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Abstract 

Student insight into algebraic formulas, including the ability to identify the structure 

of a formula and its components and to reason with and about formulas, is an issue in 

mathematics education.  In this study, we investigated how grade 11 students’ insight into 

algebraic formulas can be promoted through graphing formulas by hand. In an intervention of 

five 90-minute lessons, 21 grade 11 students were taught to graph formulas by hand. The 

intervention’s design was based on experts’ strategies in graphing formulas, that is, using a 

combination of recognition and qualitative reasoning, and on principles of teaching complex 

skills. To assess the effect of this intervention, pre-, post-, and retention tests were 

administered, as well as a post-intervention questionnaire. Six students were asked to think 

aloud during the pre- and post-tests. The results show that all students improved their abilities 

to graph formulas by hand. The think-aloud data suggest that the students improved both on 

recognition and reasoning and give a detailed picture of how students used recognition and 

qualitative reasoning in combination. We conclude that graphing formulas by hand, based on 

the interplay of recognition and qualitative reasoning, might be a means to promote students’ 

insight into algebraic formulas. 
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4.1 Introduction 

Research has shown that students in grades 11 and 12, and even beyond secondary 

school, have persistent difficulties with algebra in general, and with dealing algebraic 

formulas and making sense of them in particular (Arcavi, 1994; Arcavi et al., 2017; Ayalon et 

al., 2015; Chazan & Yerushalmy, 2003; Drijvers et al., 2011; Kieran, 2006; Hoch & Dreyfus, 

2005, 2010; Oehrtman et al., 2008). The students lack symbol sense, which is defined as the 

very general notion of “when and how” to use symbols (Arcavi, 1994). Symbol sense has 

several aspects, such as the ability to read through algebraic expressions, to see the 

expression as a whole rather than as a concatenation of letters, and to make rough estimates 

of the pattern that would emerge in a graphical representation (Arcavi, 1994; Pierce & 

Stacey, 2004). Drijvers et al. (2011) describe symbol sense as complementary to basic skills. 

Symbol sense involves strategic work with a global view and an emphasis on algebraic 

reasoning, whereas basic skills involve procedural work with a local focus and an emphasis 

on algebraic calculations. Pierce and Stacey (2004) use algebraic insight to capture the 

symbol sense involved in using computer algebra software. This algebraic insight concerns 

identifying structure through the recognition of objects, key features, dominant terms and 

simple factors, knowing the meaning of symbols, and the ability to link representations 

(Pierce & Stacey, 2004).  

In this study we aimed at this one aspect of symbol sense, namely, insight into 

algebraic formulas, that is, the ability to “look through a formula.” More specifically, we 

viewed insight into algebraic formulas as including the abilities to recognize the structure of a 

formula and its components and to reason with and about a formula. Structure in algebra has 

been defined by Hoch and Dreyfus (2010) as a broad analysis of the way an entity is made up 

by its parts. Structure sense includes abilities such as seeing an algebraic expression as an 

entity, recognizing the expression as a previously met structure, dividing the entity into sub-

structures, and recognizing the connection between structures. In this study we focused on 

functions of one variable and their Cartesian graphs. We chose to use graphing formulas by 

hand, without technology, as a means to promote students’ insight into formulas. In this 

article, this graphing formulas by hand will be called graphing formulas.  

Many studies about symbol sense and graphing are about the role of technology like 

graphic calculators to promote students’ symbol sense (Arcavi et al., 2017; Drijvers, 2003; 

Hennessy et al., 2001; Heid et al., 2013; Kieran & Drijvers, 2006; Philipp et al., 1993; 

Yerushalmy & Gafni, 1992). In some of these studies, the need for by hand activities has 
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been stressed (Arcavi et al., 2017; Kieran & Drijvers, 2006), but to our knowledge there are 

no recent studies that investigate effects of graphing by hand on students’ symbol sense and 

this study might fill this gap. We investigated how graphing formulas might be learned by 

students and designed an intervention consisting of a series of lessons on graphing formulas, 

in grade 11 (16- and 17-year-old pre-university students) to enhance students’ insight into 

algebraic formulas. In this way, the current study contributes to the understanding of how 

recognition, reasoning and its interplay involved in graphing formulas may foster students’ 

insight into formulas. 

4.2 Theoretical framework 

Graphing formulas is a complex task for students. In this section, we elaborate on the 

theoretical principles underlying our educational design. First, the literature about symbol sense 

and graphing is discussed. Next, we describe the nature and content of the knowledge base 

students need for graphing formulas. Finally, we discuss how this knowledge base might be 

addressed in student tasks, using the literature on teaching complex skills. 

4.2.1 Symbol sense and graphing 

To promote insight into formulas, we had two arguments for focusing on graphing 

formulas. First, we targeted insight into formulas that are often used in grade 11 textbooks, like 

𝑦𝑦 = 4√10 − 𝑥𝑥 , 𝑦𝑦 = 2(𝑥𝑥 − 3)2(𝑥𝑥 + 3), 𝑦𝑦 = (𝑥𝑥 + 3)4 − 9, 𝑦𝑦 = (4𝑥𝑥 + 2)/(𝑥𝑥 + 3)2, 𝑦𝑦 = 𝑥𝑥e−𝑥𝑥, 

𝑦𝑦 = ln( 𝑥𝑥 − 3), so, we needed a general domain, in which many different formulas could be 

addressed. Second, in literature, it has been recommended to use realistic contexts and multiple 

representations to give meaning to algebraic formulas (Kieran, 2006; Radford, 2004), and to 

learn about functions (Arcavi et al., 2017; Kieran, 2006; Janvier, 1987; Leinhardt et al., 1990; 

Moschkovich et al., 1993). However, besides linear and exponential functions, it is in general 

difficult to link formulas to realistic context, except in mathematical modeling. Therefore, we 

chose for using representations, in particular for linking formulas to their graphs. 

Graphing tools such as graphic calculators are helpful for learning about functions and 

their multiple representations (Hennessy et al., 2001; Kieran & Drijvers, 2006; Heid et al., 2013; 

Philipp et al., 1993; Yerushalmy & Gafni, 1992). However, Goldenberg (1988) found that 

students established the connection between formula and graph more effectively when they did 

graphing by hand than when they only performed computer graphing. Therefore, we chose the 

context of graphing formulas by hand to promote students’ insight.  
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In linking formulas to graphs, covariational reasoning comes into play. Covariational 

reasoning concerns coordinating two varying quantities while attending to how they change in 

relation to each other (Thompson, 2013; Carlson et al., 2002). While the focus often is on 

quantities in real-life situations, algebraic functions with “imagining running through all input-

output pairs simultaneously and so reason about how a function is acting on an entire interval of 

input values” are also included (Carlson et al., 2002). Covariational reasoning often focuses on 

the global graph and five levels of development have been described: from the idea that change 

in one variable depends on change in another variable, to paying attention to the direction of 

change, to paying attention to the amount of change, to considering average rate with uniform 

increments of the input variable, to the instantaneous rate of change for entire domain (Carlson et 

al., 2002; Oehrtman et al., 2008). It has been argued that such covariational reasoning is critical 

in supporting student learning of functions in secondary and undergraduate mathematics (Carlson 

et al., 2002; Confrey & Smith, 1995; Oehrtman et al., 2008; Thompson & Carlson, 2017). 

Students have difficulties with this reasoning. This was shown by Carlson, Madison, and West 

(2015), who found that students were not able to select the correct graph (out of five alternatives) 

of 𝑓𝑓(𝑥𝑥) = 1/(𝑥𝑥 − 2)2, indicating, according to the authors, that students were not able to reason 

“as the value of x gets larger the value of y decreases, and as the value of x approaches 2, the 

value of y increases.” Such reasoning about functions requires a global perspective on a function, 

that is, seeing the function as an entity or object (Confrey & Smith, 1995; Even, 1998; Gray & 

Tall, 1994; Oehrtman et al., 2008). This may be hindered by another commonly used perspective, 

namely, seeing a function as an input-output machine (a given x-value is linked to a certain y-

value). The latter view is considered a pointwise, process, or correspondence perspective. A 

global perspective is more powerful and gives a better understanding of the relation between 

formula and graph, but a pointwise approach is needed to construct initial meaning (Even, 1998). 

