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ABSTRACT 

Corneal transplantation is currently the most effective treatment to restore 
corneal clarity in patients with endothelial disorders. Endothelial transplantation, 
either by Descemet Membrane Endothelial Keratoplasty (DMEK) or Descemet 
Stripping (Automated) Endothelial Keratoplasty (DS(A)EK), is a surgical 
approach that replaces diseased Descemet membrane and endothelium with 
tissue from a healthy donor eye. Its application, however, is limited by the 
availability of healthy donor tissue. To increase the pool of endothelial grafts, 
research has focused on developing new treatment options as alternatives to 
conventional corneal transplantation. These treatment options can be 
considered as either “surgery-based”, i.e. tissue-efficient modifications of the 
currently endothelial keratoplasty techniques (e.g. Descemet Stripping Only 
(DSO)/Descemetorhexis Without Endothelial Keratoplasty (DWEK), hemi- 
and Quarter-DMEK), or “cell-based” approaches, which rely on in vitro 
expansion of human corneal endothelial cells (hCEC) (i.e. cultured corneal 
endothelial cell sheet transplantation and cell injection).  

In this review, we will focus on the most recent developments in the field of the 
“cell-based” approaches. Starting with the description of aspects involved in the 
isolation of hCEC from donor tissue, we then describe the different natural and 
bioengineered carriers currently used in endothelial cell sheet transplantation, 
and finally we discuss the current “state of the art” in novel therapeutic 
approaches such as endothelial cell injection.  

 

KEYWORDS: cornea, corneal endothelium, transplantation, tissue engineering. 
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INTRODUCTION 

The corneal endothelium is a monolayer of hexagonal, tightly packed cells that 
marks the posterior part of the cornea. Human corneal endothelial cells (hCEC) 
are not thought to be capable of replication in vivo, being held in the G1 phase 
of the cell cycle.1-3 As a result, hCEC have a restricted lifespan, meaning that 
their density and number decline naturally with  age, with a decrease of ~0.6%  
per year from about 3500 – 4000 cells/mm2 at birth to 2300 cells/mm2 by the 
age of 85.4-6 When hCEC are damaged, a cascade of events are initiated to repair 
the defect. Adjacent cells migrate centripetally, form new tight junctions and 
finally restoring the cellular pump function. During this process, the migrating 
cells remodel from an irregular endothelial cell to a more hexagonal pattern, 
though with fewer cells/mm2.7 The minimum density reported for a corneal 
endothelium to remain functional is thought to be approximately 500 
cells/mm2.8 

Two of the most common pathologies of the corneal endothelium are Fuchs 
endothelial corneal dystrophy (FECD)9 and bullous keratopathy.10 These 
pathologies are commonly treated by corneal transplantation to restore corneal 
clarity in patients with endothelial disorders.8 Descemet membrane endothelial 
keratoplasty (DMEK) is the most selective corneal transplantation technique, 
where the patient’s Descemet membrane (DM) and damaged endothelium are 
removed and replaced with the same layers, from a donor eye.11,12 However, its 
application is limited by global shortage of high-quality donor tissue, with only 
one donor available for every 70 patients in need of a transplant.13 Different 
strategies have been applied in the past decades to solve the tissue shortage and 
these may be broadly separated into two approaches: the surgical and the “cell-
based” approach.  

Surgical approaches to target tissue shortage include Descemet Stripping Only 
(DSO)/Descemetorhexis Without Endothelial Keratoplasty (DWEK) and 
Quarter-DMEK technique, which were developed for eyes with central FECD. 
With DSO/DWEK, the diseased tissue is removed without replacement by 
donor tissue. The stripped region is re-populated by the migration of the 
peripheral endothelial cells that can restore corneal clarity, though with varying 
rates of success.14-16 Quarter-DMEK resembles standard DMEK, but the donor 
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DM-endothelial cell sheet is divided into four grafts allowing a much more 
efficient use of donor tissue.17,18 Clinical results up to 2-year follow-up for 
Quarter-DMEK show visual rehabilitation comparable to standard DMEK, but 
a higher endothelial cell density (ECD) decrease than standard DMEK.19,20 

The “cell-based” approaches rely on the in vitro expansion of isolated primary 
hCEC (Figure 1), as hCEC have been shown to be able to proliferate in vitro if 
given the appropriate stimuli.21 Currently, the main strategies to deliver hCEC 
onto the posterior corneal surface are cultured endothelial cell sheet 
transplantation and cell injection into the anterior chamber. Endothelial cell 
sheet transplantation requires a suitable cell carrier, which can have a natural 
origin or be a bioengineered matrix, and is currently still in a preclinical stage. 
Cell injection therapy, on the other hand, obviates the need for a cell carrier, as 
the cultured hCEC are injected directly into the patient’s anterior chamber. For 
this approach, first clinical results have been reported.22,23 

In this review, we focus on the two “cell-based” approaches, cell sheet 
transplantation and cell injection, by covering the entire approach from in vitro 
growth of primary hCEC over potential carrier for cell sheet transplantation to 
considerations for cell injection therapy to first pre-clinical and clinical result.  
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Figure 1: “Cell-based” approaches. Schematic representation of the two “cell-based” 
approaches described in this review: the endothelial cell injection approach and endothelial cell 
sheet transplantation approach. They both rely on the availability of a donor tissue (DMED = 
Descemet Membrane Endothelial Donor), from which hCEC will be isolated and subsequently 
cultured and expanded in vitro. At this point, for the cell injection approach, suspended hCEC 
will be supplemented with ROCK inhibitor and injected into the anterior chamber of the patient, 
after having removed the damaged endothelial tissue from the eye of the patient. For the 
endothelial cell sheet transplantation approach, cultured hCEC are passaged upon confluency, 
suspended in culture medium, seeded on the desired carriers, and then transplanted following a 
DMEK-like surgical protocol, upon descemethorexis to remove the damaged endothelial layer. 
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IN VITRO CULTURE AND EXPANSION OF CORNEAL 
ENDOTHELIAL CELLS 

