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Chapter 2 Probabilistic ionospheric calibration

A probabilistic approach to direction-dependent ionospheric
calibration

J. G. ALBERT, M. S. S. L. OEI, R. J. VAN WEEREN, H. T. INTEMA, AND H. J. A. RÖTTGER-
ING

Published in A&A
Received 12 April 2019 / Accepted 10 October 2019

Calibrating for direction-dependent ionospheric distortions in visibility data is one of the
main technical challenges that must be overcome to advance low-frequency radio astronomy.
In this paper, we propose a novel probabilistic, tomographic approach that utilises Gaussian
processes to calibrate direction-dependent ionospheric phase distortions in low-frequency
interferometric data. We suggest that the ionospheric free electron density can be modelled
to good approximation by a Gaussian process restricted to a thick single layer, and show
that under this assumption the differential total electron content must also be a Gaussian
process. We perform a comparison with a number of other widely successful Gaussian
processes on simulated differential total electron contents over a wide range of experimental
conditions, and find that, in all experimental conditions, our model is better able to represent
observed data and generalise to unseen data. The mean equivalent source shift imposed by
our predictive errors are half as large as those of the best competitor model. We find that it
is possible to partially constrain the hyperparameters of the ionosphere from sparse-and-
noisy observed data. Our model provides an alternative explanation for observed phase
structure functions deviating from Kolmogorov’s five-thirds turbulence, turnover at high
baselines, and diffractive scale anisotropy. We show that our model performs tomography
of the free electron density both implicitly and cheaply. Moreover, we find that even a fast,
low-resolution approximation of our model yields better results than the best alternative
Gaussian process, implying that the geometric coupling between directions and antennae is
a powerful prior that should not be ignored.
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Grootschalige Onderzoeksfaciliteiten’, as this research is part of the NL SKA roadmap project. J. G. A.
and H. J. A. R. acknowledge support from the ERC Advanced Investigator programme NewClusters
321271. R. J. vW. and M. S. S. L. O. acknowledge support of the VIDI research programme with project
number 639.042.729, which is financed by the Netherlands Organisation for Scientific Research (NWO).
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Probabilistic ionospheric calibration Chapter 2

If we know that our individual errors and fluctuations follow
the magic bell-shaped curve exactly then the resulting

estimates are known to have almost all the nice properties that
people have been able to think of.

JOHN W. TUKEY, 1965

2.1 Introduction

Since the dawn of low-frequency radio astronomy, the ionosphere has been a confounding
factor in the interpretation of radio data. This is because the ionosphere has a spatially
and temporally varying refractive index, which perturbs the radio-frequency radiation that
passes through it. This effect becomes more severe at lower frequencies; see [e.g. de Gasperin
et al., 2018]. The functional relation between the sky brightness distribution – the image
– and interferometric observables – the visibilities – is given by the radio interferometry
measurement equation [RIME; Hamaker et al., 1996], which models the propagation of
radiation along geodesics from source to observer as an ordered set of linear transformations
[Jones, 1941].

A mild ionosphere will act as a weak-scattering layer resulting in a perturbed inferred
sky brightness distribution, analogous to the phenomenon of seeing in optical astronomy
[Wolf, 1969]. Furthermore, the perturbation of a geodesic coming from a bright source will
deteriorate the image quality far more than geodesics coming from faint sources. Therefore,
the image-domain effects of the ionosphere can be dependent on the distribution of bright
sources on the celestial sphere, that is they can be heteroscedastic. This severely impacts
experiments which require sensitivity to faint structures in radio images. Such studies include
the search for the epoch of reionisation [e.g. Patil et al., 2017], probes of the morphology
of extended galaxy clusters [e.g. van Weeren et al., 2019], efforts to detect the synchrotron
cosmic web [e.g. Vernstrom et al., 2017], and analyses of weak gravitational lensing in the radio
domain [e.g. Harrison et al., 2016]. Importantly, these studies were among the motivations
for building the next generation of low-frequency radio telescopes like the Low Frequency
Array (LOFAR), Murchison Widefield Array (MWA), and the future Square Kilometre Array
(SKA). Therefore, it is of great relevance to properly calibrate the ionosphere.

Efforts to calibrate interferometric visibilities have evolved over the years from single-
direction, narrow-band, narrow-field-of-view techniques [Cohen, 1973], to more advanced
multi-directional, wide-band, wide-field methods [e.g. Kazemi et al., 2011, van Weeren et al.,
2016, Tasse et al., 2018]. The principle underlying these calibration schemes is that if you
start with a rough initial model of the true sky brightness distribution, then you can calibrate
against this model and generate an improved sky brightness model. One can then repeat this
process for iterative improvement. Among the direction-dependent calibration techniques
the most relevant for this paper is facet-based calibration, which applies the single-direction
method to piece-wise independent patches of sky called facets. This scheme is possible
if there are enough compact bright sources – calibrators – and if sufficient computational
resources are available. Ultimately, there are a finite number of calibrators in a field of view
and additional techniques must be considered to calibrate all the geodesics involved in the
RIME. We note that there are other schemes for ionosphere calibration that do not apply the
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Chapter 2 Probabilistic ionospheric calibration

facet-based approach, such as image domain warping [Hurley-Walker et al., 2017].
There are two different approaches for calibrating all geodesics involved in the RIME.

The first approach is to model the interferometric visibilities from first principles and then
solve the joint calibration-and-imaging inversion problem. This perspective is the most
fundamental; however, applications [e.g. Bouman et al., 2016] of this type are very rare and
often restricted to small data volumes due to exploding computational complexity. However,
we argue that investing research capital – in small teams to minimize risk – could be fruitful
and disrupt the status quo [Wu et al., 2019]. The second approach is to treat the piece-
wise independent calibration solutions as data and predict calibration solutions for missing
geodesics [e.g. Intema et al., 2009, van Weeren et al., 2016, Tasse et al., 2018]. In this paper,
we consider an inference problem of the second kind.

In order to perform inference for the calibration along missing geodesics, a prior must
be placed on the model. One often-used prior is that the Jones operators are constant over
some solution interval. For example, in facet-based calibration the implicit prior is that two
geodesics passing through the same facet and originating from the same antenna have the
same calibration – which can be thought of a nearest-neighbour interpolation. One often-
neglected prior is the 3D correlation structure of the refractive index of the ionosphere. An
intuitive motivation for considering this type of prior is as follows: The ionosphere has some
intrinsic 3D correlation structure, and since cosmic radio emission propagates as spatially
coherent waves. It follows that the correlation structure of the ionosphere should be present
in ground-based measurements of the electric field correlation – the visibilities. The scope of
this paper is therefore to build the mathematical prior corresponding to the above intuition.

