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The mineralocorticoid receptor antagonist spironolactone significantly reduces
albuminuria in subjects with diabetic kidney disease, albeit with a large variability
between individuals. Identifying novel biomarkers that predict response to therapy
may help to tailor spironolactone therapy. We aimed to identify a set of metabolites
for prediction of albuminuria response to spironolactone in subjects with type 2 dia-
betes. Systems biology molecular process analysis was performed a priori to identify
metabolites linked to molecular disease processes and drug mechanism of action.
Individual subject data and urine samples were used from 2 randomized placebo
controlled double blind clinical trials (NCT01062763, NCT00381134). A urinary
metabolite score was developed to predict albuminuria response to spironolactone
therapy using penalized ridge regression with leave-one-out cross validation. Bioin-
formatic analysis identified a set of 18 metabolites linked to a diabetic kidney dis-
ease molecular model and potentially affected by spironolactone mechanism of
action. Spironolactone reduced UACR relative to placebo by median �42% (25th to
75% percentile �65 to 6) and �29% (25th to 75% percentile �37 to �1) in the test
and replication cohorts, respectively. In the test cohort, UACR reduction was higher
in the lowest tertile of the baseline urinary metabolite score compared with middle
and upper tertiles �58% (25th to 75% percentile �78 to 33), �28% (25th to 75% per-
centile �46 to 8), �40% (25th to 75% percentile �52% to 31), respectively, P = 0.001
for trend). In the replication cohort, UACR reduction was �54% (25th to 75% percen-
tile �65 to �50), �41 (25th to 75% percentile �46% to 30), and �17% (25th to 75%
percentile �36 to 5), respectively, P = 0.010 for trend). We identified a set of 18 uri-
nary metabolites through systems biology to predict albuminuria response to spiro-
nolactone in type 2 diabetes. These data suggest that urinary metabolites may be
used as a tool to tailor optimal therapy and move in the direction of personalized
medicine. (Translational Research 2020; 222:17�27)
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Brief Commentary

Background

Patients with diabetic kidney disease suffer an

enormous disease burden, in part due to heteroge-

neity in disease progression and drug response.

The mineralocorticoid receptor antagonist spiro-

nolactone decreases albuminuria and can slow the

progression of kidney function decline in patients

with type 2 diabetes, although individual patients

show a large variation in albuminuria response to

this drug.

Translational significance

This study demonstrates that a metabolite score of

18 metabolites, identified through systems biology

reflecting inflammation and fibrosis processes,

predicts response to spironolactone relative to pla-

cebo. This metabolite score may help personalize

treatment for people with diabetic kidney disease

in the future.
INTRODUCTION

Diabetes is a major and rapidly growing health prob-

lem worldwide and is associated with considerable

morbidity and health care expenditures.1 Despite

advances in the treatment of diabetes and its related

renal and cardiovascular complications, risk of morbid-

ity and mortality persists in many people.2,3 The expla-

nation may be, at least in part, that drug therapy is not

being optimized to the individual patient.4

Inhibition of the renin-angiotensin-aldosterone-sys-

tem with mineralocorticoid receptor antagonists

(MRA, eg, spironolactone) decreases albuminuria and

has the potential to slow progression of kidney function

decline in people with diabetic kidney disease (DKD).5

However, some individuals show a large variation in

therapy response to MRA treatment. This variation is

thought to be attributed at least in part to the heteroge-

neity in the pathophysiology of type 2 diabetes, and

there is only limited knowledge which specific factors

determine the individual renal response to MRAs.6

The measurement of metabolites in biological fluids

such as serum and urine has emerged as a potential tool

to unravel perturbations in biological systems in

chronic diseases such as type 2 diabetes. Characteriz-

ing these biological features may lead to the characteri-

zation of biological pathways related to disease

activity. Advancements in omics technologies coupled

with high dimensional data integration via systems

medicine approaches can provide new insights in
molecular mechanism of action of drugs and molecular