Although hCEC have limited proliferative capacity in vivo, they do have the 
ability to proliferate in vitro. After the first reported successful in vitro expansion 
of hCEC in 1965,24 a plethora of protocols describing the isolation and in vitro 
growth of hCEC have been published.8,23,25-49 The abundance of protocols is 
mainly due to the challenges inherent in culturing and expanding hCEC in vitro, 
and so far, no protocol appears to be superior regarding the consistent expansion 
of hCEC. Successfully establishing a robust and reproducible cell culture 
protocol for hCEC isolation and expansion requires a fine-tuning of all the 
procedures involved: selection of suitable donor tissue, peeling of the corneal 
endothelium and DM from donor corneas, enzymatic digestion to isolate the 
hCEC, seeding of the resulting cell suspension using a combination of culture 
media and growth factors, and expansion and proliferation on appropriate 
substrates that mimic the in vivo conditions. It has been shown that the induced 
loss of cell contacts and  the supplement of the culture medium with selected 
growth factors boost hCEC growth.50 Multiple extracellular signals, however, 
can activate critical intracellular pathways and induce endothelial-to-
mesenchymal transition (EMT) of hCEC, where the cells acquire a fibroblast-
like phenotype thereby losing their morphological features and, most 
importantly, their function.8,34,40,50,51 Therefore, a lot of effort has been put in 
designing the appropriate protocols for hCEC isolation, expansion and 
propagation with a focus on maintaining hCEC morphology and function. 

 

Sources for corneal endothelial cell culture 

Primary hCEC isolated from cadaver donor corneas, stem cells, and cell lines 
have all been used as sources for corneal endothelial cell culture.52 The main 
sources of primary hCEC are human cadaveric donors, however, donor 
characteristics such as cell density,41 cause of death, previous surgery in the donor 
eye,53 overall health of the donor, and tissue storage time can have a significant 
impact on the culture success rate.54,55 Donor age can also play a role42 with a 
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usually lower proliferation capacity for hCEC derived from older 
donors.25,29,33,34,45,47,56-61 

It has also been reported that hCEC from the corneal periphery have a higher 
proliferation capacity than hCEC from the corneal center,30,55,57,58,62,63 though 
another study showed no difference in the replicative capacity between the 
peripheral and central areas of the cornea.55 Attempts to overcome the lack of 
donor material from which to isolate and expand hCEC in vitro, have included 
the immortalization of CEC via viral transfection,64,65 the disruption of the 
balance of cell cycle regulators,66,67 and the development of genetic 
transformations that resulted in immortalized hCEC lines.68 

Stem cells used for hCEC culture include organ-specific adult stem cells 
obtained from adipose tissue, umbilical cord blood or bone marrow,69-71 directed 
differentiation competent embryonic stem (ES) cells,72 induced pluripotent stem 
(iPS) cells,73 and hCEC precursors.74 For the latter, it has been suggested that 
existent stem-like progenitors of hCEC may retain more proliferative capacity 
compared to terminally differentiated hCEC.75 It is thought that such hCEC 
progenitors could be present in the area that separates the peripheral 
endothelium from the anterior part of the trabecular meshwork, and they might 
act as a cell supply activated in the event of a wound healing.35,37,74,76-81 However, 
these cells have been hard to identify because of a lack of suitable markers and 
their existence is still debated.77 In addition, the amount of stem cells found in 
this compartment of the cornea may be very low and could require an extended 
ex vivo culture to generate sufficient cells for transplantation.82 

 

Methods of isolation of corneal endothelial tissue 

Currently, the most used protocol for cell isolation consists of a two-step peel-
and-digest method (Figure 2).34,35,38,39,42,43,45,47,54,60,83-93 The Descemet Membrane 
Endothelial Donor (DMED) is first peeled from the underlying stroma of the 
donor cornea, followed by dissociation of cell junctions to separate the hCEC 
from the membrane. In respect to the method used to disrupt cell junctions, the 
tissue digestion strategies may be classified as enzymatic and non-enzymatic.82 
The enzymatic digestion procedures are based on enzymatic treatments such as 
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collagenase, trypsin, or dispase, while the non-enzymatic tissue digestion uses 
ethylenediamine tetraacetic acid (EDTA) to release cell-cell junctions.60 In 
enzymatic digestion, several approaches have been proposed,26,51 including the 
use of collagenase A as this enzyme induces a careful, selective reduction of the 
intercellular matrix with minimal damage to cell membranes and the ability of 
hCEC to expand.35,38,74 Another enzymatic digestion approach uses trypsin, 
which has been used successfully to cultivate and expand hCEC on bovine 
extracellular matrices.29 Nevertheless, trypsin mainly acts on the intracellular 
mucoproteins, thus affecting the cell membrane and is typically used in passaging 
monolayer cultures. For a more effective action during cell isolation, trypsin is 
often used in combination with EDTA, which disrupts lateral cell contacts thus 
separating cells from each other as well as from the culture surface without 
negative effects on cell viability.94 Liberase and dispase have also been shown to 
be useful in the isolation of CEC from corneal endothelial tissue.49,83   

The non-enzymatic method is based on the mechanism of action of EDTA to 
release cell junctions while it enhances cell division upon exposure to 
mitogens.54,55,62,70,94 Other approaches, usually applied in the beginning of hCEC 
isolation, include hCEC scraping from the DM,27 enzymatic digestion of hCEC 
on the cornea,26 a combination of enzymatic digestion of hCEC on the cornea 
and scraping,55 and explant culture.28,33,42,95-99 Furthermore, recent efforts have 
been made to isolate a purer population of hCEC with high proliferative capacity 
by density-gradient centrifugation to eliminate senescent cells.100 However, 
because of different issues of both enzymatic and non-enzymatic methods alone 
(contamination with other cellular types and decrease of cellular yield, 
respectively), the preferred method to date is a combined treatment that includes 
collagenase, to derive hCEC aggregates from the tissue, and incubation for short 
time with trypsin/EDTA to produce less cell damage.82 

 



 

35 
 

2 

Review on corneal endothelial cell replacement 

 

Figure 2: The “peel-and-digest” method. Series of images illustrating the 2-step, “peel-and-
digest” method applied for the hCEC isolation from donor tissue. After the peeling of the 
DMED from the donor cornea, the tissue is stored accordingly in the eye bank (a). Upon hCEC 
isolation, DM-EC sheet is exposed to collagenase digestion for 4-6 hours to disrupt the cell 
junctions and to obtain smaller fragments, which will be further dislodged in single cell 
suspension by flushing and centrifugation (b). After 2 weeks in culture, hCEC were able to form 
a uniform monolayer of tightly packed cells, which retained their characteristic hexagonal 
morphology (c). 