To learn graphing formulas, students have to learn to take a global perspective on functions and 

to use the first three levels of covariational reasoning, in particular paying attention to the 

direction of change and the global amount of change of a function (concavity).  

4.2.2 Expertise in graphing formulas: recognition and reasoning 

To investigate what is needed to master a complex skill, it has been recommended to 

examine expert behavior (Kirschner & Van Merriënboer, 2008; Schoenfeld, 1978). In expertise 

research, it has been established that for effective and efficient problem solving one needs 

recognition, and reasoning when recognition falls short (Berliner & Ebeling, 1989; Chi et al., 

1981). In our previous studies, we described experts’ recognition and strategies involved in 
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graphing formulas (Kop et al., 2015; Kop et al., 2017). Five experts from different backgrounds, 

but all holding a master’s or PhD in mathematics, were selected to investigate expertise in 

graphing formulas: three mathematicians who worked at Dutch universities, one mathematical 

textbook writer who was also a mathematics teacher in upper secondary school, and one who 

worked at the Dutch Institute for Testing and Assessment. Because all had more than 10 years of 

experience in work which often required them to graph formulas, we considered them experts in 

graphing formulas (Kop et al., 2015; 2017).  

To describe experts’ thinking processes for graphing formulas, different levels of 

recognition were formulated: the formula can be instantly visualized as a graph or is recognized 

as a member of a function family of which the global graph is known; the formula can be 

decomposed into sub-formulas of function families; some characteristics of the graph are 

instantly recognized but not the whole graph; there is no recognition at all (Kop et al., 2015). 

These levels of recognition can be linked to Mason’s (2003) levels of attention, in which he 

described how attention can shift from seeing essential structure to gazing at the whole and not 

knowing how to proceed. For recognition, a repertoire of basic function families that can be 

instantly visualized by a graph (Eisenberg & Dreyfus, 1994) and knowledge of features to 

describe graphs are needed (Slavit, 1997). Kop et al. (2017) found that experts’ repertoires of 

basic function families resembled the basic function families taught in secondary school, like 

exponential, logarithmic, and polynomial functions. Experts seem to have linked prototypes of 

these function families to a set of critical graph features. For instance, a prototypical logarithmic 

graph has a vertical asymptote, only positive x-values as a domain, and is concave down. Experts 

use their repertoire of basic function families as building blocks in working with formulas to 

decompose complex functions into simpler basic ones and to read characteristic graph features 

from formulas (Kop et al., 2015, 2017).  

When experts graph more complex formulas and instant recognition falls short, they start 

reasoning about, for instance, infinity behavior, in/decreasing of a function, and weaker/stronger 

components of a function, but they hardly use calculation of points and/or derivatives. In short, 

our previous studies suggest an interplay of recognition and reasoning being the backbone of the 

expertise at stake. We give five examples to illustrate experts’ recognition and reasoning.            

(1) Sketching 𝑦𝑦 = 2√𝑥𝑥 + 6: “It is a root-function translated to the left.” (2) Sketching                      

𝑦𝑦 = −2𝑥𝑥(𝑥𝑥 − 3)(𝑥𝑥 − 6): “It is a polynomial function of degree 3, reversed because of −𝑥𝑥3, and 

zeroes at 0, 3, 6.” (3) Sketching 𝑦𝑦 = 100 − 50 ∙ 0.75𝑥𝑥: “It has y=100 as an horizontal asymptote, 

100 minus …, so, it comes from beneath to the asymptote; when x is very negative, it is 100 
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minus very large outcomes, so y-values will be very negative.” (4) Sketching 𝑦𝑦 = 𝑥𝑥 − 4/𝑥𝑥: “I 

can sketch 𝑦𝑦 = 𝑥𝑥 and 𝑦𝑦 = 4/𝑥𝑥, now I have to subtract the graphs, here (with large values of x) it 

is almost 𝑦𝑦 = 𝑥𝑥, when x is a little bit larger than 0 y is very negative, etc. (sketch the graph).           

(5) Sketching 𝑦𝑦 = 500/(2 + 0.75𝑥𝑥): “When x goes to infinity then it is 500/2=250; 500 dividing 

by a decreasing number, so outcomes increase; it is always positive, and when x goes to minus 

infinity it is almost 0.” (Kop et al., 2015; 2017) 

The interplay between recognition and reasoning is visible when experts use prototypical 

graphs of function families. For example, “a root-function translated” in (1); “a polynomial of 

degree 3, reversed” in (2); “decomposing a formula, graphing both sub-formulas, and compose 

these sub-graphs” in (4) (Kop et al., 2017; Schwarz & Hershkowitz, 1999). These examples 

show that experts can start with prototypical graphs and use reasoning about transformations, 

about characteristics, about composing sub-formulas to finish the graph. Sometimes, experts only 

recognize a key graph feature and have to use more reasoning to complete the graph. For 

example, in (3), the horizontal asymptote was instantly recognized. It also possible that there is 

no recognition, then experts start strategic exploration of the graph. For example, in (5) the 

expert started reasoning about infinity behavior of the function. Experts’ reasoning is often 

qualitative of character, that is, global reasoning, using global descriptions without strict proofs, 

and ignoring what is not relevant. We illustrated this experts’ qualitative reasoning in the five 

examples above. In their reasoning experts ignored the factor 2 when sketching 𝑦𝑦 = 2√𝑥𝑥 + 6 (1) 

and 𝑦𝑦 = −2𝑥𝑥(𝑥𝑥 − 3)(𝑥𝑥 − 6) (2), the factor 50 in 𝑦𝑦 = 100 − 50 ∙ 0.75𝑥𝑥 (3). Ignoring what is not 

relevant is an aspect of adaptive reasoning and an indication of expertise (Chi et al., 1981; Chi, 

2011). Global reasoning is found when exploring parts of a graph, for instance, infinity behavior 

of the function in (3) “x is very negative, it is 100 minus very large outcomes, so y-values will be 

very negative” and in (5) “when x goes to minus infinity it is almost 0.” Global descriptions were 

used in (2) “reversed” and in (3) “it comes from beneath to the asymptote”. 

 In literature the importance of qualitative reasoning with its focus on the global shape of 

the graph and ignoring what is not relevant has been addressed. Leinhardt et al. (1990) spoke 

about qualitative interpretation of graphs to gain meaning about the relationship between the two 

variables, and their pattern of covariation. In physics and physics education, qualitative reasoning 

is used to describe essential entities and processes and to provide the necessary grounding for a 

deep and robust understanding of quantitative models (Bredeweg & Forbes, 2003; Forbes, 1996).  

Friedlander and Arcavi (2012) used the term qualitative thinking in their framework for cognitive 

processes involved in algebraic skills. Qualitative thinking is about predicting and interpreting 
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results without calculation and/or manipulation skills and strict proofs. Experts use this 

qualitative reasoning also in their communication with students. For example, Thompson (2013) 

described how an experienced teacher added two sub-graphs using blank axes to keep students 

away from calculations, focusing on an estimation of the sum-graph, and using qualitative 

reasoning in the discussion with the class, with descriptions like “it is less negative,” “how 

negative,” “it will get lower.” However, this qualitative reasoning, with its ignoring what is not 

relevant and its focus on the global shape of the graph, is often used implicitly and hardly taught 

explicitly in school (Duval, 2006; Leinhardt et al., 1990).  

Experts’ recognition and reasoning in graphing formulas inform us about “what to 

teach”: students should learn a repertoire of basic function families, with prototypes and key 

features, for recognition and students should learn experts’ reasoning, with its qualitative 

character, using global descriptions, ignoring what is not relevant, and without strict proofs. 

In the next section we address literature on complex skills to formulate design principles (DP) 

about how to teach graphing formulas, based on recognition and reasoning. 

4.2.3 Teaching complex skills 

Although graphing formulas is a well-described task, it can also be considered a complex 

task, because functions may vary from basic functions to very complex ones. In this section, we 

outline a social constructivist approach to teaching graphing formulas as a complex skill. In this 

approach, students learn component knowledge and skills in the context of more complex whole 

tasks, with adaptive support and students are invited to articulate and reflect on their own 

problem-solving processes (De Corte, 2010).  