mechanisms of disease progression.4 In a recent study

we used publicly available and experimental data to

develop a network-based molecular model of DKD,7

which was subsequently used to select and test prog-

nostic DKD biomarkers.8 In this present work we ana-

lyze the impact of spironolactone on molecular DKD

mechanisms and select a set of metabolites for meas-

urements in urine samples from 2 independents

cohorts. We assess the ability of a urinary metabolites

to predict albuminuria response to spironolactone ther-

apy in subjects with type 2 diabetes.
METHODS

In-silico modeling of spironolactone mechanism of

action and DKD pathophysiology. Network-based molec-

ular models reflecting spironolactone mechanism of

action as well as DKD pathophysiology were generated

following previously described and successfully applied

computational workflows.8,9

In brief, molecular features associated with spironolac-

tone were consolidated from 3 data sources, namely scien-

tific literature, DrugBank, and a transcriptomics data set

from DrugMatrix. Molecular features were defined as

genes, transcripts, or proteins. Scientific articles annotated

with spironolactone as major MeSH term were retrieved

and genes were extracted using NCBI’s gene2pubmed file.

This set of genes was complemented by drug targets listed

in DrugBank for spironolactone.10 We further extracted

transcripts being differentially expressed between spirono-

lactone-treated and untreated kidney samples of animal

models as stored in DrugMatrix.11 The unique set of spiro-

nolactone associated molecular features was mapped onto

a hybrid interaction network including protein-protein

interaction data from IntAct, BioGrid, and Reactome

together with computationally inferred relations.12 Interac-

tions between members of the spironolactone feature set

were extracted and the MCODE algorithm was used to

identify clusters of highly interconnected proteins.13

A previously published DKD molecular model was

used which was constructed following the same logic

using data from scientific literature as well as from Omics

datasets in the context of DKD.7 Proteomics data of the

published CKD273 proteomics classifier were used in

order to identify DKD processes linked with DKD pro-

gression by mapping the set of proteins in the CKD273

classifier onto the DKD molecular network thus defining

progression-associated process units.14

Network interference analysis and identification of

candidate metabolites. Network alignment method was

used to identify DKD molecular processes linked to

DKD prognosis affected by spironolactone treatment

https://doi.org/10.1016/j.trsl.2020.04.010
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on the molecular level. Metabolites linked to proteins

in affected DKD molecular processes were identified

via enzyme-metabolite associations as stored in the

Human Metabolome Database and forwarded to meas-

urements in clinical samples.15 A schematic figure

regarding the systems biology workflow is shown in

Supplementary Fig 1.

Clinical study design and patient population. For the

present study, individual subject data and biobanked urine

samples were used from 2 randomized placebo controlled

double blind clinical trials (RCT) performed in subjects

with diabetes (NCT01062763, NCT00381134). Both

RCTs assessed the albuminuria lowering effect of spiro-

nolactone in subjects with DKD in comparison or on top

of other blood pressure lowering agents. Both RCTs were

performed in accordance with the Declaration of Helsinki

and approved by local ethical committees. All subjects

gave informed consent for participation in the study

before any study specific procedure commenced.

For the test cohort, we used data from an RCT con-

ducted in 4 centers in Denmark.16 Subjects included were

diagnosed with resistant hypertension and type 2 diabetes,

ranging in age from 18 to 75 years, and receiving 3 or

more antihypertensive drugs including a diuretic and an

angiotensin converting enzyme inhibitor or an angioten-

sin receptor blocker. At baseline, subjects were randomly

assigned to double-blind treatment with spironolactone

25 mg or matching placebo. Spironolactone was titrated

up to 50 mg/day if BP was >130/80 mmHg, but main-

tained if BP was >110/60 mmHg. After randomization

subjects were followed for 16 weeks. For the present

study, data and samples were available for 102 subjects

(52 spironolactone and 50 placebo). We defined albumin-

uria change as the percentage change in urinary albumin:

creatinine ratio from baseline to week 16.

