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Abstract 

An instantly graphable formula (IGF) is a formula that a person can instantly visualize 

using a graph. These IGFs are personal and serve as building blocks for graphing formulas by 

hand. The questions addressed in this paper are what experts’ repertoires of IGFs are and 

what experts attend to while recognizing these formulas. Three tasks were designed and 

administered to five experts. The data analysis, which was based on Barsalou and Schwarz 

and Hershkowitz, showed that experts’ repertoires of IGFs could be described using function 

families that reflect the basic functions in secondary school curricula and revealed that 

experts’ recognition could be described in terms of prototype, attribute, and part-whole 

reasoning. We give suggestions for teaching graphing formulas to students. 
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3.1 Introduction 

Algebraic concepts, like functions, can be explored more deeply through linking 

different representations (Duval, 2006; Heid et al., 2013). Graphs and algebraic formulas are 

important representations of functions. Graphs seem to be more accessible than formulas 

(Leinhardt et al., 1990; Moschkovich et al., 1993). In addition, graphs give more direct 

information on covariation, that is, how the dependent variable changes as a result of changes 

of the independent variable (Carlson et al., 2002). A graph shows features such as symmetry, 

intervals of increase or decrease, turning points, and infinity behavior. In this way, it 

visualizes the “story” that an algebraic formula tells. Therefore, graphs are important in 

learning algebra, in particular in learning to read algebraic formulas (Eisenberg & Dreyfus, 

1994; Kieran, 2006; Kilpatrick & Izsak, 2008; NCTM, 2000; Sfard & Linchevski, 1994).  

Students have difficulties in seeing a function both as an input-output machine and as 

an object (Ayalon et al., 2015; Gray & Tall, 1994; Oehrtman et al., 2008; Sfard, 1991). 

Graphs appeal to a gestalt-producing ability, and in this way can help to consolidate the 

functional relationship into a graphical entity (Kieran, 2006; Moschkovich et al., 1993). 

Graphs are also considered important in problem solving. Graphs are used for understanding 

the problem situation, recording information, exploring, and monitoring and evaluating 

results (Polya, 1945; Stylianou & Silver, 2004).  

So, the ability to switch between representations, representation versatility, in 

particular conversions from algebraic formulas to graphs, is important in understanding 

algebra and in problem solving (Duval, 2006; NCTM, 2000; Stylianou, 2011; Thomas et al., 

2010).  

 In a previous study a framework was developed to describe strategies for graphing 

formulas without using technology (Kop et al., 2015). In the framework, it is indicated how 

recognition guides heuristic search. When one has to graph a formula there are different 

possible levels of recognition: from complete recognition (one immediately knows the graph) 

to no recognition at all (one does not know anything about the graph). For every level of 

recognition the framework provides strong to weak heuristics.  

For the two highest levels of recognition the graph is completely recognized or the 

formula is recognized as a member of a function family whose graph characteristics are 

known. For instance, at the highest level of recognition the graph of 2y x=  is instantly 
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recognized as a parabola with minimum (0,0). At the second level of recognition, 

4 0.75 3xy =  +  is recognized as a member of the family of decreasing exponential functions, 

and so the horizontal asymptote is read from the formula. In this way the graph can be 

instantly visualized. Another example at this level: 4 26y x x= − + is recognized as a 

polynomial function of degree 4; because of the negative head coefficient its graph has an M-

shape or an  -shape; a short investigation of, for instance, the zeroes will instantly give the 

graph.   

At these two highest levels of recognition in the framework, formulas can be instantly 

linked to graphs. Therefore, these formulas are defined as instantly graphable formulas 

(IGF). A large set of IGFs is beneficial to proficiency in graphing formulas. The current study 

was focused on experts’ recognition processes when dealing with IGFs. For this study we 

defined  an expert as a person with at least a master's degree in mathematics and at least 10 

years of experience teaching at the secondary or college level, with experience in graphing 

formulas by hand. Although these experts are expected to be able to instantly link many 

formulas to graphs, their repertoires of IGFs remain unknown. In addition, we investigated 

what experts attend to when recognizing IGFs. This information might give suggestions for a 

repertoire of IGFs for students and for a focus in teaching students IGFs.   

3.2 Theory 

3.2.1 Cognitive units as building blocks 

IGFs can be seen as building blocks in thinking and reasoning with and about 

formulas and graphs. Barnard and Tall (1997) introduced the concept of “cognitive unit”, an 

element of cognitive knowledge that can be the focus of attention altogether at one time. For 

experts, well-connected cognitive units can be compressed into a new single cognitive unit 

which can be used as just one step in a thinking process (Crowley & Tall, 1999). In this way 

experts’ knowledge is well organized in hierarchical mental networks with complex cognitive 

units, which can be enlisted when necessary (Campitelli & Gobet, 2010; Chi et al., 1981; Chi, 

2011).  

As IGFs are cognitive units in graphing formulas, they can be combined (addition, 

multiplication, chaining, etc.) and can form new, more complex IGFs. For instance, when 

dealing with 4 26y x x= − + , novices may recognize the IGFs 4y x= −  and 26y x= and have to 

combine these two IGFs to draw a graph, whereas 4 26y x x= − + is an IGF for experts, who 
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recognize a fourth degree polynomial function.  For experts, a formula like 𝑦𝑦 = 𝑥𝑥2 − 6𝑥𝑥 + 5 

can trigger other cognitive units, like “its graph is a parabola with a minimum value”, and the 

equivalent formulas 𝑦𝑦 = (𝑥𝑥 − 1)(𝑥𝑥 − 5) and 𝑦𝑦 = (𝑥𝑥 − 3)2 − 4, which can give information 

about the zeroes and the minimum value, etc. Experts are expected to have more, and more 

complex, IGFs than novices, which generally enable them to graph formulas with fewer 

demands on the working memory (Sweller, 1994).  

The current study was focused on recognition: in particular, which formulas and/or 

function families were instantly recognized by experts and how the recognition processes can 

be described.  

3.2.2. Recognition described using Barsalou’s model with prototype, attribute, 

and part-whole reasoning 

Barsalou (1992) showed how human knowledge is organized in categories or 

concepts. People construct these categories based on attributes. When a task requires a 

distinction to be drawn between exemplars of a category, people construct new attributes and 

in this way new categories (Barsalou, 1992). For instance, for the concept bird, attributes 

(variables) like size, color, and beak, with several values, can be used to distinguish different 

exemplars. Categories can have a large diversity of exemplars, but have a graded structure 

(Eysenck & Keane, 2000; Barsalou, 2008). Some exemplars in a category are more central to 

that category than others; these are called prototypes. For instance, a robin is considered a 

more typical example of a bird than, for instance, a chicken or a penguin. When dealing with 

exemplars of a category, people tend to associate prototypical features with these exemplars 

(Barsalou, 2008; Schwarz & Hershkowitz, 1999). The tendency to reason from prototypes 

can pose problems. Since concept formation is not necessarily done using pure definitions, 

Watson and Mason (2005) emphasized the need to go beyond prototypes and to search for the 

boundaries of a concept.  In this way one becomes aware of the dimensions of possible 

variation and in each dimension of the range of permissible change (Bills, Dreyfus, Mason, 

Tsamir, Watson, & Zaslavsky, 2006; Sandefur, Mason, Stylianides, Watson, 2013; Watson & 

Mason, 2005) . The personal example space, the collection of examples and the 

interconnection between the examples a person has at their disposal (the accessible example 

space), play a major role in how a person makes sense of the tasks he/she is confronted with 

(Watson & Mason, 2005; Goldenberg & Mason, 2008). Vinner and Dreyfus (1989) used 

concept image to emphasize the personal character of people’s mental networks. These 
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concept images determine what a person “sees” when dealing with concepts or categories, 

and are used in rapid identification.  

Schwarz and Hershkowitz (1999) used prototypicality, attribute understanding, and 

part-whole reasoning as aspects to portray students’ concept images of functions. We discuss 

these three aspects below. 