We arrange this paper by first reviewing some properties of the ionosphere and its re-
lation to interferometric visibilities via differential total electron content in Section 2.2. In
Section 2.3, we then introduce a flexible model for the free electron density based on a Gaus-
sian process restricted to a layer. We derive the general relation between the probability
measure for free electron density and differential total electron content, and use this to form
a strong prior for differential total electron content along missing geodesics. In Section 2.4 we
describe a numerical experiment wherein we test our model against other widely successful
Gaussian-process models readily available in the literature. In Section 2.5 we show that our
prior outperforms the other widely successful priors in all noise regimes and levels of data
sparsity. Furthermore, we show that we are able to hierarchically learn the prior from data.
In Section 2.6 we provide a justification for the assumptions of the model, and show the
equivalence with tomographic inference.

2.2 Ionospheric effects on interferometric visibilities

The telluric ionosphere is formed by the geomagnetic field and a turbulent low-density
plasma of various ion species, with bulk flows driven by extreme ultraviolet solar radiation
[Kivelson and Russell, 1995]. Spatial irregularities in the free electron density (FED) ne and
magnetic field B of the ionosphere give rise to a variable refractive index n , described by the
Appleton-Hartree equation [Cargill, 2007] – here given in a Taylor series expansion to order
O (ν−5):

n (x)≈1−
ν2

p (x)

2ν2
±
νH (x)ν2

p (x)

2ν3
−
ν4

p (x)−4ν2
H (x)ν

2
p (x)

8ν4
. (2.1)
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Here νp (x) =
�

ne (x)q 2

4π2ε0m

�1/2
is the plasma frequency, νH (x) =

B (x)q
2πm is the gyro frequency, ν is the

frequency of radiation, q is the elementary charge, ε0 is the vacuum permittivity, and m
is the effective electron mass. This form of the Appleton-Hartree equation assumes that
the ionospheric plasma is cold and collisionless, that the magnetic field is parallel to the
radiation wavevector, and that ν�max{νp ,νH }. The plus symbol corresponds to the left-
handed circularly polarised mode of propagation, and the minus symbol corresponds to the
right-handed equivalent. Going forward, we will only consider up to second-order effects,
and therefore neglect all effects of polarisation in forthcoming analyses.

In the regime where refractive index variation over one wavelength is small, we can
ignore diffraction and interference, or equivalently think about wave propagation as ray
propagation [e.g. Koopmans, 2010]. This approximation is known as the Jeffreys-Wentzel-
Kramers-Brillouin approximation [Jeffreys, 1925], which is equivalent to treating this as a
scattering problem, and assuming that the scattered wave amplitude is much smaller than
the incident wave amplitude – the weak scattering limit [e.g. Yeh, 1962, Wolf, 1969]. Light
passing through a varying refractive index n will accumulate a wavefront phase proportional
to the path length of the geodesic traversed. LetR k̂

x be a functional of n , so that the geodesic

R k̂
x [n ] : [0,∞)→R3 maps from some parameter s to points along it. The geodesic connects

an Earth-based spatial location x to a direction on the celestial sphere, indicated by unit
vector k̂. The accumulated wavefront phase along the path is then given by

φk̂
x =

2πν

c

∫ ∞

0

n
�

R k̂
x [n ](s )

�

−1 ds , (2.2)

where c is the speed of light in vacuo. Hamilton’s principle of least-action states that geodesics
are defined by paths that extremise the total variation of Eq. 2.2.

By substituting Eq. 2.1 into Eq. 2.2, and by considering terms up to second order in ν−1

only, we find that the phase deviation induced by the ionosphere is proportional to the

integral of the FED along the geodesic,φk̂
x ≈

−q 2

4πε0m cντ
k̂
x , where,

τk̂
x ,

∫ ∞

0

ne

�

R k̂
x [n ](s )

�

ds . (2.3)

Equation 2.3 defines the total electron content (TEC).
In radio interferometry, the RIME states that the visibilities, being a measure of coherence,

are insensitive to unitary transformations of the electric field associated with an electro-
magnetic wave. Thus, the phase deviation associated with a geodesic is a relative quantity,
usually referenced to the phase deviation from another fixed parallel geodesic – the origin
of which is called the reference antenna. Going forward we use Latin subscripts to spec-
ify geodesics with origins at an antenna location; for exampleR k̂

i [n ] is used as shorthand

forR k̂
xi
[n ]. Correspondingly, we introduce the notion of differential total electron content

(∆TEC),

τk̂
i j ,τ

k̂
i −τ

k̂
j , (2.4)

which is the TEC ofR k̂
i [n ] relative toR k̂

j [n ].
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2.3 Probabilistic relation between FED and∆TEC: Gaussian
process layer model

In this section we derive the probability distribution of ∆TEC given a specific probability
distribution for FED. It helps to first introduce the concept of the ray integral (RI) and the
corresponding differenced ray integral (DRI). The RI is defined by the linear operator G k̂

i :V →
Rmapping from the space of all scalar-valued functions over R3 to a scalar value according
to,

G k̂
i f ,

∫ ∞

0

f
�

R k̂
i [n ](s )

�

ds , (2.5)

where f ∈ V =
�

g |
∫

R3 g 2(x)d x<∞
	

. Thus, an RI simply integrates a scalar field along a

geodesic. The DRI∆k̂
i j :V →R for a scalar field f is straightforwardly defined by

∆k̂
i j f ,

�

G k̂
i −G k̂

j

�

f . (2.6)

Both the RI and DRI are linear operators in the usual sense. Using Eqs. 2.3 up to 2.6, we see
that

τk̂
i j =∆

k̂
i j ne . (2.7)

Let us now specify that the FED is a Gaussian process (GP) restricted to (and indexed by)
the set of spatial locationsX = {x ∈R3 | (x−x0) · ẑ ∈ [a − b /2, a + b /2]}. This defines a layer
of thickness b at height a above some reference point x0 (see Figure 2.1). Within this layer
the FED is realised from,

ne ∼N [µ, K ], (2.8)

whereµ :X →R>0 is the mean function, and K :X×X →R is the covariance kernel function.
In other words, the ionospheric FED is regarded to be a uncountable infinite set of random
variables (RVs) indexed by spatial locations in X , such that for any finite subset of such
locations the corresponding FEDs have a multivariate normal distribution.

In order to extend the scalar field ne to all of R3, so that we may apply the operator in
Eq. 2.6 to FED, we impose that for all x ∈ R3 \X : ne (x) = 0. This simply means that we
take electron density to be zero outside the layer, and makes G k̂

i well-defined. To further
simplify the model, we assume that the mean FED in the layer is constant; that is, for all
x ∈X :µ(x) = n̄e .