 

Culture media and growth factors 

Many hCEC culture media have been described with a combination of different 
base media (e.g. M199, L-valine-free IF, F99, Ham’s F12 + M199, Ham’s 
F12+DMEM (SHEM), MEM, Endothelial growth medium, DMEM, 
OPTIMEM-I), essential and non-essential amino acids (e.g. glutamine), sera (e.g. 
bovine, calf, horse, human), antibiotics (e.g. penicillin, streptomycin, 
gentamycin, amphotericin B, fungizone, doxycycline), growth factors or a 
combination thereof (e.g. basic fibroblast growth factor (bFGF), insulin, nerve 
growth factor, bovine pituitary extract, epidermal growth factor, transferrin), 
vitamins (e.g. ascorbic acid, l-ascorbic acid 2-phosphate) and other components 
(e.g. chondroitin sulphate, calcium chloride, DMSO, hydrocortisone, cholera 
toxin, selenium, sodium selenite, human lipids, RPMI-1640 multiple vitamin 
solution, type-I collagenase, B-27, Rho-associated protein kinase (ROCK) -
inhibitor, cysteine, TGFβ-inhibitor).28,29,33,34,37-39,41,43,45,47,51,52,55,56,60,62,84-88,91,92,95,98,99  

However, while none of these media may be superior in the reproducible 
cultivation and expansion of hCEC in vitro, the use of a so-called “dual-media” 
approach has gained popularity.21,42,43,89,101,102 Peh et al. were the first to describe 
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a dual-media approach, in which isolated hCEC were propagated using a culture 
system that included a proliferative medium, rich in growth factors, and a serum-
supplemented culture medium, without growth factors, in order to avoid 
epithelial-mesenchymal transition (EMT). A modified dual-media approach has 
also been described to increase the rate of obtaining successful cultures from 
elderly donor corneas.47  

In addition, several studies reported the use of conditioned medium from other 
cell types to promote hCEC growth. These include conditioned medium from 
murine embryonic stem cells (mESC),39,98 human bone marrow-derived 
mesenchymal stem cells (hBM-MSC),39 and human amniotic fluid (hAF).103 The 
first two treatments showed to be effective in hCEC proliferation and motility 
by predominantly acting on the cell cycle level, while hAF-containing culture 
medium stimulated hCEC growth. While conditioned medium from mESC is 
not suitable for clinical application due to the presence of a xenoantigen for 
human cells, condition media derived from both hBM-MSC and hAF can be 
used in the clinical setting. Condition medium from hAF is cheaper and more 
readily available than other growth factors, however the potential interdonor 
variability does not make this product fully suitable for clinical applications.  

  

Preventing endothelial-to-mesenchymal transition of hCEC during 
culture 

Preventing EMT is one of the most challenging issues in hCEC culture.8,34,40,50,51 
During EMT, hCEC loosen their specific markers and adopt mesenchymal 
characteristics. While EMT actually plays an important role in normal 
physiological processes such as wound healing, it also interferes with 
pathological processes such as fibrosis.50 The onset of EMT can be identified by 
typical events such as: disruption of cell-cell junctions, loss of cell polarity, 
modifications in cell shape and cytoskeletal organization, increment in the 
secretion of ECM proteins and genotypical changes (Figure 3).50 This loss of 
endothelial phenotype represents a big limit for the use of cultured hCEC in 
tissue engineering applied to corneal regeneration.40,50,104-110 Thus, in order for 
cultured hCEC to be applied in clinical practice, EMT must be suppressed 
during the culture process.50 
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Several strategies have been proposed to block EMT. As in vitro hCEC culture 
and expansion requires steps like cell isolation and passaging that inevitably 
cause the dissociation of cell junctions, culture conditions should be such that 
cell confluency and polarity are gained as fast as possible.50 This can be 
accomplished by steps as simple as increasing cell seeding density.41 During 
EMT, reorganization of the cytoskeleton can be visualized by the presence of α-
smooth muscle actin (α-SMA).104,111,112 The expression of α-SMA by hCEC has 
been shown to be promoted by transforming growth factor beta (TGF-β), a 
cytokine known to induce EMT.40,104  

 

 

Figure 3: EMT transition in cultured hCEC. Light microscopy images showing the transition 
from a successful hCEC culture to a fibroblastic culture following EMT. After enzymatic 
digestion, hCEC are expanded and form a confluent monolayer of small, hexagonal cells (a). 
Due to characteristic events such as changes in cellular gene expression and phenotype and loss 
of cell-cell junctions, cultured hCEC could undergo EMT, facing different phases from a culture 
of mixed phenotype (b) to a full fibroblast-like culture (c). This process is particularly 
disadvantageous because it limits the use of cultured hCEC for further purposes in tissue 
engineering. 