For the replication cohort, we used data from an

RCT conducted in Dallas, Texas, United States.17 Sub-

jects included were diagnosed with diabetes, hyperten-

sion, and albuminuria (urine albumin-to-creatinine

ratio >200 mg/g) who all received lisinopril (80 mg

once daily). Subjects were randomly assigned to pla-

cebo, losartan (100 mg daily), or spironolactone

(started at 12.5 mg which was later up titrated to 25

mg/day) for 48 weeks. For the present study, we used

data from subjects from the placebo and spironolactone

arms. After randomization, follow-up visits were con-

ducted at 4-week intervals for the duration of one year.

Data and samples were available for 43 subjects (20

spironolactone and 23 placebo). We defined albumin-

uria change as percent change in urinary albumin:creat-

inine ratio (UACR) from baseline to week 12.

Sample processing and measurement of metabolites.

For the test cohort, nonfasting, spot urine samples were

collected between 2010 and 2012, and immediately
stored as whole urine at�80˚C until metabolomic anal-

ysis. For the replication cohort, nonfasting, 24-hour

urine samples were collected between 2003 to 2007.

Samples were collected, then aliquoted separately for

proteomic, iothalamate, clinical testing, and backups

and stored at �80˚C upon receipt from the patient.

Urines were stored unprocessed with no protease inhib-

itors added. Patients were instructed to keep urine

receptacles in refrigerator at home. The urinary metab-

olites were measured in 2014 by Biomedical Metabolo-

mics Facility Leiden (Leiden, the Netherlands). The

workflow utilized in the wet lab utilized an ACQUITY

UPLC system with autosampler (Waters, Etten-Leur,

The Netherlands) which was coupled online with a

Xevo Tandem quadrupole mass spectrometer (Waters).

After processing these were samples were analyzed by

UPLC-MS/MS using an Accq-Tag Ultra column

(Waters). The Xevo TQ was used in the positive-ion

electrospray mode and all analytes were monitored in

Multiple Reaction Monitoring (MRM) using nominal

mass resolution. The metabolite raw data were prepro-

cessed using Agilent MassHunter Quantitative Analy-

sis software (Agilent, Version B.05.01). The data were

further processed using the MultiQuant software (AB

SCIEX, Version 3.0.2) by employing the integration of

assigned MRM (multiple reaction monitoring) peaks

and normalization using proper internal standards. For

analysis of amino acids, 13C15N-labeled analogs were

used. For other amines, the closest-eluting internal

standard was employed. Blank samples were used to

determine blank effect. In-house developed algorithms

were applied using the pooled quality control samples

to compensate for shifts in the sensitivity of the mass

spectrometer over the batches. Quality Control (QC)

was performed in a similar way across the testing and

replication cohort. Markers were tested with Relative

Standard Deviation (RSD) which tested the reproduc-

ibility of metabolites. Metabolite values were reported

if the RSD QC was >20%. Blanks were employed to

characterize the background noise; if the noise was

<5% the marker was reported.

Five and 50 mL of urine was aliquoted for amine and

organic acids profiling, respectively. In the test cohort,

102 baseline urine samples were available for metabo-

lomic measurement; 48 amines and 24 organic acids

were available for further analysis after quality control.

In the replication cohort, 43 baseline urine samples

were available for metabolomic measurement; 54

amines and 18 organic acids remained after quality

control. Metabolite concentrations were corrected for

urinary creatinine for all statistical analysis.

Machine learning & Statistical analysis. Analyses were

performed using R version 3.4x employing the libraries:

glmnet for regression analysis, ggplot2 and ggthemes for

https://doi.org/10.1016/j.trsl.2020.04.010
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plotting. Missing data were imputed using the R package

Multivariate Imputation via Chained Equations by predic-

tive mean matching (pmm) methodology.18 Baseline

characteristics with normal distribution are reported as

mean (standard deviation), characteristics with skewed

distribution are reported as median and 5th to 95th per-

centiles, and categorical variables are reported a number

and percentage. A P value <0.05 (2-sided) was consid-

ered to indicate a statistically significant difference.