One immediate question that arises pertains to the reasoning behind using a GP to model
the FED in the ionosphere. Currently, there is no adequate probabilistic description of the
ionosphere that is valid for all times and at the spatial scales that we require. The state-of-
the-art characterisation of the ionosphere at the latitude and scales we are concerned with
are measurements of the phase structure function, a second-order statistic [Mevius et al.,
2016]. It is well known that second-order statistics alone do not determine a distribution.
In general, all moments are required to characterise a distribution, with a determinancy
criterion known as Carleman’s condition. Furthermore, the ionosphere is highly dynamic and
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ẑ

ŷ

x̂

φ1

xi

a

b

ẑ

ŷ

x̂

φ2

x j

k̂1
k̂2

x0

Figure 2.1: Geometry of the toy model. The ionosphere is a layer of thickness b at height a
above a reference location x0. In general, ∆TEC is the TEC along one geodesic minus the
TEC along another parallel geodesic. Usually, these geodesics are originating at antennae i
and j (locations xi and x j ), and pointing in directions k̂1 and k̂2, respectively. One common
choice is to have a fixed reference antenna for all∆TEC measurements. The corresponding
zenith angles areφ1 andφ2.

displays a multitude of behaviours. Jordan et al. [2017] observed four distinct behaviours of
the ionosphere above the MWA. It is likely that there are innumerable states of the ionosphere.

Due to the above issue, it is not our intent to precisely model the ionosphere. We rather
seek to describe it with a flexible and powerful probabilistic framework. Gaussian processes
have several attractive properties, such as the fact that they are highly expressive, easy to inter-
pret, and (in some cases) allow closed-form analytic integration over hypotheses [Rasmussen
and Williams, 2006a].

However, a Gaussian distribution assigns a non-zero probability density to negative values,
which is unphysical. One might instead consider the FED to be a log-GP, ne (x) = n̄e expρ (x),
where the dimensionless quantity ρ (x) is a Gaussian process. In the limit ρ (x) → 0, we
recover that ne is itself a GP. This is equivalent to saying that theσne

/n̄e � 1. As explained in
Section 2.4, we determine estimates ofσne

and n̄e by fitting our models to actual observed
calibrator data, the International Reference Ionosphere (IRI), and observations taken from
Kivelson and Russell [1995]. This places the ratio at σne

/n̄e . 0.06, suggesting that if the
FED can be accurately described with a log-GP, then to good approximation it can also be
described with a GP.

We now impose that the geodesics are straight rays, a simplification valid in the weak-
scattering limit considered here. The geodesics therefore become R k̂

x [n ](s ) = x+ s k̂ . In
practice, strong scattering due to small-scale refractive index variations in the ionosphere
is negligible at frequencies far above the plasma frequency when the ionosphere is well-
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behaved, which is about 90% of the time [Vedantham and Koopmans, 2015]. For frequencies
. 50 MHz however, this simplification becomes problematic. Under the straight-ray assump-
tion, Equation 2.7 becomes

τk̂
i j =

∫ s k̂+
i

s k̂−
i

ne (xi + s k̂ )d s −
∫ s k̂+

j

s k̂−
j

ne (x j + s ′k̂ )d s ′. (2.9)

Here, the integration limits come from the extension of the FED to spatial locations outside
the index-setX , and are given by

s k̂±
i =

�

a ±
b

2
− (xi −x0) · ẑ

�

secφ, (2.10)

where secφ = (k̂ · ẑ )−1 denotes the secant of the zenith angle. It is convenient to colocate the
reference point x0 with one of the antenna locations, and then to also specify this antenna as
the reference antenna, i.e. the origin of all reference geodesics. When this choice is made,
∆TEC becomes τk̂

i 0.
Equation 2.7 shows directly that if ne is a GP, then so is∆TEC. This can be understood by

viewing the RI as the limit of a Riemann sum. We reiterate that every univariate marginal of a
multivariate Gaussian is also Gaussian, and that every finite linear combination of Gaussian
RVs is again Gaussian. Taking the Riemann sum to the infinitesimal limit preserves this
property. Since the DRI is a linear combination of two RIs, the result follows [e.g. Jidling et al.,
2018].

The index-set for the∆TEC GP is the product space of all possible antenna locations and
vectors on the unit 2-sphere,S =

�

(x, k̂ ) | x ∈R3, k̂ ∈ S2
	

. This is analogous to saying that the
coordinates of the∆TEC GP are a tuple of antenna location and calibration direction. Thus,
given any y= (x, k̂ ) ∈S , the∆TEC is denoted by τk̂

x0. Because∆TEC is a GP, its distribution
is completely specified by its first two moments.

Since we assume a flat layer geometry, the intersections of two parallel rays with the
ionosphere layer have equal lengths of b secφ. This results in the mean TEC of two parallel
rays being equal, and thus the first moment of∆TEC is,

m∆TEC(y) =0, (2.11)

where y= (xi , k̂ ) ∈S . It is important to note that this is not a trivial result. Indeed, a more
realistic but slightly more complicated ionosphere layer model would assume the layer
follows the curvature of the Earth. In this case, the intersections of two parallel rays with the
ionosphere layer have unequal lengths, and the first moment of∆TEC would depend on the
layer geometry and n̄e .

We now derive the second central moment between two ∆TEC along two different
geodesics, as visualised in Figure 2.1.

K∆TEC(y, y′) =E
�

τk̂
i 0τ

k̂′

j 0

�

(2.12)

=E
�

(G k̂
i ne −G k̂

0 ne )(G
k̂′

j ne −G k̂′

0 ne )
�

(2.13)

=I k̂k̂′

i j + I k̂k̂′

00 − I k̂k̂′

i 0 − I k̂k̂′

0 j , (2.14)
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where y= (xi , k̂ ) ∈S and y′ = (x j , k̂ ′) ∈S and,

I k̂k̂′

i j =

∫ s k̂+
i

s k̂−
i

∫ s k̂′+
j

s k̂′−
j

K
�

xi + s k̂ , x j + s ′k̂ ′
�

ds ds ′. (2.15)

We now see that the GP for∆TEC is zero-mean with a kernel that depends on the kernel of the
FED and layer geometry. The layer geometry of the ionosphere enters through the integration
limits of Eq. 2.15. Most notably, the physical kernel is non-stationary even if the FED kernel
is. Non-stationarity means that the∆TEC model is not statistically homogeneous, a fact that
is well known since antennae near the reference antenna typically have small ionospheric
phase corrections. We henceforth refer to Eq. 2.14 as the physical kernel, or our kernel.