Prototypicality refers to the prototypes (prototypical exemplars) a person knows and 

uses. Prototypes can be defined as the exemplar(s) with the set of highest frequency of 

attribute values in the category or with the highest correlation with other exemplars in the 

category (Barsalou, 1992). Prototypes are the examples that are acquired first and are usually 

the examples that have the longest list of attributes: the critical attributes of the category and 

the self-attributes (non-critical attributes) of the exemplar (Schwarz & Hershkowitz, 1999). 

Prototypes are used as a reference point for judging membership of the category: an exemplar 

is judged to be a member of a category if there is a good match between its attributes and 

those of the category prototype (Barsalou, 2008; Eysenck & Keane, 2000). When  asked for a 

prototype of a category, it is expected that a person will not use a definition of prototype but 

will use a general idea about what prototypes are: namely, the most central exemplar(s) of a 

category from their personal perspective. As a consequence, when dealing with a category, 

the prototypes are the first examples that come to one’s mind and are the natural examples 

that are used without any explanation. Examples in the domain of graphing formulas include 

prototypical formulas like 2y x= and 3y x= , with their prototypical graphs.  In this study we 

used the term prototype reasoning in this way.  

Attribute understanding can be defined as the ability to recognize the attributes of a 

function across representations (Schwarz & Hershkowitz, 1999). For instance, from the 

formula 𝑦𝑦 = (𝑥𝑥 − 1)(𝑥𝑥 − 5), it is concluded that its graph is a parabola, it has zeroes at         

𝑥𝑥 = 1 and at 𝑥𝑥 = 5 and a symmetry axis at 𝑥𝑥 = 3. These attributes or properties of this 

function can be recognized in the graphical, tabular, and algebraic representations.  

In his property-oriented view of functions, Slavit (1997) used properties (or attributes) 

like symmetry, monotonicity, horizontal and slant asymptotes, intercepts (zeroes), extrema, 

and points of inflection.  

Depending on the task, people construct attributes to be able to distinguish exemplars: 

in this study, formulas and graphs (Barsalou, 1992). To distinguish different graphs of fourth 
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degree polynomial functions in Figure 3.1, one can use attributes like symmetry, infinity 

behavior, number of turning points, number of zeroes, and location of zeroes relative to the y-

axis. When relating formulas and graphs, as in graphing formulas, one chooses or creates 

attributes to focus on features of formulas and graphs. We call this reasoning about attributes 

and their values attribute reasoning.  

 
 

    

 Figure 3.1 Graphs of fourth degree polynomial functions 

 Part-whole reasoning refers to the ability to recognize that different formulas or 

different graphs relate to the same entity: in this case, to the same function. In the graphical 

representation, different scaling can result in different pictures of graphs belonging to the 

same function. In the algebraic representation, formula manipulation can result in different 

formulas of the same function: for instance, 2 4y x x= − , 2( 2) 4y x= − − , and ( 4)y x x= − . 

From these different formulas different attributes of the graph can be read. Therefore, part-

whole reasoning is important in the recognition of IGFs.  

For attribute reasoning and part-whole reasoning one has to grasp the structure of a 

formula. In the literature this is called symbol sense (Arcavi, 1994). Symbol sense is a very 

general notion of “when and how” to use symbols and has several aspects, such as the ability 

to read through algebraic expressions, to see the expression as a whole rather than a 

concatenation of letters, and to recognize its global characteristics (Arcavi, 1994). Pierce and 

Stacey (2004) used algebraic insight to capture the symbol sense in transformational activities 

in the “solving” phase of problem solving (Pierce & Stacey, 2004). The algebraic insight is 

divided in two parts: algebraic expectation and the ability to link representations. Algebraic 

expectation has to do with recognition and identification of objects, forms, key features, 

dominant terms, and meanings of symbols (Kenney, 2008; Pierce & Stacey, 2004). Algebraic 

insight is shown when a person has expectations about graphs that are linked to features of 

the symbolic representation and when equivalent algebraic expressions are recognized (Ball, 

Stacey & Pierce, 2003; Pierce & Stacey, 2004). 

The three aspects prototype, attribute, and part-whole reasoning from Schwarz and 

Hershkowitz can be used to describe the recognition process in graphing formulas. A 
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Barsalou model for recognizing IGFs is formulated in Figure 3.2. In the case of graphing 

formulas, it is difficult to mention all possible values. For instance, the attribute “zeroes” can 

have values like 0,1,2,3, etc. to indicate the number of zeroes, but also the location can be 

used as values of an attribute (for instance, a zero at 5x = ). For the sake of readability, the 

values belonging to the attributes are omitted in Figure 3.2. 

 

    Figure 3.2 IGFs in the form of a Barsalou model based on Schwarz and Hershkowitz (1999) 

The Barsalou model in Figure 3.2 shows how function families are constructed by 

using value sets on a set of attributes and allows a detailed description of how formulas can 

be linked to graphs, and so of the recognition of IGFs. Starting with a formula (on the right 

side of Figure 3.2), there are several possibilities: the formula can be manipulated (part-whole 

reasoning) into another formula, the formula can be recognized as a member of a function 

family, or the formula can be recognized as a prototype of a function family. It is then 

possible that the graph is directly known, or that, using attribute reasoning, a graph can be 

visualized.  

Some examples can illustrate this recognition process. In IGF 4 3 2xy =  +  the 

prototype 3x  can be recognized (prototype reasoning), and via a translation (attribute 
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reasoning) the graph can be visualized. In IGF 2 ( 3)( 6)y x x x= − − − , the prototype 3x  can be 

recognized, 3x−  as a reversion (attribute reasoning), and via zeroes at 0x = , 3x = , 6x =

(attribute reasoning) the graph can be visualized. However, when 2 ( 3)( 6)y x x x= − − −  is not 

recognized as a member of a function family or prototype of a function family, the formula is 

not an IGF (Kop et al., 2015). In this case the graph has to be constructed by, for instance, 

reasoning about attributes like infinity behavior and zeroes. If, when graphing 𝑦𝑦 = 4𝑥𝑥−2, the 

formula can be rewritten to 𝑦𝑦 = 4/𝑥𝑥2 (part-whole reasoning) and recognized as a 1/𝑥𝑥2 

(prototype reasoning), the formula is an IGF. But when from the formula 𝑦𝑦 = 4/𝑥𝑥2 it is read 

that it has a vertical asymptote at 𝑥𝑥 = 0, and that all outcomes are positive and when  

then  (infinity behavior) , then we say that the graph is constructed through qualitative 

reasoning (Kop et al., 2015), and so the formula is not an IGF. 

3.2.3 Global and local perspectives 

Covariational reasoning is essential for graphing formulas. In covariational reasoning, 

one is able to imagine running through all input-output pairs simultaneously and so to reason 

about how a function is acting on an entire interval of input values (Carlson et al., 2002). In 

recognizing IGFs one has to have a picture of the function as an entity. In the literature this 

perspective of the function, seeing the function as a whole, is also addressed as the object or 

global perspective (Confrey & Smith, 1995; Even, 1998; Gray and Tall, 1994; Oehrtman et 

al., 2008; Sfard, 1991). There is also another perspective of the function, namely, to see a 

function as an input-output machine. This perspective has to do with the fundamental view on 

functions (what it means that a certain y-value belongs to a given x-value), and is addressed 

as the pointwise, process, or correspondence perspective. Switching between both kinds of 

perspective is necessary for reasoning about functions. Slavit (1997) spoke about the local 

and global nature of functional growth properties in addressing both kinds of perspective 

(Slavit, 1997). The global growth properties concern attributes like symmetry, monotonicity, 

horizontal and slant asymptotes, integrability, and invertibility, whereas the local properties 

are about extrema, intercepts, cusps, and points of inflection. In an in-between class, Slavit 

also mentioned continuity, sign, differentiability, domain, and range. Graphs can be described 

using these properties or attributes. Before the current research, it was unknown which 

attributes experts use in recognizing IGFs.  

 

x →

0y →
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3.2.4 Research questions 

In the current study we focused on experts’ repertoires of formulas that can be 

instantly visualized using a graph (IGFs) and on their concept images of IGFs, with attributes, 

prototypes, and part-whole reasoning. We expected that experts would have large repertoires 

of IGFs that are structured in categories. However, we did not yet know what an expert 

repertoire of IGFs would be.  

