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Astronomy has been around for millennia in various forms, from the
prehistoric nomadic peoples scratching the phases of the Moon into ani-
mal bones in 36,000 BC to present-day globally envisioned experiments
being carried out in Space. The outer cosmos undoubtedly remains the
greatest fascination of all Humankind, so much so that we spend entire
lives and immeasurable resources trying to know its past, present, and
future. It is the search for understanding of ourselves that we truly seek;
a pursuit of understanding of existence and reason. It is a worldwide ef-
fort, perpetrated by various forces throughout history from the shamanic
traditions to the religious and now by science, for no other reason than
Human curiosity. Indeed, we find many reasons why astronomy is of great
indirect value, for instance, due to spin-off of technology like the internet,
but no astronomer ever expects their discoveries will be bottled up and
sold for anything other than human pleasure. And, in that sense it is of
ultimate value, and explains why it has a special role in the world.

By coincidence we were born with consciousness in an era where the
Universe is still observable. By observable, we mean the electromagnetic
waves our eyes perceive – the visible spectrum – happens to correspond to
a night sky that has striking noticeable features. To anyone who has seen
it, we cannot imagine the night sky without this constellation of twinkling
bright spots. However, it is conceivable that had we been born much
later the expansion of the Universe would have redshifted all star light out
of human perception, and we would never have had the impulse to be
curious about the cosmos.

Radio emission mechanisms

It was only several decades ago, after looking up with our eyes for 2.5
million years that homo sapiens first thought to look in radio frequency,
defined here as having a wavelength longer than a centimetre or frequency
less than 30 GHz. The radio sky is completely different from the sky in any
other frequency range, as the physical processes that emit radio frequency
radiation trace different astrophysical structures. In radio astronomy the
physical processes that produce the emission can be classified based on
the spectral nature of the emission. Discrete emission mechanisms give
rise to spectral lines and are associated with atomic and molecular energy
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Introduction

transitions, while continuum emission mechanisms give rise to a broad band spectra.
In the realm of discrete spectra emission mechanisms we enumerate two main types, and

their birth in radio astronomy. The first is the 21 cm emission from the hyperfine transition in
neutral hydrogen (HI), which was discovered as a ‘hiss’ coming from the interstellar medium
by Ewen and Purcell [1951] and corroborated by Muller and Oort [1951]. Neutral hydrogen
consists of a proton and electron, both of which have a quantum angular momentum spin.
Correspondingly, each has a quantised magnetic dipole moment which is proportional to
the charge times spin. When the angular momentum spins are aligned then the magnetic
dipole moments are anti-align – due to the opposite charges – and the energy of the HI
molecule is higher than if the magnetic dipoles were aligned. Occasionally, with a decay rate
of 2.9×10−15 seconds, an HI molecule with anti-aligned magnetic dipoles will spontaneously
undergo a spin-flip to the lower energy level, and emit a photon at approximately 1.4 GHz.
Due to the vanishingly small decay rate, in order to see the occurrence of 21 cm emission
there must be an extremely large volume of HI. This makes it an ideal candidate to study the
cosmic dark ages during the few hundred million years that followed the Big Bang, in which
there is abundant HI and little star formation [e.g. Patil et al., 2017].

Another important branch of discrete emission mechanism radio astronomy is radio
recombination lines (RRLs). A RRL is the emission associated with the transition of an ion
from higher to lower principle quantum numbers, n → n −N , where N is the number of
energy levels transitioned. By far the highest probability transitions are of the form n→ n −1.
Furthermore these transitions of principle quantum numbers are orders of magnitudes more
likely than fine and hyperfine transitions such as the one involved in 21 cm HI emission. They
were first hypothesised to be observable in interstellar ionised hydrogen (HII) by Kardashev
[1959], and have since been observed in galactic HII regions over a range of frequencies
36.5 GHz (56→ 55) to 404 MHz (254→ 253). In Ball et al. [1970] the interpretation of RRLs
suggested that molecules other than HII were needed to fully explain their data, and since
has lead to a rich exploration of the galaxy’s composition in the heavier nucleii [Brocklehurst
and Seaton, 1972]. Recently, Emig et al. [2019] have observed the first RRLs at cosmological
distances, opening a new field for RRLs in studying distant galactic nucleii.

