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Abstract 

It is still largely unknown what are effective and efficient strategies for graphing 

formulas with paper and pencil, without the help of graphing tools. We here propose a two-

dimensional framework to describe the various strategies for graphing formulas with 

recognition and heuristics as dimensions.  Five experts and three secondary-school math 

teachers were asked to solve two complex graphing tasks. The results show that the 

framework can be used to describe formula graphing strategies and allows for differentiation 

between individuals. Experts used various strategies when graphing formulas: some focused 

on their repertoire of formulas they can instantly visualize by graphs; others relied on strong 

heuristics, such as qualitative reasoning. Our exploratory study is a first step towards further 

research in this area, with the ultimate aim of improving students’ skills in reading and 

graphing formulas. 
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2.1 Introduction 
Students often have difficulties with algebra, in particular giving meaning to and 

grasping the structure of algebraic formulas, and manipulating them (Chazan & Yerushalmy, 

2003; Drijvers et al., 2011; Kieran, 2006; Sfard & Linchevski, 1994). Functions can be 

represented in several forms, such as algebraic formulas and graphs; the latter are more 

accessible for students than the former (Janvier, 1987; Leinhardt, Zaslavsky, & Stein, 1990; 

Moschkovich et al., 1993).  

A graphical representation gives information on covariation, that is, how the y-

coordinate (the dependent variable) changes as a result of changes of the x-coordinate (the 

independent variable) (Carlson et al., 2002). A graph shows possible symmetry, intervals of 

increase or decrease, extreme values, and infinity behavior. In this way, it visualizes the 

“story” of an algebraic formula. Graphs may help learners to give meaning to algebraic 

formulas and so make learning algebra easier for them (Eisenberg & Dreyfus, 1994; 

Kilpatrick & Izsak, 2008; NCTM, 2000; Philipp, Martin, & Richgels, 1993; Yerushalmy & 

Gafni, 1992).  

Graphs are also considered important in problem solving (Polya, 1945; Stylianou & 

Silver, 2004). In his list of heuristics, Polya (1945) mentions drawing a picture or diagram as 

one of the first options. Creating and using multiple representations, and switching between 

them, are important tools in problem solving (Janvier, 1987; NCTM, 2000). Stylianou and 

Silver (2004) and Stylianou (2002, 2010) found how graphs are used to understand the 

problem situation, to record information, to explore, and to monitor and evaluate results.  

For learning about functions, graphing tools such as graphic calculators are 

recommended (Drijvers & Doorman, 1996; Drijvers, 2002; Hennessy et al., 2001; Kieran & 

Drijvers, 2006; Philipp et al., 1993; Schwartz & Yerusalmy, 1992; Yerushalmy & Gafni, 

1992). With these tools, graphing formulas seems easy. In the past, constructing a graph was 

itself a goal or the graph itself an end product. To produce one, many algebraic skills 

(determining domain, zeroes, derivative, etc.) were employed, along with standard methods 

requiring multiple algebraic manipulations, which were not straightforward for all learners.  

Graphing tools now make it possible to study problems that in the past could not be 

solved or could be solved only with difficulty. In order to use these tools adequately, 

however, one must  know what aspects of graphs to look for (Philipp et al., 1993). According 

to Stylianou and Silver (2004) novices experience difficulties in the visual explorations of the 
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graphs they have constructed. They concluded that such explorations are restricted to familiar 

functions. So, in order to make effective and efficient use of technology, learners should 

know about graphs representing basic functions, and also should have learned to reason about 

such graphs (Drijvers, 2002; Eisenberg & Dreyfus, 1994; Stylianou & Silver, 2004).  

Learners who do graphing with pen and paper may establish the connection between 

the algebraic and the graphical representations of a function more effectively than learners 

who only perform computer graphing (Goldenberg, 1988). In this article, graphing to produce 

a sketch of a graph with its main characteristics without technological help will be called 

graphing formulas.  

Despite earlier research on how to learn and how to teach functions, it is still largely 

unknown what knowledge and skills are necessary to graph formulas effectively and 

efficiently. In order to learn more about these, we have identified expert strategies in our 

research. Experts are expected to know and use more effective and efficient strategies than 

novices (Chi, 2006, 2011). Hence, the focus of this article will be on determining a suitable 

framework for formula graphing strategies. With the help of this knowledge base, a 

professional development trajectory for teachers and teaching material for students may 

eventually be developed.  

2.2 Theory 

2.2.1 Aspects of graphing formulas 

Functions are at the core of math education. There are several reasons for students’ 

difficulties with the concept. Functions, like other mathematical concepts, are not directly 

accessible as physical objects. Access to mathematical concepts can only be gained through 

representations. To understand mathematical concepts, one needs to relate elements of 

different representations (Janvier, 1987; Kaput, 1998). For functions, these representations 

are algebraic formulas, graphs, tables, and contexts (Janvier, 1987). These representations 

have to be combined in order to produce a rich concept image of the function (Thomas et al., 

2010; Tall & Vinner, 1981).  

The ability to represent concepts, to establish meaningful links between and within 

representations, and to translate from one representation of a concept to another is at the core 

of doing and understanding mathematics. Different concepts have been used to refer to this 

ability: representational flexibility (Nistal et al., 2009), representational fluency (Lesh, 1999), 
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representational versatility (Thomas & Hong, 2001). ‘Representational versatility’ has been 

defined as the ability to work seamlessly within and between representations and to engage in 

procedural and conceptual interactions with representations (Thomas et al., 2010). Our 

research deals with translations between algebraic formulas and graphs, demonstrating 

representational versatility.   

Much research has been done on algebraic and graphical representations and their 

relations.  Students are often found to have difficulties with reading algebraic formulas and 

the so-called process-object character of a function. For graphing formulas, it is necessary 

that one can “read” algebraic formulas and deal with the process-object character of a 

function. These two issues are discussed in the next sections.  

2.2.2 Reading algebraic formulas 

There are different ways to create meaning for algebraic formulas: from the problem 

context, from the algebraic structure of the formula, and from its various representations 

(Kieran, 2006). In order to read an algebraic formula, one has to grasp its structure (Sfard & 

Linchevski, 1994). In the literature this is called ‘symbol sense’ (Arcavi, 1994). Symbol 

sense has several aspects, such as the ability to read through algebraic expressions, to see the 

expression as a whole rather than a concatenation of letters, and to recognize its global 

characteristics (Arcavi, 1994). Symbol sense enables people to scan an algebraic expression 

so as to make rough estimates of the patterns that would emerge in numeric or graphical 

representations (Arcavi, 1994).  