We expected experts to be able to manipulate algebraic formulas (part-whole 

reasoning), to use symbol sense and in particular algebraic insight, and to use sets of 

attributes with value sets to distinguish different graphs. However, we did not know which 

prototype, attribute, and part-whole reasoning they would use in linking formulas and graphs 

of IGFs. 

 This leads to the following research questions: 

Can we describe experts’ repertoires of instant graphable formulas (IGFs) using 

categories of function families?   

What do experts attend to when linking formulas and graphs of  IGFs, described in 

terms of prototype, attribute, and part-whole reasoning?  

3.3 Method 

The current study can be characterized as an exploratory study, in which we 

investigated “snapshots” of experts’ concept images of function families with their algebraic 

formulas and graphs.  

3.3.1 Tasks 

Three different tasks were developed to elicit the experts’ repertoires of IGFs and to 

explore the experts’ prototype, attribute, and part-whole reasoning: a card-sorting task, a 

matching task, and a multiple-choice task.  

Card-sorting tasks are often used in eliciting structured knowledge (Chi et al., 1981; 

Jonassen, Beissner, & Yacci, 1993; De Jong & Ferguson-Hessler, 1986; Goldenberg & 

Mason, 2008; Sandefur et al., 2013).  

In task 1, 60 formulas were given, and the participants were asked to categorize them 

according to their graph. After this, they were asked to give a name and a prototypical 
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formula for each of their categories. We structured this task by adding graphs to the cards 

showing the formulas. When such tasks are given without structuring beforehand, getting a 

complete picture or comparing the results can pose problems, because of the different criteria 

that can be used to sort the cards (Ruiz-Primo, 1996). Because we add four graphs to the 60 

cards with formulas, the participants were explicitly compelled to focus on the graphs of the 

formulas. We did not indicate whether a participant should discriminate between parabolas 

with a maximum or minimum because the level of detail can be an indicator of expertise. 

Figure 3.3 shows 20 cards from task 1. Most of these formulas, but not all, are related to one 

of the basic function families, which are studied in grades 10-12: 𝑦𝑦 = 𝑥𝑥𝑛𝑛,  𝑦𝑦 = 𝑎𝑎𝑥𝑥, 

𝑦𝑦 = log2(𝑥𝑥), 𝑦𝑦 = 1/𝑥𝑥, 𝑦𝑦 = √𝑥𝑥, 𝑦𝑦 = ln (𝑥𝑥), 𝑦𝑦 = e𝑥𝑥. Since we used the basic functions from 

secondary school curricula, we expected that many formulas, but not all, would be IGFs for 

the experts.  This categorization task gave information about dimensions of variation and the 

range of permissible change experts used in discriminating graphs. The names given for the 

different categories with the prototypes gave insight into the graph families and thus in the 

attribute and value sets experts used.   

2 510 x− +  1)1 5 / (x +−  32 (6 )x x−  6 2x−  

4 216 28x x− +  32 x  23x−  4 10 x−  
2 2( 7)x −  4 9( 3)x −+  1

3 5)(2x  2(1 )(2 )x x x− + +  

2x x  
1
2(100 )x  4 /x x−  28 x−  

 

 

 

 

 

 

 

 
 Figure 3.3 A number of the cards used in task 1 

In Task 2, the matching task, a list of 40 formulas was given and the participants were 

asked to select the correct alternative out of 21 alternatives: 20 graphs and one alternative 

stating “none of these”. This last alternative was provided to discourage guessing. In this task 

the focus was on instant linking of formulas to the global shape of graphs. Therefore, a strict 

time limit was used to encourage recognition and to discourage construction of a graph. We 

chose a matching task with many alternatives rather than a graphing task to indicate the level 
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of detail that was needed: the experts had to recognize the global shape of the graph of the 

given formula. 

The formulas used in this task resembled the formulas used in the first task. The 

following are some examples: 2 ( 2)( 4)y x x x= − + ; 2 46 2y x x= − ; 2 1xy e= + ; 4 /y x x= − ;

4 2 / 4y x x= − + ; 4 / 2xy = ; 6 2y x= − + ; 42y x−= ; 42( 1) 4y x= − − ; 28y x= − ; 

ln(4 / )y x= ; 39 /y x x= ; 2ln( )y e x=  .  Eight of the alternative graphs are shown in Figure 

3.4.  

Task 2 was also developed to elicit participants’ repertoires of IGFs. Therefore some 

functions were added that do not belong to the function families of basic functions, for 

instance, 28y x= − , 230 / ( 16)y x= − , 4 /y x x= − , because we wanted to investigate the 

boundaries of the experts’ repertoires of IGFs. Because the formulas used were similar to 

those in task 1, this task was used to validate the results of task 1. When, for instance, in task 

1 no distinction was made between increasing and decreasing parabola, but in task 2 this 

distinction was made, it was concluded that the participant could indeed make such a 

distinction. 

 Figure 3.4 Some alternatives of task 2      

 Tasks 3A and 3B, thinking aloud multiple-choice tasks, were developed to elicit the 

participants’ prototype, attribute, and part-whole reasoning and in this way to get more 

detailed knowledge of the participants’ concept images. The participants were asked to 
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choose the correct alternative out of four alternatives. A similar task was used by Schwarz 

and Hershkovitz (1999) in their study of concept images of functions. Both tasks consisted of 

six items. In task 3B a formula was given and the experts had to find the correct graph. In 

task 3A a graph was given and the experts had to provide a formula. In general, tasks like 3A 

are considered to be more challenging. But this is not clear when dealing with the function 

families of well-known basic functions. In this way we got more detailed information about 

the experts’ concept images of IGFs. Three examples of this task are shown in Figure 3.5.  

Task 3A-4 

 
Which formula(s)  can fit this graph:  

A. 𝑦𝑦 = 𝑥𝑥(𝑥𝑥 − 3)(𝑥𝑥 − 6)  
B. 𝑦𝑦 = −2𝑥𝑥(𝑥𝑥 − 2)(𝑥𝑥 − 4)   
C. 𝑦𝑦 = 𝑥𝑥(3 − 𝑥𝑥)(𝑥𝑥 − 6)  

      D. 𝑦𝑦 = −2𝑥𝑥(𝑥𝑥 + 3)(𝑥𝑥 + 6) 

Task 3A-6   

 
Which formula(s)  can fit this graph:  

A. 𝑦𝑦 = −𝑥𝑥4 + 9  

B. 𝑦𝑦 = −𝑥𝑥4 + 9𝑥𝑥2   

C. 𝑦𝑦 = −𝑥𝑥4 − 9𝑥𝑥2  

      D. 𝑦𝑦 = −𝑥𝑥4 + 9𝑥𝑥3 

 Figure 3.5 Some examples of task 3: task 3A-4, 3A-6, 3B-3  

The formulas were again chosen from the same set of functions as in tasks 1 and 2. 

Participants had to consider all alternatives because more than one alternative could be 

correct.  

In tasks 1 and 2 the focus was on sketches of graphs; in this task, more detailed 

answers were needed. For instance, in tasks 1 and 2 it was not necessary to distinguish            

𝑦𝑦 = −2𝑥𝑥(𝑥𝑥 − 2)(𝑥𝑥 − 4) and 𝑦𝑦 = −2𝑥𝑥(𝑥𝑥 + 3)(𝑥𝑥 + 6), but in task 3 this distinction had to be 

made (see task 3A-4 in Figure 3.5).  

Task 3B-3:   Indicate which graph(s) can fit 100 50 0.75xy = −   

 
A 

 
B 

 
C 

 
D 
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3.3.2 Participants 

Five mathematical experts were invited to participate in this study. We assigned the 

letters P, Q, R, S, and T to our five experts. The experts had different backgrounds: two 

mathematicians who had been teaching calculus and analysis to first-year students at 

university (Q, R), one author of a mathematics textbook series, who had been a teacher in 

secondary school (T), one math teacher who was involved in the National Math Exams and 

had been a secondary school teacher (S),  and one math teacher educator in university (P). All 

had a master’s degree in mathematics and two had a PhD in mathematics (Q, R). All of them 

had been working as a teacher at university or in secondary education for more than 20 years 

and had been graphing many formulas without technology during their education and during 

their whole teaching career. Therefore, we considered them experts in graphing formulas.  