Continuum spectra radio emission mechanisms form a broad class of non-discrete physi-
cal process which generally are to do with moving charges. Here we enumerate two classes,
and the physical processes that generate them. The first is emission related to deceleration
of charged particles during a scattering event. The typical scenario is an electron scattering
off of a proton ion, where kinetic energy is converted into emission. This free-free scattering
– so called because the electron begins and ends unbound – is a thermal process when driven
by the internal energy of the medium. It can be shown [e.g. Rybicki and Lightman, 1986]
that the thermal free-free emission flux density from optically thin systems has very little
frequency dependence (S ∝ ν−0.1), whereas for optically thick systems there is a steep de-
pendence (S∝ ν2). Thus, thermal free-free emission can shed light on the density of plasma
environments.

The second class of continuum emission mechanisms is called synchrotron emission
named after the first observation in 1947 by Robert Langmuir and Herb Pollock at the General
Electric synchrotron accelerator. Synchrotron emission is any emission related to acceleration
of charged particles perpendicular to their velocity, i.e. |a× v| 6= 0, and has a continuous
spectrum spanning all frequencies. In laboratory experiments, synchrotron radiation is
produced by forcing electrons to move in circular orbits using a magnetic field, and is seen as
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a nuisance source of energy loss.
The history of astrophysical synchrotron emission is more complicated as noted by Breus

[2001],

In particular, the Russian physicist V.L. Ginzburg broke his relationships with I.S.
Shklovsky and did not speak with him for 18 years. In the West, Thomas Gold
and Sir Fred Hoyle were in dispute with H. Alfven and N. Herlofson, while K.O.
Kiepenheuer and G. Hutchinson were ignored by them.

While the prediction of astrophysical synchrotron may be attributed to Shklovsky [1953], the
first observation seems to be by Burbidge [1956] of Messier 87, whose jet is shown in Figure 1.

Figure 1: Messier 87 and the radio jet produced by synchrotron. The jet was the first observed
astrophysical synchrotron emission.

Astrophysical radio-frequency synchrotron emission comes from charged particles –
typically electrons – moving through a magnetic field, where Lorentz force causes acceleration
perpendicular to the velocity. This causes particles to trace out circular spirals as they move
forward with a gyro-frequency νe ∝ B⊥, where B⊥ is the strength of the magnetic field
perpendicular to the velocity of the particle. For B⊥ = 1 µGauss the gyro-frequency of the
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electron is approximately 3 Hz. For particles at relativistic speeds, the frequency of emitted
photons is boosted by two factors of the Lorentz factor γ due to the relativistic Doppler effect
and length contraction. Thus, in the relativistic regime1, the frequency of maximal emission
is then related to the gyro-frequency by γ2νe . For an ultra-relativistic electron with energy
of 10 Gev, the Lorentz factor is about 1.96×104 and the frequency of maximal radiation is
1.14 GHz.

There are several types of physical processes that can boost an electron to nearly the
speed of light. One is a jet stemming from rapidly spinning neutron stars and super massive
black holes forming the basis of pulsars [Hewish et al., 1968] and active galactic nucleii
[Ambartsumian, 1956, Osterbrock, 1989, Begelman et al., 1984], respectively. Another is
diffusive shock acceleration [DSA; Drury, 1983, Blandford and Eichler, 1987], a mechanism
by which a charged particle is repeatedly reflected between magnetic ‘walls’ with increasing
velocity, which plays an important role in understanding merging galaxy clusters, super nova
shocks, and solar flares.