 

In normal cells, TGF-β arrests the cell cycle at the G1 stage, inhibiting 
proliferation and inducing differentiation. Studies have shown that hCEC are 
amongst the cells most sensitive to stimulation by TGF-β, with TGF-β having 
both pro-migratory and anti-proliferative effects on hCEC.105 In addition, 
blocking the TGF-β(2) receptor in proliferating hCEC by anti-TGF-β inhibitor 
SB-431542 allows expansion and proliferation, by avoiding EMT and 
uncontrolled growth of other cell types.40 L-ascorbic acid 2-phosphate (Asc-2P), 
a phosphate derivative of vitamin C,113 acts as an antioxidant and a stimulator of 
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hepatocyte growth factor (HGF) production previously known for stimulation 
of the barrier function in endothelial cell monolayers114 and the proliferation and 
replication of a number of cell types.115,116 Adding Asc-2P to hCEC culture media 
can also aid in cell growth, proliferation, and in delaying EMT.87,117 

Additionally, cells in which EMT is induced can increase the production of ECM 
proteins, such as collagens, cadherins and fibronectins.40 In vitro models of 
endothelial diseases were used to find out several factors involved in EMT that 
induced atypical ECM secretion and fibrosis by hCEC, including FGF-2.50 
Paradoxically, FGF-2 is often used to stimulate hCEC proliferation in vitro, 
despite the risk of inducing EMT of hCEC. The fine balance between FGF-2 
ability to either induce proliferation or EMT in cultured hCEC is currently under 
investigation.50 

 

Coatings 

Descemet membrane is the basement membrane secreted by the corneal 
endothelium and includes many proteins, such as fibronectin, laminin, collagen 
type IV and VIII and proteoglycans,118-123 and considerable developments have 
been done towards the design of a resembling native ECM environment for 
hCEC growth and proliferation.124-133 

Although hCEC are capable of attaching to and expanding on the tissue culture 
plates,42,60,85,98 the use of coating materials has shown superior results. Tested 
types of coating materials for hCEC expansion include varieties of 
collagen,31,42,51,83,85,87,92,96,99,134-138 fibronectin,27,29,42,51,85,99,131,137 laminin,51,90,99,131 and 
gelatin.27,139-142 Also mixtures of different components have been used,26,29,33,51,95-

97,99,143 of which the mixture of fibronectin, collagen, and albumin is the most 
widely used coating (FNC coating mix®).34,39,42,43,45,47,54,88,93,131   

It has been reported that FNC-coated culture plates improve the spreading of 
hCEC in culture and also reduce cell loss after rinsing.36 Moreover, hCEC 
cultures grown on FNC-coated plates showed a higher success rate in terms of 
cell confluence and morphology compared to cultures grown on fibronectin-
coated plates, collagen IV-coated plates, and uncoated plates.42  
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Laminin is another major component of the basement membrane, and is 
responsible for the regulation of cell migration, proliferation and 
differentiation.144,145 Laminin isoform laminin-5 (LM-5) has been shown to have 
a positive effect on hCEC adhesion and migration.99 Some other isoforms of 
laminin (laminin-511 and laminin-521), also expressed in DM, are good substrate 
candidates for in vitro hCEC culture, helping to increase cell adhesion and 
proliferation.90 Moreover, the inclusion of laminin E8 fragments (truncated 
proteins that include the active binding site)146 help cultured hCEC retain a better 
endothelial cell morphology compared to hCEC cultured on FNC coating mix.90 

Overall, however, the biological activity of hCEC on these coatings, even among 
studies using the same coating material, varies. This might be explained by the 
type of coating affecting hCEC adhesion, morphology, proliferation, and 
function.52 In addition, the variation among studies using the same coating might 
be explained by differences in the applied cell culture protocol.52 Nevertheless, 
the translation of these coatings to the clinical application is still doubtful since 
they are derived from animals which may bare the risk of pathogen transfer. The 
development of a recombinant form of laminin E8, however, offers the 
possibility of a xeno-free, good manufacturing practice (GMP)-compliant 
substrate.146 An alternative xeno-free substrate could be a pericellular matrix of 
decidua-derived mesenchymal cells (PCM-DM). This matrix has already been 
tested, with good results, as a substrate for human ES cells,147 iPS cells,148,149 and 
hCEC.137  
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CULTURED ENDOTHELIAL CELL SHEET 
TRANSPLANTATION 

Human CEC, successfully cultured and expanded in vitro, form intercellular 
junctions creating a cell sheet. A cell sheet, however, is too fragile to be handled 
surgically and requires support. To that end, substrates or carriers that provide 
mechanical support during transplantation of in vitro-cultured hCEC have been 
developed and tested. An ideal carrier should mimic the basic characteristics of 
the DM and therefore be transparent, permeable, not too thin to provide 
sufficient mechanical strength (as the elastic modulus could have an impact on 
cell phenotype),132 flexible to adjust to the corneal curvature, biocompatible, 
promoting hCEC-carrier interactions, and allowing interaction between the 
cultured hCEC layer and the recipient stroma in terms of exchange of nutrients 
and small molecules, and finally, be easily reproducible.52 Potential carriers, that 
can either be natural tissue materials such as amniotic membrane, human 
anterior lens capsules (HALC), and decellularized DM or 
stroma,46,48,68,83,84,136,143,150-153 or polymeric materials (natural and synthetic), have 
been explored as carriers to facilitate hCEC transplantation.31,85,86,88,131,132,142,154-159  

 

Natural tissue carriers 

Denuded DM and Devitalized Stroma 

As DM is part of endothelial grafts, and given that devitalized corneas or 
denuded DM supply the desired shape, mechanical strength and transparency, 
they have been widely tested as carriers for hCEC.52,60,95,130,131,143,150,152,160-162 The 
endothelial cells from donor DM can be removed by enzymatic treatment, in 
most cases with a combination of trypsin and EDTA (Figure 4 c, d), or via 
mechanical treatment or by applying several freeze/thaw cycles, to obtain a 
denuded DM.95,150,160-165 

Mimura et al. showed the feasibility of corneal reconstruction with cultured 
hCEC seeded on denuded DM and transplanted in nude rats.150 Up to one 
month after transplantation, hCEC functioned well and maintained corneal 
transparency. Another study, that used devitalized posterior corneal stromal 
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lamellae as a hCEC substrate, showed that the graft had intact barrier function 
and the hCEC expressed typical markers.152 Recently, in a rabbit model of 
bullous keratopathy, Peh et al. showed that hCEC seeded onto denuded DM or 
stroma were able to induce corneal clearance.46 However, when using devitalized 
corneal stroma, resident viable keratocytes may cause fibroblastic 
contamination.52 

Using an in vitro surgery model (Figure 5 e-h), hCEC-denuded DM constructs 
behaved similarly to the DMEK reference model. The constructs, however, 
displayed a ‘reversed’ rolling with the hCEC on the inside.166 In addition, this 
study showed that denuded DM derived from elderly donors show a highly 
structured surface due to imprints left by the removed cells (Figure 4 c, d). This 
structured surface seemed to be responsible for the impaired morphology of the 
cultured cells on these carriers. 