A procedure for analyzing the syntactic structure of an expression was formulated by 

Ernest (1990).  A syntactical tree is constructed via an iterative procedure in which the main 

operator of the expression is identified. The procedure continues until all subexpressions have 

been given meaning. The decomposition of algebraic expressions into meaningful parts 

(building blocks) can be considered a heuristic for reading formulas.   

Thomas et al. (2010) asked students about their strategies when linking formulas to 

graphs of linear and quadratic functions. He found that the students tried to imagine the graph 

and focused on key properties of the functions. Thomas et al.’s findings are consistent with 

Mason’s (2002, 2004) argument that both perception of and reasoning about functions are 

driven by specific properties of the representation (Thomas et al., 2010). Mason (2003, 2004) 

identified levels of attention or awareness, which he used to describe how a person’s attention 

can shift from staring at the whole (for example an algebraic formula) while hardly knowing 
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how to proceed, to discerning details from which objects and sub-objects can be determined 

in order to recognize relationships, perceive properties, and grasp the essential structure. For 

this recognition, students need a repertoire of basic functions, and knowledge of the 

characteristics of the representations of these functions (Eisenberg & Dreyfus, 1994).  

In summary, for reading algebraic formulas recognition of basic functions and symbol 

sense are important, as well as knowledge of procedures such as decomposing formulas into 

meaningful sub-formulas. 

2.2.3 Process and object perspectives 

Students often use only the process perspective of a function, because they see a 

function as a calculation rule in which x and y values are linked. Formulas which differ from 

the process perspective, for instance 𝑦𝑦 = 𝑥𝑥 + 3 and 𝑦𝑦 = 4 + 𝑥𝑥 − 1, can belong to the same 

function. From the object perspective, such formulas are considered identical (Schwartz & 

Yerusalmy, 1992).  The object perspective is needed to perform actions on a function, for 

instance to transform it (Breidenbach et al., 1992) and to classify families of functions. 

Students have to be able to assume both a process and an object perspective and to 

switch between the two (Breidenbach et al., 1992; Gray and Tall, 1994; Oehrtman et al., 

2008; Sfard, 1991).  Moschkovich et al. (1992) formulated a two-dimensional framework, 

with representations and perspectives as dimensions, and showed that in problem solving 

different representations and different perspectives are needed. There is a relation between 

these two dimensions: the algebraic representation of a function makes its process perspective 

salient, while the graphical representation suppresses the process perspective and thus helps 

to make a function more entity-like, i.e., an object (Schwartz & Yerushalmy, 1992; 

Moschkovich et al., 1992).  

 Three theories consider the complementary aspects of process and object 

perspectives: APOS, covariational reasoning, and pointwise and global approach in solving 

problems with formulas and graphs.   

The APOS (action, process, object, schema) theory describes how an object 

perspective is developed through the encapsulation of processes, and how a schema 

integrating both perspectives is created (Asiala, Cottrill, Dubinsky, & Schwingendorf, 1997; 

Breidenbach et al., 1992).  A well-developed schema can be seen as a cognitive unit, an 

element of cognitive structure that in its entirety can be the focus of attention at a given time 
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(Barnard & Tall, 1997). Such a cognitive unit can be activated as a single step in a thinking 

process (Crowley & Tall, 1999). This type of schema makes it possible to instantly switch 

between process and object perspectives.   

Covariational reasoning is the ability to coordinate an image of two varying quantities 

and to note how they change in relation to each other (Carlson et al., 2002). It is essential to 

understand major concepts of calculus: functions, limits, derivatives, rates of change, 

concavity, inflection points, and their real-world interpretations (Carlson et al., 2002; 

Oehrtman et al., 2008). In covariational reasoning, one is able to imagine running through all 

input-output pairs simultaneously and so to reason about how a function is acting on an entire 

interval of input values. Such reasoning is not possible operating from a process perspective 

where each individual computation must be explicitly performed or imagined. Carlson et al. 

(2002) describe levels of covariational reasoning: from the notion of “y is changing with 

changes in x”, via knowing whether a function increases or decreases, and considerations 

about the rate of change, to understanding average and instantaneous rates of change, and 

inflection points.  

Even (1998) considers the process and object perspectives in solving problems with 

formulas and graphs in terms of heuristics. She distinguishes pointwise and global 

approaches. In the pointwise approach, students plot and read points, whereas in the global 

approach they focus on the behavior of the function on an interval or in a global way. The 

global approach is more powerful and gives a better understanding of the relation between 

formulas and graphs. However, sometimes the pointwise approach is needed to monitor naïve 

and/or immature interpretations and to construct meaning (Even, 1998).  

In summary, in order to graph formulas effectively and efficiently one has to be able 

to read algebraic formulas and deal with the process and object perspectives. The literature 

shows that both recognition through schemas and symbol sense are important in this respect. 

If recognition fails, heuristics are necessary. In our research, we attempted to elucidate which 

recognition and heuristics are essential for effective and efficient graphing, so as to identify a 

framework of strategies for graphing formulas. For the necessary background knowledge on 

how recognition and heuristics are related we consulted the literature on expertise, in which 

the importance of recognition and heuristics is endorsed.  
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2.2.4 Expertise  

Experts outperform novices when solving problems in their fields of expertise (Chi et 

al., 1981; Chi et al., 1982; Chi, 2006, 2011). What is the reason for this difference in 

performance? In order to sketch the main components of expertise and their interrelations, we 

here provide a short historical review of the changing explanations of expertise during the 

past forty years (Chi, 2011).  

First, experts were believed to have superior search strategies. In expertise research in 

the 1970s, expertise was often assessed via puzzle-like problems. In order to solve such 

puzzles participants need general problem-solving strategies rather than much domain-

specific knowledge. Within this context, solving a problem is seen as searching for a path in 

the problem space to connect the problem with the solution. Expertise is defined as the ability 

to search efficiently and effectively. Therefore, general heuristics have been formulated for 

mathematical problem solving (Polya, 1945; Marshall, 1995; Schoenfeld, 1985, 1992; Van 

Streun, 1989). In problem-solving literature, recognition is often mentioned as an all-or-

nothing process in the orientation on a problem: either there is recognition or there is not.  

