
Dancing with the stars
Albert, J.G.

Citation
Albert, J. G. (2020, October 28). Dancing with the stars. Retrieved from
https://hdl.handle.net/1887/137988
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/137988
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/137988


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/137988 holds various files of this Leiden University 
dissertation. 
 
Author: Albert, J.G. 
Title: Dancing with the stars 
Issue Date: 2020-10-28 
 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/137988
https://openaccess.leidenuniv.nl/handle/1887/1�


91



Chapter 4 Feasibility of ionospheric screens for LoTSS

On the feasibility of probabilistic ionospheric screens for LoTSS

J. G. ALBERT, R. J. VAN WEEREN, H. T. INTEMA, AND

H. J. A. RÖTTGERING

In preparation for submission

Producing direction dependent calibrated radio images is vital for low-frequency wide-
field radio surveys such as the LOFAR Two-Metre Sky Survey (LoTSS). The current facet-based
direction dependent calibration of LoTSS is limited by two main factors: the sparsity of
suitable in-field calibrators, and ill-conditioning when many in-field calibrators are used. A
screen-based method of direction dependent ionospheric calibration was recently proposed
in Albert et al. [2020b]which was found to surpass the state-of-the-art direction dependent
calibration on a single randomly selected LoTSS data set, using fewer calibrators than used
by the LoTSS calibration. The proposed method potentially poses a logical next LoTSS survey
improvement if it can be shown to be feasible and robust on a larger sample set. In this
paper we apply the method to the deep Lockman Hole data set (12 observations and 100
hours in total) which spans varying times-of-day, season, and varieties of ionosphere. We
present a neural-network based outlier detection method that significantly improves over the
original outlier detection method. We quantity the improvement to image artefacts around
inter-calibrator sources by computing equivalent integration-time gain. We find that for
observations with low and high ionospheric activity that the method provides, respectively,
an average equivalent integration-time gain near bright sources of 1.3, and 2.0. In two of
the observations the improvements are less significant. We suggest that during these two
observations small-scale ionospheric structure limits the screen-based method. In no cases
is the resulting image quality worse than LoTSS. We apply the same method to calibrate and
image the full data set and find that the same improvements scale to deep observations. Our
method produces a zoo of ionospheric doubly differential total electron content screens
supporting that the ionosphere has many different distinct behaviours. We discover an
unmodelled systematic in the Jones scalars, which results in residual artefacts that limit the
effectiveness of method. Using a combination of real and simulated Jones scalar data we
propose and implement a preliminary correction for it. The proposed correction is found to
partially correct for the systematic, and indicates that the general approach is correct and
can be improved to completely account for the systematic. Using these results we determine
that the method is capable of extending the LoTSS calibration and imaging pipeline, and is
also promising for < 100 MHz data.

Acknowledgements. J. G. A. and H. T. I. acknowledge funding by NWO under ‘Nationale Roadmap
Grootschalige Onderzoeksfaciliteiten’, as this research is part of the NL SKA roadmap project. J. G. A. and
H. J. A. R. acknowledge support from the ERC Advanced Investigator programme NewClusters 321271.
R. J. vW. acknowledges support of the VIDI research programme with project number 639.042.729,
which is financed by the Netherlands Organisation for Scientific Research (NWO). This research has
made use of the University of Hertfordshire high-performance computing facility and the LOFAR-UK
compute facility, located at the University of Hertfordshire and supported by STFC [ST/P000096/1]. J.
G. A. thanks Aleksandrina Skvortsova for spending many hours clicking through outlier data.
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Feasibility of ionospheric screens for LoTSS Chapter 4

4.1 Introduction

One of the primary objectives of the Low-frequency array [LOFAR; van Haarlem et al., 2013]
is to be a wide-field low-frequency surveying instrument of the entire northern hemisphere
with unprecedented high sensitivity and resolution. There are numerous challenges involved
in realising this goal, which requires efficiently storing and processing petabytes of data. First
among these, any good wide-field low-frequency survey requires good direction dependent
(DD) calibration and imaging [Cohen and Röttgering, 2009]. Great progress has been made
to meet the DD calibration and imaging challenge. The calibration program killMS [Tasse,
2014b, Smirnov and Tasse, 2015] applies a clever sparsification of the optimisation problem to
overcome computational limitations of DD calibration, and uses an extended Kalman filter to
regularise the Jones matrices which improves the conditioning of the problem. The imaging
program DDFacet [Tasse et al., 2018] is a wide-field wide-band non-coplanar deconvolution
algorithm with spatially varying point-spread-function, and allows externally defined Jones
matrices to be applied. Together these two programs supply the tools that make up the state-
of-the-art DD calibration and imaging solution used by the LOFAR Two-Metre Sky-Survey
[LoTSS; Shimwell et al., 2019].

The LoTSS is planned in a tiered program of successive image quality, sky-coverage,
and depth. The first data release [DR1; Shimwell et al., 2019] provided the first tier of the
survey, presenting images of 5% of the northern sky, with an excellent median sensitivity of
S144MHz = 71 µJy beam−1 and point-source completeness of 90% at integrated flux density of
0.45 Jy. The coming second data release (DR2) will present improved DD calibrated images
of a much large fraction of the northern sky, and should improve the median sensitivity as
well as improve the detection of diffuse emission. Future data releases will go deeper, and use
long baselines to achieve resolutions of 0.3′′. Since we have internal access to the unreleased
LoTSS-DR2 archive, we’ll make reference to DR2.

Despite enabling one of the most ambitious radio surveys ever conducted, the state-of-the-
art DD calibration and imaging method is fundamentally limited by 1) the sparsity of available
calibrators in the field of view, and 2) the ill-conditioning of the system. When the angular
separation between calibrators is too great, the ionospheric distortions are directionally
under-sampled, leading to non-isoplanaticity [Fellgett and Linfoot, 1955], and when there
are too many degrees of freedom this leads to ‘self-cal bias’1 [Grobler et al., 2014]. These
two limitations are not mutually exclusive; even when the field of view is densely populated
with bright calibrators, selecting too many potentially leads over-parametrisation and flux
absorption. Indeed, the LoTSS-DR2 choice of 45 calibration directions was chosen to balance
these two aspects.