Related work. Modelling the ionosphere with a layer has been used in the past. Yeh [1962]
performed analysis of transverse spatial covariances of wavefronts [e.g. Wilcox, 1962, Keller
et al., 1964] passing through the ionosphere. Their layer model was motivated by the obser-
vation of scintillation of radio waves from satellites [Yeh and Swenson, 1959]. One of their
results is a simplified variance function, which can be related to the phase structure functions
in Section 2.6.4. In van der Tol [2009], a theoretical treatment of ionospheric calibration
using a layered ionosphere with Kolmogorov turbulence is done. More recently, Arora et al.
[2016] attempted to model a variable-height ionosphere layer above the MWA using GPS
measurements for the purpose of modelling a TEC gradient; however unfortunately they
concluded that the GPS station array of the MWA is not dense enough to constrain their
model.

2.4 Method

In order to investigate the efficacy of the physical kernel for the purpose of modelling∆TEC
we devise a simulation-based experiment. Firstly, we define several observational setups
covering a range of calibration pierce-point sparsity and calibration signal-to-noise ratios. A
high signal-to-noise-ratio calibration corresponds to better determination of∆TEC from
gains in a real calibration program. Secondly, we characterise two ionosphere varieties as
introduced in Section 2.3. Each ionosphere variety is defined by its layer height and thickness,
and GP parameters. For each pair of observational setup and ionosphere variety we realise
FED along each geodesic and numerically evaluate Eq. 2.7 thereby producing∆TEC. We then
add an amount of white noise to∆TEC which mimics the uncertainty in a real calibration
program with a given calibration signal-to-noise ratio. Finally, we compare the performance
of our kernel against several other common kernels used in machine learning on the problem
of Gaussian process regression, known as Kriging. In order to do this, we generate ∆TEC
for extra geodesics and place them in a held-out dataset. This held-out dataset is used for
validation of the predictive performance to new geodesics given the observed ∆TEC. We
refer to the other kernels, which we compare our kernel to, as the competitor kernels, and
the models that they induce, as the competitor models.
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Table 2.1: Summary of the parameters of the simulated ionospheres.

Variety a (km) b (km) KFED σne
(m−3) HPD (km)

dawn 250 100 M32 6 ·109 15
dusk 350 200 EQ 3 ·109 15

2.4.1 Data generation

For all simulations, we have chosen the core and remote station configuration of LOFAR [van
Haarlem et al., 2013], which is a state-of-the-art low-frequency radio array centred in the
Netherlands and spread across Europe. The core and remote stations of LOFAR are located
within the Netherlands with maximal baselines of 70 km, and we term this array the Dutch
LOFAR configuration. We thinned out the array such that no antenna is within 150 m of
another. We made this cutoff to reduce the data size because nearby antennae add little new
information and inevitably raise computational cost. For example, antennae like CS001HBA0
and CS001HBA1 are so close that their joint inclusion was considered redundant.

We consider several different experimental conditions, with a particular choice denoted
by η, under which we compare our model to competitors. We consider five levels of pierce-
point sparsity: {10,20,30,40,50} directions per field of view (12.6 deg2). For a given choice
of pierce-point sparsity we place twice as many directions along a Fibonacci spiral – scaled
to be contained within the field of view – and randomly select half of the points to be in the
observed dataset and the other half to be in the held-out dataset. The Fibonacci spiral is
slightly overdense in the centre of the field of view, which mimics selecting bright calibrators
from a primary-beam uncorrected radio source model. We consider a range of calibration
signal-to-noise ratios, which correspond to Gaussian uncertainties of∆TEC that would be
inferred from antenna-based gains in a real calibration program. We therefore consider 11
uncertainty levels on a logarithmic scale from 0.1 to 10 mTECU. A typical state-of-the-art
Dutch LOFAR-HBA (high-band antennae) direction-dependent calibration is able to produce
on the order of 30 calibration directions [Shimwell et al., 2019], based on the number of
bright sources in the field of view, and produce∆TEC with an uncertainty of approximately
1 mTECU; these levels of sparsity and noise probe above and below nominal LOFAR-HBA
observing conditions.

We define an ionosphere variety as an ionosphere layer model with a particular choice
of height a , thickness b , mean electron density n̄e , and FED kernel KFED with associated
hyperparameters, namely length-scale and variance. As mentioned in Section 2.3, due to the
innumerable states of the ionosphere our intent is not to exactly simulate the ionosphere,
but rather to derive a flexible model. Therefore, to illustrate the flexibility of our model, we
have chosen to experiment with two very different ionosphere varieties which we designate
the dawn and dusk ionosphere varieties. These ionosphere varieties are summarised in
Table 2.1. In Section 2.6.4 we show that these ionosphere varieties predict phase structure
functions which are indistinguishable from real observations. In order to select the layer
height and thickness parameters for the dawn and dusk varieties we took height profiles from
the International Reference Ionosphere [IRI; Bilitza and Reinisch, 2008]model.

In order to choose the FED GP kernels and hyperparameters we note that it has been
suggested that scintillation is more pronounced during mornings, due to increased FED
variation [e.g. Spoelstra, 1983]; therefore we chose a rough FED kernel for our dawn simulation.
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Roughness corresponds to how much spectral power is placed on the shorter length-scales,
and also relates to how differentiable realisations from the process are; e.g. see Figure 2.2.
For the dawn ionosphere we choose the Matérn-3/2 (M32) kernel,

KM32(x, x′) =σ2
ne

�

1+
p

3

lM32
|x−x′|

�

exp

�

−
p

3

lM32
|x−x′|

�

, (2.16)

which produces realisations that are only once differentiable and therefore rough. For the
dusk ionosphere we choose the exponentiated quadratic (EQ) kernel,

KEQ(x, x′) =σ2
ne

exp

�

−|x−x′|2

2l 2
EQ

�

, (2.17)

which produces realisations that are infinitely differentiable and smooth.
Both kernels have two hyperparameters, variance σ2

ne
and length-scale l . In order to

estimate the FED variation,σne
, we used observations from Kivelson and Russell [1995] that

TEC measurements are typically on the order of 10 TECU, with variations of about 0.1 TECU.
Following the observation that the dawn typically exhibits more scintillation we choose a
twice higherσne

for our dawn simulation. In addition to the length-scale we consider the
half-peak distance (HPD) h , which corresponds to the distance at which the kernel reaches
half of its maximum. This parameter has a consistent meaning across all monotonically
decreasing isotropic kernels, whereas the meaning of l depends on the kernel. It is related
to h by h ≈ 1.177lEQ for the EQ and h ≈ 0.969lM32 for the M32 kernel. The length-scales
were chosen by simulating a set of ionospheres with different length-scales and choosing
the length-scale that resulted in ∆TEC screens that are visually similar to typical Dutch
LOFAR-HBA calibration data. For a given ionosphere variety, we numerically integrate the
FED realised from the corresponding GP along the rays in order to compute TEC. From TEC
we compute DTEC by taking the difference with the reference antenna TEC. We note that
this requires a much higher relative precision in the absolute TEC calculations, since TEC is
typically two orders of magnitude large than DTEC. Due to computational limits, we only
realise one simulation per experimental condition – that is, we do not average over multiple
realisations per experimental condition – however given the large number of experimental
conditions there is enough variation to robustly perform a comparative analysis.