We defined Y as the log change of UACR between

baseline and week 16 or week 12 for the testing and

replication cohort, respectively. For X, a matrix con-

sisting of the log-transformed metabolites and a metab-

olite * treatment interaction term was constructed. To

predict the endpoint Y, matrix X was used to model Y

as ridge penalized regression machine learning prob-

lem.19 To assess the variation in estimates for subjects

and markers, a random bootstrap combined with leave-

one-out resampling was performed to select data for

model construction.20 The average predictions of all

models using lambda.min,21 excluding i(x) the models

used for predicting that i(x), were saved for further

analysis and plotting. Associations between clinical

covariates: age, sex, systolic blood pressure, choles-

terol, and HbA1c as X predicting Y were also assessed.

R-squared was calculated by the Pearson’s correlation

to the power of 2 and was optimism corrected by sub-

tracting correlation of the random permutations of

Y (predicted) with Y (observed).22

Leave one out cross validation was employed and opti-

mism correction was performed to counteract the positive

predictions built in small datasets where n » p. Finally,

an individual metabolite score is predicted by using all

bootstrapped estimates of the penalized regression. This

individual metabolite score is the predicted Y (D UACR)

from the model of baseline metabolites and metabolite

treatment interactions. This score was then used to stratify

subjects into tertiles. Analysis of covariance was used to

assess if this score is score metabolites could discriminate

UACR response to spironolactone therapy. In both the test

and replication cohorts, no clinical variables were signifi-

cantly associated with the UACR change, and therefore

not included in the final model (Supplementary Table 1).
RESULTS

Systems biology model construction and metabolite

identification. The constructed spironolactone molecular

model held 80 molecular features in 11 different pro-

cesses ranging in size from 3 to 16. The DKD molecular

model consisted of 688 molecular features in 34 process

units. Two of the 5 progression associated process units,

units 7 and 8, showed overlap with the spironolactone
molecular mechanism of action model and were thus con-

sidered for selection of metabolite marker candidates.

Overlapping proteins between the progression associated

process units and the spironolactone molecular mecha-

nism of action model included NR3C2 (nuclear receptor

subfamily 3 group C member 2), SERPINE1 (serpin fam-

ily E member 1), PPARD (peroxisome proliferator acti-

vated receptor delta), PPARG (peroxisome proliferator

activated receptor gamma), and SLC4A4 (solute carrier

family 4 member 4). Eighteen metabolites were linked to

proteins in unit 7 or unit 8 of the DKD molecular model

(Fig 1). These metabolites were: alanine, arginine, aspara-

gine, aspartic acid, cysteine, glutamic acid, glutamine,

lysine, norepinephrine, phenylalanine, proline, serotonin,

tryptophan, hydroxyproline, citric acid, 2-ketoglutaric

acid, succinic acid, and pyroglutamic acid.

Subject characteristics. Baseline characteristics for

the test and replication cohorts are presented in Table 1.

In the test cohort, subjects were approximately 63 years

of age, and 63% were male. In the replication cohort,

subjects were approximately 50 years of age, and 58%

were male. Large variability in UACR change was

observed in the test and the replication cohort (Fig 2).

In the test cohort, observed UACR change after 12

weeks was �1% [25th to 75th percentile �38 to 105]

in the placebo arm and �43% [25th to 75th percentile

�66 to 5] in the spironolactone arm. In the replication

cohort, observed UACR change after 16 weeks was

�14% [25th to 75th percentile �31 to 20] in the pla-

cebo arm and �43% [25th to 75th percentile �51 to

13] in the spironolactone arm (Figure 2).