The scattering effects of the ionosphere can be seen as a diffuse halo around sources,
which are not necessarily visible above the noise [Vedantham and Koopmans, 2015] and
can significantly impact studies sensitive to the power-spectrum of faint diffuse emission
[e.g. Harrison et al., 2016, Patil et al., 2017, Vernstrom et al., 2017, van Weeren et al., 2019].
Some part of this scattering can be corrected via DD calibration, however there is always a
remaining component which adds noise to the image, which depends on the spatio-temporal
power-spectrum of ionospheric FED and the availability of bright enough calibrators. For
LOFAR this noise-like component is expected to be of a level comparable to thermal noise
[Vedantham and Koopmans, 2016]. The DD correction performed by killMS is a facet-based

1The term ‘self-cal bias’ was coined by Ger de Bruyn.
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algorithm that assumes each facet is an isoplanatic patch. When this is true, then all sources in
a facet can be calibrated with a single number per antenna, to good approximation, removing
most ionospheric effects and leaving only a thermal noise-like halo residual. However, since
the ionosphere is highly dynamic often the isoplanatic assumption is violated and a facet
fails to be well calibrated.

Recently, Albert et al. [2020b] proposed a probabilistic DD calibration and imaging ap-
proach for ionospheric calibration of LOFAR high-band antennae (HBA; 115–189MHz) radio
interferometric data that alleviates the issue of the sparsity of calibrators. The method is
based on inferring doubly differential total electron content [DDTEC; described in Albert
et al., 2020b] using a probabilistic non-diffractive tomographic technique [Albert et al., 2020a].
The method was shown to significantly improve DD dispersive phase errors between cali-
brators on a single randomly selected observation taken from the LoTSS-DR2 archive. In
particular, the method was shown to reduce the root-mean-squared residuals by 32% within
90′′ of inter-calibrator, bright (peak flux > 100 mJy beam−1) sources in comparison with the
archival LoTSS-DR2 image. For comparison, the reduction in DD scattering artefacts, around
these inter-calibrator sources, is equivalent to observing for approximately twice as long. If
this result can be expected when the method is applied to most observations, then it prompts
the possibility of reprocessing the entire LoTSS-DR2 archive (13 000 hours of observing time)
with these inter-calibrator ionospheric artefacts suppressed. However, before proposing
such a computationally expensive reprocessing the feasibility of the method on multiple
nights needs to be accessed, as well as an understanding and amelioration of the systematic
biases of the method.

Understanding the systematic biases of the method is vital for releasing a product that
the scientific community can trust. Such systematic biases include flux absorption due to an
incomplete sky model and over-parametrisation, dispersive phase and amplitude errors due
to an incomplete beam model, and incorrect DDTEC inference due to model misspecification
of the Jones scalars. Since this method introduces no extra degrees of freedom and maintains
the same calibrator sparsity as LoTSS, we expect the same source completeness properties as
the current LoTSS-DR2 processing, and we do not investigate it here.

In this paper we examine 1) the method effectiveness in a larger sample of observations
as well as on a multi-epoch (100 hours) imaging application, 2) the robustness to ionospheric
conditions, and 3) systematic biases due to model misspecification. In Section 4.2 we describe
the data and calibration procedure. In Section 4.3 we assess the method individually on 12
data sets with identical points taken from the LoTSS archive. We also combine all data sets
and produce a deep image, which we compare to LoTSS. We then we quantify the robustness
to differences in ionospheric conditions. Finally, in Section 4.4 we investigate a systematic
due to model misspecification using a combination of real and simulated Jones scalar data,
and then present a correction for this systematic.

4.2 Method

In this paper, we are primarily focused on assessing our method for robustness to ionospheric
conditions. To that end, we limit the variation due to calibrator distribution, sky model
completeness, field declination, and proximity to bright sources. The optimal experimental
setup is therefore to compare the method on the same field over multiple observations. We
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select the deep Lockman Hole (162◦, 58◦) data set (12 observations and 100 hours in total) for
this purpose, whose observation dates and times are shown in Table 4.1 along with total daily
Sun-spot count. The selected data set can be divided into two sample sets with six samples
in each category: high Sun-spot count at dawn (Summer of 2018), and low Sun-spot count at
dusk (Spring of 2015).

Sun-spot counts are known to correlate strongly with ionospheric free electron density
(FED) due to extreme ultra violet ionising radiation from the Sun [Kiepenheuer, 1946], and
therefore are an approximate measure of the expected ionospheric conditions. As can be
seen from the Sun-spot counts, the observations from Summer of 2018 are expected to have
a lower FED compared to the observations from Spring of 2015. We note that high Sun-spot
count, and thus FED, does not necessarily imply temporal or spatial characteristics of the
ionosphere, as these qualities are largely influenced by the bulk motion properties of the
Earth’s atmosphere. In fact, the local time-of-day has the largest impact on the temporal and
spatial properties of the ionosphere, for example it has been suggested that scintillation is
more pronounced near sun-rise due to increased FED variation [e.g. Spoelstra, 1983]. Given
the different season and time of day of the data sets, they probe two vastly different ionosphere
varieties.

Table 4.1: Date and time of 12 Lockman Hole 8 hour observations selected for method analysis

Obs. ID Start time (UTC) Total daily Sun-spots
667218 2018-09-13 07:05:31 0±0
667204 2018-09-12 07:06:28 14±1.1
664480 2018-08-19 08:39:05 14±0.9
664320 2018-08-15 08:49:19 13±0.9
659948 2018-07-12 11:08:29 0±0
659554 2018-07-10 11:11:19 0±0
342938 2015-05-08 14:50:43 150±10.2
340794 2015-04-25 17:08:19 69±6.2
299961 2015-03-24 17:47:39 108±5.9
294287 2015-03-21 19:11:19 26±2
281008 2015-03-14 18:26:58 55±4.7
274099 2015-03-08 20:11:19 28±1.9

Note: Sun-spot uncertainties are standard deviations of measurements
from solar observatories around the world.