Diffuse emission in galaxy clusters

The cosmic web is the structure of the matter, magnetic field, and kinetic energy on the largest
scales of the observable Universe [e.g. van de Weygaert and Schaap, 2009]. The web-like
structure evolved from very homogeneous Gaussian primordial conditions and is the perfect
example of how complexity can emerge from simple rules and non-complex initial conditions
[Vazza, 2020]. Supported by cosmological simulations, the current modern perspective on
assembly of the cosmic web is hierarchical in nature [Aragón-Calvo et al., 2010]. Large clusters
of galaxies formed at slight over-densities in the matter distribution, from which tenuous
filamentary structures extended for many Mpc. Smaller structures formed in the filaments
and were drawn toward the clusters, with velocities exceeding 1000 km s−1. Due to hierarchical
merging of clusters with accretion from the filaments, galaxy clusters grow to be very massive
with masses on the order of 1014−15 M�, and the mass of nearby filamentary structures can
be equally massive [Metzler et al., 2001].

Occasionally, galaxy clusters merge converting 1056 J of gravitational energy into kinetic
energy through a variety of processes including DSA of electrons to ultra relativistic energies
in the intra cluster medium (ICM) as well as turbulence. The resulting ultra relativistic cosmic
ray electrons (CRe) give off diffuse synchrotron emission in the presence of an ICM magnetic
field [for a review see van Weeren et al., 2019]. Diffusive shock acceleration can accelerate
non-relativistic thermal populations of CRe, or reaccelerate older aged populations of CRe.
The sycnchrotron emission from the first type is referred to as a radio relic [e.g. Ensslin
et al., 1998, van Weeren et al., 2010], while that of the latter is referred to as radio fossil
emission [e.g. de Gasperin et al., 2017, Mandal et al., 2020]. There are a number of physical
parameters that can be inferred from observations of DSA driven synchrotron emission,
including information on the CRe population and ICM magnetic field [Brüggen and Vazza,
2020]. One of the important factors is the speed of the shock which is ultimately coupled to
the dynamics of the merger, and premerger initial conditions. Another is the acceleration
efficiency which is a phenomenological number describing how much energy is transferred

1There are non-relativistic astrophysical sources of synchrotron, which, instead of depending on Lorentz boosting,
rely on extremely large magnetic fields. This is known as cyclotron emission and we pay it no further attention here.
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to an electron diffusing through the shock front once.
In order to perform inference with non-thermal synchrotron emission – whether from

radio halos, relics, or fossils – an electron ageing model must be chosen, which describes
how the spectral index of synchrotron emission from a population of ultra-relativistic CRe
evolves over time. Two standard models exist, colloquially known as the Jaffe and Perola
[JP; Jaffe and Perola, 1973]model and the Kardashev and Pacholczyk [KP; Kardashev, 1962,
Pacholczyk, 1970]model. The key difference between the models is that the JP model assumes
an anisotropic pitch-angle distribution of the CRe, and the KP model assumes an isotropic
pitch-angle distribution of the CRe. The initial formulation of both the JP and KP models
assumed that energy was injected into the CRe suddenly at single moment in time after
which the electrons age in isolation. Then in Komissarov and Gubanov [1994] both models
were extended to incorporate a finite period of continuous energy injection and the effect of
energy loss due to inverse Compton scattering.

Another important aspect is the magnetic field of the ICM. Galaxy clusters have magnetic
fields on the order of 1 µG [e.g. Roettiger et al., 1999], however the magnetic field is highly
dependent on the dynamical state of the cluster [Bonafede et al., 2010]. Galaxy clusters can
have many dynamical states ranging from disturbed to relaxed [Cassano et al., 2010b], which
is characterised by the X-ray morphology of the intra cluster medium (ICM) [Poole et al.,
2006, Maughan et al., 2008, Santos et al., 2008]. Difusive shock acceleration driven emission
is highly polarised, reflecting the fact that synchrotron emission emissivity is proportional
to |a×v| and that the Lorentz force produces acceleration perpendicular to the direction of
velocity. Radio relics are primarily observed near the periphery of the galaxy cluster, therefore
they probe magnetic fields far from the densest part of the ICM [e.g. Wittor et al., 2019].