Urine metabolites for prediction of UACR response to

spironolactone. Figs 3A and B show the individual pre-

dictions of the leave-one-out cross-validated optimism

corrected ridge regression to predict albuminuria

response to spironolactone. A clear separation between

the spironolactone and placebo arm can be observed in

their predicted effects based on the combined metabo-

lites and metabolite times treatment interactions.

When stratified by tertiles of the baseline urinary metab-

olite score, UACR reduction was higher in the lowest ter-

tile compared to middle and upper tertiles �58% (25th to

75% percentile�78 to 33),�28% (25th to 75% percentile

�46 to 8), �40% (25th to 75% percentile �52% to 31),

respectively, P= 0.001 for trend) in the test cohort and in

the replication cohort �54% (25th to 75% percentile �65

to�50),�41 (25th to 75% percentile �46% to 30), -17%

(25th to 75% percentile �36 to 5), respectively, P = 0.010

for trend) as displayed in Fig 4. Individual contributions of

the metabolites for the tertiles of the score are presented in

Supplementary Fig 2.

Ranking of individual metabolites for prediction of

UACR response. The individual metabolites and their

interaction with treatment resulted in 36 features in the

https://doi.org/10.1016/j.trsl.2020.04.010


Fig 1. The 18 metabolites and their associations with proteins in process unit seven or 8 of the DKD molecular

model are shown. Color-coding represents metabolite sub classes. Metabolites with the largest contributions to

the urinary metabolite score are marked with an asterisk and written in bold. DDOST, dolichyl-diphosphooligo-

saccharide�protein glycosyltransferase non-catalytic subunit; EZH2, enhancer of zeste 2 polycomb repressive

complex 2 subunit; IDO1, indoleamine 2,3-dioxygenase 1; MIF, macrophage migration inhibitory factor;

P4HA2, prolyl 4-hydroxylase subunit alpha 2; SLC13A1, solute carrier family 13 member 1; SLC13A3, solute

carrier family 13 member 3; SLC1A1, solute carrier family 1 member 1; SLC1A7, solute carrier family 1 mem-

ber 7; SLC3A2, solute carrier family 3 member 2; SLC6A2, solute carrier family 6 member 2; VEGFA, vascular

endothelial growth factor A; ACE2, angiotensin I converting enzyme 2; MLL, lysine methyltransferase 2A

(KMT2A); SLC7A7, solute carrier family 7 member 7; SLC7A8, solute carrier family 7 member 8. (For inter-

pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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ridge regression model. The beta estimates of each feature

(per standard deviation increment) were ranked in terms

of association with UACR change and in concordance

between the test and replication cohort (eg, the larger the

beta estimate, the stronger the association with UACR

change and the largest contribution to the model). The

metabolites with the largest contributions to the urinary

metabolite score were proline, arginine, tryptophan,
alanine, and pyroglutamic acid (Table 2 and Fig 1).

Directionality of beta estimates and strengths of correla-

tions are depicted in Supplementary Fig 3.
DISCUSSION

Using a systems biology and machine learning approach,

we selected and tested urinary metabolites for predicting

https://doi.org/10.1016/j.trsl.2020.04.010


Table 1. Subject characteristics

Test cohort (n = 102) Replication cohort (n = 43)