3.3.3 Data collection procedure  

Written instructions were handed out for every task, together with an indication of the 

time needed to perform the task. For task 1, a time indication of maximum 40 minutes was 

given; for tasks 2 and 3, 20 minutes. For all tasks, the time needed was recorded, as the time 

required to perform a task can be an indication of expertise. During the tasks the first author 

only emphasized the need to keep on thinking aloud when the experts stopped talking. After 

each task, the first author asked the experts to look back and to describe the strategies they 

had used in the task. The interviews were videotaped.  

In task 1, the card-sorting task, 60 cards were laid on a table and the participants could 

physically group the formulas into different categories.  Afterwards, the categories were 

glued on a large sheet. The participants then wrote the category names and the prototypical 

formulas for each category. In task 2 and task 3, the participants filled in the answers on a 

form.  

During tasks 1 and 3 the participants were asked to think aloud; this was videotaped. 

Thinking aloud is considered to give reliable information about the problem-solving activities 

without disturbing the thinking process (Ericsson, 2006). For task 3 the thinking-aloud 

protocols were transcribed in order to analyze the prototype, attribute, and part-whole 

reasoning.  
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3.3.4 Data analysis  

Task 1: The aim of task 1 was to gather information on which categories experts use 

in their repertoires of IGFs. It was expected that experts would use salient, global properties 

of graphs, like symmetry, in/decreasing, vertical asymptotes, infinity behavior, and number of 

turning points, to categorize their IGFs. Based on these salient properties, the first author 

made a theoretical, hypothetical experts’ categorization before the start of this study. The 

categorizations of the five experts were compared with each other and with the first author’s 

categorization. Based on these findings a common categorization was constructed. This was 

done in several steps. First, common elements in the categories and prototypes in the experts’ 

categorizations and the first author’s categorization were determined. From these findings a 

preliminary common expert categorization was formulated. In the second step, the level of 

detail was considered. A higher level of detail meant that subcategories were used. If one or 

more experts used a higher level of detail, then this level of detail was used in the (final) 

common expert categorization. In the last step, the distances between individual 

categorizations and the common expert categorization were calculated. We considered 

whether small adjustments in the common expert categorization would result in a lower 

minimum of the total of all distances. When no progression could be made, the final common 

expert categorization was found.  

To determine the distance between an individual categorization and a common 

categorization, the following protocol was used:  

- If the individual categorization had the “same” category but a formula was not mentioned or 

did not belong to that category, then the distance increased by +1 

- If no subcategories were made in the individual categorization and the common expert 

categorization made a distinction between increasing and decreasing, then the distance 

increased by +2 (for instance, no subcategories between parabolas with maximum and 

parabolas with minimum gave an increase of the distance by +2 if the common expert 

categorization made this distinction) 

- If two categories of the common expert categorization were merged in the individual 

categorization (other than the distinction between increasing and decreasing), then the 

distance increased by +4 (for instance, 3rd and 4th degree functions were put together in one 

category)    

- If a completely new category, different from the common expert categorization, was 

formulated, then the distance increased by +6.  
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Task 2 

In this task the numbers of mistakes per expert were counted. The mistakes were 

indicated in a table in order to see whether they were made in particular function families.  

Task 3 

To analyze the results of task 3, the transcripts were cut into fragments which 

contained crucial steps of explanations: idea units. Idea units are primitive elements in the 

justifications of participants (Schwarz & Hershkowitz, 1999). These idea units were encoded 

using the elements from Figure 3.2: prototype, attribute, or part-whole reasoning.    

Since prototypes are the natural examples of categories that can be used without any 

explanation, graphs and formulas that a participant used as the start of a reasoning process 

were considered prototypes for the expert. If no prototype reasoning was used or function 

family was mentioned, we said that the formula was not an IGF, and that the graph was 

constructed.  

The fragments of the protocols were encoded as follows: 

- pr (prototype reasoning) : only a prototypical exemplar was mentioned; for instance, “it looks 

like a log”, “it is an x  in the power 6”,  “it is an expo”, “it is an oscillation”. If a function 

family was mentioned, like in “it is an exponential function” or “fourth degree polynomial”, 

this was considered prototype reasoning 

- att (attribute reasoning): an attribute was mentioned; for instance, “this one has a vertical 

asymptote at 0x = ”, “it is always positive”, “it goes to minus infinity”. 

- pw (part-whole reasoning): the formula was manipulated to an equivalent formula, for 

instance, 24y x−= to 24 /y x=  

- con (construction): no function family or prototype was mentioned, the formula was not an 

IGF: the graph was constructed through, for instance, attribute reasoning or calculating points. 

We give two examples of the encoding in Figure 3.6. 

  Task 3B-1: Indicate which graph(s) can fit 4( 2) 16y x= − + +  

 
A 

 
B 

 
C 

 
D 
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Answer: an x4 (pr); translated to the left, reversed and a translation (att) ; it has to be 

something like this (gesture a parabola); this one (A) goes to minus infinity (att) but has a 

positive zero and that is not possible (att) ; so, it has to be D. 

The formula was an IGF because of the use of a prototype. 

Task 3B-4:   Indicate which graph(s) can fit 𝑦𝑦 = 500/(2 + 3 ⋅ 0.75𝑥𝑥) 

 A B  
 

C D 
Answer: so when x goes to infinity then it goes to 500/2=250 (att); it is divided by an 

ever smaller number so the result will increase (att); so it comes from beneath; at 0 it 

gives 100 (att); it will be positive (att), so it is this one (C). 

The formula was not an IGF, because no function family or prototype was used. 
 

  Figure 3.6 Examples of the encoding of fragments of protocols of task 3 

3.4 Results 

3.4.1 Results of task 1 

The experts’ and authors’ categorizations are shown in Appendix 3.1. The experts 

showed a great deal of agreement in their choices of categories, names of these categories, 

and prototypes of the categories. Only expert S used a different approach in his categorization 

of polynomial functions. He based his categorization on the number of turning points. The 

other experts all used the degree of polynomial functions. The fourth degree polynomial 

functions were divided into graphs with a W-form, a M-form, and a V-form (or as the experts 

mentioned, “increasing or decreasing”). No large differences were found on exponential 

functions and logarithmic functions, although some experts (P and R) made no distinction 

between “normal” and “reversed” graphs (for instance, xy e=  versus xy e−=  and ln( )y x=  

versus ln( )y x= − ). All experts agreed on linear broken functions and square-root functions. 

More differences were found in the categories of power functions, where only expert Q made 

distinctions based on domain and/or on concavity. 
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In the construction of the common expert categorization, the distances between 

individual categorizations and the common expert categorization were calculated. The final 

common expert categorization is shown in Table 3.1.  

    Table 3.1 Common expert categorization.  