For the purpose of discussion in this current work we provide a summary of the steps of
the method from Albert et al. [2020b]:

1. Subtract and solve step. Subtract a good model of the sky from the visibilities, except
for a set of bright calibrators. Solve against the isolated calibrators.

2. Smooth and slow-resolve. Smooth the Jones scalars, and resolve on a long time scale to
simultaneously improve the conditioning and solve the holes problem. For description
of the hole problem see Shimwell et al. [2019]. The phases are smoothed in frequency
by fitting a phase model, and amplitudes in time using a median filter with 15 min.
filter window.
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3. Measure DDTEC. Infer the DDTEC of the Jones scalars with a variational hidden Markov
model. Perform outlier detection and flagging on the inferred DDTEC.

4. Infer DDTEC screen. Apply model marginalised Gaussian process regression on the
measured DDTEC, with a physically motivated DDTEC covariance function, to infer
DDTEC for a screen of directions covering the field of view.

5. Image. Image the original visibilities with a concatenation of the smoothed and screen
solutions.

With the exception of isolating the calibrators before solving, the first two steps can be seen
as equivalent to the LoTSS DD calibration, and steps 3 and 4 can be seen as an extension of
the LoTSS DD calibration pipeline. A good quality of an extension to an existing pipeline is
that it does not worsen the data product with respect to the preceding part of the pipeline.
The calibrator selection criteria in step 1 of the original method was peak flux> 0.3 Jy beam−1

separated by at least 6′. Depending on the field, this selection could result in less than 20 to
more than 50 in-field calibrators, which significantly impacts the inter-observational DDTEC
screen consistency. To that end, in this paper we choose to standardise step 1 by choosing the
same number of calibrators as used by LoTSS – the brightest 45 directions separated by at least
6′. Our calibrator selection is not not exactly the same as in LoTSS. In LoTSS, the direction
of calibrators is not necessarily centred on a source, whereas our calibrator directions must
precisely encircle a bright source. This can be seen in Figure 4.6a, where the LoTSS calibrators
do not centre on any particular source. This is because LoTSS calibrates against all the sources
within a facet, and we calibrate against isolated bright sources. However, by choosing the
same number of calibrators, and ensuring they are sufficiently separated, the average distance
between our calibrators is the same as in LoTSS.

The Lockman Hole data sets have been previously jointly calibrated and imaged as part
of LoTSS-DR2. Therefore, we have a deep sky model that is a factor of approximately 3.5
deeper than the sky model for an individual eight-hour observation. We use this deep sky
model to perform calibrator isolation in step 1. In DDFacet, deconvolution is performed
using hybrid matching pursuit with a genetic algorithm that locally optimises deconvolution
around each clean component [Tasse et al., 2018]. The sky model resulting from this process
may contain scattered negative components, especially around bright sources, which are
called sky model artefacts. Failure to include these sky model components in the subtraction
mask can cause undefined distortion of the Jones scalars solved for. We manually ensure
that the subtraction mask in step 1 encompasses all sky model components of the calibrator
source. In particular, radio galaxy 3C244.1 is the brightest source in the field, and has scattered
sky model components that would fall outside the default subtraction mask, a circle with
radius 120′′ around each calibrator. We used a 240′′ radius mask for this calibrator.

4.2.1 An improved outlier detection

As stated in Albert et al. [2020b], outlier detection and flagging of the DDTEC inferred in step
3 is extremely important for the performance of the method, since the Gaussian process
regression (step 4) depends on accurate estimates of the DDTEC uncertainty. That is, the
method is robust to outlier DDTEC values so long as the corresponding uncertainties are
large enough to reflect this. In the original method outlier detection was done with a heuristic
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method using radial basis functions that detects outliers based on spatial similarity, however
this method resulted in too many false negatives when applied to the Lockman Hole data
sets. To this end, we manually identified 4531 outliers and 74460 non-outliers then designed
and trained a neural network to perform classification.

The input to the neural network is the time series of DDTEC mean and log-uncertainty of
the K nearest neighbours of an optical pathway under consideration, as shown in Figure 4.1.
We choose K = 15 (1/3 calibrator directions in the field of view), i.e. a DDTEC value is classified
as an outlier based on the nearest 15 calibrators in the antenna’s field of view. This choice of
input reflects how humans visually determine what is an outlier. In particular, in order for a
DDTEC value to be classified as an outlier by a human we require 1) that it visually ‘looks
out of place’ in the context of the DDTEC screen, or 2) the temporal evolution of that optical
path ‘looks out of place’ when compared with neighbouring calibrators. These two criteria
correspond to being spatially and temporally ‘out of place’. It is important that we consider
these two criteria, because sometimes when there are many outliers in an antenna’s field of
view the spatial information alone cannot discriminate between outlier and non-outlier.

The neural network architecture is an ensemble of eight 10-layer residual temporal à
trous convolutional neural networks [CNN; e.g. He et al., 2015]. Each layer has a kernel of
shape (kernel, filters) corresponding respectively to how wide the convolution window is,
and the number of features, similar to channels in an image. We choose kernel=3, and a
filter=48. The non-linearities of each CNN is the function f (x ) =max(0, x ). After we apply
the non-linearity we down sample the data according to a rule known as a pooling operation.
Each layer is a residual layer, i.e. the input to the layer is added to the output after applying
the non-linearity and pooling operation. Each layer is an à trous convolution [Yu and Koltun,
2016]which has inspiration from wavelet decomposition. In à trous convolution the kernel
window is expanded by a parameter called the dilation rate. Roughly speaking this controls
how sensitive the layer is to diffuse signal. Each member of the ensemble has a different
combination of pooling operation and dilation rate which gives each member a unique
structure that is sensitive to different types and scales of structure in the data. The set of
eight combinations of pooling and dilation rate is {MaxPool,AvgPool}× {1, 2, 3, 4}. The idea
of using an ensemble of classifiers is that it averages away the bias of a single classifier, which
is the motivation behind many ensemble-based methods such as random forests.