Complex cognitive skills consist of many constituent skills, which have to be integrated 

and coordinated. In education, a part-task approach is often used: all constituent skills are taught 

separately and in succession, and only at the end are students confronted with the complexity of 

the whole task. This results in students having difficulties in integrating and coordinating all the 

constituent skills (Kirschner & Van Merriënboer, 2008).  

Instead of the part-task strategy, a whole-task-first approach is recommended: students 

learn skills and knowledge in the context of entire tasks (Collins, 2006; Kirschner & Van 

Merriënboer, 2008; Merrill, 2013; Van Merriënboer, Clark, & De Croock, 2002). Of course, 

students cannot immediately perform an entire task without help. Therefore, it is recommended 

to support student learning processes in different ways (Kirschner & Van Merriënboer, 2008; 

Merrill, 2013; Van Merriënboer et al., 2002). In the context of graphing formulas, the whole-
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task-first approach means that students are confronted from the start with the full complexity of 

graphing formulas; that is, they have to deal with different kinds of functions and strategies (DP 

1). In order to support students, help is provided in different ways: through modeling (that is, 

showing expert thinking processes to students), examples, overviews, sub-questions, and 

reflection questions (DP 2) (Kirschner & Van Merriënboer, 2008; Merrill, 2013; Van 

Merriënboer et al., 2002).    

Landa (1983) described the importance of general thinking methods or meta-heuristics 

that are needed to use one’s skills and knowledge in problem situations. Pierce and Stacey (2007) 

indicated the importance of teaching students the habit of starting with the question “What do I 

notice about this expression which may be important?” We call this “questioning the formula,” 

which can be considered a meta-heuristic (Arievitch & Haenen, 2005; Landa, 1983). In graphing 

formulas, students should learn to internalize and automatize the habit of questioning the formula 

(DP 3).  

In the current study, we used these three design principles to design an intervention on 

graphing formulas, with the aim to promote insight into formulas of functions of one variable. 

The following main research question guides the study:  

How can grade 11 students’ insight into algebraic formulas be promoted through 

graphing formulas? 

4.3 Method 

 In this section, we subsequently describe the intervention, including the tasks that 

were used in the teaching, the participants, the instruments used in the pre-test, post-test, and 

retention test, and the data analysis. 

4.3.1 Intervention  

The intervention took five lessons of 90 minutes. Each day, the lesson started with a 

short plenary discussion (max 10 minutes) with general feedback on the students’ work, 

reflection on the tasks, and modeling of expert thinking processes. After the plenary, the 

students worked in pairs or groups of three, studied their personal feedback and the written 

elaborations on the tasks given by the teacher, and discussed strategies and solutions for the 

whole tasks. The teacher visited each group at least once during a lesson to give further 

explanations and coaching. At the end of a lesson, all pairs and groups handed in their work 
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for personal feedback which focused on the reflection questions, for which students had to 

construct their own examples.  

The intervention started with a whole class discussion about the levels of recognition; 

this was to introduce the meta-heuristic “questioning the formula” (DP 3). The aim was that 

students would develop the habit of asking themselves questions like: “Do I instantly know 

the graph?”, “Do I recognize a function family?”, “Can I decompose the formula?”, “Do I 

recognize graph features?”, “Can I do some strategic search for, for instance, infinity 

behavior?” At the end of the intervention, but before the post-test, 18 of the 21 students 

voluntarily attended a longer plenary discussion of 30 minutes in which they discussed 

strategies for graphing several formulas.  

The tasks used in the teaching were formulated as whole tasks, reflecting the levels of 

recognition and the meta-heuristic “questioning the formula”: task 1 and 2 concerned recognition 

of basic functions and aimed to develop a knowledge base of function families with their 

characteristic features and to deal with simple transformations; task 3 concerned the 

decomposition of formulas and the composition of sub-graphs through qualitative reasoning; task 

4 concerned the instant recognition of key graph features; and task 5 was about strategic 

exploration of parts of a graph, through qualitative reasoning. We now give some examples of 

the tasks.  

Task 1 required students to match formulas of basic function 𝑦𝑦 = √𝑥𝑥, 𝑦𝑦 = 𝑥𝑥3, 𝑦𝑦 = 0, 5𝑥𝑥,
𝑦𝑦 = ln( 𝑥𝑥), 𝑦𝑦 = |𝑥𝑥| to their graphs. Task 2 was based on Swan (2005): Describe the 

differences and similarities between the graphs of the pairs of functions like 𝑦𝑦 = 2√𝑥𝑥 − 4,  

𝑦𝑦 = 2√𝑥𝑥 − 4 and 𝑦𝑦 = −3𝑥𝑥,  𝑦𝑦 = 3−𝑥𝑥. In task 3, the function  𝑦𝑦 = √𝑥𝑥 (3𝑥𝑥 − 6) had to be 

graphed by multiplying the graphs of the sub-functions 𝑦𝑦 = √𝑥𝑥  and 𝑦𝑦 = 3𝑥𝑥 − 6. Task 4 was 

inspired by Burkhardt and Swan (2013) and Swan (2005), and concerned the recognition of 

graph features: What features of the given graph can be instantly read from the given two 

equivalent formulas  𝑦𝑦 = (𝑥𝑥 − 4)2 − 1 and 𝑦𝑦 = (𝑥𝑥 − 5)(𝑥𝑥 − 3)? 

Task 5 concerned reasoning about parts of a graph (part-graph exploration). For instance, 

what happens to the 𝑦𝑦-values of the functions 𝑦𝑦 = 0.6𝑥𝑥 ∙ 𝑥𝑥60, 𝑦𝑦 = 52.7/(1 + 62.9 ∙ 0.692𝑥𝑥), 

when 𝑥𝑥 → +∞?  Choose  𝑦𝑦 → +∞; 𝑦𝑦 → 𝑎𝑎 ≠ 0; 𝑦𝑦 →0; 𝑦𝑦 → −∞    

For each task, help was provided, and a reflection question was added. For instance, in 

task 2 (about recognizing transformations of basic functions) students could choose to use 

GeoGebra, and/or to study worked-out examples for help. After each whole task, a reflection 

question was posed, in which students were asked to construct three new examples to 
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demonstrate the principles of the whole task. Constructing examples is a means to stimulate 

students to reflect (Watson & Mason, 2002). 

4.3.2 Participants 

The intervention was held in the first author’s grade 11 mathematics B class, a regular 

class of 21 pre-university students, who were 16 or 17 years old. Mathematics B is a course 

that prepares students in the Netherlands for university studies in mathematics, science and 

engineering. In regular education in the Netherlands, students learn about linear, quadratic 

and exponential functions in grade 8 and 9. In grade 10, the graphic calculator is introduced 

and power, rational, logarithmic functions and the derivative are the most important topics. In 

grade 11, further exploration of derivatives and rules for differentiation are taught, together 

with solving calculus problems (e.g., optimization, tangent, and parameter problems) using 

algebraic manipulation and the graphic calculator. In this school, students were used to 

working together on tasks in an open space, as there was only one small room for plenary 

instruction available, which could be used once a week. 

4.3.3 Data collection 

We collected all individual student responses to three written tests: the pre-test, the 

post-test, and the retention test, all of which had two similar tasks: a graphing task and a 

multiple-choice task that focused on recognition (indication of the total time: 25 min). The 

formulas used in the three tests, though not the same, were comparable in structure and 

difficulty. To avoid a learning effect from the tests, the students’ work was not returned to 

them. The period of four months between the post-test and the retention test, including a 

holiday period, was considered long enough to prevent learning effects. 