Categories:  
Linear: 𝑥𝑥 + 5(4 − 𝑥𝑥), ln (e2𝑥𝑥), (1 − 𝑥𝑥)(2 + 𝑥𝑥) + 𝑥𝑥2 
Parabola 
parabola with max: 𝑥𝑥(9 − 𝑥𝑥), −(𝑥𝑥 − 3)2, (𝑥𝑥 − 5)(3 − 𝑥𝑥), 2𝑥𝑥 − 3(𝑥𝑥 + 2)(𝑥𝑥 − 2),  
−(𝑥𝑥 − 1)2 + 2(𝑥𝑥 − 1) + 6 ;  
parabola with min: 𝑥𝑥2 − 7(𝑥𝑥 − 5), (6 − 𝑥𝑥)2, 𝑥𝑥2 + (−𝑥𝑥 + 1)2 
3rd degree oscillation:  (𝑥𝑥2 − 7)(𝑥𝑥 − 5), 2(𝑥𝑥 − 3)2(𝑥𝑥 + 3), 2𝑥𝑥3 + 4𝑥𝑥2 − 16𝑥𝑥, 𝑥𝑥3 − 9𝑥𝑥, e3ln (𝑥𝑥) 
4th degree 
W-shape: 𝑥𝑥4 − 16𝑥𝑥2 − 28, (𝑥𝑥2 − 7)2 (6th degree W-shape: 3(𝑥𝑥4 − 6)(𝑥𝑥2 − 8)) 
M-shape: −3(𝑥𝑥2 − 4)(𝑥𝑥2 − 6), 2𝑥𝑥3(6 − 𝑥𝑥);  V-shape: (𝑥𝑥 + 3)4 − 9), 𝑥𝑥2(9 + 𝑥𝑥2) 
Exponential 
increasing: 4−3+𝑥𝑥, 2(√2)𝑥𝑥 ; decreasing: 18 ∙ 0.3𝑥𝑥, 26−𝑥𝑥, 8e−𝑥𝑥, 10−2𝑥𝑥+5, 8/3𝑥𝑥;   
reversed exponential: 6 − 2𝑥𝑥, 100 − e𝑥𝑥 
Logarithmic 
increasing: ln (e2 ∙ 𝑥𝑥), 1 + log2(𝑥𝑥), ln(𝑥𝑥) + ln (2); decreasing: −ln (𝑥𝑥), ln (1/𝑥𝑥); 
distractor: 1/ln (𝑥𝑥) 
Hyperbola(-like) 
hyperbola: 𝑥𝑥(𝑥𝑥 − 1)/((𝑥𝑥 + 1)(𝑥𝑥 − 1)), (4𝑥𝑥 + 2)/𝑥𝑥, 1 − 5/(𝑥𝑥 + 1) 
power functions with negative odd power: 8𝑥𝑥−3; with negative even power: 2/𝑥𝑥4, 3𝑥𝑥−2 
slant asymptote: 𝑥𝑥 − 4/𝑥𝑥; two vertical asymptotes (𝑥𝑥2 − 1)−1, 2/𝑥𝑥 − 3/(𝑥𝑥 − 1) 
‘Roots’  
increasing ‘√𝑥𝑥-like’: 3√𝑥𝑥 + 6, 2√𝑥𝑥 − 6, (100𝑥𝑥)

1
2;  decreasing ‘√𝑥𝑥-like’: 4√10 − 𝑥𝑥, (2 − 𝑥𝑥)

1
2 + 2 

half a circle: √8 − 𝑥𝑥2; V-shape: √8 + 𝑥𝑥2 
power functions: 
exponent ‘1

3-like’< 1: 2√𝑥𝑥3 , 2√𝑥𝑥43 /(2𝑥𝑥); exponent ‘1
3-like’> 1: (2𝑥𝑥

1
3)5; exponent ‘1 1

2-like’: 2𝑥𝑥√𝑥𝑥  
 

The following distances from the final categorization were found: 11, 3, 19, 20, and 

15 (for P, Q, R, S, and T, respectively). The experts needed an average of 18 minutes: 23, 20, 

11, 14, and 21 minutes (for P, Q, R, S, and T, respectively). For this task the experts used a 

lot of part-whole reasoning in order to categorize, for instance, the following formulas 

correctly: ln(e𝑥𝑥), (1 − 𝑥𝑥)(𝑥𝑥 + 2) + 𝑥𝑥2, ln(1/𝑥𝑥), 𝑥𝑥(𝑥𝑥 − 1)/((𝑥𝑥 + 1)(𝑥𝑥 − 1)), (2𝑥𝑥
1
3)5. 

From the interviews and observations we know that the experts first made a global 

categorization. Later they looked in greater detail and used more attributes to discriminate 

between the formulas.  The experts described their strategy as “from simple to more 

complex” (expert P), “I made a preliminary categorization based on the function families 

with which I was brought up: with polynomial, exponential, logarithmic, power, broken, and 

root functions and only after this I did focus on the graphs.” (expert Q), and “some I see at 

70

Chapter 3



Graphing formulas by hand to promote symbol sense                                                      
 

71 
 

first sight, others only with second thoughts, like 𝑥𝑥 − 4/𝑥𝑥” (expert R). Most of the formulas in 

this task could be considered IGFs and the experts did not consider this task difficult: “not a 

daily task and nice to do, but not difficult" (expert T). Some experts mentioned the “things” 

they could instantly see from the formula, like definition domain, asymptotes, singularities, 

even/odd functions, infinity behavior. Some experts indicated that a more detailed 

categorization would be possible, but not without calculations:  “In the next step I would have 

to make calculations; I would not trust myself to say more about this categorization off the 

top of my head” (expert Q).   

3.4.2 Results of task 2 

The results of task 2 (see Table 3.2) showed that three out of the five experts made no 

mistakes or only one mistake.  Most mistakes were made with the formula                           

𝑦𝑦 = (4𝑥𝑥 + 2)/(𝑥𝑥 + 2). Four of our experts selected the alternative with the increasing 

hyperbola. From the other alternatives it could have been concluded that a distinction had to 

be made between an increasing and a decreasing hyperbola. Since a strict time limit of only 

30 sec for one formula was used and all experts finished this task easily within this time limit, 

it was concluded that all the formulas that did not belong to the alternative “none of these” 

could be considered IGFs for the experts.   

  Table 3.2 Results of task 2 

Participant Number 
mistakes 

Mistakes 

P 3 (4 1) / ( 2)x x+ + ; 7x x ; 310 / x  
Q 1 (4 1) / ( 2)x x+ +  
R 1 (4 1) / ( 2)x x+ +  
S 0  
T 5 2 46 2x x− ; 42x− ; 4 2 / 4x x− + ; (4 1) / ( 2)x x+ + ; 75x  

From the observations and interviews we learned that all experts first examined the 20 

graph alternatives and had a global view of the formulas to get an impression of which 

aspects would play a  role in this task and what they had to focus on. All experts read almost 

all graphs by mentioning a function family that fitted the graph. When performing this task, 

they used part-whole reasoning if necessary, recognized a function family and used attribute 

reasoning to discriminate between different options of the same function family. For instance, 

𝑦𝑦 = 4𝑥𝑥 − 5, 𝑦𝑦 = 3e−0.5𝑥𝑥+4, 𝑦𝑦 = 4/2𝑥𝑥 were all recognized as members of the exponential 
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function family, attribute reasoning, like infinity behavior and reversing a prototypical graph 

was used to choose the correct alternative.    

3.4.3 Results of task 3  

In task 3 the protocols were analyzed using prototype, attribute, and part-whole 

reasoning. From the encoded protocols, we found that experts often started with prototypes of 

function families, followed by attribute reasoning.  

We give four examples (pr = prototype; att = attribute reasoning; pw=part-whole 

reasoning):  

Example 1: expert Q in task 3A-4 (third degree polynomial in Figure 3.5):  

Something with a higher degree (pr), decreasing (att), let’s see; this is something that 

increases (att), zeroes indeed at 0, 2, and 4 (att), that looks reliable; and this at 0, 3, and 6, and 

that will be possible (att); and this one increases, oh, no it decreases too (att); would be a 

possible alternative; and this one not, it has its zeroes on the wrong side (att).  

Example 2: expert Q in task 3A-6 (fourth degree polynomial in Figure 3.5): 

Let’s see, fourth degree (pr), downwards (att); A. this one has no oscillations, and is only 

translated (att); B. is possible, where are the zeroes?, factorizing gives me −𝑥𝑥2 + 9 (pw), so 

zeroes at 3x = and 3x = − ( att); C. is not possible, because when I divided by 2x (pw) then 

no extra zeroes; d. when I divided by 3x (pw), it gave me only one more zero; so it has to be B.    

Example 3: expert S in task 3B-3 (exponential function in Figure 3.5): 

100 50 0.75x−   is an exponential; function (pr) with 100y =  as a horizontal asymptote 

(att); that leaves B. and C.; it is 100 minus …., so it comes from beneath the asymptote (att), 

so it has to be C.  

Example 4: expert T in task 3B-2 (Indicate which graph(s) can fit  

 𝑦𝑦 = −𝑥𝑥(𝑥𝑥 − 2)(𝑥𝑥 − 4)): 
This is a polynomial function of degree 3 (pr) and those graphs all look of degree 3 (pr); it is 

3x− (att), so that means these alternatives are not possible (indicated A. and B.); these two are 

possible but it is only this one (C.) because D. has not the correct zeroes (att). 