A final layer projects the input to filter=1, which is interpreted as the logit of a binary
classification problem. To facilitate learning we add a constant to the output of each CNN
equal to the log prior probability of the training set, which is -3.6. This means that when the
CNN outputs zero the logits will correspond to the prior logits and the neural network only
needs to learn deviations from the prior. The loss function of each CNN is weighted binary
cross-entropy. We weight the positive classifications by the ratio of non-outliers to outliers,
which is approximately 36, so that the average gradient magnitudes of all outlier examples is
equal to that of the non-outlier examples. This ensures that we do not preferentially learn to
classify non-outliers.

We then jointly train the whole ensemble with Adam stochastic gradient descent [Kingma
and Ba, 2014] using a mini-batch size of 32, time-segments of 50 minutes, and learning rate of
10−4. We mask out the optical paths without ground truth labels. We train for 20 epochs which
takes approximately 6 hours on a 32 core CPU. Following training we set the classification
threshold of each member of the ensemble to the optimal value using the receiver operating
characteristic (ROC) curve The ROC curve is a plot of the FPR against FNR as a function of
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Figure 4.1: Pictorial description of the input to the neural network. For each optical pathway
we take the K nearest neighbours in the field of view, measured by great circle separation,
and stack the time series of measured DDTEC and log-uncertainty. An ensemble of temporal
CNNs are applied to the input and the outputs are trained for logistic regression per time
step. The ensemble median classification is used to identify outliers.
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Table 4.2: Comparison of outlier detection methods.

Obs. ID
Neural network method Heuristic method

FNR FPR Est. FN Est. FP FNR FPR Est. FN Est. FP
667218 1.5% 11.2% 728 274 474 45.2% 5.0% 21 999 122 109
667204 0.4% 4.4% 125 113 679 54.8% 6.1% 19 387 155 669
664480 0.1% 10.4% 49 275 810 58.7% 11.4% 22 768 300 110
664320 1.4% 18.3% 1 500 461 773 49.1% 8.2% 51 741 206 502
659948 1.5% 6.0% 1 247 150 594 45.8% 5.1% 38 239 128 304
659554 0.6% 7.5% 452 195 082 39.3% 7.2% 28 220 187 883
342938 2.2% 11.2% 1 056 320 300 42.3% 5.7% 20 422 161 647
340794 5.9% 5.4% 6 148 152 023 43.7% 4.2% 45 270 118 631
299961 2.1% 2.8% 806 76 993 43.6% 3.2% 17 068 88 911
294287 12.4% 6.9% 25 327 185 568 43.7% 6.9% 89 487 186 491
281008 1.6% 4.2% 532 119 309 42.4% 3.7% 13 705 107 378
274099 4.7% 9.9% 17 329 250 393 48.8% 5.9% 181 955 150 008

Total 2.6% 7.0% 55 298 2 575 997 48.0% 5.5% 550 261 1 913 642

Note: On average there are 2 749 800 optical paths per observation.
Note: FNR is false-negative rate, FPR is false-positive rate, FN is false negatives, and FP is false positives.
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the threshold. We choose the threshold for each member of the ensemble that minimises
FNR plus FPR. At deployment time we take the median classification from all members of
the ensemble as the classification.

0.5 1.0 1.5 2.0 2.5
FNR [%]

10

20

30

40

50

FP
R 

[%
]

optimal

Figure 4.2: Receiver operating characteristic curve as a function of the threshold for the
number of neural-network identified outliers in an antenna’s field of view. We flag an antenna’s
entire field of view if the number of neural-network identified outliers is above a threshold.
We value low FNR without significantly raising FPR. The optimal threshold of 30 directions
gives a FNR of 0.7% and FPR of 7.7%.

A comparison of performance of the heuristic method to the neural network is shown
in Table 4.2. The average false-negative rate (FNR) of the heuristic and neural network
methods is 48% and 2.6% respectively. False negatives (FN), being outliers that are missed,
have a much larger impact on performance than false positives (FP), which are accidentally
flagged non-outliers. Therefore, the neural network method provides an order of magnitude
improvement.

Using the FNR, FPR and the number of neural network classified outliers we can estimate
the number of FN and FP in the neural network classifications. Despite the significant
improvement of the outlier detection, we estimate that approximately 55 298 outliers were
missed. We observe that most of these FN occur when there are a large number of outliers
detected in the same field of view. This suggests that when the field of view has too many
outliers it is difficult for the neural network to decide which data points are not outliers.

We use this intuition to motivate a secondary rejection step. We reject an antenna’s
entire field of view if the number of neural-network identified outliers in the field of view
is above a certain threshold. When an antenna’s entire field of view is flagged we flag all
corresponding baselines in the visibilities involving the antenna under consideration. This
rejection mechanism requires no extra computation since it uses the results of the neural
network classifications. Figure 4.2 shows the receiver ROC curve for this rejection mechanism.
The ROC curve plots the FPR against FNR as a function of the threshold. We identify a
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threshold that meets our requirements of low FNR without raising the FPR significantly. From
the ROC curce we choose an optimal threshold of 30 directions. This results in a FNR of 0.7%,
which is a factor of almost four in reduction, and a FPR of 7.7%, which is unchanged.

4.3 Image improvements and ionospheric robustness

The method significantly improved the DD errors in 10/12 observations, while 2/12 showed
only moderate improvements. Figure 4.3 shows typical examples of how inter-calibrator DD
errors are corrected by the method. In observations 274099 and 297287 many inter-calibrator
DD effects still remained after applying the method, despite verifying that that screens looked
sensible. Note that the resulting image quality in these observations is still at least as good,
or better, than the LoTSS-DR2, i.e. DD errors did not get worse.

There are several possible explanations why these two observations did not show signifi-
cant improvements. One is that the calibrator layout, with an average inter-facet separation
of 38′, may under-sample small scale ionospheric structure during these observations. This
separation is equivalent to ionospheric scales of 2 km to 5 km, which occasionally occur
in the ionosphere [Yeh and Swenson, 1959, Mevius et al., 2016]. Another possibility is that
non-stationary structure due to travelling ionosphere disturbances (TIDs) [e.g. van der Tol,
2009]may have been prevalent in these observations. Our method currently does not support
non-stationary disturbances, though extensions are possible to account for such behaviour.
Alternatively, the thin-screen approximation described in Albert et al. [2020b]may not be valid
in these observations. Koopmans [2010] shows that wide-field low frequency arrays should
take into account the 3D ionosphere. In our application we take a full 3D non-diffractive
tomographic model in the limit of a thin-ionosphere for computational reasons, although
there are possible optimisations that might make 3D modelling feasible. Finally, we observe
in Table 4.2 that these two observations have a much higher number of estimated FN, sug-
gesting that the Jones scalar data may have been of sub-standard quality resulting more
missed outliers.