Placebo Spironolactone P Placebo Spironolactone P

N 52 50 23 20
Age, years 64.5 (7.1) 62.6 (6.9) 0.37 49.8 (8.4) 50.9 (9.69) 0.17
Male sex, n(%) 33 (63) 31 (62) 0.56 13 (56) 12 (60) 0.72
Systolic blood pressure, mm Hg 139 (15) 141 (15) 0.22 128 (16) 133 (15) 0.34
Diastolic blood pressure, mm Hg 75 (8) 77 (11) 0.29 72 (8) 71 (11) 0.71
Hba1C, % 7.2 (1.0) 7.5 (1.0) 0.57 8.0 (1.3) 7.2 (1.4) 0.18
Total cholesterol, mmol/L 3.9 (0.7) 4.1 (0.8) 0.59 4.7 (1.2) 4.5 (1.1) 0.59
Plasma potassium, mmol/L 3.8 (0.3) 3.9 (0.4) 0.12 4.5 (0.7) 4.6 (0.7) 0.92
UACR, mg/g 27 (14�64) 38 (14�284) 0.03 709 (399�1356) 1462 (481�2162) 0.34
eGFR 68 (19) 68 (21) 0.94 71 (33) 47 (25) 0.01

Data are presented as mean (standard deviation), number (proportion), and median [1st, 3rd quartile] for UACR. P-values are for the for com-
parison between placebo and spironolactone treatment arms.

Translational Research
22 Mulder et al August 2020
the albuminuria lowering effect of the MRA spironolac-

tone. These a priori selected urinary metabolites were

tested in samples of 2 independent clinical trials. Our pre-

dictions suggest the use of urinary metabolites as a tool to

tailor albuminuria lowering with spironolactone treatment.

We used a previously developed and validated network-

based molecular interaction model of DKD to identify bio-

markers associated with kidney disease progression.7 Eigh-

teen metabolites were selected based on network

interference analysis between the DKD molecular model

and the spironolactone mechanism of action molecular

model. These 18 metabolites could be assigned to general

molecular mechanisms of oxidative stress, inflammation,

and fibrosis pathways. These urinary metabolites were

able to predict the short-term albuminuria response to spi-

ronolactone. As albuminuria reduction is important for

renal and cardiovascular protection, these urinary metabo-

lites can help identify which people are more likely to

respond to spironolactone therapy and receive renal and

cardiovascular risk protection.
morf
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Fig 2. Variability in UACR response s
How do the identified metabolites mechanistically link

to UACR response to spironolactone? Spironolactone has

been proposed to influence expression of the 3 proteins

SERPINE1, PPARG, and NR3C2 which were also part of

the DKD molecular model and are linked to collagen syn-

thesis and turnover. SERPINE1, a major inhibitor of ECM

degradation, is increased by aldosterone,23 and spironolac-

tone administration leads to a significant decrease in SER-

PINE1 levels.24,25 PPARG in turn is known to mediate

anti-inflammatory and antifibrotic effects. NR3C2 is a

direct target of spironolactone and causes collagen gene

expression by proxy of aldosterone signaling.26 Combina-

tion therapy with telmisartan and spironolactone has been

reported to increase PPARG levels and thereby prevent

renal tissue injury in spontaneously hypertensive rats.27

Additionally, both proteins seem to be associated with col-

lagen type 1 synthesis. SERPINE1 deficiency in animal

models,28 and activation of PPARg in glucose stimulated

mesangial cells reduce collagen I expression,29 thereby

alleviating pro-fibrotic processes. Some of the metabolites
Replication cohort

Placebo Spironolactone

P for difference 0.025

pironolactone treated subjects.