 

Human anterior lens capsule 

The human anterior lens capsule (HALC) is a transparent membrane that is 
mainly composed of interacting networks of laminin167-170 and collagen type 
IV,168,171,172 the latter being HALC’s most prominent protein,172 forming up to 
40% of its weight.173 In addition to its composition, the physical characteristics 
of HALC are also very similar to the DM in terms of thickness, elasticity and 
transparency.174,175 

HALC has been investigated as a scaffold for culturing and transplanting 
different ocular cells,176-180 including hCEC.84,136,166 For these purposes, HALC 
can be either manually isolated from donor eyes followed by an enzymatic 
treatment to remove cellular layers from the surface (Figure 4 a, b), or can be 
obtained during cataract surgery, limiting on one side the available diameter to 6 
mm approximately but allowing the isolation from the patients 
themselves.84,136,180 It has been shown that hCEC density and morphology when 
grown on HALC resembled those of healthy corneas.84 The surgical potential of 
CEC-HALC carrier constructs was tested in an in vitro surgery model (Figure 5 
a-d).166,180 Upon in vitro surgery, hCEC-HALC constructs behaved in a manner 
similar to the DMEK reference model. Interestingly, the hCEC-HALC 
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constructs exhibited a ‘reversed’ rolling property, with the endothelial cells on 
the inside. First in vivo tests in an animal model of CEC-HALC constructs were 
not successful due to the choice of the animal model system. The Goettingen 
mini-pigs used in that study showed an enhanced retrocorneal membrane 
formation limiting the information to be obtained on the CEC-HALC 
constructs.181 

 

 

Figure 4: HALC and “denuded” Descemet membrane preparation. To use human anterior 
lens capsule (HALC) and Descemet membrane as a carrier for hCEC sheet transplantation, 
cellular layers had to be removed from both sides of the substrates. When HALC was subjected 
to an enzymatic treatment with Trypsin/EDTA (TE) solution for 15 minutes, smooth sides were 
obtained (a, b). On the other hand, the treatment of Descemet membrane with TE solution was 
efficient to remove the cell layer, but the surface showed a structured pattern, most likely left by 
the removed cells (c, d). 
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Figure 5: In vitro surgeries with hCEC-carrier constructs for endothelial cell sheet 
transplantation. In vitro surgeries were performed to test the feasibility of hCEC-carrier 
constructs as potential alternatives to corneal grafts. The analyzed carriers were Descemet 
membrane (DM) from which the endothelial layer was removed (denuded DM), human anterior 
lens capsule (HALC), and collagen I-based carrier of 20 µm of thickness (LK20). The constructs 
were implanted using a DMEK surgical technique into an anterior remnant without endothelium 
mounted onto an artificial anterior chamber and several parameters were evaluated, such as 
staining with hypotonic Trypan Blue solution 0.04% (a, e, i), loading into the glass injector (b, f, 
j), implantation into the artificial chamber (c, g, k), and unfolding (d, h, l). 

 

Amniotic membrane 

Amniotic membrane is composed of collagen type IV182 and has been widely 
used for surgical purposes.183 It was the first successful natural carrier for ocular 
cell culture and transplantation184 and is known to have anti-inflammatory185 and 
non-immunogenic186 properties. It has been demonstrated by Ishino et al. that 
ECD and morphology of hCEC cultured on amniotic membrane were similar 
to those of normal corneas, and such cultured cells were also functional in vivo.83 
After transplantation of the hCEC-amniotic membrane constructs into rabbit 
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eyes, corneal edema was observed after seven days.83 Fan et al. showed that 
hCEC cultured on amniotic membrane retained normal morphology and marker 
expression. Moreover, after transplantation in a cat model where the cornea was 
denuded of endothelium and DM, corneas remained transparent throughout the 
monitoring period.68 However, while amniotic membrane is biocompatible along 
with anti-inflammatory and non-immunogenic properties, potential 
disadvantages are the lack of transparency, and the time-consuming preparation 
time.52,187 

 

Bioengineered carriers 

To reduce dependency on donor tissue, there is an increasing interest in tissue-
engineering of (bio)synthetic cell carriers,140,142,188,189 though the issues of 
biotoxicity and bio-incompatibility make this approach more challenging.190 
Ideally, the carrier should mimic the natural basement membrane as much as 
possible in terms of composition, architectural durability, biocompatibility with 
cultured CEC, transparency and  compliance for clinical application.159 Several 
biomaterials, both natural and synthetic polymers, have been 
investigated.31,85,86,88,131,132,142,154-159 Natural polymers, such as collagen, gelatin, and 
silk are usually biocompatible, though synthetic polymers guarantee a fine 
customization of the desired properties. 

 

Collagen-based carriers 

Collagen is the most abundant component of ECM in most tissues.159 While it 
is easy to produce, cheap to derive from animal sources, and compatible with 
corneal cells, by itself it is not sufficiently rigid to handle surgically. Crosslinking 
the collagen improves its mechanical strength and chemical stability, and this can 
be achieved by chemical, physical, and enzymatic procedures.159 One concern 
about the use of crosslinked collagen is the generation of toxic residues.191  

Culturing hCEC on collagen sheets is not new, as studies in this area date back 
to the 1980s,192 and showed promising results in animal studies.92,96,193 Mimura et 
al. demonstrated that cultured hCEC, transplanted via a crosslinked collagen-1 
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sheet, can maintain corneal dehydration in a rabbit model.96 When hCEC were 
cultured on collagen-vitrigel, they displayed a strong expression of ZO-1 and 
Na+/K+-ATPase, and reduced corneal thickness and improved corneal 
transparency in a rabbit model.193 In another rabbit study, transplanted hCEC-
collagen hydrogel sheets maintained a high cell density and N-cadherin, ZO-1, 
and actin-filament displayed a similar expression pattern as in native hCEC.92  