In Figure 4.3 we observe that the spoke-like patterns, which originate from uncorrected
ionospheric scattering, are corrected by the method. We observe that around all corrected
sources, especially the right-most one, there are radially asymmetric arc-like patterns. These
arc-like patterns appear in varying degrees in all observations. We analyse and propose a
correction for these arc-like patterns in Section 4.4.

To quantify improvement to DD errors we measure the root-mean-squared residuals
(RMSR) around inter-calibrator bright sources before and after applying the screen. To
measure RMSR, we select the brightest 66 non-calibrator compact sources across the field of
view and mask an annulus with inner radius set to avoid the source flux and outer radius set
to 45′′. If there are nearby compact or diffuse structures these are excluded from the mask.
The RMSR is then computed as the square-root of the mean of the square of the flux density
in the mask. We denote RMSR in the screen-corrected image asσscreen, andσno−screen as the
RMSR in the image with same calibration procedure as LoTSS-DR2. We refer toσbackground as
the background noise.

From the RMSR we compute the equivalent integration-time gain (EITG), as the relative
extra amount of integration time that would be required to achieve the RMSR of the screen,
σscreen, when using the LoTSS-DR2 calibration method. Assuming that scattering effects occur
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Figure 4.3: Visual example of how the method corrects inter-calibrator DD errors. These
sources are taken from observation 342928. The lower panels are images with 45-direction
calibration using the same method as LoTSS-DR2, and the upper panels are images with
DDTEC screens applied. The mean background noise is 70 µJy beam−1.

uniformly random throughout an observation then the EITG is given by (σno−screen/σscreen)
2.

Figure 4.4 shows a histogram of the EITG for the two sample sets as well and also plots the
EITG of the individual observations against the total daily Sun-spot counts. We observe that
the EITG in both sample sets are peaked above one and have long tails extending to higher
values. There is an apparent difference in the histograms of the two sample sets. The high
Sun-spot (Spring 2015) sample set has a mean EITG of 2.0 while the low Sun-spot (Summer
2018) sample set has a mean EITG of 1.3, and the tail of the prior one at larger EITG is heavier.
Given that the Spring 2015 is closer to Solar maximum, has high Sun-spot counts, and is
at dusk, the ionospheric FED is likely much larger than in the Summer 2018 observations,
therefore scattering is likely stronger. Indeed, the scattering artefacts in the Summer 2018
images are far weaker. These results suggests that the method corrections are more significant
during times of high ionospheric FED and less significant when the ionosphere FED is lower,
which are equivalent to stronger and weaker scattering respectively. This is also compatible
with the result of Albert et al. [2020b].

This result is partially explained by the fact that observations with less scattering have
fewer DD errors to correct, therefore the maximal achievable EITG is lower. This necessarily
constrains the EITG in the Summer 2018 sample set to lower numbers than the EITG in
the Spring 2015 sample set, regardless of the model accuracy. Thus, we cannot rule out the
possibility that the model is not accurately modelling the underlying DDTEC in the Summer
2018 sample set. For example, there is likely more turbulence near dawn [e.g. Spoelstra,
1983]which produces small scale structure that the average calibrator spacing of 38′ does
not resolve. Since the scattering effects are very weak in the Summer 2018 observations,
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Figure 4.4: Upper panel: Total daily Sun-spot count individual observations plotted with
respect to the EITG. The red star is the data point from Albert et al. [2020b]. Lower panel:
Histograms and kernel density estimation of ETIG aggregated per sample set. The dashed
line indicates the mean of 2.0 for the histogram for the Spring 2015 sample set. The dotted
line indicates the mean of 1.3 for the histogram for the Summer 2018 sample set.

sometimes with DDTEC values only a few times the uncertainty, it is not possible to investigate
this possibility.

We can effectively characterise the model efficacy independent of the ionospheric condi-
tions by considering the EITG as a function of the strength of ionospheric scattering. As a
proxy for ionospheric scattering strength we use the ratioσno−screen/σbackground. Figure 4.5
plots EITG against this proxy of ionospheric strength. We observe that when theσno−screen

is close to the background noise the EITG is approximately unity, indicating that there is
no improvement from the model. Conversely, when theσno−screen is an order of magnitude
larger than the background noise the EITG is in the vicinity of three. There is a large scatter in
the relation, however a power-law fit indicates that the EITG∝

Æ

σno−screen/σbackground. The
ideal model that completely removes all scattering effects would produce a power-law index
of two. The deviation from this ideal relation is likely explained by at least two things. Firstly,
there is always a low-level halo of speckles around sources, proportional to the brightness
of the source, due to ionospheric scattering on sub-solution interval timescales. Secondly,
as mentioned already, in Section 4.4 we investigate a systematic which contributes to the
residuals around sources.
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Figure 4.5: 2D Histogram of the EITG and ionospheric scattering strength proxy,
σno−screen/σbackground, aggregated over all observations. The red line shows a power-law fit.

The scatter also slightly goes below one forσno−screen. 3σbackground. This can be explained
by the enhanced effect of small errors or systematics at low noise levels. Specifically, suppose
the flux of the pixels in the masked regions where RMSR is measured is composed of the back-
ground flux and the artefact flux, with root-variancesσbackground andσartefact =ασbackground

respectively. The artefact flux can be due scattering as well as modelling systematics. Then,
since the background and artefacts are independent we have that the EITG is,

EITG=
1+α2

no−screen

1+α2
screen

, (4.1)

where αno−screen and αscreen correspond to before and after applying the screen model, respec-
tively. Note that αscreen contains systematics imposed by modelling, which αno−screen is free of.
When αno−screen and αscreen are small then a modelling error can lead to EITG less than one.
For example, supposeσno−screen = 3σbackground, then a modelling error of 2σbackground implies
EITG less than one.