Subsequently, it was more structured knowledge that was thought to be the decisive 

factor determining search strategies. Experts do not necessarily have superior general search 

strategies, but their knowledge is more effectively structured, as cognitive schemas in the 

long-term memory (Chase & Simon, 1973).  A cognitive schema can be seen as a network 

with (hierarchically) related concepts, procedures, and strategies (Anderson, 1980; Derry, 

1996). To a large extent a person’s cognitive schemas determine what that person "sees" and 

recognizes in problem situations (Sweller, Merriënboer, & Paas, 2019). Thus, when someone 

is confronted with a problem situation, different levels of recognition are possible, varying 

from completely recalling the problem situation and the solution to no recognition at all.  

In mathematics, when  novices see an algebraic formula, as for instance 𝑦𝑦 = 𝑥𝑥2 + 2𝑥𝑥, 

they may not recognize it as a polynomial function, but see it as just a procedure:                 

 𝑦𝑦 = 𝑥𝑥 ∙ 𝑥𝑥 + 2 ∙ 𝑥𝑥. Experts seeing 𝑦𝑦 = 𝑥𝑥2 + 2𝑥𝑥, will immediately recognize it as a member of 

the family 𝑦𝑦 = 𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 and will know that the graph will be a parabola with a 

minimum. In an expert’s cognitive schema, activated by the algebraic formula, the formula 

can be linked to a graph and thus can be instantly visualized graphically, whereas other 

formulas cannot, if the cognitive schema activated by the formula does not have a link to its 

graph. In formula graphing the set of functions that can be instantly visualized plays an 

34

Chapter 2



Graphing formulas by hand to promote symbol sense                                                      
 

35 
 

important role. These functions can be seen as units or building blocks for thinking and 

reasoning in simple as well as in complex situations.  

Recently, it is the representation of the problem that has come to be seen as the 

dominant factor accounting for expertise: structured knowledge guides representation, 

which dictates search strategies. Experts and novices focus on different elements of the 

problem they are confronted with. In physics, experts look for the underlying principles 

on which a problem is based, whereas novices look at the superficial surface 

characteristics (Chi et al., 1981). Experts activate schemas that can provide additional 

information, strategies, and expectations for further elaboration of the problem 

representation (Chi et al., 1981). In chess research, two main explanations for expertise 

are given: the ability to access a rich knowledge database through pattern recognition, 

and the ability to search efficiently through the problem space via a deliberate heuristic 

search (De Groot, 1965; De Groot, Gobet, & Jongman, 1996; Gobet, 1997, 1998). 

Berliner and Ebeling (1989) formulated a model in which performance is a function of 

two variables, i.e., recognition and search. In this model, different combinations of 

recognition and search may give the same level of performance, as there is a trade-off 

between recognition and search. Berliner and Ebeling (1989) concluded that the degree 

of recognition determines the problem space and, as a consequence, the heuristic 

search.  

In mathematics, when experts have to graph a function such as 𝑦𝑦 = 𝑥𝑥2 + 2𝑥𝑥 their 

algebraic knowledge will tell them that 𝑦𝑦 = (𝑥𝑥 + 1)2 − 1 and 𝑦𝑦 = 𝑥𝑥(𝑥𝑥 + 2) are equivalent 

formulas. So, the expert can use all these algebraic representations to acquire detailed 

information about the graph. Novices faced with the formula 𝑦𝑦 = 𝑥𝑥2 + 2𝑥𝑥 lack the ability to 

switch to an alternative problem representation. Thus, in problem solving levels of 

recognition depend on knowledge. Experts’ structured knowledge facilitates high levels of 

recognition, which gives them superior problem representation and efficient heuristic search 

options. In the next section, we will describe different levels of recognition in graphing 

formulas and show how in graphing formulas recognition and heuristic search may be related.   

2.2.5 Towards a two-dimensional framework 

Research on expertise has indicated that recognition guides heuristic searching, i.e., 

the level of recognition determines the heuristic search. This interplay can result in a two-

dimensional framework by which to describe strategies in graphing formulas. Recognition 

35

Identifying a framework from expert strategies



Graphing formulas by hand to promote symbol sense                                                      
 

36 
 

and heuristic search will form the two dimensions of our framework. Below, we will first 

give an example to illustrate how different levels of recognition allow different heuristic 

searches. Then we will formulate levels of recognition and of efficient heuristic searching in 

graphing formulas.  

Example: When we have to graph a complex formula, such as 2( ) 8 2f x x x x= − + , 

it is difficult to immediately visualize its graph. A heuristic search is needed. A first step can 

be to consider the domain: ,8] . It is possible to decompose the function into two 

subformulas, 2 8y x x= −  and 2y x=  (Ernest, 1990). While the second subformula can 

probably be visualized instantly, the first, 2 8y x x= −  probably cannot. Via qualitative 

reasoning about its infinity behaviour at −  (if x→−  then y→∞) and its zeroes 0 and 8, the 

graph can be sketched (see Figure 2.1). Then the graph for 2( ) 8 2f x x x x= − + can be 

constructed via qualitative reasoning and/or by making a table (Figure 2.2).  

 

Figure 2.1 Graph of 2 8y x x= −         

 

Figure 2.2 Construction of the graph 2( ) 8 2f x x x x= − +  

Another strategy is to reason qualitatively about domain and zeroes of the function 
2( ) 8 2f x x x x= − + , and then to calculate the derivative in order to find the extreme 

values. Novices may not recognize the structure of the formula and will probably be limited 

to using a heuristic such as “make a table”. This example shows how recognition determines 

the problem representation and hence the heuristic search: recognition guides heuristic 

search. In the next section different levels of recognition and of heuristic search are 

identified. 

2.2.6 Levels of recognition and heuristic search 

In this section on the different levels of recognition and heuristics used in our framework we 

will first focus on recognition, and then on heuristic searching in graphing formulas. The 

literature on reading formulas and expertise mentioned in Theory section 2.2, and the above 
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example, suggest that different levels of recognition are possible: from complete recognition 

(the graph is instantly known), to decomposing a formula into known subgraphs, to no 

recognition of the graph. On the basis of the literature, our own reflections, and several pilot 

interviews before our research, we propose the following six levels of recognition: 

- Level A: the graph is immediately recognized. For instance, graphs of 2 4y x= − +  and 

2y x= are instantly visualized.  