The three written tests demonstrated the students’ competencies to graph formulas but 

gave only limited information about their recognition and reasoning. Therefore, more detailed 

information about the students’ thinking processes was needed: six students were asked to 

think aloud during the pre-test and post-test, when working on the graphing task. These 

interviews were videotaped and transcribed. Thinking aloud is not expected to disturb the 

thinking process and should give reliable information about problem-solving activities 

(Ericsson, 2006). As it was possible that the effect of the intervention would depend on 

students’ previous mathematics performance, the six students were selected on the basis of 

their earlier mathematics performances during the school year: two high-achieving (S and K), 

two more than average-achieving (A and M), and two average-achieving students (Y and I).  
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In a post-intervention questionnaire, the students were asked to report their ideas 

about the series of lessons. Six questions were posed: whether they had improved their skills 

in graphing formulas (1), whether they had learned to use more strategies (2), whether their 

recognition of graph features had improved (3), whether their recognition of formulas that 

could be instantly graphed had improved (4), whether they could switch their strategy more 

often (5), and whether they used the meta-heuristic “questioning the formula” more often 

when graphing formulas (6). In each question, the students were asked to indicate, on a scale 

of 1 to 4, to what extent they agreed with the statement. In two open questions, the students 

were invited to make remarks about the series of lessons and their learning during these 

lessons.  The first author (teacher) kept a logbook with lesson plans, and short descriptions of 

the plenary discussions and other aspects of the student’s learning.  

4.3.4 Graphing task and multiple-choice task in the tests  

The first task used to investigate the students’ insight into formulas was “Draw a 

rough sketch of the following functions ... .” We selected seven simple and seven more 

complex functions, all of which could appear in the students’ mathematics textbooks. The 

simple functions aimed to assess the students’ repertoire of basic function families and their 

reasoning using prototypical graphs, transformations and/or function family characteristics. 

Examples of these simple functions are 𝑦𝑦 = √6 − 2𝑥𝑥  and 𝑦𝑦 = (𝑥𝑥2 − 4)(𝑥𝑥2 − 6). The more 

complex functions, like 𝑦𝑦 = √𝑥𝑥(𝑥𝑥 − 2)(𝑥𝑥 − 6) and 𝑦𝑦 = 3𝑥𝑥√𝑥𝑥 + 2, aimed to assess the 

students’ recognition of graph features and their part-graph exploration.  

To assess the students’ recognition abilities, a multiple-choice task with 21 

alternatives (20 graphs and one “none of these”; see Figure 4.1) was also used. For 16 

functions, the students were asked to match the formula to the global shape of the graph. The 

following are examples of functions that were used: 𝑦𝑦 = 2𝑥𝑥(𝑥𝑥 − 9), 𝑦𝑦 = 𝑥𝑥2(6 − 𝑥𝑥2),        
𝑦𝑦 = 4𝑥𝑥 − 5, 𝑦𝑦 = 2√8 − 𝑥𝑥, 𝑦𝑦 = −2√𝑥𝑥. Figure 4.1 shows four of the 20 graphs that were used 

as alternatives. 

  

  
5 

 

6 7 

 

8 

 Figure 4.1 Some alternatives in the multiple-choice task      
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4.3.5 Data analysis 

For the analysis of the graphing task, the graphs in all tests were graded as correct, 

partly correct, or not correct, resulting in a score of 1, 0.5, or 0. We graded a graph as partly 

correct when many but not all aspects of (the construction of) the graph were correct. For 

example, when the graph of 𝑦𝑦 = −2𝑥𝑥(𝑥𝑥 − 2)(𝑥𝑥 − 5) had zeroes at 𝑥𝑥 = 2 and 𝑥𝑥 = 5, and the 

direction of the “oscillation” was correct, but the graph failed to show the zero at 𝑥𝑥 = 0, or 

when the sub-graphs of 𝑦𝑦 = 𝑥𝑥2e𝑥𝑥 (𝑦𝑦 = 𝑥𝑥2 and 𝑦𝑦 = e𝑥𝑥) were correctly graphed but mistakes 

were made in the composition of the sub-graphs. For each student, the total score, the score 

on simple functions, and the score on complex functions were calculated. For the multiple-

choice task in all tests, each item was graded as correct (score 1) or incorrect (score 0), 

resulting in a total score on the multiple-choice task.  

To compare the scores on the graphing task and multiple-choice task of the pre-test, 

post-test, and retention test, the mean scores and standard deviations were calculated. A 

paired t-test with the effect size (Cohen’s d) for each task was calculated to determine 

differences between pre-test and post-test results (short-term effect) and differences between 

pre-test and retention test (long-term effect).  

The thinking-aloud protocols of the graphing task of the six students were transcribed 

and time was recorded. The transcripts were cut into units of analysis which contained crucial 

steps of students’ recognition and reasoning (Schwarz & Hershkowitz, 1999). To analyze 

students’ insight, we used categories with descriptions of the experts’ strategies in graphing 

formulas (see examples in Theory section): combinations of recognizing and reasoning 

involving function families, involving key graph features, and part-graph exploration. The 

encoding of the thinking-aloud protocols was done according the instructions in Table 4.1.  
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  Table 4.1 Codebook for thinking-aloud protocols 

Encoding description example 
P1 
(a prototypical 
graph) 
 

If a function family has been recognized 
(mentioned) and a prototypical graph 
and/or (qualitative) reasoning (with 
transformations and/or characteristics) 
are used to sketch the graph. 

Sketching 𝑦𝑦 = 2√𝑥𝑥 + 8: “it is a root-
function, translated to the left.” (factor 2 
can be ignored).  
Sketching 𝑦𝑦 = √8 − 𝑥𝑥: “it is a reversed 
root-function, and edge point is (8,0)”  

P2 
(two 
prototypical 
graphs) 

If two function families have been 
recognized (mentioned), two sub-
formulas are graphed and the two sub-
graphs are combined using qualitative 
reasoning. 

Sketching 𝑦𝑦 = 𝑥𝑥e−𝑥𝑥: “decompose it into 
𝑦𝑦 = 𝑥𝑥 and 𝑦𝑦 = e−𝑥𝑥, and multiplying the 
two sub-graphs, when x is very large e−𝑥𝑥 
is almost 0 and stronger than x, so 𝑦𝑦 ≈
0; when x is very negative y will be very 
negative.” 

F 
(key graph 
feature) 

If the graph has not been recognized but 
a key graph feature has been 
recognized. 

“It has a vertical asymptote at x=3” or  
“it has zeroes at ...”;  
but not when calculating the y-intercept. 

PG 
(part-graph) 

If the graph has not been recognized 
and parts of the graph are explored 
using qualitative reasoning. 

“When x is large, y is … (infinity 
behavior),” or  
“in the neighborhood of x=3 …” 

C 
(calculation) 

If more than two points of the graph are 
calculated, or if a derivative is 
calculated, or brackets in a formula are 
expanded. 

 

 

The units of analysis were encoded by the first author and checked by another 

researcher, which resulted in recoding of 10% of the transcripts. When the student succeeded 

in making a correct (rough) sketch of the formula (score of 1), using P1, P2, F, PG, we 

interpreted this as a sign of insight into this formula, resulting in an insight-score of 1. 

However, if the student used the calculation of more than two points and/or the derivative 

(C), we said that the student had no insight in this formula, resulting in an insight-score of 0. 

If the graph was partly correct and sketched via P1, P2, F, PG, we considered this as showing 

“some insight,” resulting in an insight-score of 0.5.  

Below, we illustrate these encodings with two examples (other examples in the Result 

section). 

Student A sketching 𝑦𝑦 = −(𝑥𝑥 − 3)4 − 5 correctly with insight-score 1, used a prototypical 

graph:  

Looks like parabola; turning point is in (3, −5) (P1); parabola with a maximum (P1) 

Student A sketching 𝑦𝑦 = (𝑥𝑥2 + 6)/(𝑥𝑥2 − 4) correctly with insight-score 1, decomposed the 

formula into two parabola, graphed both sub-graphs, then used graph features (vertical 
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asymptotes and symmetry) and part-graph exploration about infinity behavior of the function 

and the graph’s behavior in the neighborhood of the vertical asymptotes. Only two points of 

the graph were calculated, so the insight-score was 1.  

(tries to manipulate the function (x−2)(x+2)); no, this does not work; first decomposing; 

(graphed both parabolas) (P2); when x is very large than y is close to 1 (PG); when x=2 no 

outcomes, so a vertical asymptote (F); and also at x=−2; when x is a little bit larger than 2 

than the denominator is very small and the dominator relative large (PG); the larger x will be 

the smaller the outcomes will be (PG); when  x=−2 this will be the same (F); when x=1 y is 

7/−3 is about −2; when x=−1 I get the same ; when x=0 it is −1.5; when x is just under 2, the 

denominator is negative and the dominator is very large, so is goes to minus infinity (PG); at 

x=−2 the same, because of symmetry (F). 