While these studies reveal that cells can maintain their morphology and function 
on the collagen, the flexibility and thickness are also important to consider. 
Collagen type I-based carriers, of different thickness, have been tested by in vitro 
surgery. A carrier of 20 µm thickness (LK20) exhibited good biocompatibility, 
however, during in vitro surgery, the hCEC-LK20 constructs displayed poorer 
adherence to the posterior stroma than the other carriers tested (Figure 5).166 A 
carrier of 100 µm thickness of the same material was found too rigid for the 
intended surgical procedure.180  

Modifying the collagen to create collagen-polymer composites (chitosan, 
chondroitin sulphate) has been reported to further increase the mechanical 
support and resistance to enzymatic degradation.159 Plastic compressed collagen 
type I, termed Real Architecture For 3D Tissues (RAFT) may offer better 
mechanical properties when compared to crosslinked collagen.88 The formation 
of a confluent monolayer of hCEC which expressed ZO-1 and Na+/K+-ATPase 
on these carriers was confirmed by scanning and electron microscopy imaging. 

Although the deep understanding of collagen-based sheets as a potential carrier 
for transplantation, the translation to clinical application still faces several 
challenges. Collagen is a material derived from animal origin and this raises 
questions in terms of immunogenicity and interspecies transmission of 
diseases.194 Moreover, the extraction and purification procedures make collagen 
very expensive for large amounts of material needed for clinical applications and 
such procedures can vary from company to company, resulting in unwanted 
batch-tobatch variations.195 Clinical-grade carriers should guarantee cell 
adherence and pumping function for the cells seeded on the carriers (Figure 6). 
Several research groups have tried to synthetize recombinant human collagen, 
but the low yield and the scarce post-translational modifications still represent 
unsolved issues.196  
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Figure 6: Cultured hCEC adherence on collagen-based carriers. After hCEC seeding on a 
collagen-based carrier, the cell-carrier construct was tested for its feasibility as an alternative to 
endothelial graft upon in vitro surgery. After the surgery, the cell layer detached almost completely 
from the carrier below (a), although the Calcein-AM staining confirmed that the seeded hCEC 
were viable (b). These results show that cell adherence still represents a parameter that should 
not be taken for granted in the development of a firm interaction between cultured hCEC and 
biocompatible carriers. 

 

Gelatin-based hydrogels 

Gelatin is a commonly obtainable natural material originated from the hydrolysis 
of collagen,159 and when crosslinked, gelatin-based cell carriers can be used for 
tissue-engineering.159 Watanabe et al., showed that primary hCEC seeded on 
hydrothermally crosslinked gelatin could form a confluent monolayer and 
showed normal marker expression.142 Adding heparin during chemical 
crosslinking produced a gelatin carrier flexible enough to be folded, and that 
maintains morphology and pump function of hCEC seeded onto it.156 The use 
of semisynthetic gelatin methacrylate registered an increase in tissue engineering 
because of its biocompatibility and adaptable physical characteristics,159 and has 
been shown to support hCEC in vitro as well as after transplantation into a rabbit 
model.158 
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Chitosan 

Chitosan is a biomimetic polysaccharide derived from the deacetylation of 
chitin.188,189 Blended membranes made of chitosan, gelatin and chondroitin 
sulfate have displayed biomechanical properties (e.g. transparency, ion and 
glucose permeability) comparable to the human cornea. During in vivo testing in 
rabbit eyes, the CEC-blended membrane constructs showed steady degradation 
of the membrane and this did not influence the structure and the curvature of 
the cornea.197 A keratin-chitosan membrane has also been shown to support 
CEC attachment and growth while maintaining cell morphology and marker 
expression.198 In addition to providing a carrier for hCEC, the incorporating 
chitosan can improve the optical transparency and mechanical support of 
collagen membranes.197 In another study, a chitosan-based membrane was 
constructed of hydroxypropyl chitosan, gelatin, and chondroitin sulphate.199 
Although optical transparency was comparable to the natural human cornea and 
cultured rabbit corneal endothelial cells formed a monolayer on the blend 
membrane, mild signs of inflammation were observed in vivo.199 

 

Silk fibroin 

Silk fibroin has been extensively used in regenerative medicine because of its 
optical properties, non-immunogenic response, flexible degradation standards 
and mechanical characteristics.159,200 Silk fibroin membranes have been shown to 
support the formation of a confluent hCEC monolayer.86,200 These hCEC-
membrane constructs, with cells showing normal morphology and expression of 
characteristic markers, were trialed in a rabbit model.200 Corneal transparency 
was maintained up to 6 weeks after transplantation without inflammatory 
reactions and  the silk fibroin films remained optically transparent.200 

 

Thermoresponsive polymers  

Thermoresponsive polymers, such as poly(N-isopropylacrylamide) (PNIPAAm) 
and copolymers based on it, offer the advantage of thermally modulating their 
hyrophobic and hydrophilic properties which facilitates the detachment of cell 
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sheets without enzymatic digestion.159 The use of a thermoresponsive polymer 
was first described by Hsiue et al.140 In a temperature-mediated process, hCEC 
were seeded and cultured on hydrophobic poly(N-isopropylacrylamide) 
(PNIPAA)m-grafted surfaces at 37˚C. Once the culture temperature was 
lowered to 20˚C, the resulting hCEC sheet detached from the now hydrophilic 
PNIPAAm-grafted surfaces and were implanted in rabbit eyes together with an 
adhesive gelatin hydrogel disc. After swelling and biodegradation of the gelatin 
hydrogel disc, the transplanted hCEC sheet was fully attached to the posterior 
stroma and the corneas were clear, with near normal corneal thickness within 
two weeks.140 While thermoresponsive polymers may offer interesting properties 
as a potential carrier, more detailed analysis on how the temperature change 
effects hCEC functionality is still lacking.  