Experts made no mistakes in this task and worked fast: see Table 3.3. However, not 

all formulas could be considered IGFs for the experts, as some graphs had to be constructed 

by reasoning about attributes. In particular, the graph of the logistic function                           
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𝑦𝑦 = 500/(2 + 3 ⋅ 0.75𝑥𝑥) (task 3B-4) had to be constructed by all our experts and the 

formula 𝑦𝑦 = 6𝑥𝑥−2 (task 3B-5) was only recognized as an IGF by expert Q (“it is an                     

𝑦𝑦 = 1/𝑥𝑥2”). This description “it is an …” suggested that Q saw 𝑦𝑦 = 6𝑥𝑥−2 as a member of a 

function family, that was indicated by a prototype  𝑦𝑦 = 1/𝑥𝑥2. The other experts did not show 

this prototype reasoning and instead used attribute reasoning about a vertical asymptote, and 

positive outcomes.  

Table 3.3 Time needed for task 3A and 3B, total number of mistakes, number of IGFs, and number 
of constructions.  

Participants Time 3A  Time 3B Number of 
mistakes 

Number of 
IGFs 

Number of 
constructions 

P 4:54 min  7:44 min 0  10 2 

Q 4:16 min   2:13 min 0 11 1 

R 3:56 min  6:27 min 0 9 3 

S 4:02 min   2:44 min 0 6 6 

T 6:16 min   2:46 min 0 9 3 

 

 In task 3A the experts could work from graph to formula. This can only be done when 

a function family is recognized from the graph. In example 1 and example 2 above, it is 

shown that expert Q recognized the graph as a prototypical graph of a polynomial function of 

degree 3 respectively degree 4. In Figure 3.7 it is indicated which experts started in task 3A 

their thinking aloud with mentioning a prototype of a function family. The other experts 

worked from the alternative formulas to the graph. 

 

P,Q,R,S,T 
 

P,Q,R 
 

Q,R,S,T 

 

Q,R,T 

 

P,Q,R,T 

 

P,Q,R 

 Figure 3.7 Graphs recognized as a prototype of a function family in task 3A 

From the protocols we see that the experts used prototypical formulas and prototypical 

graphs of basic functions. They used prototypes of exponential, logarithmic, even, and 

polynomial of degree 2, 3 and 4 functions. Also, 𝑦𝑦 = √𝑎𝑎 − 𝑥𝑥2 (half a circle) was considered a 

function family. Only expert Q used 𝑦𝑦 = 1/𝑥𝑥2 as a function family. Attributes that were used 
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to discriminate between different alternatives were: increasing/decreasing of graph linked to 

positive/negative head coefficient, infinity behavior and horizontal asymptote, translations, 

vertical asymptote, number of zeroes and location of zeroes, reversing a graph, 

positive/negative outcomes, domain, and point of inflection.  

Expert S seemed to use a lot of constructions, perhaps because a prototype or function 

family was not mentioned. From the protocols and results of the other tasks it was concluded 

that these function families were implicitly used by this expert. 

From observations and interviews we learnt that the experts thought the functions 

used in task 3A were “easier” than those used in task 3B because they only required simple 

transformations. Another reason for the differences between task 3A and 3B was the amount 

of visual information in task 3B: “four formulas and one graph is easier to deal with than four 

graphs and one formula” (expert Q). Expert P mentioned that in general “it is more difficult 

to think from the graph than to think to the graph”. Nevertheless, all experts indicated that 

both tasks required the same knowledge elements: namely, linking visual features of the 

graphs and features of the formulas.  

3.5 Conclusions and discussion 

3.5.1 Conclusions 

The first aim of the current research was to describe experts’ repertoires of IGFs. We 

hypothesized that experts would use categories to organize their knowledge of graphs and 

formulas.  The experts’ results in task 1 showed that the categories they constructed were 

very similar and also that the category descriptions were similar. These descriptions were 

closely related to the function families of basic functions that are taught in secondary school: 

linear functions, polynomial functions, exponential and logarithmic functions, broken 

functions, and power functions. Only expert S used descriptions containing numbers of 

turning points for the polynomial functions. Therefore, a common categorization could be 

constructed. The distances between the individual categorizations and the final categorization 

varied from 3 to 20. Many of these differences could be explained by the absence of 

subcategories. For instance, some of the experts did not distinguish between increasing and 

decreasing exponential graphs or between parabola with a maximum or with a minimum. 

However, the experts’ performances in task 2 confirmed that they could recognize these 

differences between subcategories as they made almost no mistakes in this task.  
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The time the experts needed to perform this categorization task varied from 11 to 23 

minutes. When taking about 20 minutes to categorize 60 cards, the experts needed only 20 

seconds per card to read, to recognize, to compare with others, and to group formulas with 

similar graphs. This meant that there was almost no time for the construction of new, 

unknown graphs. Some of the formulas, like 𝑦𝑦 = 1/ln (𝑥𝑥), 𝑦𝑦 = (𝑥𝑥2 − 1)−1, 𝑦𝑦 = 𝑥𝑥 − 4/𝑥𝑥, 

𝑦𝑦 = 2/𝑥𝑥 − 3/(𝑥𝑥 − 1) were categorized in a category with a single formula, often with a 

mention of some attributes, but without a graph. Therefore, it was concluded that the experts 

used the function families of the basic functions from secondary school to organize their 

categories of IGFs : linear functions;  2nd , 3rd and 4th degree polynomial, exponential, 

logarithmic and root functions with, in every function family, a distinction between 

increasing and decreasing; broken linear function; power functions nx , with n odd/even, and  

𝑛𝑛 = 𝑝𝑝/𝑞𝑞 with 𝑝𝑝 > 𝑞𝑞, 𝑝𝑝 < 𝑞𝑞.  This should come as no surprise, since we used predominantly 

formulas of basic functions from the secondary school curricula. The experts were brought up 

with these categories, as they indicated in the interviews. They showed through their high 

proficiency that they had truly internalized this categorization of basic functions. The 

formulas seemed to be complex enough to capture the proficiency of the experts, as some 

formulas could not be instantly visualized or were not correctly categorized.  

The second aim of the current study was to describe what experts attend to when 

linking formulas to graphs of IGFs. The recognition process when working from formulas to 

graphs can be well described using the Barsalou model of Figure 3.2. It is shown in Table 3.3 

that in recognizing IGFs, the experts often started with prototypes. This prototype reasoning 

was, when necessary, followed by attribute reasoning. For instance, 𝑦𝑦 = −2𝑥𝑥(𝑥𝑥 − 2)(𝑥𝑥 − 6) 

is recognized as a prototypical “ 3x ”, which is “reversed” and has zeroes at 0, 3, and 6;             

𝑦𝑦 = log2(𝑥𝑥 + 3)as a log translated to the left; 𝑦𝑦 = −(𝑥𝑥 + 2)4 + 6 as an “𝑥𝑥4”, reversed and 

translated; 𝑦𝑦 = √6 − 𝑥𝑥2 as  “half-a-circle”. These examples were in line with the findings of 

Schwarz and Hershkowitz (1999), who found that proficient students used prototypes as 

levers for handling other examples and showed greater understanding of (critical) attributes.   

  The experts also recognized prototypical graphs for well-known function families, as 

they showed in task 2 and task 3A. For well-known function families there seemed to be little 

difference between working from formula to graph and working from graph to formula. 

When working with IGFs, the experts’ concept images that were triggered by the given 

formula or given graph, seemed to contain equivalent formula(s), graph(s), attributes of 
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graphs and of formulas, function family with prototypes, formulas of other functions in this 

function family.  

In order to elicit experts’ attribute reasoning, all attributes the experts used in task 3 

were gathered: translation to the right/left and above/below, stretching horizontal or vertical, 

reversion (often indicated by reasoning about negative head coefficient), infinity behavior 

(with horizontal asymptotes), increasing/decreasing, number and location of turning points, 

location and number of zeroes, positive/negative, domain, point of inflection, and vertical 

asymptotes.    

Particular attributes seemed to be linked to particular function families. As shown in 

task 3, these connections could work both ways: from function families to salient attributes of 

graphs and from graphs with salient attributes to function families. These salient attributes of 

a function family are characteristic of the members and prototypes of the function family. For 

instance, a vertical asymptote was directly linked to logarithmic functions or broken 

functions. And, when confronted with power functions with /n p q= , some instantly started 

with a focus on domain and concavity. For the different function families in our research, the 

experts used salient attributes: limited domain was linked to root functions, power functions 

and logarithmic functions; vertical asymptotes were linked to logarithmic functions and 

broken functions; horizontal asymptotes were linked to exponential functions and broken 

functions; symmetry was linked to even polynomial functions. 