To analyze the post-intervention questionnaire, the mean scores were calculated for 

each question and an inventory of the remarks about the series of lessons was made. 

4.4 Results 

 The results of the graphing and multiple-choice tasks of the pre-test, post-test, and 

retention test are described first, then we report the results of the six thinking-aloud students 

on the graphing task, and finally the results of the post-intervention questionnaire and 

fragments of the teacher’s logbook.   

4.4.1 Graphing tasks 

The results of the graphing tasks gave information about the students’ abilities to 

graph formulas. For a first impression of the effect of the intervention, we compared the 

mean scores in the pre-test, post-test and retention test. We distinguished between the simple 

and the complex functions. Table 4.2 shows that the mean total score in the pre-test was 2.95 

out of 14, with a standard deviation of 2.42. The post-test scores were higher, with a mean 

total score of 9.21. In the retention test the mean score dropped to 6.97. A similar pattern was 

found for basic functions and complex functions.  

The paired t-tests that were used to calculate the differences between the scores in the 

pre-test and post-test and between the pre-test and retention test showed that all score 

differences were significant with p<0.01. Cohen’s d, used to quantify these differences were 

rather large. See Table 4.2.  
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  Table 4.2 Results of graphing task in pre-, post-, and retention-test compared  

 pre-test 
 
Mean 
(SD) 

post-
test 
Mean 
(SD) 

t-value & p-
value 
pre-post test 

Cohen’s 
d 
 

retention-
test 
Mean 
(SD) 

t-value & p-
value 
pre-retention 
test 

Cohen’s 
d 
 

Total 2.95 
(2.42) 

9.21 
(2.58) 

t(20) = 13.00;  
p < .001 

2.50 6.97 
(3.35) 

t(14) = 3.48; 
 p = .001 
 

1.38 

Simple 2.42 
(1.42) 

6.19 
(1.26) 

t(20) = 10.73; 
 p < .001 

2.87 4.87 
(1.80) 

t(14) = 5.40;  
p < .001 
 

1.56 

Complex 0.74 
(1.41) 

3.02 
(1.71) 

t(20) = 9.51;  
p < .001 

1.45 2.10 
(1.85) 

t(14) = 2.46;  
p = .028 
 

0.83 

 

4.4.2 Multiple-choice tasks  

 The results of the multiple-choice tasks gave information about the students’ 

recognition of basic function families and graph features. The results on these tasks showed 

the same pattern as on the graphing tasks: the scores on the 14 items were low in the pre-test, 

increased substantially in the post-test, and decreased slightly in the retention test. Table 4.3 

shows that the differences were significant and that the effect sizes were rather large. 

  Table 4.3 Results of multiple-choice task in pre-, post-, and retention-test compared  

 pre-test 
 
Mean 
(SD) 

post-
test 
Mean 
(SD) 

t-value & p-
value 
pre-post test 

Cohen’s 
d 

retention 
test 
Mean 
(SD) 

t-value & p-
value 
pre-retention 
test 

Cohen’s 
d 
 

Total 2.95 
(2.29) 

10.01 
(2.79) 

t(20) = 10.17; 
p < .001 

2.22 8.07    
(3.33) 

t(14) = 4.65;   
p < .001 

1.20 

 

4.4.3 Thinking-aloud protocols on the graphing task  

First, we give an overview of the results of the six students who thought aloud during 

the graphing task, then, we portray the recognition and reasoning of two representative 

students (student M and the high-achieving student K) in the pre-test and post-test. These 

examples illustrate their insight into formulas, that is, their recognition and reasoning when 

graphing formulas. We end this section with some remarks about the results of the four other 

students. 

Table 4.4 shows the scores of the six thinking-aloud students on the graphing task in 

the pre-test and post-test (on simple and complex functions) and the time they needed to 

finish these tasks. In addition, their scores on the retention test are indicated. For instance, in 
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the pre-test, student K had a of 4 out of 7 on simple functions and a score of 4 out of 7 on 

complex functions; their insight-score was 3 on both simple formulas and complex formulas; 

K used in 6 graphs prototypical graphs and in 5 graphs part-graph exploration.   

  Table 4.4 Results from thinking-aloud protocols: Scores, insight-scores, kinds of reasoning, time  

 Pre-test       Post-test                                                          Retention  
                                                                             test 

Stu
dent 

Score  
 (s+c)1 

Insight 
score  
 (s+c) 

Kinds of 
reasoning 

Time  
(min) 

Score  
 (s+c) 

Insight-
score 
 (s+c) 

Kinds of 
reasoning 
 

Time 
 (min) 

Score  
(s+c) 

S   3.5+4 3+4 
 

2P12:6   F:3 
C:0       PG:4 

>16:423 7+6 7+6 
 

P12:8    F:2 
C:0       PG:5 

17:48 7+7 

K  4+4 
 

3+3 P12:6    F:1 
C:5       PG:5 

38:25 7+6 7+6 P12:12  F:2 
C:0       PG:2 

16:00 5+2 

M  
 

2+0 2+0 P12:2    F:6 
C:0       PG:1 

34:20 7+3 7+3.5 P12:10  F:4 
C:0       PG:1 

16:00 5.5+2 

A  
 

5+0 4+0 P12:4    F:1 
C:3       PG:5 

16:25 7+2 7+2.5 P12:12  F:1 
C:0       PG:1 

17:12 6+2 

I  
 

2+0.5 1+0.5 P12:4    F:6 
C:0       PG:9 

27:50 7+3 5+3 P12:5    F:6 
C:2       PG:9 

21:00 5+1.5 

Y  
 

2+1 2+0 P12:5    F:0 
C:3       PG:7 

>30:554 5.5+3.5 5.5+3.5 
 

P12:10  F:2 
C:0        PG:3 

18:22 4+1 

1 score on simple functions (s) and on complex function (c). 
2 P12=using prototypical graphs and/or composition of 2 sub-graphs; F=recognizing key graph feature; PG=part-
graph exploration. 
3 For 11 graphs in pre-test, 4 for 12 graphs in pre-test. 

Table 4.4 confirmed the higher scores in the post-test and retention test in comparison 

with the pre-test and the differences in scores between simple and complex formulas, as 

found in Table 4.2. Table 4.4 shows that the time needed in the post-test was much shorter 

than in the pre-test, that the scores and insight-scores in the post-test were higher than in the 

pre-test, and that the scores and insight-scores were closely related. The latter indicates that 

calculations were hardly used in successfully graphing formulas. Table 4.4 also shows that 

the high-achieving students did relatively well on complex formulas in the pre-test and only 

missed one graph in the post-test. The results show that most students used more prototypes 

of function families in the post-test. In the retention test, only student S graphed all formulas 

correctly, but the scores of the other five students were still higher than in the pre-test.    

To illustrate the student’s insight, we portray the recognition and reasoning of two 

representative thinking-aloud students: student K as a high-achieving student, and student M 

as one of the other four students. In the pre-test, student M had great difficulties graphing 

formulas: M only recognized the graphs of root-functions and features like zeroes of 

polynomial-functions and vertical asymptotes but had a limited repertoire of reasoning. This 
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resulted in a score of only 2 correct graphs out of 14 (only 𝑦𝑦 = 3√𝑥𝑥4 + 2 and 𝑦𝑦 = √6 − 2𝑥𝑥). 

Some citations illustrate their thinking processes and insight. 

M sketching 𝑦𝑦 = (𝑥𝑥 − 3)2 − 9 (insight-score 0); after calculating a point and part-graph 

reasoning with “when x is increasing then y … ,” M could not sketch the graph:  

…At 𝑥𝑥 = 3 𝑦𝑦 = −9. (After some time) the larger x is, the larger y, so it increases (PG). It is a 

parabola. (M stopped talking for a while; after a couple of minutes) I do not know how to 

proceed. Encoding: PG. 

M also had problems with sketching 𝑦𝑦 = ln(𝑥𝑥 − 3) (insight-score 0); after recognizing a 

translation, M did not know the shape of the ln(x)-graph, and tried to construct the graph via 

the inverse function (but did not succeed):  

…graph of ln(𝑥𝑥), that is translated 3 to the right (F) (M did not use this, instead writes 

loge(𝑥𝑥 − 3) = log( e)/ log( 𝑥𝑥 − 3); e𝑦𝑦 = 𝑥𝑥 − 3). This is an asymptote (F); x cannot be 3; ….; 

when 𝑦𝑦 = 0, 𝑥𝑥 − 3 = 1 (drew point (4,0) and stopped). Encoding: F. 