Turbulence is another mechanism for kinetic energy dissipation into the ICM following a
merger, accounting for approximately 20% – 30% of the thermal energy in merging clusters.
Thermal populations of electrons also produce emission due to thermal free-free scatter-
ing. In contrast with DSA driven synchrotron emission, turbulence driven emission should
have zero average polarisation. Such emission is referred to as a radio halo. Coupled with
simulations they can still provide constraints on the magnetic field structure, however due
to the dipersive nature of turbulence only statistical studies are possible [Vazza et al., 2011].
Figure 2 shows an example slice of temperature from a galaxy cluster merger simulation with
turbulence.

Radio interferometry

History

One thing that becomes clear is that the radio sky is rich in information on a wide variety
of physical processes, so how was radio astronomy born? This account can be found in a
number of sources [e.g. Southworth, 1956, Sullivan, 2009]. The answer goes back to 1839
when Carl Gauss postulated that a conducting layer at atmospheric heights should account
for the variations in a compass reading of magnetic north – an effect that navigators of the
time well knew. This mysterious electric current had supporters throughout the 1800’s, such
as Lord Kelvin. Around sixty years later, in 1901, Guglielmo Marconi transmitted a radio
signal across the Atlantic ocean, which should only have been possible if some reflecting
layer bounced the radio signal around Earth’s curvature. An electric current surrounding
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Figure 2: 2-dimensional slice showing the gas temperature for the innermost region of a
simulated galaxy cluster, during its main merger event (z = 0.6). The side of the slice is
8.8 Mpc h−1 and the depth along the line of sight is 25 kpc h−1. Taken from [Vazza et al., 2011].

Earth seemed like a plausible explanation. For the next three decades astronomers assumed
that, while there should be radio emission from Space, it would be bounced back by the
same electric layer around the Earth, just as Marconi’s signal had been bounced back down.
There were few attempts to look for extraterrestrial radio emission, and the development of
trans-Atlantic radio communications flourished.

In 1928 a young 23 year old Karl Jansky, newly having attained his Bachelors in physics,
was hired by Bell Labs. He was stationed at their Holmdel, New Jersey site and tasked with
identifying sources of atmospheric radio interference in telecommunications. Karl built a 100-
ft in diameter steerable antenna, which he called the ‘merry-go-round’ for its construction
included four sets of Ford model-T tires on which it could be rotated azimuthally. Over the
course of months Karl measured the various components of radio noise with his rig as a
function of time of day and azimuth. He identified two types of static-like noise related
to thunderstorms, which were well-known at the time to cause radio interference: one
due to local thunderstorms, and the second due to distant thunderstorms reflecting off of
the ionosphere. In August of 1931, such thunderstorms and associated interference were
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common occurrences of night-time, however as Karl continued irregular monitoring into the
autumn and winter he began to notice a third hiss-like component to the interference, which
he referred to as a ‘very steady continuous interference... that changes direction continuously
throughout the day, going completely around the compass in 24 hours’. The direction of this
component seemed entirely aligned with the Sun causing him to refer to the hiss as ‘Sun
static’. Despite equipment damages due to ferocious winter weather, he was able to monitor
into the spring at which point he noticed the hiss direction appeared to drifted in time ‘in
accordance with the lengthening day’. This further convinced him that the hiss was somehow
related to the vernal Northerly swings of the Sun.