Experts used attributes appropriate to the tasks. For instance, when they had to link 

formulas to global graphs (tasks 1 and 2), they paid no attention to the factor 7 in 𝑦𝑦 = 7𝑥𝑥√𝑥𝑥, 

or to the term 3 and term 1 in 𝑦𝑦 = 4−3+𝑥𝑥. But when parameters influenced the global shape 

of the graph, these parameters were given ample attention. For instance, the minus signs of 

the head coefficient in  𝑦𝑦 = −𝑥𝑥4 + 9𝑥𝑥2 and in 𝑦𝑦 = 2√8 − 𝑥𝑥  which reversed the prototypical 

graphs were directly noticed and mentioned. When more detailed graphs were requested, as 

in task 3, the experts again only used those attributes that were needed for the task. For 

instance, they did not mention anything about the factor 0.1 in 𝑦𝑦 = 0.1𝑥𝑥2 or about the term 

12 in the formula 𝑦𝑦 = 𝑥𝑥6 + 12, because these were positive numbers. But when the task 

demanded it, the experts quickly noticed the attributes and values needed to graph the 

formulas. For instance, the experts instantly recognized the different locations of the zeroes in 

𝑦𝑦 = 𝑥𝑥(3 − 𝑥𝑥)(𝑥𝑥 − 6) and  𝑦𝑦 = −2𝑥𝑥(𝑥𝑥 + 3)(𝑥𝑥 + 6). These findings show that the experts 

worked efficiently and did not pay attention to “what is normal” (Chi et al., 1981; Chi, 2011).  
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The experts sometimes had to show their abilities in algebraic manipulation. As 

expected, they had no problems with this aspect of part-whole reasoning: this was shown in, 

for instance, 𝑦𝑦 = 6𝑥𝑥−2 (in task 3B), and 𝑦𝑦 = 8𝑥𝑥−3, 𝑦𝑦 = 𝑥𝑥(𝑥𝑥 − 1)/((𝑥𝑥 + 1)(𝑥𝑥 − 1)), and 

𝑦𝑦 = 𝑥𝑥2 + (−𝑥𝑥 + 1)2 (in task 1). 

These results show that experts’ processes of recognition of IGFs can be described 

using the model in Figure 3.2: with prototypes, supported by attribute and part-whole 

reasoning. 

  A Barsalou model for recognition of IGFs 

The current findings highlight the two highest levels of recognition of the framework 

for strategies in graphing formulas (Kop et al., 2015). We defined formulas at these levels as 

IGFs, instantly graphable formulas. We described the experts’ repertoires of IGFs and 

described what experts attended to in recognizing IGFs. We showed that the experts used 

prototypes and attribute reasoning in recognizing IGFs and found how particular attribute and 

value sets were linked to particular function families. For instance, given a logarithmic 

formula such as 𝑦𝑦 = 1 + log3(2𝑥𝑥 + 4) − 3, a prototype 𝑦𝑦 = log3(𝑥𝑥) or 𝑦𝑦 = log (𝑥𝑥) was 

instantly identified and attribute reasoning (translation, domain 𝑥𝑥 > −2, and/or vertical 

asymptote at 𝑥𝑥 = −2) resulted in a graph. We also found that for function families of basic 

functions, the experts could easily work from graph to a formula. Given a graph, they 

instantly recognized a function family that fitted the graph. For instance, a graph with 

attributes like domain 𝑥𝑥 > 𝑎𝑎, a vertical asymptote at 𝑥𝑥 = 𝑎𝑎 and concave down was instantly 

identified as a logarithmic function. This implies that the Barsalou model based on Schwarz 

and Hershkowitz in Figure 3.2 can be expanded with linkages between attribute and value 

sets, prototypes and function families and with linkages from graph to attributes, prototypes, 

and function families. In Figure 3.8, for some of the function families in the experts’ 

categorizations (logarithmic, polynomial with degree 2, exponential, and broken functions), a 

prototype is described using attributes and values; for other exemplars of the function family 

salient attributes are indicated. 
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     Figure 3.8 A Barsalou model based on Schwarz and Hershkowitz with function families and their   

     salient attributes                                                                                                                                                                                     

 3.5.3 Global properties in graphing formulas 

The experts in our study focused on attributes and values that influenced the global 

shape of the graph. For instance, a parameter that reversed the prototypical graph of 𝑦𝑦 = 𝑥𝑥4  

was given ample attention, like −2 in 𝑦𝑦 = −2𝑥𝑥4, but a parameter that resulted in only a small 

change of the prototypical graph was not mentioned, such as 0.1 in 𝑦𝑦 = 0.1𝑥𝑥4. In their 

attribute reasoning, the experts focused on attributes and values that gave a great deal of 

information about the whole graph. These attributes can be considered the global growth 

properties of Slavit’s classification of function properties (Slavit, 1997). Starting with these 

global properties is considered to be more efficient in graphing formulas than using local 

properties (Even, 1998; Slavit, 1997).   
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In the current study we found that the experts used a set of attributes and values that 

differ from Slavit’s global properties, partly because Slavit’s focus was more on the function 

concept, whereas our focus was on the relation between formula and graph. Several global 

properties Slavit used, such as integrability and invertibility, were not mentioned at all by our 

experts. Based on the current results, we suggest that relevant global properties for 

recognizing IGFs may be symmetry, infinity behavior (including horizontal and slant 

asymptotes), vertical asymptotes, domain, increasing/decreasing on intervals, sign (reverse), 

and concavity. For local properties, we suggest zeroes, turning points, points of inflection, 

and individual points.   

3.5.4 Suggestions for further research and teaching 

In discussing their ideas about graphs and formulas, the experts used an ample 

repertoire of descriptions: “a valley”, “it goes in the right direction“, “it has to go 

downwards”, ”it runs flat”, “tails go to minus infinity”, “this one has no oscillations”, “a 

reversed …..”, “it goes to infinity”, “it goes up”, “it comes from below”, “in infinity it is …”, 

“this one is only positive”, “log to the right”, “an oscillation downwards”, “a −𝑥𝑥3”.  

These descriptions show that the experts often did not use the formal math 

attribute/property concepts but used both pictures of the whole graph and action language 

such as “it (the graph) runs ……”.  People talk ubiquitously about abstract concepts using 

concrete metaphors (Barsalou, 2008). Metonymies and metaphors are necessary for efficient 

communication and in the learning of mathematical concepts (Presmeg, 1998; Zandieh & 

Knapp, 2006). Further research is necessary to find out how these experts’ metonymies and 

metaphors can be helpful in the efficient teaching of graphing formulas.  

A repertoire of IGFs is necessary for graphing formulas. Eisenberg and Dreyfus 

(1994) wrote about the need for a repertoire of basic functions and knowledge of the 

characteristics of the representations of these functions. Slavit (1997) speaks about “property 

noticing”, the ability to recognize and analyze functions by identifying the presence or 

absence of these properties and the need for a “library” of functional properties. Our findings 

show how experts used prototype and attribute reasoning for graphing formulas and so give 

an impression of an expert “library” of properties. Figure 3.8, a  Barsalou model based on 

Schwarz and Hershkowitz, shows how for IFGs these function families, prototypes, 

attributes, and part-whole reasoning are integrated in the experts’ concept images. Our 

findings may be helpful to further describe the recognition and identification of objects, 
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forms, key features, and dominant terms used in Pierce and Stacey’s algebraic insight (Pierce 

& Stacey, 2004; Kenney, 2008). Not only in graphing formulas but also when using CAS or 

graphical calculators one needs this algebraic insight. For instance, Heid et al. (2013) showed 

how solving the equation ln(𝑥𝑥) = 5sin (𝑥𝑥) required knowledge of the characteristics of 

function families of both formulas 𝑦𝑦 = ln(𝑥𝑥) and 𝑦𝑦 = 5sin (𝑥𝑥) and the ability to link the 

graph images to the formulas (Zbiek & Heid, 2011).   