In the post-test, M’s insight had improved, resulting in a score of 10 out of 14. Some 

citations to illustrate these improvements:  

M sketching correctly 𝑦𝑦 = 30 ∙ 0.92𝑥𝑥 + 40 (insight-score 1), used a prototypical decreasing 

exponential graph and a translation, and described globally the function’s infinity behavior: 

Decreasing exponential function (sketched a prototypical graph) (P1); 40 above (P1); when 

x=0, y=70; later approximately 40 (PG). Encoding: P1,PG. 

When sketching 𝑦𝑦 = −2𝑥𝑥(𝑥𝑥 − 2)(𝑥𝑥 − 5) correctly (insight-score 1), M recognized the 

zeroes, and used qualitative reasoning when exploring the function’s behavior at x=1 and 

when ignoring the factor 2 in −2x:  

…goes downwards (F); zeroes at 0, 2, 5 (F). At x=1, it is negative (PG). Encoding: F,PG. 

M showed “some insight” into 𝑦𝑦 = (𝑥𝑥2 + 6)/(𝑥𝑥2 − 4)(insight-score 0.5), as M did not 

indicate the horizontal asymptote;  the function’s behavior in the neighborhood of x=2 was 

explored:  

…asymptotes at 2 and −2 (F); zero at √6; no, no zeroes, because 𝑥𝑥2 cannot be negative; 

when x is smaller than 2, then it is positive here, and negative here, so it is negative (PG); 

when x is a bit larger than 2, positive here, positive here, so positive (PG); the same for −2 

(F). Encoding: F,PG. 
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Although the high-achieving student K scored 8 correct graphs out of 14 in the pre-test, K 

then had problems with recognizing basic function graphs. However, K was able to 

compensate this lack of recognition through her reasoning abilities and the calculation of 

many points. We give two examples to illustrate this: when K did not know the ln(x) graph 

and when K could not read the zeroes from 𝑦𝑦 = (𝑥𝑥 − 2)(𝑥𝑥 − 6). 

K, sketching 𝑦𝑦 = ln (𝑥𝑥 − 3) (insight-score 1), did not recognize the shape of a logarithmic 

function, but used qualitative reasoning about the inverse function to sketch the graph 

correctly:  

I do not know the ln-graph anymore. When 𝑥𝑥 − 3 = 0, then …… When 𝑥𝑥 − 3 = 1, then             

𝑦𝑦 = 0, so 𝑥𝑥 = 4 . At x-as the x-axis is intersected. When x is increasing then y increases, so 

the graph increases (PG). When x is negative … (thinking). Because something to the power 

of e (e….) does not give negative y-values (PG). So, 𝑥𝑥 − 3 cannot be negative; the graph only 

exists from x=3, larger than 3 (PG). So, at x=3 a tangent (means asymptote) and outcomes 

smaller when x is in the neighborhood of 3 (PG). Encoding: PG. 

K sketching 𝑦𝑦 = √𝑥𝑥(𝑥𝑥 − 2)(𝑥𝑥 − 6) correctly but with insight-score 0; K decomposed the 

formula, but was then unable to sketch the graph of the parabola 𝑦𝑦 = (𝑥𝑥 − 2)(𝑥𝑥 − 6) using 

recognition and reasoning, as K did not recognize the zeroes and needed the calculation of 

more than two points of this parabola;  however, K showed their reasoning abilities when 

constructing a correct graph by multiplying the two sub-graphs using qualitative reasoning: 

First expanding the brackets: y = √𝑥𝑥(𝑥𝑥2 − 8𝑥𝑥 + 12),….sub-function is parabola with 

minimum and root function, √𝑥𝑥 goes like this (P1); when x is negative, this part remains 

empty (left y-axis) (P1); at x=0, parabola gives =+12; (sketched an incorrect parabola through 

(0,0)); …; (calculation of points, (1,5) and (4, −8)  (C) (noticed that parabola is incorrect and 

calculated more points of parabola; (2,0), (4, −4), (6,0)); so, parabola goes like this (correct 

parabola); between 2 and 6 (parabola) negative, so, positive (root) times negative gives 

negative (P2), and more negative than −4; …; it goes through (1,5);…so, I expect that the 

graph progressively increases because of √𝑥𝑥 (P2) and that is looks like a parabola; at x=0, 

y=0, that means that between 0 and 1 something strange happens; it goes like …..√𝑥𝑥  ; ….; 

(sketched a correct graph). Encoding: P1,P2,C 

In the post-test, K’s recognition of basic functions had improved and K still used their 

reasoning abilities, resulting in a score of 13 out of 14. Some citations to portray their insight 

into formulas:  
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When sketching 𝑦𝑦 = 2√5 − 𝑥𝑥 correctly (insight-score 1), K ignored the factor 2: 

“times −1; exists for 𝑥𝑥 ≤ 5 (P1); so, starts at x=5 (P1), and from there is goes like this”. 

Encoding: P1  

When sketching 𝑦𝑦 = 2𝑥𝑥√𝑥𝑥 + 6 correctly (insight-score 1), K decomposed the formula and 

used part-graph reasoning in the composition of the two sub-graphs: 

2x goes like this (P1); √𝑥𝑥 + 6 goes like this (sketch) (P1); here it is 0; here negative, here 0, 

and after this it is steeper (P2). Encoding: P1,P2. 

K sketching 𝑦𝑦 = 30/(2 + 6 ∙ 0.9𝑥𝑥) correctly with insight-score 1, gesturing the sub-graph of 

the denominator, ignoring the factors 2 and 6 and reasoning about infinity behavior of the 

function:   

0.9𝑥𝑥 goes like this (P1); 6 ∙ 0.9𝑥𝑥 and 2 + 6 ∙ 0.9𝑥𝑥 (P1) like this (gestured correct graph); 

…30/….; 30/2 goes to 15; that means a horizontal asymptote (F); 30 divided by an ever 

increasing number (looks at the negative x-axis) becomes smaller, goes to 0 (PG). Encoding: 

P1,F,PG. 

These examples of student K illustrate how the two high-achieving students (K and S) 

were already able to reason with and about formulas in the pre-test, but had problems with 

the recognition of the prototypical graphs and characteristics of basic function families. In the 

post-test, their recognition had improved, and they were able to combine their recognition 

and reasoning more effectively and efficiently, resulting in more insight into formulas. Also, 

the four other students had problems with recognizing basic function families and their 

characteristics in the pre-test, but their reasoning then was very limited, as was illustrated by 

citations of student M and Table 4.4. In the post-test, these four students showed insight in 

almost all the simple formulas. However, they still had problems with complex formulas. 

Although they showed more insight as they were able to make the first steps (e.g., 

decomposing into sub-formulas and graphing correct sub-graphs), they had difficulties 

composing the two sub-graphs and/or finding and combining all relevant graph information. 