- Level B: the equation is recognized as a member of a family of which the possible graphs are 

known. Only a brief analysis is needed to graph the formula. For instance, 4 0.75 3xy =  +  

is recognized as belonging to the family of decreasing exponential functions; 4 26y x x= − +

is described as a polynomial function of degree 4, so its graph has an M or  form because of 

the negative main coefficient. 

- Level C: the formula is split into sub-formulas that can be instantly visualized. For instance, 

4 /y x x= + is decomposed into y x= and 4 /y x= , or 2 6y x x= +  into 2y x=  and 

6y x= +  

- Level D: characteristic aspects of the graph are recognized but the rest of the graph is not. For 

instance, the graph of  4 /y x x= +  is described as ‘having a slanted asymptote y x= and a 

vertical asymptote 0x = ’, but no other features of the graph are described. 

- Level E: the graph is not even partly recognized, but the participant is able to use the 

algebraic formula for deliberate exploration of the graph. For instance, the formula 
2 2/ ( 2)y x x= +  is analyzed by qualitative reasoning: domain is ℝ, zero at 0x = ; the graph 

is symmetrical; if x →  then 1y →  (infinity behavior), so 1y =  is a horizontal asymptote; 

the graph increases for positive x values. 

- Level F: the graph is not recognized, and neither are any features of the algebraic formula. At 

this level one is restricted to using a standard repertoire to find characteristics of the graph, 

i.e., domain, zeroes, and extreme values via the derivative, or making a table with random x  

values. 

These levels of recognition can be linked to Mason’s levels of attention (Mason, 

2003) and Thomas and Hong’s model of interaction with representations (Thomas & Hong, 

2001). The latter gives a hierarchy of observations of a representation: from surface 

observation, via  noting properties, to actions on the representation in order to obtain further 

information or understanding of a concept (Thomas & Hong, 2001). Our levels of recognition 

can be linked to Mason’s levels of attention as follows: gazing at the whole (an algebraic 
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formula) while hardly being aware how to proceed can be related to level F, discerning 

details to level E, recognizing relationships between different details, perceiving properties, 

and seeing the essential structure to levels C, B or A.  

Expertise research shows that experts use more efficient heuristics than novices do. 

These efficient heuristics are called ‘strong’. The stronger the heuristics, the more 

characteristics of the problem situation and domain-specific knowledge will be used, which 

results in faster problem solving. When graphing formulas these stronger heuristics will result 

in more information about the whole graph. These descriptions are in line with the global 

versus the pointwise approach formulated by Even (1998). We will give two examples of 

strong vs. weak heuristics.      

Someone having to graph ln( 4)y x= −  can recognize this function as a logarithmic 

function with a graph that increases and has a vertical asymptote. A strong heuristic is to 

sketch the standard function ln( )y x= and use a translation, because the focus is on the whole 

graph. A weak heuristic is to find the zero and vertical asymptote and calculate some points, 

because in that case the person only looks locally and tries to construct the graph with this 

local information.  

When someone has to graph a formula and does not even partly recognize the graph, 

making a table is considered a weaker heuristic than qualitative reasoning about infinity 

behavior or about symmetry, because of the difference in local and global information about 

the graph.  

Thus, regarding graphing formulas we have identified six levels of recognition (from 

direct recall to no recognition at all), and strong and weak heuristics. From the expertise 

literature, we have learned that recognition guides heuristic search. This interplay between 

recognition and heuristics results in a two-dimensional framework: For every level of 

recognition, we can formulate strong and weak heuristics, and so construct a two-dimensional 

framework (Table 2.1).  
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  Table 2.1 Two-dimensional framework  

                                                  Heuristic search (strong→weak)  
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A A1. Graph is 

instantly recognized 
as a whole 

    

B B1. Recognition of 
family (with 
characteristics); 
possible graphs are 
known 

B2. Search for 
‘parameters’ of the 
graph 

B3. Investigate 
the family 
characteristics, 
for instance via 
zeroes, 
derivative 

  

C C1. Split formula in 
sub-formulas, 
graphs of sub-
formulas being 
known  

C2. Compose the 
graphs by qualitative 
reasoning  

 

C3. Compose 
the graphs by 
making a table 

  

D D1. Characteristic 
aspect of graph is 
recognized; rest of 
graph is unknown 

    

E E1. Graph is not 
recognized; 
algebraic formula is 
starting point for 
strategic exploration 

E2. Qualitative 
reasoning for instance 
about domain, or 
vertical asymptote, or 
symmetry, or infinity 
behavior, or 
increase/decrease  

E3. Algebraic 
manipulation 

E4. Strategic 
search, for 
instance for 
zeroes or 
extreme values 
(via derivative) 

E5. Calculate 
strategically 
chosen 
point(s)  

F F1. No recognition 
at all 

F2. Standard repertoire 
of research 

F3. Make table 
with random x  
values 

  

 

2.2.7 Research questions 

We wanted to check if the differences between the strategies for graphing formulas of 

experts, teachers, and learners could be accommodated within the framework of Table 2.1. 

We also wanted to check how often a person would use more than one strategy, so that the 

description of sequences of strategies may result in a “path” in the framework. At this stage 

of our research, having established the framework, we focused first on strategies of experts. 

Experts are expected to have more knowledge, and thus to recognize more and to use stronger 

heuristics. Therefore we expected their paths in the framework to contain fewer steps 

compared to the non-experts, and to be situated predominately on the upper side (more 

recognition), and/or on the left side (strong heuristics) of the framework in comparison with 

the paths of non-experts.   
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This raised the following questions: 

1) Does the framework describe strategies in graphing formulas appropriately and 

discriminatively? 

2) Which strategies do experts use in formula-graphing tasks?  

2.3 Method 

This study can be characterized as an exploratory study, allowing for a portrayal of 

the richness of the situation in which knowledge elements and heuristics have to be 

established. Before we started the experimental part of our research, we discussed formula-

graphing strategies in interviews with three well-known researchers in mathematical 

education. These interviews provided us with an inside view of the levels of recognition and 

heuristics used in graphing formulas such as 4 /y x x= +  and 21y x= + .  