The results of this study can be relevant for teaching algebra and in particular 

functions. Students continue to experience difficulties with seeing the relationship between 

algebraic and graphical representations, although graphing technology can support students’ 

understanding in linking representations of functions (Kieran, 2006; Ruthven, Deaney, & 

Hennessy, 2009). In order to further improve education, we first need a domain-specific 

knowledge base (De Corte, 2010). Expertise research can provide such a knowledge base (De 

Corte, 2010; Campitelli & Gobet, 2010; Stylianou & Silver, 2004). The current findings show 

what knowledge experts used in recognizing IGFs: they used the basic functions to organize 

the function families, used prototypes to handle other exemplars of function families, and 

used prototypes and attributes to link graphs and formulas of function families. In secondary 

school curricula much attention is paid to basic functions, in particular to linear and quadratic 

functions. Our study suggests that only learning and practicing basic functions is not enough 

to become proficient in linking the formulas and graphs of functions. Students need to know 

how to handle parameters in formulas and need opportunities to integrate their knowledge of 

prototypes and attributes of function families into well-connected hierarchical mental 

networks. Besides such a knowledge-base for recognition, students need heuristic methods, 

like splitting formulas and qualitative reasoning, when recognition falls short (Kop et al., 

2015).  

For graphing formulas one has to be able to “read” algebraic formulas. Further 

research is necessary to investigate whether graphing formulas indeed improve symbol sense, 

in particular algebraic insight and how graphing formulas can be effectively and efficiently 

taught to students.  
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Appendix 3.1:  

Five experts’ categorizations and the researcher’s categorization with category names and prototypes 

P.  23:22 min Q.  20:28 min R. 11:25 min S. 14:25 min T.  21:00 min Researcher’s  
categorization 

Linear:  𝑎𝑎𝑎𝑎 + 𝑏𝑏 
 

Straight lines: 
𝑎𝑎𝑎𝑎 + 𝑏𝑏  
 

Linear: 𝑎𝑎𝑎𝑎 + 𝑏𝑏 
 

Linear 
y x=  

Linear 
functions 

Linear  
Increasing/ 
decreasing 

Degree 2:  
𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑎𝑎 + 𝑐𝑐  
 

Parabola with 
max: −𝑎𝑎2 
Parabola with 
min:  𝑎𝑎2 

Degree 2:  
 𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑎𝑎 + 𝑐𝑐 
 

1 turning point 
𝑦𝑦 = 𝑎𝑎2 

Degree 2 Parabola with 
max and with min 
 

Polynomials: 

0

n k
kk

a x
=  

(defined on 
domain) 

Degree 3 
(odd):  𝑎𝑎3 

Degree 3: 
 𝑎𝑎𝑎𝑎3 + 𝑏𝑏𝑎𝑎2 +
𝑐𝑐𝑎𝑎 + 𝑑𝑑 
 

2 turning points:                  
 𝑦𝑦 = 𝑎𝑎3 − 3𝑎𝑎 

Degree 3 Degree 3 
increasing 
 

 
 
 
 
 
 
 
 
 
 

Degree 4, 
decreasing:  
−𝑎𝑎2(𝑎𝑎2 − 1) 

Degree 4, 
increasing: 
𝑎𝑎2(𝑎𝑎2 − 1) 

Degree 4: 
𝑎𝑎𝑎𝑎4 + 𝑏𝑏𝑎𝑎3+.. 

3 turning points: 
2 2( 1)y x= −  

5 turning points  
𝑎𝑎2(𝑎𝑎2 − 1) ∙ 

(𝑎𝑎2 − 2) 
 

Degree 4, with  
W-shape 
 
Degree 4 
without W-
shape 

Degree 4 with  
W-shape 
M-shape 
V-shape 
Degree 6 with W-
shape 

(𝑎𝑎𝑎𝑎 + 𝑏𝑏)𝑘𝑘

/(𝑐𝑐𝑎𝑎 + 𝑑𝑑)𝑛𝑛 
Hyperbola:    
1/𝑎𝑎 
Quotient 
functions with 
more than 1 
vertical 
asymptote: 
  1/(𝑎𝑎2 − 1) 
 

Broken 
functions 
 
 

Vertical and 
horizontal 
asymptotes 
𝑦𝑦 = 1/𝑎𝑎 
Vertical and 
slant asymptotes  
𝑦𝑦 = 𝑎𝑎 − 4/𝑎𝑎 
2 vertical 
asymptotes:  
 𝑦𝑦 = 1/(𝑎𝑎2 − 1) 

Linear broken:  
(𝑎𝑎𝑎𝑎 + 𝑏𝑏)/
(𝑐𝑐𝑎𝑎 + 𝑑𝑑)  
 

Hyperbola and  
Power function 
with higher 
negative odd 
exponent 
 
2 vertical 
asymptotes 
Slant asymptote 
 

Power function 
with negative 
exponent 

Even 
hyperbola-like: 
1/𝑎𝑎2 

Negative 
exponent: 
𝑎𝑎𝑎𝑎−𝑛𝑛  

 Power 
function  

Power function 
with higher 
negative and even 
exponent 

Can be 
transformed to 
𝑏𝑏 ∙ 𝑔𝑔𝑥𝑥 + 𝑐𝑐   
HA ∞  
HA at −∞ 
 

Exponential 
increasing: e𝑥𝑥   
 
Exponential 
decreasing:e−𝑥𝑥 
 

Exponential 
function:           
 𝑎𝑎 ∙ 𝑏𝑏𝑥𝑥 + 𝑐𝑐 
 

Exponential:  
𝑦𝑦 = 2𝑥𝑥 

Elementary 
exponential 
function 

Exponential  
increasing  
HA x→-∞ 
And decreasing  
(HA x→∞) 
Reversed  
exponential:  
  6 − 2𝑥𝑥, 
     100 − e𝑥𝑥 

Logarithmic 
function with 
transformation 

Logarithmic 
increasing: 
ln (𝑎𝑎) 

Logarithmic:  
𝑎𝑎log(𝑎𝑎) + 𝑐𝑐  
(included
      1/ln (𝑎𝑎) 

Log:                      
𝑦𝑦 = log2(𝑎𝑎) 
 

Elementary 
logarithmic 
function 

Logarithmic 
increasing and 
decreasing 
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(increasing/decr
easing and 1/
ln (𝑥𝑥)) 

Logarithmic 
decreasing: 
−ln (𝑥𝑥) 
 

 

Power function, 
function with 
broken 
exponent, root 
function with 
transformation:  
𝑐𝑐√𝑎𝑎𝑥𝑥 + 𝑏𝑏 + 𝑑𝑑 

Roots, domain 
to the left: 
√−𝑥𝑥 
 
Root, domain 
to the right: 
√𝑥𝑥 
 

Root function:  
 
√𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐  
 
 

𝑦𝑦 = √𝑥𝑥 Elementary 
root function, 
transformed 
𝑦𝑦 = √𝑥𝑥 
 

Roots  
increasing       
‘√𝑥𝑥-look-like’   
and decreasing  
‘√𝑥𝑥-look- like’   

√𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 Power 
function even 
√𝑥𝑥24  

 Half a circle Root  
 

Half a circle:  
𝑦𝑦 = √8 − 𝑥𝑥2 
V-shape:                
𝑦𝑦 = √8 + 𝑥𝑥2 

Broken power 
function, not 
transformed 
from basic 
function  
 

Odd power  
function: √𝑥𝑥3  
Broken 
exponent, 
defined to the 
right: 𝑥𝑥√𝑥𝑥 

Broken 

exponent: 𝑎𝑎𝑥𝑥
𝑝𝑝
𝑞𝑞 

 

 Power 
function, 
positive 
exponent, no 
asymptote 
 

Power function 
with broken 
exponent, 
concave up/down 

 Various:           
1/ln (𝑥𝑥)) 
 

 Apart: 
1/ln (𝑥𝑥)) 
 

Rest 
1/ln (𝑥𝑥); 
(𝑥𝑥2 − 1)−1; 
3(𝑥𝑥4 − 6) ∙ 

(𝑥𝑥2 − 8) 

distractor:               
1/ln (𝑥𝑥) 
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