The idea that the source of interference might be sidereal, fixed to the stars, came some
time in December of 1932. By this time the reality of the Great Depression had hit Bell Labs,
and working hours had been severely cut back limiting his time available to study the hiss.
Karl had instead spent most of 1932 studying general methods of measurement of noisy
signals, still taking daily measurements but not deeply analysing them. He had noticed that
the signal continued to advance in time relative to the Sun, and during a partial solar eclipse in
August Karl noted that the hiss intensity had little dependence on the solar occlusion. Despite
these observations, Karl must have still held the notion that the hiss was still somehow related
to the Sun. For it wasn’t until December 1932 that George C. Southworth, a corespondent
working for AT&T in New York, asked Karl to plot his entire years’ data to see if it correlated
with his study of ‘diurnal changes in Earth currents’. Upon performing this task, Karl, not
an astronomer, was shocked and puzzled to find that the signal had slipped by exactly one
day. To an astronomer such a pattern would be obvious, for the stars rise four minutes earlier
each day due to the Earth’s rotation about the Sun, adding up to one day over a year. Then
Karl’s good friend and bridge partner, Albert Melvin Skellett, helped make the realisation
that the period of signal was remarkably the same as the sidereal day. (Albert lead a dual
life, being both a radio engineer for Bell Labs, and a graduate student of astronomy at the
near-by Princeton University.) This lead Karl to learn about astronomical coordinates, and by
Chirstmas 1932 he had determined the signal was fixed in space with a direction of 18 hours
right ascension, and −4 degrees declination,

Since I was home [early November] I have taken more data which indicates defi-
nitely that the stuff, whatever it is, comes from something not only extraterrestrial,
but from outside the solar system. It comes from a direction that is fixed in space
and the surprising thing is that... [it] is the direction towards which the solar
system is moving in space. According to Skellett, there are clouds of ‘cosmic dust’
in that direction through which the Earth travels.

Karl had fixated on a region of sky in the Sagitarrius constellation [Jansky, 1933], which
we now know to be the galactic centre. Karl Jansky was subsequently ordered by Bell Labs
back to more pressing tasks. The fundamental unit of flux in radio astronomy is named after
Karl, the jansky (Jy), 1 Jy= 10−26W Hz−1 m−2. The electric layer that surrounds Earth is the
ionosphere, which is the central topic of this thesis.

Following World War II, and the debut of the atomic bomb, there was a great desire to
make progress in radio technology. Radio astronomy gained much momentum in the tail
winds of radar technology, and indeed there was a great deal of shared knowledge between
the two fields. While we can only surmise, radio technology flourished in large part for better
methods of surveillance and communication, and perhaps ultimately for the prevention

7



Introduction

of another man-made global catastrophe. The renewed interest in radio technologies was
a great boon to radio astronomy which lead to radio interferometry being born [Ryle and
Vonberg, 1946]. In the ‘West’, radio research institutes sprang up in Europe, especially in
Britain and the Netherlands, the USA at the National Radio Astronomy Observatory (NRAO),
and Australia at Commonwealth Scientific and Industrial Research Organisation (CSIRO).
The Iron Curtain, separating ‘East and West’, provided an – arguably ideal – opportunity
for independent progress on many topics of mathematics, physics, and engineering [Pesch
and Plail, 2009, Gillespie et al., 1977], however in radio astronomy the result was quite the
opposite. Just like in the ‘West’, radar and radio astronomy flourished in post-war USSR.
However, unlike their counterparts in Europe, USA, and Australia, who primarily worked
out of universities, all USSR radio astronomy was conducted at military institutes and was
heavily censored. Most discoveries were never published in academic journals, and those
that did get published were often missing key data [Braude et al., 2012]. This policy of secrecy
ultimately lead to a lack of trust by their contemporaries, and hence today there are very few
references to early-day radio astronomy out of the ‘East’.

Eventually, radio astronomy spread around the world to places like India, South America,
Canada, South Africa, and China. Today, there are global collaborations undertaking some of
the most massive, in terms of data, human experiments, such as the Low-Frequency Array
(LOFAR), with even bigger experiments in the near future such as the Square Kilo-Metre Array
(SKA). Aperture synthesis radio interferometry, which will shortly be described, naturally
breeds unification among countries; for the need to cover long baselines – in order to resolve
the most distant objects in the Universe – necessitates an international community. The
irony is profound as radio interferometry, which sprang from war, promotes peace.

We’ll now proceed with explanation of interferometry from a modern perspective in a
way that is foundational to Chapters 2–4.