2.3.1 Tasks 

To elicit the participants’ strategies we developed two tasks. See Figure 2.3. Because 

we wanted to move participants out of their recognition zone, these tasks contained complex 

formulas and graphs. To challenge the participants’ adaptive expertise, we presented them 

with a new situation, such as task B below, which required them to work from graph to 

formula, which is the reverse of the usual order. Such a reverse task calls on the same 

thinking processes, because participants are expected to graph formulas when they elaborate 

and test potential solutions.  

During both tasks, participants were allowed to use only paper and pen. The available 

time was 10 minutes for each problem. Participants were asked to think aloud; this was not 

expected to disturb their thinking process and should give reliable information about their 

problem-solving activities (Ericsson, 2006).  

    Figure 2.3 Task A and task B 

Tasks 

In the first task, we ask you to graph a formula. In the second task, we ask you to find a formula that 

fits a given graph. We are interested in your strategies. Please voice your thoughts and think aloud 

while solving these tasks. Time indication: 10 minutes per task.  

Task A. Graph the formula 𝑦𝑦 = 2𝑥𝑥√8 − 𝑥𝑥 − 2𝑥𝑥 

Task B. Find a formula that fits the graph                                   
        

40

Chapter 2



Graphing formulas by hand to promote symbol sense                                                      
 

41 
 

2.3.2 Participants 

To make sure we covered the full range of possible strategies, we invited highly 

regarded mathematical experts along with a range of teachers to participate. Five experts 

were selected, from different backgrounds: three mathematicians who teach first-year 

students at university, one author of a mathematical textbook, and one teacher educator. All 

of them had a master’s degree or PhD in mathematics and had more than ten years of 

experience in teaching. In their education and in their work, they often have to graph 

formulas, and therefore we considered them experts in graphing formulas. We assigned the 

letters P, Q, R, S, and T to our five experts.  

We would expect the experts’ paths in the framework to be located predominantly on 

the upper and left sides of the table. In order to provide a contrast with the experts we invited 

three math teachers to solve the same tasks. Teachers are not novices, but we do not assume 

all teachers to have the same level of expertise in graphing formulas. We would expect 

teachers’ paths to be situated more on the lower and right sides of the framework. The 

teachers, labeled U, V, and W had 30, 6 and 2 years of teaching experience, respectively.  

2.3.3 Coding for task A 

 All participants’ performances were videotaped and transcribed, and we used the 

framework to analyze the results. The transcriptions of the think-aloud protocols were cut 

into sections to allow encoding according to our framework. Unspoken actions and 

observations of the experimenter were indicated by [….]. The recognition levels mentioned in 

the Theory section were used to start the encoding. Coding was done according to the 

following instructions:  

- If a participant immediately recognizes the graph 𝑦𝑦 = 2𝑥𝑥 as a straight line or 𝑦𝑦 = √𝑥𝑥 as a half 

horizontal parabola, encode A1 ( the graph is instantly recognized) 

- If a participant sees 𝑦𝑦 = √8 − 𝑥𝑥 as a member of the family of square root functions and uses 

transformations on 𝑦𝑦 = √𝑥𝑥 encode B1-B2; however, if the participant does not use 

transformations but instead determines starting point (8,0) and calculates one or more points 

to determine whether the graph is to the right or to the left, encode B1-B3 

- If a participant sees 𝑦𝑦 = 2𝑥𝑥√8 − 𝑥𝑥 and decomposes this formula into 𝑦𝑦 = 2𝑥𝑥 and                       

𝑦𝑦 = √8 − 𝑥𝑥 (C1), graphs both formulas immediately (A1), and then multiplies the graphs by 

qualitative reasoning (C2), encode C1-A1-C2.  If a participant multiplies these graphs by 

multiplying several y values, encode C1-A1-C3 
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- If a participant sees 𝑦𝑦 = 2𝑥𝑥√8 − 𝑥𝑥 and describes the graph around (8,0) in terms of ‘from 

(8,0) it starts to the left with a vertical tangent’ (D1), and then makes a table with several 

well-chosen  x values (E5), encode D1→E5  

- If a participant sees 𝑦𝑦 = 2𝑥𝑥√8 − 𝑥𝑥 − 2𝑥𝑥, starts factorizing and calculates zeroes, domain, and 

extreme values, encode E1-E3-E4-E2-E4 

All fragments in the protocols were coded by two coders working independently. The 

few differences were discussed, and agreement was reached in all cases. The encodings were 

displayed in the framework. If the same encoding appeared several times in a row, this was 

noted as only one point in the relevant segment of the framework. For every participant this 

resulted in a path inside the framework. In addition, the time needed to solve the problem and 

the extent to which a participant was successful was indicated.  

2.3.4 Task B: From graph to formula 

 From the two-dimensional framework, we derived a special framework to analyze the 

performances on task B. We used the same recognition levels; the heuristics on every 

recognition level in the two-dimensional framework were “translated” into heuristics for this 

new task. For this derived framework similar encoding instruction were formulated.  

  Table 2.2 Derived framework for task B: from graph to formula 

   

                                                              Heuristic search (strong→→weak) 

   
(lo

w
 

  h
ig

h)
  L

ev
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ec
og
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A A1. Formula is instantly 
recognized  

  

B B1. Recognition of family of 
formulas (‘is something like…’) 

B2. Searching for ‘parameters’ 
of the formula (e.g., 
translation or via zeroes) 

 

C C1. Graph is decomposed into 
subgraphs  

C2. Finding formulas for 
subgraphs and composing the 
formula  

 

D D1. ‘Parts of the graph give 
parts of formula’  (part of 
formula is recognized)  

D2. Adjusting a formula to 
characteristics via qualitative 
reasoning 

 

E E1. Mentioning algebraic 
formulas (‘can it be something 
like this?’) without direct link to 
graph 

E2. Checking a formula via 
qualitative reasoning  

E3. Checking a formula 
by general methods 
(zeroes, extreme values, 
table) 

F F1. No recognition at all   
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2.4 Results 

      2.4.1 Results: graphing a formula 

We first present the results of task A, graphing the formula 𝑦𝑦 = 2𝑥𝑥√8 − 𝑥𝑥 − 2𝑥𝑥. For 

all participants we encoded the protocols based on the framework. These encodings can be 

tabulated as in the example below. We illustrate this process for expert P (Table 2.3); the 

results for all participants are given in Table 2.4.  