We jointly imaged all observations producing a deep image. Figure 4.6 shows the compar-
ison between our deep image and the LoTSS-DR2 archival deep image. Since the calibrator
layout is different between the LoTSS-DR2 image and our image, there are two comparisons
we make.

The first is a comparison of scattered flux near calibrators. Since LoTSS calibrates against
all flux in a facet, the solution does not perfectly correct any particular source. Instead, the
solution partially corrects all sources in the facet, with boundaries indicated by cyan lines in
Figure 4.6a. Compare this with our calibrator sources, inside red circles, which are all well
corrected. This reflects the fact that we isolate the calibrators before solving.
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One of the benefits of not isolating calibrators is that all solutions in a facet will be partially
improved, and this is a good strategy when a screen-based method is not available. If we were
to image with only the isolated calibrator solution then we would see very clean calibrators
but worse inter-calibrator scattering than in the LoTSS image. Therefore, when no screen-
based method is available calibrating against a facet is appropriate. However, calibrating
against a whole facet can fail entirely when the isoplanatic patch size becomes much smaller
than the facet.

The second comparison we make is that of the scattered flux around inter-calibrator
sources. Figure 4.6b shows some examples of the improvements made by our model. We
observe that the spoke-like artefacts are mostly gone, indicating that the effects of the iono-
sphere have been mostly removed. The majority of the remaining artefacts are from the
modelling systematic mentioned earlier, which are also visible in the individual observations,
in Figure 4.3. These artefacts are typically lower level than the scattering related artefacts,
moreover we expect to be able to characterise and remove this modelling systematic.

4.4 A non-ionospheric systematic and correction

In Figures 4.3 and 4.6b we observe asymmetric arc-like artefacts around inter-calibrator
sources after applying our screen-based calibration. These artefacts do not appear uniformly
across the field of view, and are less severe in some observations. For example, they were not
noticeable in Albert et al. [2020b]. The asymmetric pattern suggests that this is a phase-effect,
and the arc-like pattern suggests that it is varies on the scale of hours. If it varied on shorter
timescales then the patterns would be more radial as ionospheric scattering artefacts are.
Therefore, this suggests that the phase component of the Jones scalar model is missing a
slowly varying component.

We observe that both in LoTSS-DR2 archival images as well as our images without screens
applied, e.g. the LoTSS-DR2 deep image in Figure 4.6 and the lower panels in Figure 4.3,
that there are no arc-like artefacts. This implies that the Jones scalar smoothing performed
in LoTSS calibration and step 2 of our method can account for this systematic. In LoTSS
calibration the phase model is a two-parameter linear model, a TEC-like∝ ν−1 term and a
constant term. In step 2 of our method the phase model is a three-parameter linear model,
a TEC-like∝ ν−1 term, a constant term, and a clock-like∝ ν term. Both LoTSS and step 2
of our method assume slowly changing amplitudes. Note, we introduced a clock-like term
upon noticing residual direction independent components in the Jones scalars [see Albert
et al., 2020b]. This is fundamentally why we perform directional referencing before inferring
DDTEC.

The performance of the method depends on the Jones scalars being modelled correctly,
since a DDTEC screen inferred from biased DDTEC will lead to biased screens. The model
assumes that the only DD contributions to the Jones scalars are slowly varying amplitudes due
to beam errors, and phases∝ ν−1 due to non-diffractive weak scattering in the ionosphere.
The temporal aspect of the Jones scalars is modelled with a hidden Markov model using
variational inference assuming a linear phase model containing only DDTEC [Albert et al.,
2020b].

Global optimisation is guaranteed via a clever basin-hopping routine. This is based on
the analytic form of the variational expectation in [Albert et al., 2020b]. The variational
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(a) Central region of deep image. Left: LoTSS-DR2 deep archival. Right: our deep image.

(b) Cut-outs of inter-calibrator sources. Bottom row: LoTSS-DR2 deep archival. Top row: our deep
image.

Figure 4.6: Comparison between the LoTSS-DR2 archival deep Lockman Hole image and the
same data calibrated with our screen-based method. Our deep image does not apply the
systematic correction proposed in Section 4.4. Cyan lines and red circles correspond to the
LoTSS calibration regions and to our calibrators, respectively. The mean background noise
in both the LoTSS-DR2 archival deep image and our deep image is 27 µJy beam−1.
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expectation has many local maxima due to phase wrapping. Since we have the analytic form
we know precisely how far apart the local minima are, therefore we can simply hop between
them to find the global maximum (which is unique).

We search for a slowly varying unmodelled phase systematic, by plotting the residual
between the posterior mean phase and the phase of the data. The upper panel of Figure 4.7
shows the residual phase over time of a single antenna and direction following Jones scalar
modelling. We observe a low-order (in the sense of polynomials), symmetric in frequency,
slowly varying underlying structure in the residuals. The phase residuals in this example can
be quite large, reaching approximately 0.4 radians.

We perform linear regression for each time-slice and plot the first regression coefficient
(the slope) in the lower panel. The regression coefficient has units of radians/MHz and can be
converted to an effective phase residual by multiplying by half of the bandwidth. The effective
phase residual scale is indicated on the right axis, and reflects the scale of the residuals in the
upper panel. From the effective phase residual we can see that this residual changes slowly
over the observation, on the scale of hours. This suggests that it is related to the arc-like
artefacts.

The regression coefficient is insensitive to phase residuals originating from noise and
therefore is a good measure of the systematic. Table 4.3 summarises the effective phase
residuals for each observation in terms of percentiles of the effective phase residuals. We
observe that the distribution of effective phase residuals is heavily tailed. While half of
the effective phase residuals are below approximately 0.07 radians, 20% of effective phase
residuals are above approximately 0.15 radians and 10% are above approximately 0.20 radians.

Table 4.3: Effective phase residuals per observation.