Imagine yourself lying on the bottom of a swimming pool, and
looking up through the water. You are the radio telescope and

the water is the Earth’s atmosphere and ionosphere. Now
imagine that there’s a ceiling up overhead, with faint frescoes
that you’re trying to make out through the water. The frescoes
are the faint objects of the universe. Then, somebody goes and

puts a thousand bright lights on the ceiling (the radio-bright
objects of the universe) – you’re now trying to make out the

frescoes behind the lights’ glare. And then the wind picks up so
the water gets choppy.

OLEG SMIRNOV

Technical introduction to scattering and radio interferometry

Most of the rich information in astrophysical radio emission requires good angular resolution,
which a single antenna is unable to provide. Interferometry is a way of inferring the shape and
location of a source by measuring the interference pattern of light which has simultaneously
travelled two different optical pathways. Interference is a property of waves and is completely
described by Maxwell’s equations of electromagnetism, thus we start there. We present the
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theory of scattering as it relates to the ionosphere and the observables of radio interferometry,
which sets the stage for Chapters 2 to 4. We treat the topic with slightly more detail than a
typical introduction to the ionosphere and radio interferometry, though we skip rigour where
appropriate for flow. The aim is that this might also serve as a summary reference for future
work on the topic.

The ionosphere is a low-density multispecies ion plasma situated between 50km and
1000km from Earth’s surface [for a detailed description see Kivelson and Russell, 1995]. The
plasma precipitation is fed by extreme ultraviolet radiation from the Sun, and the bulk motions
are driven by a complex network of forces. The ionosphere is likely a turbulent medium
[Mevius et al., 2016], and displays many discrete behaviours [Jordan et al., 2017]. The spatially
and temporally varying free electron density (FED) in the plasma alters the local dielectric
properties of ionosphere, and this leads to a refractive index less than unity that decreases
linearly with FED and wavelength of the radiation to second order. The refractive index is
given by the Lassen-Appleton-Hartree equation [Hutchinson, 2005]. The ionosphere thus
acts as a random scattering medium, and its main effects on the image quality are a reduction
of dynamic range, distortion of the shapes of sources, and decoherence of the visibilties. We
present a description of the effect of the ionosphere from first principles.

To begin, consider monochromatic electric and magnetic fields of the form E(r, t ) =
e −iωt E(r) and B(r, t ) = e −iωt B(r) respectively. Going forward we’ll drop the spatial functional
argument for clarity. Using Fourier representation we can build any electric or magnetic
field from various monochromatic components and the following derivation thus applies to
generic fields. Recall that in an isotropic linear medium that the electric field is related to
the electric displacement field by E= ε−1D and the magnetic field is related to the magnetic
flux density by B=µH, where ε and µ are the permittivity and permeability respectively. We
assume that both ε and µ do not change over the timescale of propagation, and that µ is also
constant over space. The FED in the ionosphere induces a spatially2 varying permittivity ε
but does not alter permeability µ. Furthermore, we assume there are no sources of charge or
current, i.e. that macroscopically the ionosphere is charge neutral on scales comparable to
the wavelength. Maxwell’s equations of electromagnetism are then,

∇· (εE) =0 (1)

∇· (µH) =0 (2)

∇×E=iωµH (3)

∇×H=− iωεE, (4)

where we’ve used the fact that all temporal dependence is contained in the unitary factor
e −iωt . We now define the refractive index as n 2, c 2µε, and the wavenumber as k = (2π)n/λ
where λ is the wavelength in vacuum. In general, the wavenumber changes spatially due
to the refractive index. Taking the curl of Eq. 3, inserting Eq. 4, and using a vector calculus
identity we get,

∇2E+k 2E=∇(∇·E). (5)

By making use of Eq. 1, the right-hand side is found to be equivalent to ∇(∇ ·E) = −∇(E ·
∇ logεr ), and is zero if E⊥∇ logεr or logεr = 0 everywhere, where εr = ε/ε0 is the relative

