -to -peak (TTP) and blood-brain-
barrier permeability (BBBP).129-132 

6. Scope and outline of the thesis
In this thesis, studies of experimental ischemic infarct rodent models and results from 
epidemiological human studies invesƟ gaƟ ng ischemic stroke paƟ ents are combined to 
invesƟ gate relevant mechanisms that (possibly) underlie migraine and stroke. Understanding 
the molecular mechanisms underlying this comorbidity will eventually help us to idenƟ fy 
possible therapeuƟ c targets to reduce infarct size and improve clinical outcome.

Part I of the thesis describes advances in the methodology to obtain and analyze infarct data 
of experimental stroke in mulƟ ple monogeneƟ c stroke and migraine mouse models. Chapter 
2 describes a renewed sacrifi cing method, which is now used for mouse Ɵ ssue collecƟ on 
aŌ er experimental stroke in order to reduce post-mortem molecular degradaƟ on as much as 
possible. This method is applied in Chapter 3 to invesƟ gate, with state-of-the-art MALDI-MSI 
techniques, brain Ɵ ssue of transgenic mice with an FHM1 missense mutaƟ on in the CACNA1A 
gene that underwent experimental MCAO. Lipids are analyzed with respect to the core and 
penumbra at diff erent Ɵ me points aŌ er experimental infarct inducƟ on in order to fi nd potenƟ al 
altered molecular pathways in these infarct areas which might be responsible for infarct 
enlargement and maturaƟ on. In Chapter 4 an automated method for MRI lesion segmentaƟ on 
in mice is developed to overcome current obstacles of tedious manual segmentaƟ on that, in 
principle, is error-prone. The segmentaƟ on tool is used for data analysis in Chapters 5 and 6. In 
Chapter 5 the tool is used to invesƟ gate infarct volume, in addiƟ on to parameters of vascular 
funcƟ onality, in transgenic mice with a human RVCL-S mutaƟ on to invesƟ gate whether, and to 
what extent, these mice show vascular dysfuncƟ on seen in paƟ ents with RVCL-S. In Chapter 6 
transgenic RVCL-S, CADASIL, and FHM1 mice are invesƟ gated and compared, aimed to idenƟ fy 
possible stroke vulnerability changes in these animal models, as seen in paƟ ents with the 
same mutaƟ on. Here we also included neuronal hyper-excitability experiments by examining 
CSD characterisƟ cs as possible mechanism for stroke vulnerability.

Part II describes data of clinical studies in which state-of-the-art CT techniques are used to 
detect radiological infarct characterisƟ cs in paƟ ents with migraine or headache and stroke. 
In Chapter 7 we used modern CTA and CTP techniques to invesƟ gate whether radiologic 
stroke features and occurrence of secondary brain damage diff ered in stroke paƟ ents with 
and without migraine and whether this resulted in diff erent outcomes aŌ er intravenous-
thrombolysis and / or thrombectomy. In Chapter 8 we invesƟ gated the associaƟ on between 
migraine and cerebrovascular atherosclerosis in paƟ ents with acute ischemic stroke. A general 
discussion about the interpretaƟ on of the experimental and clinical studies and suggesƟ ons 
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for future research is presented in Chapter 9.
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