  Table 2.3 Expert P’s results on task A  

 

  Table 2.4 Results on task A  

Fragments encoding  
‘yes, then I write down the formula; I always start like this’ ‘yes, I establish the 
domain: 8x  ’ 

E1/E2 

 ‘anyway, the graph goes through (0,0)’ [starts sketch] E4 
 ‘if I take 8 then the graph is on -16’ [draws point (8,-16)] E5 
 ‘that will be vertical there’ [draws vertical part of graph in (8,-16) ] D1 
 ‘what is happening if I look at minus infinity’ [draws part of graph down left] E2 
 [factorizes the formula and write 𝑦𝑦 = 2𝑥𝑥(√8 − 𝑥𝑥 − 1)] E3 

 [calculates the derivative; makes a mistake with the chain rule; calculation gives an 
equation which has no solutions] 

E4 

‘this is a hassle; there has to be a simpler way’ ‘I’ll start once more; I have √8 − 𝑥𝑥’ 
[draws graph of  𝑦𝑦 = √8 − 𝑥𝑥] 

C1/A1  

 ‘-1’ [graph of  𝑦𝑦 = √8 − 𝑥𝑥 − 1] B2 
 ‘multiplies this by 2𝑥𝑥’ C2 
‘that means that the graph here is still a little lower’ [points around 𝑥𝑥 = 8] C2 
 ‘and if I multiply by 2𝑥𝑥 , anyway on this side it is still positive; and this will be 
negative’ 
[points near  𝑥𝑥 = 8] 

C2 

 ‘and here it is 0’ [points to the zero of  of  𝑦𝑦 = √8 − 𝑥𝑥 − 1] C2 
 ‘the turning point should be here’ [points near  𝑥𝑥 = 4] C2 
 ‘and here [points left of y axis] I multiply by something negative and the graph will go 
like this’ 
[sketches graph left of y axis] ‘and the graph will go down very quickly’ ‘it will result 
in this graph’ ‘and the zero will be at the moment that √8 − 𝑥𝑥 equals 1; so  𝑥𝑥 = 7’ 
 [looks at the calculations of the derivative; but cannot find the mistake] 
‘well it has to be something like this; I made a mistake in the calculation of the 
derivative’ 

C2 

Experts 

P E1/E2 E4 E5 D1 E2 E3 E4 C1/A1 B2 C2 C2 C2 C2 C2 C2 
Q C1/A1 C2 C3 E3 C1/B2 C3 C3 C2 C2 C2 C2 C3 C2 C2  
R E1/E3 F2 F2 E5 F2 C1/B2 C2         
S E1/E3 E2 E5 E4 E2           
T E1/E2 E5 E5 E2 E4 E2 E4         
Teachers 
U E1/E2 E5 E3 E4 E2 E5 E2 E2        
V E1/E3 E4 E5 E5 E2 E4 E5 E2 E4 E4 E2 E5 F3   
W E1/E2 E5 E5             
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For every participant the data are displayed as a path in the framework. Starting point 

“S” and end point “E” are indicated, as well as the time (in minutes) needed, and whether the 

graph was correct, partially correct, or not correct (Figure 2.4). 

P:  time 7:50; correct graph 
A1 
 

    

B1 
 

B2 B3   

C1 
 

C2 
      E 

C3   

D1 
 

    

E1 
      S 

E2 E3 E4 E5 

F1 
 

F2 F3   
 

Q: time 4:00; correct graph 
A1 
 

    

B1 
 

B2 B3   

C1             
S  

C2 
      E         

C3   

D1 
 

    

E1 
 

E2 E3 E4 E5 

F1 
 

F2 F3   
 

R: time 4:48; correct graph 
A1 
 

    

B1 
 

B2 B3   

C1 
 

C2 
   E 

C3   

D1 
 

    

E1 
 S 

E2 E3 E4 E5 

F1 
 

F2 F3   
 

S: time 1:45; correct graph 
A1 
 

    

B1 
 

B2 B3   

C1 
 

C2 C3   

D1 
 

    

E1 
     S 

E2  E 
 

E3 E4 E5 

F1 
 

F2 F3   
 

T: time 6:26; correct graph  
A1 
 

    

B1 
 

B2 B3   

C1 
 

C2 C3   

D1 
 

    

E1 
   S 

E2 E3 E4 E 
    

E5 

F1 
 

F2 F3   
 

U: time 3:00; correct graph 
A1 
 

    

B1 
 

B2 B3   

C1 
 

C2 C3   

D1 
 

    

E1 
S  

E2 E 
 

E3 E4 E5 

F1 
 

F2 F3   
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V: time 10:35; partially correct graph 
A1 
 

    

B1 
 

B2 B3   

C1 
 

C2 C3   

D1 
 

    

E1 
S  

E2 E3 E4 E5 

F1 
 

F2 F3 
   E 

  
 

W: time 3:45; partially correct graph 
A1 
 

    

B1 
 

B2 B3   

C1 
 

C2 C3   

D1 
 

    

E1 
S  

E2 E3 E4 E5  
  E       

F1 
 

F2 F3   
 

  Figure 2.4 Results on task A in the two-dimensional framework 

Figure 2.4 shows that in task A all experts found a correct graph, although T made a 

mistake when calculating the extreme value of the function. Experts solved this task in 

about five minutes on average. Four out of five experts started at recognition level E: the 

algebraic formula is the starting point for exploration. Only expert Q started by 

decomposing the formula into sub-formulas, and later considered a different decomposition.  

Experts S and T started by exploring the algebraic formula and used qualitative 

reasoning. Both strategies can give fast results. Some experts (P and R) took an in-between 

position: they started by exploring the algebraic formula but later switched to 

decomposition. The protocols show their considerations, in which they state that they do not 

make sufficient progress and will start to look for alternative strategies: ‘this is a hassle, 

there has to be a simpler way’ (from the protocol of expert P). Only experts P, Q, and R 

used their repertoire of formulas that can be instantly visualized in this task.  

All teachers started on recognition level E, which shows that they did not use their 

repertoire of formulas that can be instantly visualized. Two teachers were less successful in 

completing this task: their graphs were only partially correct. In general, the teachers’ paths 

are located in the lower and right sides of the framework.  