Two examples to illustrate these problems: 

Student Y graphed 𝑦𝑦 = −𝑥𝑥4 + 2𝑥𝑥2 partly correct (insight-score 0.5); Y missed that the graph 

of 𝑥𝑥4 is “flatter” than the one of 𝑥𝑥2 in the neighbourhood of 𝑥𝑥 = 0:  

Adding both (P2); I split the function; a parabola “to the power of 4” will run like this (P1) 

(sketches the graph of 𝑦𝑦 = −𝑥𝑥4); 2𝑥𝑥2 goes like this (P1); this is not nice, you have to add 
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them; the ‘to the power of 4’ is stronger than ‘ to the power of 2’, so, ….; it goes through 0; 

then adding; this one (−𝑥𝑥4) is stronger, thus it goes under this one” (sketched a parabola-

shaped graph with maximum)(P2). Encoding: P1,P2 

Student I graphed 𝑦𝑦 = 𝑥𝑥 + 𝑒𝑒−𝑥𝑥 partly correctly (insight-score 0.5); the sub-graphs were 

correct, but the composition was incorrect: 

e𝑥𝑥 goes like this; -x, so (y = e𝑥𝑥) is reversed over y-axis (P1): it becomes smaller and is not 

negative; the larger x, the smaller y; e−𝑥𝑥 is stronger; 𝑦𝑦 = 𝑥𝑥 goes like this (P1) (sketched two 

correct sub-graphs); when x=−1 it is positive; when x is more positive, than e−𝑥𝑥 becomes 

smaller and x larger, but e−𝑥𝑥 is stronger, so, the outcomes are smaller and negative 

(P2)(sketched a graph beneath the x-axis for large values of x). Encoding: P1,P2 

4.4.4 Post-intervention questionnaire and teacher’s logbook 

In the post-intervention questionnaire, the students indicated, on a scale of 1 to 4, 

whether they thought they had improved their skills in graphing formulas (mean score 3.1), 

that they used more strategies (mean score 3.2), that they had improved their recognition of 

graph features (mean score 3.3), and that they used “questioning the formula” more often 

(mean score 3.0). However, the scores on “more formulas could be instantly graphed” and 

“being able to switch strategy” were lower: 2.8 and 2.4 respectively. In their answers on the 

open questions about the series of lessons and their learning during these lessons, the students 

indicated they thought their recognition of basic functions and graphs had improved, that they 

could visualize formulas (of basic functions) faster, and that they “understood” formulas 

better.  

Also, the teacher’s logbook confirmed the progress in the students’ insight during the 

intervention. To illustrate this, we provide some quotations from the teacher’s logbook. 

During the first lesson: “The pre-test was not motivating for the students, but after some time 

they are working on the teaching tasks.” During the second lesson: “The task about 

transformations is hard for these students and costs more time than needed.” During the 

fourth lesson: “In the groups, I heard their reasoning with ‘this one goes like this (with 

gesturing)’ and ‘when x is very large, then …’.” During the last lesson: “The high-achieving 

students show more interest in the plenary discussions than usual. They seem to be 

challenged by these tasks. One of the students indicated that they thought these lessons (in the 

intervention) are different from regular lessons: ‘we now use global reasoning (referring to 

qualitative reasoning); it is fun this kind of reasoning’. In a discussion the students showed 
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their abilities to reason qualitatively when discussing the graph of 𝑦𝑦 = 10√6 − 𝑥𝑥 + 3. One of 

the students had drawn a global graph on the whiteboard, using (6,3) as starting point, and 

sketched a reversed root-graph (i.e., a root graph to the left). Another student wondered what 

had to be done with the 10 in the formula. The first student responded ‘hardly anything, only 

when one wants to compare the graph with 10 and the graph with, for instance, 8. However, 

the graph with −10 is reversed, so very different. The same is true for the 3 in the formula: 3, 

4, 5 does not matter, but −3 does matter.’ A third student then explained this fact by referring 

to the scaling of the vertical axis.” 

4.5 Discussion and conclusion 

The current research aimed at promoting insight into algebraic formulas, an important 

aspect of symbol sense. To foster grade 11 students’ insight, we chose to teach experts’ 

strategies in graphing formulas, which could be described through a combination of 

recognition and reasoning (Kop et al., 2015, 2017). In this study, we designed an intervention 

of five lessons of 90 minutes, focusing on the recognition of basic function families and of 

graph features, and on qualitative reasoning, and investigated whether students’ insight was 

enhanced. The pre-test results of the written tests showed that the students had problems with 

graphing formulas and the thinking-aloud protocols suggested a lack of recognition and 

reasoning skills, which resulted in time consuming calculations and many incorrect graphs. 

The lack of recognition was confirmed by the results of the multiple-choice test.  

In the post-test, the results of the written tests showed large improvements. The 

thinking-aloud protocols of six students showed how their recognition and reasoning skills 

had improved. All six students showed insight into formulas, as they could now recognize 

function families and use these in their reasoning. However, unlike the two high-achieving 

students S and K, the other four students still had problems in graphing the complex 

functions. Although these four students showed more insight into complex functions, using 

decompositions into sub-functions and graphing these sub-functions correctly, they often 

made mistakes in the composition of the two sub-graphs and/or in finding and combining all 

relevant information. The results of the post-intervention questionnaire suggest that the 

students themselves thought that their skills in graphing formulas had improved, that they 

used more strategies and more recognition, and that they had more insight into formulas, as 

they indicated that they understood formulas better.  
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In the retention test, the scores on the graphing task and multiple-choice task were, as 

expected, lower than in the post-test. Still, the scores were higher than in the pre-test. This 

suggests a long-lasting effect of the intervention, in particular on simple functions.  

The findings of the current study suggest that through this intervention in which 

students were taught to graph formulas using recognition and qualitative reasoning, students 

improved their insight into formulas, that is, the ability to identify structure of a formula and 

to reason with and about formulas. 

Before we address the study’s limitations and reflect on the intervention, we discuss 

the findings. In the current study we chose to use graphing formulas to foster students’ insight 

into formulas, in contrast to other approaches that focus on manipulations and/or structures of 

expressions. Graphing formulas is a small domain in algebra, which makes it more possible 

for students to learn experts’ strategies. However, graphing formulas is also a rich domain, as 

it can involve all kinds of functions and involves aspects which are important in learning 

about functions: the relation between two major representations of functions, formulas and 

graphs, allowing students to give meaning to abstract algebraic formulas (Kieran, 2006), and 

the need of both a global and a local perspective on functions to learn about the process and 

object duality of functions. The results of the thinking-aloud protocols reveal that all students 

started to use experts’ strategies, although only high-achieving students were able to correctly 

graph complex formulas. Students used insight into formulas to graph formulas, but hardly 

used algebraic manipulations even if these would be more convenient, for example, when 

graphing 𝑦𝑦 = −𝑥𝑥4 + 2𝑥𝑥2. The results of the questionnaire and the logbook suggested that the 

graphing tasks in the intervention were challenging and encouraged students to engage in 

algebraic reasoning. We believe that our strategy to select a small domain in algebra and to 

focus on just reading through formulas and making sense of formulas might explain a part of 

the positive students’ results in this study.    

Our approach differs from regular approaches as well as from innovative approaches 

to learn about algebraic formulas as it was based on a systematical analysis of experts’ 

strategies in which the two elements, recognition of function families and key graph features 

and qualitative reasoning, both play an important role. Regular approaches often focus on 

manipulation of algebraic expressions (Arcavi et al., 2017; Schwartz & Yerushalmy, 1992), 

and use graphing tools, for example, the graphic calculator, to explore function families and 

to work on calculus problems. In comparison to regular approaches, our intervention paid 
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more attention to the recognition of function families and graph features, to part-graph 

exploration, and to the reasoning with and about formulas. In innovative approaches, 

graphing tools have been used to learn to reason about functions using the structure of the 

formula, for instance, the composition and translation of graphs (Schwartz & Yerushalmy, 

1992; Yerushalmy & Gafni, 1992; Yerushalmy, 1997), about the role of parameters (Drijvers, 

2003; Heid et al., 2013), and about special function families (Heid et al., 2013). Pierce and 

Stacey (2007) suggested highlighting the formula’s structure and key features when 

considering graphs in classroom discussions. Friedlander and Arcavi (2012) developed a 

framework comprising different cognitive processes and activities, including qualitative 

thinking and global comprehension, and formulated small tasks in which components of their 

framework had been worked out. In comparison to these innovative approaches, our 

intervention paid more attention to the systematical teaching of thinking tools: a repertoire of 

basic function families, the recognition of function families and key graph features, and 

qualitative reasoning. In the designed intervention these aspects were taught in an integrated 

way via a task centered approach with adaptive support.  

In the current study several levels of recognition and several aspects of qualitative 

reasoning were distinguished. Often recognition is treated as a dichotomous variable: there is 

recognition or there is no recognition. In our approach we use different levels of recognition: 

complete recognition and instantly knowing the graph, recognizing a member of a function 

family, decomposing the formula into manageable sub-formulas, perceiving key graph 

features, no recognition. These levels of recognition can be linked to Mason’s (2003) levels 

of attention, in which has been described how attention can shift from seeing essential 

structure to gazing at the whole and not knowing how to proceed. An essential aspect in our 

approach was the explicit focus on qualitative reasoning. The importance of this kind of 

reasoning and its omission in mathematics curricula has been stressed by Leinhardt et al. 