2.4.2 Competitor models

For the comparison with competitor models, we compare the physical kernel with: exponen-
tial quadratic (EQ), Matérn-5/2 (M52), Matérn-3/2 (M32), and Matérn-1/2 (M12) [Rasmussen
and Williams, 2006a]. The EQ and M32 kernels have already been introduced as FED kernels.
The M52 and M12 are very similar except for having different roughness properties. Each of
these kernels results in a model that spatially smooths – and therefore interpolates – the ob-
served data, but involves a different assumption on the underlying roughness of the function.
In order to use these kernels to model ∆TEC, we give each subspace of S its own kernel
and take the product. For example, if KC is the competitor kernel type, and (x, k̂ ), (x′, k̂ ′) ∈S ,
then we form the kernel KC ((x, k̂ ), (x′, k̂ ′)) = K 1

C (x, x′)K 2
C (k̂ , k̂ ′) thereby giving each subspace

of the index set,S , its own kernel with associated hyperparameters.
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Figure 2.2: Example realisations from exponential quadratic, Matérn-5/2, Matérn-3/2, and
Matérn-1/2 kernels. The same HPD was used in all kernels, however the smoothness of the
resulting process realisation is different for each.
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Figure 2.3: Shape of several kernels as a func-
tion of separation in units of the HPD of the
kernel.

Figure 2.3 shows each kernel profile with
the same HPD and Figure 2.2 shows exam-
ple realisations from the same kernels. It can
be visually verified that the M32 kernel has
more small-scale variation than the EQ ker-
nel, while maintaining similar large-scale
correlation features.

We note that evaluation of the physi-
cal kernel requires that a double integral
be performed, which can be done in sev-
eral ways [e.g. Hendriks et al., 2018]. In
our experiments we tried both explicit adap-
tive step-size Runge-Katta quadrature, and
two-dimensional trapezoid quadrature. We
found via experimentation that we could
simply use the trapezoid quadrature with
each abscissa partitioned into four equal in-
tervals without loss of effectiveness. How-

ever, we chose to use seven partitions. We discuss this choice in Section 2.6.5.

2.4.3 Model comparison

For model comparison, we investigate two key aspects of each model: the ability to accurately
model observed∆TEC, and the ability to accurately infer the held-out∆TEC. In the language
of the machine-learning community these are often referred to as minimising the data
loss and the generalisation error, respectively. We also investigate the ability to learn the
hyperparameters of the physical kernel from sparse data. Finding that the physical model
accurately models both observed and held-out ∆TEC, while also being able to learn the
hyper parameters, would be a positive outcome.

To measure how well a model represents the observed data, given a particular choice
of kernel K and hyperparameters, we compute the log-probability of the observed (LPO)
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∆TEC data – Bayesian evidence – which gives a measure of how well a GP fits the data with
intrinsically penalised model complexity. If we have data measured at X ∈S according to
τobs =τ(X) +εwhere ε∼N [0,σ2] and τ(X)∼N [0, K (X, X)] then the LPO is,

log PK (τobs) = logN [0, B ], (2.18)

where B = K (X, X)+σ2I . To measure how well a model generalises to unseen data, given a
particular choice of kernel K , we compute the conditional log-probability of held-out (LPH)
data given the observed data. That is, if we have a held-out dataset measured at X∗ ∈ S
according to τ∗obs =τ(X

∗)+ε∗ with ε∗ ∼N [0,σ2] then the LPH conditional on observed τobs

is,

log PK

�

τ∗obs |τobs

�

= logN [K (X∗, X)B−1τobs,

B ∗−K (X∗, X)B−1K (X, X∗)] (2.19)

where B ∗ = K (X∗, X∗) +σ2I .
In order to make any claims of model superiority, we will define the following two figures

of merit (FOMs),

∆LPOC(η),
P∆TEC

�

τobs |η
�

PC

�

τobs |η
� , (2.20)

∆LPHC(η),
P∆TEC

�

τ∗obs |τobs,η
�

PC

�

τ∗obs |τobs,η
� , (2.21)

where P∆TEC is the probability distribution using the physical kernel and PC is the distribution
using a competitor kernel. The variable η represents a particular choice of experimental
conditions, for example pierce point sparsity and noise.

These FOMs specify how much more or less probable the physical kernel model is than a
competitor for the given choice of experimental conditions, and are therefore useful inter-
pretable numbers capable of discriminating between two models. For example, a∆LPOC(η)
value of 1 implies that for the given experimental conditions, η, both models have an equal
probability of representing the observed data, and a value of 1.5 would imply that the physical
kernel representation is 50% more probable than the competitor kernel. We note that consid-
ering the ratio of marginal probabilities is the canonical way of model selection [Rasmussen
and Williams, 2006a]. For a rule-of-thumb using these FOMs, we empirically visually find
that models produce noticeably better predictions starting at around 1.10 (10%).

For each choice of experimental conditions, η, and kernel model, we first infer the maxi-
mum a posteriori estimate of the hyperparameters of the kernel by maximising the marginal
log-likelihood of the corresponding GP [Rasmussen and Williams, 2006a], which is equivalent
to maximising the LPO of that model on the available observed dataset. We maximise the
marginal log-likelihood using the variable metric BFGS method, which uses a low-rank ap-
proximation to the Hessian to perform gradient-based convex optimisation [Byrd et al., 1995].
We use the GPFlow library [Matthews et al., 2017], which simplifies the algorithmic process
considerably. On top of this we perform optimisation from multiple random initialisations
to avoid potential local minima. For the physical kernel this corresponds to learning the
layer height a and thickness b , and FED kernel length-scale l , and varianceσ2

ne
, and for the

competitor kernels this corresponds to learning a variance and the length-scales for each
subspace.
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Table 2.2: Average and standard deviation, over all experimental conditions, of the difference
between the learned physical hyperparameters and the true hyperparameters.