2The FED is assumed to be constant in time over the timescale of propagation of light through the medium.
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permittivity. These conditions are true if the wave is normal incident on a scattering surface,
or if there is no scatterer. More generally, we can neglect∇(∇·E) if the length scale over which
εr changes is much larger than the wavelength. In the ionosphere, the irregularities vary
over kilometres which is thousands of times larger than the wavelength. Since we assume
∇(∇·E) = 0 we can apply the linear operator to each electric field component and treat the
electric field as a scalar. We therefore drop the vector notation for the electric field. In this
case Eq. 5 turns into,

(∇2+k 2
m )E =−k 2

mΦE , (6)

where km =
2π
λ is the constant wavenumber of the background medium which we take to be

vacuum, and Φ= (n 2−1) is the scattering potential.

Green’s function. The general solution to Eq. 6 can be written in terms of the Green’s func-
tion for the Helmholtz equation, which is a function satisfying (∇2+k 2

m )g (r, r′) =−δ(r− r′).
Since the coefficients on the left side are coordinate-independent the Green’s function is
translation-invariant, thus Green’s function can be found by taking the Fourier transform3

and solving,

g̃ (s) =
1

4π2s 2−k 2
m

(7)

=⇒ g (r, r′) =
e ikm |r−r′ |

4π|r− r′|
. (8)

We have skipped a large amount of rigour in deriving Eqs. 7 and 8, notably we have not even
mentioned generalised functions. For a very clear account of all assumptions including the
Sommerfeld radiation condition see Schmalz et al. [2010]. Note, it is possible to derive the
Green’s function including the∇(∇·E) term [Krüger et al., 2017]. The additional terms in this
complete Green’s function are negligible when k 2

m r 2�O (25), which is where the condition
to drop the∇(∇·E) term comes from. Both the Green’s function and its Fourier transform
will be useful in the following.

The general solution to Eq. 6 is then found by [Evans et al., 1999],

E =k 2
m

∫

V

gΦE dV +

∮

S

(g∇E −E∇g ) ·dA (9)

Equation 9 is an implicit solution since the solution appears also in the right-hand side,
therefore further assumptions are required to explicitly solve. Importantly, in order for the
solution to be defined we must stipulate boundary conditions on a surface S enclosing our
volume V .

Interestingly, George Green (ca. 1793 – 1841) was at least several decades ahead of his
time in formulating his theory on the solution to differential equations, despite having no
formal education in – or indeed any real exposure to – mathematics [Challis and Sheard,
2003]. He was not even really known about until years after his death, such that this day no

3Note that in this work we use the unitary definition of the Fourier transform with frequency variable in units of
cycles.
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one knows what he looked like. He grew up as the son of a miller near Nottingham, which
was rural farmland in the early 19th Century, and had little in the way of education. It would
have been hard to find access to the then cutting-edge mathematics that were happening
in places like Cambridge, and Paris. At the time Nottingham was mostly farmland, and the
only resources he had access to were a local library where there certainly was nothing in
the way of advanced mathematics to be found. The only possible connections to non-banal
mathematics would have been through a local teacher who had studied mathematics before
becoming a teacher. Nonetheless, George Green’s works are the foundation upon which all
equations of interest in physics are solved, such as Maxwell’s equations, the elastic wave
equation, the Helmholtz equation, the Schrödinger equation, the Dirac equation, the viscous
fluid equation, the Klein-Gordon equation, and Einstein’s equations to name but a few.

There are a number of ways to solve Eq. 9 which differ in the functional basis taken and in
the assumed conditions on the scattering potential Φ. In this work we discuss the Born and
Rytov approximations whose first-order approximations are equivalent [e.g. Born and Wolf,
1999, Blackledge, 2005]. As will become apparent, the two approximations differ in the space
where solutions are additive – in the sense of linear differential operators – and therefore
each has its own advantages in interpretation.