(1992), Goldenberg, Lewis and O’Keefe (1992), Yerushalmy (1997), and Duval (2006), who 

have indicated that qualitative reasoning could support the construction of meaning and 

understanding through its global focus. To our knowledge, this idea has never been applied in 

concrete and systematic teaching approaches. In our approach students learned to use global 

descriptions and to ignore what is not relevant, when composing two sub-graphs (after 

decomposing a formula into two sub-formulas) and when exploring parts of a graph, for 

instance, infinity behavior. We recommend paying more attention to explicit teaching of 

qualitative reasoning in grade 11. We expect that in other domains of algebra, such as solving 
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equations, qualitative reasoning might help students to become more proficient in algebra, as 

it might enable students to ignore what is not relevant and to focus on the structure of 

formulas/equations.  

In the designed intervention not only attention has been paid to recognition and to 

qualitative reasoning, but also explicit attention is paid to the interplay between recognition 

and qualitative reasoning. In problem solving, recognition determines the problem space 

within which via certain heuristics can be searched for a solution (Berliner & Ebeling, 1989; 

Chi et al., 1981). In the intervention, each whole task was related to one of the levels of 

recognition (see intervention in Method section 4.3), and attention was paid to the reasoning 

needed to sketch the graph, starting from this level of recognition. This approach enables 

students to use different ways to graph a function like  𝑦𝑦 = 30/(2 + 6 ∙ 0.9𝑥𝑥): in the post-test 

we found students who decomposed this function into two sub-functions (𝑦𝑦 = 30 and the 

exponential function 𝑦𝑦 = 2 + 6 ∙ 0.9𝑥𝑥), but also students who used part-graph exploration 

(infinity behavior and/or the function is increasing), and/or the calculation of the y-intercept. 

These examples illustrate how a correct graph can be produced via different levels of 

recognition in combination with different reasonings and that insight into formulas can be 

described as an interplay between recognition and reasoning. The analysis of the thinking-

aloud protocols showed how students’ insight into formulas could be described with the 

recognition of a function family and (qualitative) reasoning about transformations and/or 

family characteristics, the decomposition of a formula into two sub-functions and the 

composition of two sub-graphs through qualitative reasoning, the recognition of key graph 

features, and the qualitative reasoning about parts of a graph. Although in other domains of 

mathematics, like in modeling and solving equations, insight into formulas might consist of 

different aspects, our descriptions might be helpful in describing insight and in designing 

education to promote insight into formulas in these domains.  

Insight in the interplay between recognition and reasoning can contribute to a better 

knowledge about covariational reasoning in the context of algebraic functions. Graphing 

formulas by hand is closely related to this kind of covariational reasoning. Both are about 

how a function is acting on an entire domain, have a focus on global graphs and use 

qualitative reasoning. The current study showed that the use of function families with their 

prototypical graphs and characteristics is crucial in graphing formulas. However, Moore and 

Thompson (2015) have problematized what they called static shape thinking, that is, seeing a 

graph-as-a-wire, and associating shapes with function properties. Previous studies about 
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expert behavior in graphing formulas have showed that experts often use their repertoire of 

function families (Kop et al., 2015, 2017). Eisenberg and Dreyfus (1994) and Slavit (1997) 

have indicated that students need such a repertoire of basic function families and function 

properties. The pre-test results of our study showed that before the intervention students 

lacked a repertoire of function families that could be instantly visualized by a graph. As a 

consequence, graphing formulas required too much reasoning of these students. Post-test 

results showed that students had improved their recognition of basic function families with 

their prototypical graphs and characteristics, which could be used as building blocks in their 

reasoning. The results of our study suggest that students’ covariational reasoning might 

improve if they can use such repertoire of function families to reason with prototypes.  

4.5.1 Limitations of the study  

A limitation of the study is that only one class was involved, and no comparison group 

was included. As the results were positive, we would recommend involving more students and 

other teachers in a future study to provide stronger evidence that graphing formulas in this way 

does indeed promote students’ insight into algebraic formulas. We suggest also including 

students and teachers from other countries in a future study, as we expect that difficulties with 

insight into algebraic formulas are not exclusive to students in the Netherlands. In the current 

study, insight into formulas was studied in the context of graphing formulas. We expect that 

there might be some transfer from insight into formulas from this domain of graphing formulas 

to other domains of algebra, such as solving algebraic problems and solving equations. More 

research is needed to explore whether students who have learned insight into formulas via 

graphing formulas will be able to use this insight when working on other algebraic problems that 

are related to graphs (e.g., discussing the number of solutions of a given equation).  

In the pre-test, the students needed more time than expected for the graphing task. This 

might be the reason for the poor scores on the multiple-choice task in the pre-test, as many 

students did not have enough time to work on that task. From the thinking-aloud protocols, we 

conclude that some students had problems interpreting the graphs in the multiple-choice task, as 

they thought that the x-axis and y-axis were drawn instead of vertical and horizontal asymptotes. 

We suggest to explicitly indicate the asymptotes in the figures and illustrate this via an example 

in the task description. The whole task on transformations of basic functions (task 2) took much 

more time than planned, and the students often needed the help provided by the teaching 

material. The whole tasks on the composition of two sub-graphs and on part-graph exploration 
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by qualitative reasoning (task 3 and 5) needed, as planned, extra modeling by the teacher, as this 

kind of reasoning was new to the students. The meta-heuristic of “questioning the formula” was 

at the core of this series of lessons and was demonstrated more than once. In the post-

intervention questionnaire, the students indicated that they had started to question formulas. 

However, this was often very implicit, as the thinking-aloud protocols showed.  

Some aspects of the series of lessons deserve more attention in the future. On each level 

of recognition, only one whole task with a reflection question was formulated, because of time 

constraints (5 lessons). With more time available, we would follow Kirschner and Van 

Merriënboer’s (2008) suggestion to use more variability in the whole tasks (more whole tasks on 

each level of recognition) with more practicing of the integration and coordination of all sub-

skills. To improve reflection, the implementation of cumulative reflection tasks, which promote 

reflection on the current task and all previous tasks, might be considered. In the current study 

students had problems with graphing polynomial functions, like with 𝑦𝑦 = −𝑥𝑥4 + 2𝑥𝑥2, but not 

when zeroes could easily be read from the formulas, like with 𝑦𝑦 = −2𝑥𝑥(𝑥𝑥 − 3)(𝑥𝑥 − 6). When 

graphing 𝑦𝑦 = −𝑥𝑥4 + 2𝑥𝑥2, students used qualitative reasoning to compose two sub-graphs, after 

decomposing the formula into sub-formulas 𝑦𝑦 = −𝑥𝑥4 and 𝑦𝑦 = 2𝑥𝑥2, which gave them much 

trouble and incorrect graphs. These findings suggest to pay more attention to polynomial 

function families and to incorporate small manipulations of algebraic formulas, for instance, to 

rewrite 𝑦𝑦 = −𝑥𝑥4 + 2𝑥𝑥2 into 𝑦𝑦 = 𝑥𝑥2(−𝑥𝑥2 + 2), which would enable students to find zeroes of 

polynomial functions.  

4.5.2 Conclusion 

This study portrays how students might learn insight into formulas, that is, the ability 

to “look through a formula”, to recognize the structure of a formula and its components, and 

to reason with and about a formula. Graphing formulas requires students to recognize the 

structure of formulas and to reason with and about formulas. Therefore, our teaching focused 

on using function families as meaningful building blocks and on using qualitative reasoning. 

Students often see formulas on an atomic level, that is, paying attention to every number and 

variable, which means that students cannot see the wood before the trees: they do not 

recognize any structure (Davis, 1983).  

The current study showed how students learned to use function families as larger 

meaningful building blocks to recognize the structure of formulas and to graph formulas. The 

two ingredients, function families as larger building blocks and qualitative reasoning, are 
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important thinking tools in the recognition of the structure of the formulas and so, in the 

reading of formulas, as they might relieve students’ working memory. Our findings suggest 

that teaching graphing formulas to grade 11 students, based on recognition and qualitative 

reasoning, might be an efficient means to promote student insight into algebraic formulas in a 

meaningful and systematical way.   
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