Variety a b HPD bσne

(km) (km) (km) (1011km m−3)
dawn 10±10 48±18 4±3 1.9±1.2
dusk 16±9 82±20 1±0.5 2.2±0.3
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Figure 2.4: Caption continued on next page.
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Figure 2.4: Example of antenna-based∆TEC screens from the dusk ionosphere simulation.
Each plot shows the simulated ground truth (noise-free)∆TEC for each geodesic originating
from that station with axes given in direction components kx and ky . The inset label gives
how far the antenna is from the reference antenna. Antennae further from the reference
antenna tend to have a larger magnitude∆TEC as expected. Each plot box bounds a circular
12.6 deg2 field of view.

2.5 Results

In Table 2.2 we report the average and standard deviation, over all experimental conditions, of
the difference between the learned physical hyperparameters and the true hyperparameters,
which we term the discrepancy. The optimisation converged in all cases. We observe that
for both ionosphere varieties the discrepancy of a is on the order of a ∼ 10 km, or a few
percent, implying that a can be learned from data. The discrepancy of HPD, is on the order of
1 km, or around 10%, implying the spectral shape information of the FED can be constrained
from data. We observe that the discrepancy of layer thickness, b , is large and on the order
of 50%. One reason for this is because Eq. 2.15 will scale to first order with b – which is
degenerate with the function ofσne

– and the only way to break the degeneracy is to have
enough variation in the secant of the zenith angle. In a sparse and noisy observation of
∆TEC, the secant variation is poor and it is expected that this degeneracy exists. Therefore
we also show the product bσne

, and we see that this compound value discrepancy is smaller
by approximately 35%.

In Table 2.3 we summarise the performance of the physical kernel against each competitor
kernel. We display the mean of∆LPOC(η), and∆LPHC(η) over all experimental conditions,
as well as their values at the nominal experimental conditions of 30 directions per 12.6 deg2,
and∆TEC noise of 1 mTECU, which is indicated with ηnom. We use bold font in Table 2.3 to
indicate the best competitor model.

We first consider the ability of each model to represent the observed data. For the
dawn ionosphere, the M52 competitor kernel has the best (lowest) 〈∆LPOC〉η = 1.55 and
∆LPOηnom

C = 1.46, implying that the M52 kernel model is 55% and 46% less probable than
the physical kernel model on average over all experimental conditions, and at nominal con-
ditions, respectively. We note that the M32 kernel produced similar results. For the dusk
ionosphere, the EQ kernel model is likewise the best among all competitors, being only 73%
and 54% less probable than the physical kernel model on average over all experimental con-
ditions, and at nominal conditions, respectively. In all experimental conditions, the physical
model provides a significantly more probable explanation of the observed data.

We now consider the ability of each model to infer the held-out data. For the dawn iono-
sphere, the M52 competitor kernel has the best (lowest) 〈∆LPHC〉η = 1.49 and∆LPOηnom

C =
1.31, implying that the M52 kernel prediction is 49% and 31% less probable than the physical
kernel model on average over all experimental conditions, and at nominal conditions, respec-
tively. We note that the M32 kernel produced similar results. For the dusk ionosphere, the EQ
kernel model is likewise the best among all competitors, with predictions only 16% and 12%
less probable than the physical kernel model on average over all experimental conditions,
and at nominal conditions, respectively. In the case of the rougher dawn ionosphere, the
physical model provides a significantly more probable prediction of the held-out data in all
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Table 2.3: Shows the probability ratio FOMs (see text) averaged over experimental conditions
and at nominal conditions. Larger values indicate that the physical model is more probable.
Bold face indicates the best performing competitor model (lower number).

〈∆LPOC〉η ∆LPOηnom

C 〈∆LPHC〉η ∆LPHηnom

C

dawn
M12 1.86 1.79 1.82 1.61
M32 1.56 1.49 1.50 1.33
M52 1.55 1.46 1.49 1.31
EQ 1.63 1.48 1.84 1.35

dusk
M12 2.72 2.19 2.24 1.73
M32 1.96 1.69 1.50 1.29
M52 1.82 1.60 1.33 1.20
EQ 1.73 1.54 1.16 1.12

experimental conditions. However, for the smoother dusk ionosphere at nominal conditions,
the physical model is only 12% more probable than the EQ kernel model, which is not very
significant.

Figure 2.7 shows a visual comparison of the predictive distributions of the physical and
best competitor kernel for the dawn ionosphere, for nominal and sparse-and-noisy condi-
tions, for a subset of antennae over the field of view. In the first row we show the ground truth
and observed data. In the second and third rows we plot the mean of the predictive distribu-
tion with uncertainty contours of the physical and best competitor models, respectively. At
nominal conditions, the predictive means of the best competitor and physical models both
visually appear to follow the shape of the ground truth. However, for the sparse-and-noisy
condition, only the physical model predictive mean visually follows the shape of the ground
truth. The uncertainty contours of the physical model vary in height slowly over the field of
view, and are on the order of 0.5–1 mTECU. The uncertainty contours for the physical model
indicate that we can trust the predictions near the edges of the field of view. In comparison,
the uncertainty contours of the best competitor model steeply grow in regions without cal-
ibrators, and are on the order of 2–10 mTECU, indicating that only predictions in densely
sampled regions should be trusted.

The last two rows show the residuals between the posterior means and the ground truth
for the physical and best competitor models respectively. From this we can see that even
when the best-competitor predictive mean visually appears to follow the ground truth the
residuals are larger in magnitude than those of the physical models.

In order to quantify the effect of the residuals, a ∆TEC error, δτ, can be conveniently
represented by the equivalent source shift for a source at zenith on a baseline of r ,

δl ≈
q 2

ε0meν2r
δτ (2.22)

≈1.16′′
� r

10km

�−1 � ν

150MHz

�−2
�

δτ

mTECU

�

. (2.23)

Figure 2.5 shows the mean linear regression of the absolute equivalent source shift of the
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Figure 2.5: Mean equivalent source shift as a function of angular distance from the nearest
calibrator caused by inference errors from the ground truth for a) remote stations (RS;> 3 km
from the reference antenna) at nominal conditions (30 calibrators for 12.6deg2 and 1 mTECU
noise), b) core stations (CS; < 2 km) at nominal conditions, c) RS with sparse-and-noisy
conditions (10 calibrators for 12.6deg2 and 2.6 mTECU noise), and d) CS with sparse-and-
noisy conditions. The dash line styles are the best competitor models (see text), the solid line
styles are the physical model. The red lines are dawn ionospheres, and the blue lines are dusk
ionospheres.

residuals for each point in the held-out data set, for nominal (left) and sparse-and-noisy
(right) conditions, at 150 MHz on a baseline of 10 km, as a function of the nearest calibrator.
For visual clarity we have not plotted confidence intervals, however we note that for nominal
conditions the 1σ confidence width is about 2′′ and for the sparse-and-noisy conditions it is
about 4′′. Because there are few nearest-calibrator distances exceeding 1 degree at nominal
conditions, we only perform a linear regression out to 1 degree.