https://doi.org/10.1016/j.trsl.2020.04.010


Table 2. Ranking of beta estimates of the ridge regression

Feature Test cohort Replication cohort Rank*

Proline �0.21 (�0.53 to �0.03) �0.09 (�0.29 to 0) 1
Arginine 0.1 (�0.06 to 0.42) 0.07 (�0.01 to 0.36) 2
Tryptophan 0.08 (�0.04 to 0.28) 0.05 (0 to 0.31) 3
Alanine* treatment �0.01 (�0.02 to 0.01) �0.12 (�0.5 to 0.01) 4
Pyroglutamic acid* treatment 0.11 (�0.24 to 0.54) 0.01 (�0.26 to 0.29) 5
Alanine 0.12 (0�0.39) 0 (�0.07 to 0.14) 6
2 ketoglutaric acid* treatment 0.11 (�0.08 to 0.39) 7
Succinic acid* treatment 0.06 (0�0.18) 0.05 (0�0.2) 8
Glutamic acid 0.07 (�0.07 to 0.3) 0.01 (�0.07 to 0.2) 9
Asparagine �0.04 (�0.35 to 0.07) �0.03 (�0.27 to 0.03) 10
Glutamine 0 (�0.21 to 0.11) �0.06 (�0.26 to 0) 11
Arginine* treatment 0 (�0.02 to 0.03) �0.03 (�0.21 to 0.01) 12
Lysine* treatment 0 (�0.01 to 0.03) 0.01 (�0.12 to 0.2) 13
Succinic* treatment �0.01 (�0.14 to 0.14) 0 (�0.14 to 0.1) 14
Glutamine* treatment �0.01 (�0.01 to 0) �0.01 (�0.21 to 0.13) 15
Pyroglutamic acid �0.2 (�0.56 to 0.01) 0 (�0.25 to 0.23) 16
Serotonin* treatment �0.13 (�0.47 to 0.17) 17
Phenylalanine 0.1 (�0.02 to 0.39) 0 (�0.14 to 0.13) 18
Citric acid 0.06 (�0.07 to 0.32) �0.03 (�0.17 to 0.04) 19
Cysteine 0 (�0.34 to 0.36) 0.06 (�0.01 to 0.35) 20
Cysteine* treatment �0.03 (�0.13 to 0.01) 0.03 (�0.05 to 0.2) 21
Serotonin �0.05 (�0.3 to 0.08) 22
Norepinephrine* treatment �0.05 (�0.39 to 0.25) 23
Phenylalanine* treatment �0.03 (�0.13 to �0.01) 0.02 (�0.07 to 0.41) 24
Aspartic acid �0.05 (�0.19 to 0.09) 25
Proline* treatment �0.03 (�0.11 to 0.02) 0.01 (�0.05 to 0.1) 26
Citric acid* treatment 0.03 (�0.02 to 0.17) �0.01 (�0.28 to 0.16) 27
Asparagine* treatment �0.01 (�0.03 to 0) 0.02 (�0.05 to 0.17) 28
Hydroxyproline �0.03 (�0.13 to 0.03) 29
Tryptophan* treatment �0.01 (�0.02 to 0) 0.02 (�0.09 to 0.37) 30
Hydroxyproline* treatment �0.02 (�0.1 to 0.06) 31
Glutamic acid* treatment �0.01 (�0.05 to 0.05) 0.01 (�0.06 to 0.07) 32
Lysine 0.01 (�0.12 to 0.14) 0 (�0.21 to 0.09) 33
Norepinephrine �0.01 (�0.21 to 0.17) 34
2 ketoglutaric acid �0.01 (�0.2 to 0.16) 35
Aspartic acid* treatment 0 (�0.05 to 0.1) 36

Rank was calculated by the absolute sum of the medians of the penalized beta estimates of test and replication only if both were available
and concordant in directionality. The 5 highest ranks are in bold. The formula used to calculate this rank number is

Rank ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
biðreplicationÞ þ biðdiscoveryÞ

�22

r
. In this table metabolites are sorted by the sum of their estimates (Rank). Estimates for metabolites in

italic were not available in the replication cohort and thus not ranked but the height of estimate of the test was used as an indication of the
importance for predicting response to spironolactone thereby giving more weight to the test cohort.
*Treatment indicated the metabolite*treatment interaction.
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included in the developed metabolite score also associate

with collagen synthesis and fibrosis. Proline, 2-ketogluta-

ric acid and succinic acid were among the highest ranked

metabolites associated with UACR change. The associ-

ated enzyme of these metabolites is prolyl 4-hydroxylase

subunit alpha 2 (P4HA2), a key enzyme in collagen syn-

thesis and previously associated with DKD.30 Thus, the

included metabolites, as marker of P4HA2 activity, may

represent a pro-fibrotic environment which appears to be

associated with response to spironolactone (Fig 5).