Obs. ID
Effective phase residual (rad)
50-%ile 80-%ile 90-%ile

667218 0.06 0.13 0.20
667204 0.06 0.13 0.19
664480 0.06 0.13 0.19
664320 0.07 0.15 0.23
659948 0.06 0.14 0.21
659554 0.06 0.13 0.20
342938 0.07 0.14 0.19
340794 0.07 0.16 0.23
299961 0.06 0.12 0.18
294287 0.06 0.15 0.23
281008 0.05 0.11 0.16
274099 0.07 0.16 0.25

The phase residuals must originate from one or more DD systematics, since we have
directionally referenced the Jones scalars. This is why we infer doubly differential total
electron content instead of differential total electron content. Figure 4.8 shows an example
of the effective phase residual plotted over a field of view. We observe that the effective phase
residuals are clearly correlated over direction.
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Figure 4.7: Example of unmodelled systematics in the phase residuals. The upper panel
shows the phase residuals for a single antenna and direction. The lower panel shows the first
regression coefficient (slope) of the phase residuals and the corresponding effective phase
residual on the right axis.

Given that there is a correlation over direction and that the effect changes on the time
scale of hours there are only a few known candidates for this systematic. The most logical
cause is that the beam model is inaccurate. The beam of a LOFAR station is quite complicated
since the tiles of the array exhibit electromagnetic coupling, which are not perfectly modelled.
Since the beam shape is a function of phase tracking centre, an inaccurate beam model would
introduce an effect that changes slowly over the course of an observation.

We propose that the phase residuals can be heuristically modelled by the addition of a
constant-in-frequency term in the Jones phase model which changes slowly in time. This
proposal is based on the fact that both LoTSS calibration and step 2 of our method produce
images without arc-like patterns and both include a constant-in-frequency term in the phase
model. Albert et al. [2020b] show how to perform variational Bayesian inference with a hidden
Markov model [HMM; Rabiner and Juang, 1986]with any arbitrary linear phase model. In
step 3 of the method we use a single linear term, i.e. DDTEC. Here we consider the effects
of introducing a constant-in-frequency term to the linear phase model. In particular, we
consider the bias-variance trade-off of introducing an additional degree of freedom.

We simulate 100 independent Jones scalar sequences using a two-component linear
phase model with DDTEC plus a constant-in-frequency term. We use the HMM to simulate
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Figure 4.8: Example of the effective phase residual from observation 659948 exhibiting corre-
lation among directions.

the Jones scalars, drawing from the empirical HMM parameter distribution for DDTEC, i.e.
the variance of the Gaussian steps and observational uncertainty. We choose a Gaussian step
variance of (0.04 rad)2 for the constant-in-frequency term, which was selected to produce
effective phase residuals that resemble the lower panel of Figure 4.7.

Given these simulated Jones scalars we perform HMM variational inference with two
different linear phase models: 1) a DDTEC-only linear phase model, and 2) a DDTEC plus
constant-in-frequency linear phase model. The first model is exactly the same one used in
step 3, and the second model is the exact same one that the Jones scalars are simulated with.
We then compute the residual between the posterior mean DDTEC and the ground truth.

Figure 4.9 plots the DDTEC residual for both linear phase models as a function of the
ground truth constant-in-frequency term. We also compute the effective phase residual
for the simulated data and find that there is a scaling relation of 0.157 times the ground
truth constant-in-frequency term. The effective phase residual scale is shown on the top
axis. We observe that the single component linear phase model (DDTEC-only) results in a
residual that depends linearly on the ground truth constant-in-frequency term, with a slope of
approximately −16.7 mTECU rad−1. The variance of the scatter is very small, (0.75 mTECU)2.
We observe that the two component linear phase model results in residuals with no significant
dependence on the ground truth constant-in-frequency term. The variance of the scatter is
an order of magnitude larger that the single component model, (15 mTECU)2.
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The first model results in high-bias low-variance residuals, while the second model results
in low-bias high-variance residuals. The high-bias of the first model follows because the
missing component in the phase model shifts the global optimum away from the ground
truth, whereas the high-variance of the second model follows because we have introduced
twice as many degrees of freedom given the same amount of information in the data. The
high-bias of the first model implies that for antennas with phase residuals such as the one
in Figure 4.8, that the inferred DDTEC is offset by as much as 60 mTECU, and this offset
changes very slowly over the course of an observation. We suspect that this gives rise to the
asymmetric arc-like patterns. Furthermore, while the effective phase residuals might seem
deceptively small,� 1 rad, the effect on the inferred DDTEC is quite large.
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Figure 4.9: Deviations of the inferred DDTEC from the ground truth for two linear phase
models. The single component model (purple) is the DDTEC-only model, and the two
component model (orange) is the DDTEC and constant-in-frequency model. The shaded
regions are 95% confidence regions.

The high-variance of the second model implies that we cannot simply add the constant-
in-frequency term to the HMM in step 3, since the resulting DDTEC would be useless for
screen-based modelling. We propose an alternative method of debiasing based on the
effective phase residual and a strong prior on the smoothness. We use the scaling relation
between the effective phase residual and the ground truth constant-in-frequency term to
get a noisy estimate of the constant-in-frequency term. We then apply a median filter over
a time window of 2.5 hours with reflecting boundaries to produce a slowly varying smooth
estimate of the constant-in-frequency term. We then subtract this estimate of the constant-in-
frequency term and resolve again with the DDTEC-only model. This method requires running
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the HMM inference twice, once to get the effective phase residuals, and a second time once
the phases have been debiased. Since this systematic is DD, we also interpolate the constant-
in-frequency term to the screen directions. We apply nearest-neighbour interpolation as a
first-order approximation.

Figure 4.10 shows a comparison of inter-calibrator sources significant arc-like artefact
before and after debiasing. We observe the arc-like artefacts are suppressed, however a
low-level diffuse artefact appeared. This confirms that the arc-like artefacts were indeed due
to these phase residuals. The fact that the arc-like pattern disappears, despite the resulting
diffuse artefacts suggests that our general approach to debiasing is correct, however there is
still work to be done to perfect the method. For example, good outlier flagging proved critical
for the DDTEC before inferring the screen, therefore perhaps outlier detection and flagging
with these constant-in-frequency terms using spatial information would improve the results.
Also, the timescale of 2.5 hours may be too long. Given that the resulting diffuse artefact is
large scale, they likely stem from the treatment on short baselines, i.e. central antennae.