The upper row shows the source shift for the remote stations (RS) residuals, which are
generally much larger than the source shifts for core stations (CS) in the bottom row, since
the CS antennae are much closer to the reference antenna and have smaller∆TEC variance.
We observe that the physical model (dashed line styles) generally has a shallower slope than
the best competitor model (solid line styles). Indeed, for the CS antennae the physical model
source shift is almost independent of distance from a calibrator. The offset from zero at 0
degrees of separation comes from the fact that the predictive variance cannot be less than the
variance of the observations; see the definition of B ∗ in Eq. 2.19. At 1 degree of separation,
the physical model mean equivalent source shift is approximately half of that of the best
competitor model. At 0 degrees of separation, the mean source shift is the same for both
models as expected.
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2.6 Discussion

2.6.1 Model selection bias

Our derived model is a probabilistic model informed by the physics of the problem. We use
the same physical model to simulate the data. Therefore it should perform better than any
other general-purpose model. The fact that we simulate from the same physical model as
used to derive the probabilistic model does not detract from the efficacy of the proposed
model to represent the data. Indeed, it should be seen as a reason for preferring physics-based
approaches when the physics are rightly known. The Gaussian random field layer model for
the ionosphere has been a useful prescription for the ionosphere for a long time [e.g. Yeh and
Swenson, 1959].

One type of bias that should be addressed is the fact that we assume we know the FED
kernel type of the ionosphere. We do not show, for example, what happens when we assume
the wrong FED kernel. However, since we are able to converge on optimal hyper parameters
for a given choice of FED kernel, we can therefore imagine performing model selection based
on the values of the Bayesian evidence (LPO) for different candidate FED kernels. Thus,
we can assume that we could correctly select the right FED kernel in all the experimental
conditions that we chose in this work.

2.6.2 Implicit tomography

The results of Section 2.5 indicate that the physical model provides a better explanation of
∆TEC data than any of the competitor models. One might ask how it performs so well. The
approach we present is closely linked to tomography, where (possibly non-linear) projections
of a physical field are inverted for a scalar field. In a classical tomographic approach, the
posterior distribution for the FED given observed∆TEC data would be inferred and then the
predictive∆TEC would be calculated from the FED, marginalising over all possible FEDs,

P (τ |τobs) =

∫

n e

P (τ |n e )P (n e |τobs) dn e , (2.24)

where n e = {ne (x) | x ∈X } is the set of FEDs over the entire index setX , τ= {τk̂
x | (x, k̂ ) ∈S∗ ⊂

S } is the∆TEC over some subsetS∗ of the index setS , τobs = {τk̂
x +ε | (x, k̂ ) ∈Sobs ⊂S } is

the observed∆TEC over a different subsetSobs ofS , and ε∼N [0,σ2I ].
In our model, the associated equation for P (τ |τobs) is found by conditioning the joint

distribution on the observed∆TEC and then marginalising out FED,

P (τ |τobs) =

∫

n e

P (n e ,τ |τobs) dn e (2.25)

=

∫

n e

P (n e |τobs)P (τ |n e ,τobs) dn e , (2.26)

where in the second line we used the product rule of probability distributions [Kolmogorov,
1956]. By working through Eqs. 2.24 and 2.26, we discover that if P (τ |n e ) = P (τ |n e ,τobs) is
true, then our method is equivalent to first inferring FED and then using that distribution to
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calculate∆TEC. In Appendix A we prove that the expressions in Eqs. 2.24 and 2.26 are equal
due to the linear relation between FED and∆TEC because the sum of two Gaussian RVs is
again Gaussian. Most importantly, this result would not be true if∆TEC was a non-linear
projection of FED.

We refer to this as implicit tomography as opposed to explicit tomography, wherein the
FED distribution would be computed first and the∆TEC computed second [e.g. Jidling et al.,
2018]. This explains why our kernel is able to accurately predict∆TEC in regions without
nearby calibrators. The computational savings of our approach is many-fold compared with
performing explicit tomography, since the amount of memory that would be required to
evaluate the predictive distribution of FED everywhere would be prohibitive. Finally, the use
of GPs to model ray integrals of a GP scalar field is used in the seismic physics community for
performing tomography of the interior of the Earth.

2.6.3 Temporal differential TEC correlations

One clearly missing aspect is the temporal evolution of the ionosphere. In this work we have
considered instantaneous realisations of the FED from a spatial GP; however, the inclusion of
time in the FED GP is straightforward in principle. One way to include time is by appending
a time dimension to the FED kernel, which would mimic internal (e.g. turbulence-driven)
evolution of the FED field. Another possibility is the application of a frozen flow assumption,
wherein the ionospheric time evolution is dominated by a wind of constant velocity v , so
that ne (x, t ) = n 0

e (x−v t ). Here, n 0
e represents the FED at time t = 0, and ne is a translation

over the array as time progresses. In modelling a real dataset with frozen flow the velocity
could be assumed to be piece-wise constant in time. We briefly experimented with frozen
flow and found hyperparameter optimisation to be sensitive to the initial starting point due
to the presence of many local optima far from the ground-truth hyperparameters. We suggest
that a different velocity parametrisation might facilitate implementation of the frozen flow
approach.