A previous study conducted in our test cohort suggests

that the response to MRAmay be enhanced in individuals

with a larger degree of fibrosis.31 Lindhart et at. tested the
urinary proteomic CKD273 score to predict responders to

spironolactone.31 This urinary proteomic score consists of

273 peptides and has been associated with progression of

tubulointerstitial fibrosis.14 Subjects with type 2 diabetes

and a higher proteomic score, purportedly reflecting

larger tubulointerstitial fibrosis, showed a larger reduction

in albuminuria after 16 weeks spironolactone treatment.31

As fibrosis is a driver of progression of DKD, preventing

the development of fibrosis with MRA therapy may ame-

liorate albuminuria. Currently, a large prospective ran-

domized controlled trial is being conducted, first

identifying individuals at high risk for progression of

DKD with the CKD273 score and then randomly

https://doi.org/10.1016/j.trsl.2020.04.010


Fig 3. (Panel A) Personalized prediction plot in test cohort: (Panel B) Personalized prediction plot in replication

cohort. The personalized predictions (Y) are the predicted change in UACR from the model of baseline metabo-

lites and metabolite treatment interactions.
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assigning these high risk subjects to spironolactone or

placebo (PRIORITY, NCT02040441).32 Results of this

trial will give further insights into tailoring therapy to

those at highest risk who might respond best to treatment.

Identified metabolites at the interference of the DKD

and spironolactone model also represented sodium-

dependent amino acid and dicarboxylate transporters

which have been linked to mitochondrial function.33

Emerging evidence support a role for mitochondrial dys-

function in kidney disease progression.34,35 Whether

potential beneficial effects of spironolactone therapy are
)
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Fig 4. Albuminuria change from baseline % in response to

nary metabolite score.
mediated by improvements in mitochondrial function

requires confirmation in future studies.

This study has limitations, the first one is that marker

measurements were restricted to urine samples. Unfortu-

nately, we were unable to measure plasma metabolites in

these subjects and can therefore not assess systemic pro-

cesses reflected by these metabolites. Furthermore, we

identified a large number of subjects in both placebo

groups with a reduction in albuminuria from baseline to

the end of study. For both cohorts, the study population

included were defined as having hypertension and
ary metabolite score

Replication cohort

Lower Middle Upper

P for difference across tertiles 0.010 

spironolactone, stratified by tertiles of baseline uri-

https://doi.org/10.1016/j.trsl.2020.04.010


Fig 5. Proposed link of spironolactone treatment with collagen synthesis and turnover. Spironolactone affects

the 3 proteins SERPINE1, NR3C2, and PPARG (in blue) which are also part of the DKD molecular model and

linked to collagen synthesis and turnover. Measured metabolites in this study that are linked to the DKD-associ-

ated protein P4HA2 are shown in grey hexagons. (For interpretation of the references to color in this figure leg-

end, the reader is referred to the Web version of this article.)
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received at least concomitant renin angiotensin aldoste-

rone system inhibition. We were not able to determine

the effect of other co-medication in individual subjects’

expression of metabolites. The regression model predict-

ing our set of metabolites is less accurate than a set of

serum metabolites able to predict response to angiotensin

receptor blockers in subject with diabetes.36 This varia-

tion could be related to the preselection which may not

be able to cover all processes related to drug response or

intraindividual variability in albuminuria which is not

directly related to active disease processes.37

In conclusion, we used a systems biology approach

to a priori select urinary metabolites for predicting the

albuminuria lowering effect of the MRA spironolac-

tone in type 2 diabetes. We tested and replicated our

findings in 2 independent clinical trials. These data

suggest that systems biology can identify urinary

metabolites to predict albuminuria response to spirono-

lactone to tailor optimal therapy and move in the direc-

tion of personalized medicine in type 2 diabetes.
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