 

Other synthetic carriers 

Recently, biodegradable electrospun poly(glycerol sebacate)-poly(ε-
caprolactone) blend nanofibrous,201 and poly(lactic-co-glycolic acid) scaffolds202 

were tested in vitro as possible carriers for hCEC by showing a monolayer of 
cultured hCEC with normal morphology. In addition, a hybrid carrier was 
constructed with a surface-initiated assembly technique: this hybrid was 
composed of basement membrane proteins (collagen IV and laminin), 
supported by a collagen-1 gel to mimic DM and a layer of stroma with a 
consistent thickness of 10µm, therefore similar in composition to a DSEK-graft 
but more similar to a DMEK-graft in terms of thickness.203 Human CEC seeded 
on this carrier formed a monolayer and expressed continuous ZO-1 at their 
borders, showing that this technique could generate a biocompatible membrane 
with biomechanical properties similar to those of a native basement membrane 
and therefore suitable as a bioengineered corneal endothelial graft.  
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CELL INJECTION THERAPY 

First approaches to cell injection therapy 

Cultured CEC can also be directly injected into the anterior chamber of the eye, 
avoiding the need for a carrier entirely. This concept was first described by 
Mimura et al. using iron-endocytosed rabbit CEC, and later using spheres of 
CEC precursors.204-206 Injection of hCEC precursors in a rabbit model confirmed 
the potential of this approach, as long as a postoperative prone position could 
be maintained.207 To improve the number of cells attaching, Patel et al. 
investigated the incorporation of supermagnetic microspheres into cultured 
hCEC before injection and applied a magnetic field to direct cells towards the 
posterior cornea in an ex vivo model.208  

In 2012, the use of ROCK inhibitor as an adjuvant to promote hCEC adhesion 
to the posterior cornea after cell injection was suggested,209,210 after the same 
group reported that the ROCK inhibitor Y-27632 enhanced adhesion and 
inhibited apoptosis of monkey CEC in vitro, and enhanced corneal endothelial 
wound healing in vivo in animal models.211,212 

In vivo application of cell injection in animal models 

Additional work was conducted with monkey and rabbit models, to further 
explore the concept of cell injection therapy.44,213,214 In the initial experiments, 
the recipient’s cells were removed by scraping but Okumura et al. later showed, 
in a rabbit model, that a small descemetorhexis of 4 mm could be performed.214 
Recently, hCEC injection was compared with the hCEC delivered on a tissue-
engineered graft of human origin in a rabbit model of bullous keratopathy.215 
Results showed that both approaches were effective in reversing corneal 
blindness in the rabbit model. Transplanted hCEC retained their hexagonal 
shape and expressed phenotypical human cell markers, regardless the modality 
of delivery. In another rabbit model, the injection of a CEC suspension was 
compared with the injection of CEC mini-sheets, which were aggregates of 4-10 
CEC derived from the enzymatic dissociation of confluent cultured rabbit CEC 
with accutase.216 CEC mini-sheet injection restored corneal clarity and thickness 
in the rabbit eye after 7 days of injection, while for single CEC suspension this 
was observed after 14 days of injection.   



 

50 
 

Chapter 2 

A combination of the “modified” dual media approach47 and cell injection was 
recently explored by Ong et al. After storage of peeled DM-EC tissue in a 
growth-factor-depleted medium for 48 hours, non-cultured single hCEC 
obtained after enzymatic treatment of DM-EC showed a smaller cell 
morphology and an overall cellular yield compared to single cells derived from 
digestion of DM-EC stored in a F99-based medium with growth factors. After 
non-cultured single cells injection in a rabbit bullous keratopathy model, corneal 
thickness became increasingly thinner and corneas remained clear at 3 weeks 
after injection.217 Unlike published methodologies, this approach does not 
require complex cellular propagation techniques. 

 

Clinical trials 

A milestone for endothelial cell injection was the first-in-man clinical trial 
conducted by the Kinoshita group. The first patient reported showed resolution 
in the corneal edema, and experienced an improvement in visual acuity from 
0.04 to 1.0 Decimal Snellen best corrected visual acuity (BCVA).218 Results of a 
group of 11 patients, that were treated for BK (FECD n=7), showed clinical 
improvement and an increase in ECD after injection of a ROCK inhibitor-
supplemented cell suspension.23 Following the mechanical removal of the 
aberrant ECM on the patient’s DM and/or of the degenerated CEC in an area 
of 8-mm diameter, a suspension of 106 cells was injected into the patient’s 
anterior chamber. After the procedure, patients were placed in a prone position 
for 3 hours, to allow the sedimentation of the injected hCEC onto the posterior 
surface of the cornea. At 24 weeks after cell injection, improvements in ECD, 
corneal thickness decrease, and best corrected visual acuity were observed. Two 
years after cell injection, the corneal thickness was less than 600 μm in 10 eyes 
out of 11, while each of the 11 eyes retained corneal transparency. No immune 
response to hCEC was observed.23  

Within the limits of the small study group, the procedure was safe and no severe 
adverse events were reported. However, safety issues still need to be better 
defined before applying this technique on a large scale.23,219 The fate of 
unattached cells and their effect upon entering the trabecular meshwork or the 
systemic circulation is not yet fully understood. 



 

51 
 

2 

Review on corneal endothelial cell replacement 

An alternative approach for cell injection therapy was recently presented by 
Parikumar et al. with a small case series of three patients.220 They first placed a 
nanocomposite gel sheet in the anterior chamber221 and then injected a 
suspension of hCEC precursors in the space between the posterior cornea and 
the gel sheet. The gel sheet was intended to facilitate cell attachment and was 
removed three days after cell injection. After 6 months, bullae in all three 
analyzed eyes had resolved and did not re-occur within the 18-month follow-up 
period. No information on ECD was presented in the study. 
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REGULATORY COMPLIANCE 

Clinical application of cultured hCEC requires compliance with strict regulatory 
guidelines. These guidelines may not be identical in all countries as they are set 
by local regulatory authorities,222-228 but have the common goal to ensure safety 
and reproducibility. Cell isolation and culture protocols must adhere to GMP 
requirements because these treatments are considered advanced therapeutic 
medicinal products (ATMP) according to the European legislation, human cells, 
tissues and cellular and tissue-based products (HCT/P) as for United States’ 
FDA regulation, and regenerative medical products (RMP) for the Japanese 
guidelines. A major challenge for GMP compliance is the use of animal-free 
components to reduce the risk of disease transmission and the batch-to-batch 
variability. 