2.6.4 Structure function turnover and anisotropic
diffractive scale

The power spectrum is often used to characterise the second-order statistics of a stationary
random medium, since according to Bochner’s Theorem the power spectrum is uniquely
related to the covariance function via a Fourier transform. In 1941, Kolmogorov [translated
from Russian in Kolmogorov, 1991] famously postulated that turbulence of incompressible
fluids with very large Reynolds numbers displays self-similarity. From this assumption,
he used dimensional analysis to show that the necessary power spectrum of self-similar
turbulence is a power-law with an exponent of -5/3. A convenient related measurable function
for the ionosphere is the phase structure function [van der Tol, 2009],

D (r ) =〈(φν(R )−φν(r +R ))2〉R (2.27)

,
�

r

rdiff

�β

, (2.28)

where the expectation is locally over locations far from the boundaries of the turbulent
medium, which is often characterised by an outer scale. The quantity rdiff is referred to as the
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Figure 2.6: Structure functions predicted by our model compared with observations and
theory. The dotted and dashed lines show the phase structure function corresponding to the
physical kernel, with the dawn and dusk configurations, respectively (see Figure 2.1). Along
side is the predicted structure function of Kolmogorov turbulence with a diffraction scale of
10 km, and the structure function constrained from observations in Mevius et al. [2016]with
1σ confidence region in yellow. We note that Mevius et al. [2016] observes a turnover, but
does not characterise it, and therefore we do not attempt to plot it here.

diffractive scale, and is defined as the length where the structure function is 1 rad2. Under
Kolmogorov’s theory of 1941, β = 5/3. Observations from 29 LOFAR pointings constrain β to
be 1.89±0.1, slightly higher than predicted by Kolmogorov’s theory, and the diffractive scale
to range from 5 to 30 km [Mevius et al., 2016].

In Figure 2.6 the structure functions of the physical kernel are shown for the dawn and
dusk varieties, alongside Kolmogorov’s β = 5/3 and the Mevius et al. [2016] observations.
Though not plotted, Mevius et al. [2016] also find that there is a hint of a turnover in the
structure functions they observed, which they suggest might be a result of an outer scale in
the context of Kolmogorov turbulence. However, these latter authors conclude that longer
baselines are needed to properly confirm the turnover and its nature. The dawn and dusk
structure functions are nearly parallel with observations, and have turnovers that result
because the FED covariance functions decay to zero monotonically and rapidly beyond
the HPD. Interestingly, despite the fact that the FED kernels used for the dawn and dusk
ionospheres have different spectral shapes, the structure functions have similar slopes. The
difference between the dawn and dusk structure functions can be seen in the curvature of
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their turnovers.
Our model provides an explanation for the observed shape of structure functions, which

Kolmogorov’s theory of 1941 fails to provide, namely the existence of a turnover, and a
slope deviating from five-thirds. Specifically, a turnover requires only FED correlations
that are stationary, isotropic, and monotonically decreasing (SIMD). Both the dawn and
dusk ionosphere varieties experimented with predict slopes compatible with observations.
Moreover, as shown in Appendix B, our model in conjunction with the SIMD FED kernel is
falsifiable by observing a lack of plateau.

Mevius et al. [2016] also observe anisotropy in the measured rdiff as a function of pointing
direction, and suggest that it is due to FED structures aligned with magnetic field lines [Loi
et al., 2015]. In total, 12 out of 29 (40%) of their observations show anisotropy unaligned
with the magnetic field lines of Earth. We propose a complementary explanation for the
anisotropy of diffractive scale, without appealing to magnetic field lines. Our model implies
that diffractive scale monotonically decreases with zenith angle. This is a result of the non-
stationarity of the physical kernel even if the FED is stationary.

2.6.5 Low-accuracy numerical integration

The numerical integration required to compute Eq. 2.14 is performed using the 2D Trapezoid
rule. This requires the selection of a number of partitions along the ray. The computational
complexity scales quadratically with the number of partitions chosen, and thus a trade-
off between accuracy and speed must be chosen. We found the relative error (using the
Frobenius norm) to be 80% with two partitions, 20% with three partitions, 10% with four
partitions, and 6% with seven partitions. After experimentation it was surprisingly found that
two partitions was sufficient to beat all competitor models, and that marginal improvement
occurs after five partitions. This suggests that even a low-accuracy approximation of our
model encodes enough geometric information to make it a powerful tool in describing the
ionosphere. Ultimately, we chose to use four partitions for our trials.

2.7 Conclusion

In this work, we put forth a probabilistic description of antenna-based ionospheric phase
distortions, which we call the physical model. We assumed a single weakly scattering iono-
sphere layer with arbitrary height and thickness, and free electron density (FED) described
by a Gaussian process (GP). We argue that modelling the FED with a GP locally about the
mean is a strong assumption due to the small ratio of FED variation to mean as evidenced
from ionosphere models. We show that under these assumptions the directly observable
∆TEC must also be a GP. We provide a mean and covariance function that are analytically
related to the FED GP mean and covariance function, the ionosphere height and thickness,
and the geometry of the interferometric array.

In order to validate the efficacy of our model, we simulated two varieties of ionosphere –
a dawn (rough FED) and dusk (smooth FED) scenario – and computed the corresponding
∆TEC for the Dutch LOFAR-HBA configuration over a wide range of experimental conditions
including nominal and sparse-and-noisy conditions. We compared this physical kernel to
other widely successful competitor GP models that might naively be applied to the same
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Figure 2.7: Caption continued on next page.
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Figure 2.7: Example visual comparison of the predictive performance of our physical model
with that of the best competitor model for the dawn ionosphere. First row – ground truth
∆TEC overlaid on noisy draws from the ground truth which are the observations; Second
and third rows – posterior mean with uncertainty contours for the physical model and best
competitor model respectively. Fourth and fifth rows – residuals between posterior means
and ground truth for the physical model and best competitor model respectively. First two
columns: Results for experimental conditions, (10 directions, 2.5 mTECU noise), for a central
antenna (near to reference antenna) and a remote station (far from reference antenna); Last
two columns: Results for experimental conditions, (30 directions, 1.6 mTECU noise), for a
central antenna and a remote station.

problem. Our results show that we are always able to learn the FED GP hyperparameters
and layer height – including from sparse-and-noisy∆TEC data – and that the layer thickness
could likely be learned if a height prior was provided. In general, the physical model is better
able to represent observed data and generalises better to unseen data.

Visual validation of the predictive distributions of∆TEC show that the physical model
can accurately infer ∆TEC in regions far from the nearest calibrator. Residuals from the
physical model (0.5–1 mTECU) are smaller and less correlated than those of competitor
models (2–10 mTECU). In terms of mean equivalent source shift resulting from incorrect
predictions, the physical model mean equivalent source shift is approximately half of that of
the best competitor model. We show that our model performs implicit tomographic inference
at low cost, which is because ∆TEC is a linear projection of FED and the FED is a GP. We
suggest possible extensions to incorporate time, including frozen flow and appending the FED
spectrum with a temporal power spectrum. Our model provides an alternative explanation
for the Mevius et al. [2016] observations: phase structure function slope deviating from
Kolmogorov’s five-thirds, the turnover on large baselines, and diffractive scale anisotropy.

In the near future, we will apply this model to LOFAR-HBA datasets and perform precise
ionospheric calibration for all bright sources in the field of view. It is envisioned that this will
lead to clearer views of the sky at the longest wavelengths, empowering a plethora of science
goals.
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