        2.4.2 Results on task B: from graph to formula  

In order to analyze the performances on task B (finding a formula that fits a given 

graph), we encoded the fragments of the thinking-aloud protocols. These encodings are 

tabulated below. First, we illustrate this process for expert S (in Table 2.5); we give the 

results for all participants in Table 2.6.  
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  Table 2.5 S’s results on task B 

 

  Table 2.6 Results for task B 

 

In task B, four out of five experts found a correct formula: 𝑦𝑦 = 𝑥𝑥2𝑒𝑒−𝑥𝑥2 (experts P, Q, 

R) and 𝑦𝑦 = 𝑥𝑥2/(𝑥𝑥2 + 1)2  (expert S). Halfway through, expert T (total time 6:26 minutes) hit 

on a correct formula ( 2 | |xy x e−= ) but did not recognize this as correct and proceeded without 

finding another correct formula. Teacher U found 𝑦𝑦 = 𝑥𝑥2/(𝑥𝑥4 + 1)  in 4:40 minutes. The 

other two teachers had more difficulties: V found 𝑦𝑦 = |𝑥𝑥|/𝑒𝑒|𝑥𝑥|  in 6:20 minutes and W 

presented 𝑦𝑦 = (1
2)𝑥𝑥2 within 1:15 minutes as a formula, which would fit the graph.  

So, overall, most experts used encodings at level C, in which the graph is decomposed 

into subgraphs (expert R), or decomposed by describing subgraphs (experts P, Q, T). The 

strategies used most frequently, and used by every participant, were those of adjusting a 

Fragments encoding 
 ‘You need an asymptote and at x=0 the graph is at zero; that [means] the graph is 
symmetrical, so I do something with  𝑥𝑥2’ 

 
D1 

‘first I look for something that starts at 0 for positive values , increases and then will 
decrease to 0; it is hard’ [pause] ‘Around here is a maximum’ 
‘you can do something with 𝑥𝑥2; (𝑥𝑥 − 1)2 has a minimum; the 1/….has a maximum 
‘[writes down  1/(𝑥𝑥 − 1)2] 

 
D2 

‘but then it will go in this direction and at  x=0 is not 0’ E2 
 ‘thus, if I multiply by x’ 
[writes down  𝑦𝑦 = 𝑥𝑥/(𝑥𝑥 − 1)2] ‘then at  x=0  it will be 0 and if  x goes to infinity it 
will still go to 0’ 

D2 

 ‘This seems correct; I take 𝑥𝑥2; so I get 𝑦𝑦 = 𝑥𝑥2/(𝑥𝑥2 − 1)2 D2 

 ‘no that is not correct’ E2 
´then instead of  a minus I make + ; because otherwise I will get an asymptote 
[writes 𝑦𝑦 = 𝑥𝑥2/(𝑥𝑥2 + 1)2]´ 

D2 

´Let’s  see; again this is not correct; I want a maximum at x =1 not at x=0 ; 
If I look at 𝑥𝑥/(𝑥𝑥 + 1) or  𝑥𝑥 + 1/𝑥𝑥? [pause] this is not correct´ 

E2 

‘Oh, this one might perhaps correct after all:  𝑦𝑦 = 𝑥𝑥2/(𝑥𝑥2 + 1)2; seems OK; fine 
function’ 

E2 

Experts 
P C1 C2 D2 E2              
Q D1 C1 C2 E2              
R B1 E2 D2 E2 C1/2 D2 E2           
S D1 D2 E2 D2 D2 E2 D2 E2 E2         
T B1 E2 D2 E2 D2 E2 C1/2 D2 E2 D2 D2 E2 E3 D2 D2    E2  
Teachers 
U D1 D2 E3 E2 D2 E2            
V D1 D2 E2 D2 E2 D2            
W D1 D2 E2 D2 E2             
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formula to characteristics via qualitative reasoning, followed by checking a formula via 

qualitative reasoning.  

       2.4.3 Comparing choices of strategies 

       In both tasks, it was possible to use recognition strategies (levels A, B, C) or do an 

analysis of the algebraic formula (levels D, E, F). Figure 2.4 and Table 2.6 show whether a 

participant used a recognition strategy or not. In this way, strategies on the two tasks can be 

compared (Table 2.7).  

 Table 2.7 Comparison of strategies on tasks A and B 

Expert Task A 
strategy 

time Task B 
strategy 

time 

P 1
2 - 1

2  7:50  1-0 3:43 

Q  1-0 4:00  1-0 1:40 
R 1

2 - 1
2  4:48 1

2 - 1
2  2:32 

S  0-1 1:45  0-1 3:32 

T  0-1 6:26 (P) 1
2 - 1

2  6:26 (X) 

U  0-1 3:00  0-1 2:36 

V  0-1 10:35 (P)  0-1 6:22 (P) 
W  0-1  3:45 (P)  0-1  1:14 (X) 

 1-0   indicates that the recognition strategy was used; 
 0-1   indicates that the recognition strategy was not used, only analysis of the algebraic formula; 
1
2 - 1

2  indicates that the participant started with an analysis of the algebraic formula and later switched  
to recognition strategies; 
 “X”: the problem was not solved correctly; “P”: the solution was only partially correct. 

Most participants were consistent in their choice of strategy on both tasks; they used 

either recognition strategies or analysis of algebraic formulas (see Table 2.7). Both 

strategies can be successful and can give fast results.  

The videotapes show that all participants started without any hesitations. They appear 

to recognize the type of task and do not seem to consider any general problem-solving 

heuristics. 

2.5 Conclusions and discussion 

Learners have difficulties reading algebraic formulas and the underlying process-

object duality of functions. In graphing a formula, they have to read the formula and to use 

both a process and an object perspective. It was largely unknown what are effective and 

efficient strategies for graphing formulas. The purpose of our research was to identify a 
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framework of strategies involving graphing formulas and to describe experts’ strategies in 

graphing formulas.  

2.5.1 Conclusions 

The first aim of our research was to identify a framework with which we could 

describe formula-graphing strategies appropriately and discriminatively. We consider the 

framework appropriate if all strategies used by participants can be encoded in it. The results 

show that all statements from the protocols of all eight participants could actually be encoded 

within the two-dimensional framework. Therefore, we conclude that strategies used by the 

participants in our tasks can be described appropriately within the two-dimensional 

framework. The framework is discriminative if different strategies used by participants result 

in different paths in the framework. Figure 2.4 shows the differences and similarities in 

strategies, which also appear in the protocols. The videotapes and the protocols show that Q 

is more straightforward in his strategy choices, works faster and in a more straightforward 

way, and uses his domain knowledge and skills more efficiently. The different paths of 

experts P and Q in the framework, resulting from differences in strategy according to the 

protocols, are clearly seen: Q is faster (4:00 versus 7:50 minutes), Q’s path contains fewer 

steps, and Q’s steps are situated more at the upper side of the framework (indicating more 

recognition), and more on the left side (indicating stronger heuristics). Therefore, we 

conclude that the framework is also discriminative. 