Collagenases used for cell isolation are produced by different bacteria such as 
Clostridium histolyticum, but the production is related to the fermentation of 
animal-derived nutrients.229 GMP-compliant enzymes used in the hCEC 
isolation process include Liberase TH, an enzymatic blend without animal-
derived components and mainly composed by defined ratios of highly purified 
Collagenase I and Collagenase II and with a high percentage of 
Thermolysin.46,49,215 A comparative analysis of Liberase TH with the commonly 
used research-grade Collagenase I showed no differences in terms of both 
optimal working concentration for the digestion of the DM-EC complex and 
overall cell concentration obtained per cornea.46 Collagenase NB may be another 
GMP-compliant option, as this enzymatic blend of Collagenase I/Collagenase 
II with the addition of Clostripain230 has been used for the isolation of cells from 
many tissues.231-235 For DM-EC digestion, the use of TrypLETM Select has been 
suggested for GMP-compliant protocols and authors described a similar 
dissociation rate of confluent hCEC between TrypLETM Select and another 
TrypLETM reagent.46  

In the vast majority of reported hCEC culture protocols, culture medium is 
supplemented with animal-derived fetal bovine serum (FBS).38,40,41,43,45-48,61,137 Use 
of Equafetal was approved for clinical trials by FDA and pharmaceutical 
regulatory agencies of UK and Japan. However, while it is derived from animals 
held in controlled diet and living conditions, it is still a source of animal 



 

53 
 

2 

Review on corneal endothelial cell replacement 

components.46 Other studies reported culture medium supplementation with 
human-derived serum236 and human platelet lysate,237 or even the establishment 
of hCEC cultures expanded using serum-free culture media,32,46 though the 
success rates were variable.  

The materials used for coating of cell culture surfaces are another potential 
source of xeno-contamination. Recombinant proteins such as laminin-511 and 
laminin-521 are already available on the market,90 while the natural-derived 
pericellular matrix from human decidua-derived mesenchymal cells (PCM-DM) 
has also been shown as a potential xeno-free substrate.137  

Regulatory authorities require that a quality assessment must be performed on 
cultured hCEC used for clinical application, to guarantee safety and efficacy for 
the therapy used on humans. A clinical trial in human patients by Kinoshita et 
al. included quality assessment features for cultured hCEC used for cell injection, 
such as: cell viability, visual inspection, cell purity, functional assurance, 
confirmation of no contamination of the culture medium, and negative testing 
for bacteria, fungi and viruses.23 Moreover, several cell surface antigens (CD98, 
CD166, CD340), as well as cell membrane proteins (SLC4A11), microRNAs and 
exosomes, have been identified and proposed for quality assessment of cultured 
hCEC for clinical applications.238-243  
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FUTURE PERSPECTIVES 

Corneal transplantation will most likely remain the standard of care for 
endothelial diseases in the next decade. Motivated by the global shortage of 
corneal grafts, however, novel therapeutic treatment options have been explored 
over the last years to either use donor tissue more efficiently or to become 
independent of donor tissue at all.  

For novel approaches based on cultured hCEC, as described in this review, 
larger clinical trials will be needed to answer questions regarding indication and 
safety. Potential clinical uptake of this approach will, however, more likely be 
hampered by costs, as ATMPs are typically very expensive. These regulations 
also apply to the carrier-based approach, which is currently still in the preclinical 
stage. Approval for a first-in-man clinical trial for tissue-engineered corneal 
grafts was recently granted by Health Sciences Authority in Singapore (Clinical 
Trial Certificate: CTC1800013) for the treatment of FECD and bullous 
keratopathy.212  

To further pursue the transplantation of cultured hCEC on carriers, additional 
research efforts will need to be invested in developing suitable carriers. While 
natural carriers closely mimic the native DM, availability is limited and subjected 
to donor-to-donor variability. The focus may therefore be best placed on 
bioengineered carriers which would be a potentially unlimited source for tissue-
engineered grafts, and with the possibility to finely tune the biomechanical 
properties. Current challenges for bioengineered grafts are ensuring sufficient 
cell adherence and pumping function of transplanted cells on the carriers. 

An interesting future aspect of the cell-based approaches may be the possibility 
to apply non-HLA matched allogeneic cells.244-246 The alloimmunogenicity of 
murine primary CEC (mpCEC) that were injected into the anterior chamber of 
a mouse CEC transplantation model, created by excising mpCEC from the 
recipient murine cornea.247 Results showed that injected mpCEC did not 
provoke an allogeneic delayed-type hypersensitive (DTH) response. Moreover, 
mpCEC that adhered to the recipient murine cornea induced allograft tolerance 
8 weeks after injection, indicating that mpCEC transplantation may have a 
degree of protection from allogeneic rejection.  
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In parallel to developing cell-based approaches, also other approaches will 
continue in pursuit of becoming more independent from donor tissue. In vitro 
results for in-office approaches to perform laser-based descemetorhexis or 
selective guttae removal have recently been presented,248,249 and may be 
combined with topical medication of ROCK inhibitors.44,207,218 For gene therapy 
for FECD different approaches have been investigated.250,251 Until the above-
mentioned approaches can be applied clinically, current tissue-efficient or tissue-
sparing techniques such as Quarter-DMEK and Descemet stripping only will 
remain the main treatment alternatives to standard corneal transplantation. 
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CONCLUSION 

In conclusion, promising new developments targeting endothelial donor tissue 
shortage are emerging. While the first clinical results for surgical-based 
approaches and cell injection therapy are available, engineered endothelial cell 
sheet transplantation is still in the pre-clinical stage. For all approaches, more 
studies are needed to evaluate whether these techniques have indeed the 
potential to complement the available corneal transplantation techniques as a 
treatment option for endothelial diseases.
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