4.5 Information in DDTEC screens

An interesting product of this method is the rich view of the ionosphere’s behaviour. Fig-
ure 4.11 shows a random selection of DDTEC screens across the Lockman Hole data set,
organised according to similarity of features. The posterior uncertainty in these DDTEC
screens is . 1 mTECU. The screens were randomly selected from antennae at least 1 km
from the reference antenna. Because they are randomly sampled they provide a cross sec-
tion of the common types of ionosphere varieties. We see that features ranges from simple
gradients across the field of view, to wave-like patterns, to higher-order aperiodic features.
This supports the fact that there are many distinct behaviours in the ionosphere [e.g. Mevius
et al., 2016, Jordan et al., 2017]. This is one of the most detailed views of the ionosphere ever
made in terms of angular (sub-arcminute) and temporal (sub-minute) resolution, as well
as precision of the DDTEC measurements (sub-mTECU). This zoo of DDTEC screens also
allows us to explore the limits of our screen-based method. In particular, it enables us to
explore in the future how sparse the calibrators can be selected such that we can still recover
these screens.

One of the tantalising future applications of this method is DD calibration of LOFAR-LBA.
While it is beyond the scope of this paper to give an in-depth prediction for how feasible this
will be, we can already draw conclusions from the variety of structures seen in Figure 4.11.
Specifically, we note that roughly 20% of the DDTEC screens have wave-like patterns and
another 20% have rough small-scale structure. Such prevalence of small-scale structure
suggests that LOFAR-LBA, with typically less than ten bright calibrators with good quality
Jones scalars per field of view2, may struggle to perform DD calibration. This suggests DD
calibration of LOFAR-LBA may benefit from the planned LOFAR expansion which would
allow dual HBA-LBA observations, where the DDTEC screens from HBA can be applied to
LBA.

As observed in Albert et al. [2020a], the full tomographic application is able to perform
inference on sub-calibrator spacing. This suggests that a valuable future direction would be
to make the full tomographic method computationally feasible for application to LOFAR-LBA.

2Private communications with W. Williams.
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(a) Left: before applying debiasing. Right: After applying debiasing. Source comes from observation
342938.

(b) Cut-outs of inter-calibrator sources. Bottom row: before applying debiasing. Top row: After applying
debiasing. Sources come from observations (left to right): 281008, 340794, 299961, 342938.

Figure 4.10: Comparison of inter-calibrator sources with significant arc-like patterns before
and after applying our proposed debiasing correction.
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On top of this, we would also like to understand what further improvements to the screen
model would be beneficial at better handling some of the more difficult ionospheres, e.g.
non-stationary FED covariances, or curvature of Earth.

Since the ionospheric model has undergone several approximations [see Albert et al.,
2020b] for computational efficiency, we no longer perform tomography. Therefore, it is not
possible to learn about most of the ionosphere’s physical parameters. In principle, it is still
possible to constrain the ratio of irregularity correlation scale to height of the ionosphere.
However, since we have performed a FED hypothesis marginalisation it is not straight forward
to interpret these parameters. Furthermore, as shown in Section 4.4, the modelling systematic
can result in DDTEC that differ from the ground truth as much as 60 mTECU. It would
therefore be premature to interpret the DDTEC screens for ionospheric science.

4.6 Conclusion

We have tested the probabilistic screen-based method of Albert et al. [2020b] on 12 observa-
tions (100 hours) of Lockman Hole LOFAR HBA data, which covers a wide range of ionospheric
conditions, and compared the results to the calibration procedure of LoTSS-DR2. We find
that 10/12 images showed significant improvement beyond the method of LoTSS-DR2, while
2/10 observations showed as-good or only slightly better improvements. We suggest that
these moderate improvements are due to unresolved small scale structure in the ionosphere,
or non-stationary structure. This implies that the method robust to most ionospheric condi-
tions.

We have quantified the improvements from screen-based modelling in terms of equivalent
integration-time gain around bright sources, which is the extra relative observation time that
would be needed using the LoTSS-DR2 calibration method to reduce the scattering artefacts
to the level that the screen achieves. We find that when the free electron density is high, due
to increased Sun activity, measured in terms of Sun-spots, the equivalent integration-time
gain is on average two. That is, the method achieves scattering effects equivalent to an
observation twice as long. We also jointly imaged all observations, and compared this the
to deep LoTSS-DR2 image. We find that similar improvements also scale to deep images,
though modelling systematics build up and increase the noise around bright sources.

We discovered a modelling systematic that results in asymmetric arc-like artefacts around
inter-calibrator sources. The origin of the phase component is not yet known, though we sug-
gest it could be related to beam model inaccuracies. We propose that it can be accounted for
as an additional DD constant-in-frequency phase component in the Jones phase model. Us-
ing a combination of real and simulated data we show that including a constant-in-frequency
term in the HMM results in high-variance DDTEC inference unsuitable for screen inference.
Therefore, an alternative method was proposed to account for the bias. We propose a simple
filtering method, based on the slowly varying nature of the systematic, to remove it from
the data. We show that this simple procedure removes the arc-like patterns, but introduces
low-level diffuse artefacts. This suggest the general approach to accounting for the systematic
is correct, but more work is needed to perfect it.

Once this systematic is robustly accounted for, the results of this paper suggest our screen-
based method is feasible for reprocessing the entire LoTSS archive. Future improvements to
the screen-based method, that would improve the robustness and also make it applicable to
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Figure 4.11: Caption continued on next page.
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Figure 4.11: A zoo of DDTEC screens. Each panel is a DDTEC screen with normalised scale.
The posterior uncertainty in these DDTEC screens is. 1 mTECU. The screens are randomly
taken throughout the Lockman Hole data set from antennae at least 1 km from the reference
antenna. They have been organised according to similar features ranging from simple gradi-
ents, to wave-like structures, to rough nearly uncorrelated structures. The black star is the
reference direction. The distance from the reference antenna is shown in the box.

LOFAR-LBA, would be to relax the thin-layer approximation so that the model becomes fully
(non-diffractive) tomographic as originally proposed in Albert et al. [2020a].
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