The second aim of our research was to describe experts’ strategies in graphing-

formula tasks. The experts in our research used a range of strategies in graphing formulas. 

Qualitative reasoning and recognizing and using formulas that can be instantly visualized by 

a graph seem to be the main strategies used by the experts in our research. Table 2.3 and 

Table 2.7 show that some experts focused on recognition and used their repertoire of 

formulas that can be instantly visualized by a graph. Other experts focused on analysis of 

algebraic formulas and used their strong heuristics, such as qualitative reasoning about 

characteristics as, for instance, domain, infinity behavior, and symmetry.  

Expertise in graphing formulas does not involve calculations of derivatives. All our 

experts seemed to hesitate to start such calculations. In addition, when two of them did, they 

made mistakes. 

We formulated task B in order to establish whether expertise can be used functionally. 

In this task, participants were forced to use their repertoire of formulas that can be instantly 
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visualized. Results from Table 2.6 show that recognition was used to formulate hypotheses 

about the formula, and that formula graphing was used to test these hypotheses (E2, E3 in the 

derived framework). This shows that for task B the same thinking processes were needed as 

for graphing formulas. Since all fragments from the protocols could actually be encoded 

within the derived framework, the results for task B are in accordance with the two-

dimensional framework.  

Although in graphing formulas (task A) some of our experts did not use their 

repertoire of formulas that can be instantly visualized by a graph, when they were forced to, 

as they were by task B, most experts showed that they do have a large repertoire and were 

able to use that repertoire. 

Not all our teachers solved these tasks adequately. As expected, teachers’ paths are 

situated on the lower side of the framework, because they did not use high levels of 

recognition (levels A, B, or C). The variation in the teachers’ performances (correct 

graph/formula, time needed) is large. The performance of the most experienced teacher (U) 

closely resembles that of expert S. Teacher U can be considered an expert in this domain of 

graphing formulas. Teacher V produced only partially correct solutions and needed many 

steps in his solving process, as well as a lot of time. Teacher W worked very fast, used weak 

heuristics, and produced inaccurate solutions.  

        2.5.2 Discussion    

In literature, several aspects are mentioned which are important for graphing formulas 

(see Theory section) but there was still no framework to describe strategies involving 

graphing formulas. In our framework knowledge about expertise, about recognition, and 

about heuristic search for graphing formulas is integrated. From expertise literature, it is 

found that recognition and heuristic search are two components of expertise. To investigate 

these components, we used theory about reading formulas and the process and object 

perspectives.  

For recognition a repertoire of basic functions (Eisenberg & Dreyfus, 1994), symbol 

sense (Arcavi, 1994), decomposition of algebraic expressions into smaller expressions 

(Ernest, 1990), and the classification of function-families are considered important aspects. 

Different levels of awareness have been formulated by Mason (2003). In this research, these 

aspects have been combined into a scale of recognition, from complete recognition to no 

recognition at all.   
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For heuristic search, we use aspects of process and object perspectives. The process 

perspective in which a function is seen as a calculation rule in which x and y values are 

linked, gives often only local information about the graph and is called a pointwise approach 

by Even (1993, whereas the global approach (Even, 1993) or covariational reasoning 

(Carlson, 2002; Oehrtman et al., 2008) gives information about a function's behavior on an 

interval or in a global way. We consider heuristics that result in information about intervals as 

strong and heuristics that result in local information as weak. In this way, heuristics are 

ordered into a scale of heuristics, form strong to weak.  

We found that the framework did cover the strategies used by the participants. 

However, not all strategies in the framework were found in the participants’ protocols (see 

Figure 2.4). An explanation might be the limited number of experts and teachers that could be 

included in the study. This limitation is due to the labor-intensive method for strategy 

assessment. Further research, with a larger group of experts and teachers, may provide more 

information about the strategies used in graphing formulas. In addition, students should be 

included so that the lower range of the framework, i.e., levels E and F, may be explored 

further.  

 Another aspect that could have influenced the strategies we found can be the choice 

of the formula and the graph used in tasks A and B. For instance, recognition level D 

(“characteristic aspect of graph is recognized; rest of graph is unknown”) was found only 

once. In the earlier pilot interviews this level was used by experts in the case of rational 

functions such as 4 /y x x= +  and 24 / ( 4)y x= − . Future research, involving other 

functions, such as these rational functions, can provide information on whether alternative 

strategies not mentioned in the framework are used regularly.  

Reflecting on the results of task A, we were surprised by the form of the paths in the 

framework (Figure 2.4). Although we expected the experts’ paths in the framework to be 

located predominantly in the upper and left range of the framework, the paths of the experts S 

and T were situated in the lower range of the framework and the paths of experts P and R 

started in the lower range of the framework. Task A seems to have triggered our experts’ 

strong heuristics and not their repertoire of formulas that can be instantly visualized by a 

graph. When a task has been practiced many times, a program of self-instruction can be 

developed. The familiar task triggers a set of personal metacognitive instructions, evoking 

specific activities (Veenman, Van Hout-Wolters, & Afflerbach, 2006). Although this can help 
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in problem solving, routine can also be a risk. For chess, Saariluoma (1992) found that strong 

players tend to choose stereotyped solutions and sometimes miss non-typical, shorter 

solutions. Perhaps this can explain why some of our experts did not use their repertoire of 

formulas that can be instantly visualized by a graph.  

In this research, a framework with hierarchies of recognition and heuristic search in 

graphing formulas has been defined. This framework can be used to assess expertise in 

graphing formulas. In this way, teachers’ and students’ current strategies can be compared 

with expert strategies. In addition, the framework might be used to indicate a development 

trajectory for teaching efficient strategies in graphing formulas. Further research is necessary 

to elucidate if, and how, the framework can indeed be helpful in learning and teaching to 

graph formulas.    
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