Born approximation. In the Born approximation we assume additivity in the complex
wave function, i.e. we solve the linear equation Eq. 9 given boundary conditions for E . We
choose the boundary conditions to be a super position of temporally incoherent plane waves
on the celestial sphere,

Ei (r) =

∫

S2

a (ŝ)e ikm ŝ·r dŝ (10)

where |a (ŝ)|2 is the specific intensity, or surface brightness, from the direction ŝ on the celestial
sphere, in units Jy sr−1. It gives the power per area per frequency per solid angle. Clearly, Ei

satisfies the homogeneous Helmholtz equation (∇2+k 2
m )Ei = 0. By temporally incoherent

we mean that each a (ŝ) has a unitary factor with random phase, η, of the form e iηt such that
〈e i2π(η1−η2)t 〉=δ(η1−η2)where averaging is over a time much longer than λ/c [Mandel and
Wolf, 1965]. Using Green’s theorem the second integral in Eq. 9 simplifies to Ei [Evans et al.,
1999] and the Born solution becomes,

E Born =k 2
m

∫

V

gΦE dV +Ei (11)

,Es +Ei . (12)

Equation 11 is still an implicit solution, however a series representation known as the Born
series is available,

E Born
n+1 =Ei +k 2

m

∫

V

gΦE Born
n dV , (13)

with E Born
0 = Ei . The series defined by Eq. 13 converges if the maximal absolute eigenvalue of

the matrix representation – the spectral radius – of the convolution g ?Φ is less than unity
[Osnabrugge et al., 2016]. Equivalently, k 2

m |
∫

V
gΦdV |< 1 everywhere in V [Blackledge, 2005].
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In the ionosphere this is almost always true, though periods of intense solar activity can
decrease the refractive index which increases the absolute value of the scattering potential.
The assumptions of radio interferometry are violated during these periods and the data
should be thrown away.

Going forward we will assume the first-order Born approximation, E Born ≈ E Born
1 , which

has a convenient representation via Fourier transforms. Since Green’s function, Eq. 8, is
translation-invariant the first-order Born approximation can be written as a convolution,
E Born = Ei +k 2

m (g ?ΦEi ). We apply the convolution theorem and write the first-order Born
approximation as,

E Born(r) =Ei (r) +k 2
m

∫

e i2πs·rg̃ (s)

∫

S2

a (ŝ)Φ̃(s−λ−1ŝ)dŝds

︸ ︷︷ ︸

Es (r)

, (14)

where Φ̃ is the 3D Fourier transform of the scattering potential. Equation 14 is the scattering
equation first written down by Max Born in the 1920s. It implies that if we can measure the
scattered wave, Es = E Born − Ei , then this allows us to reconstruct the scattering potential
by solving an inverse problem. Such problems are called inverse scattering problems and
are some of the hardest problems in mathematics and physics. Indeed, Richard Feynman’s
creation in the 1960s of Feynman diagrams is all about solving scattering problems, and is
also based on Green’s functions.

The Born approximation has a nice connection to the plane wave spectrum of Fourier
optics [Born and Wolf, 1999], which will be useful for us. Let the coordinate frame be Cartesian
r= x x̂+ y ŷ+ z ẑ with ẑ pointing towards the observer, and the origin fixed to the centroid of
the scattering potential. In this coordinate system we parametrise the plane wave directions
with ŝ = (l , m , n ,

p
1− l 2−m 2) with l 2 +m 2 < 1. We will use notation that subscript 2D

denotes the x̂ and ŷ components of the vector, e.g. ŝ2D = l x̂+m ŷ. Consider the 2D Fourier
transform of Eq. 14 in a plane spanned by x̂ and ŷ. Since the incoming wave, Ei , is a super
position of plane waves, its 2D Fourier transform can easily derived using the definition of
the Fourier transform of the Dirac delta, and is,

Ẽi (s2D; z ) =

∫

S2

a (ŝ)δ(s2D −λ−1ŝ2D)e
ikm n z dŝ. (15)

The 2D Fourier transform of the scattered wave term, Es , requires a bit more work. From
Eq. 14 we can read off the 3D Fourier transform of Es ,

Ẽs (s) =
k 2

m

4π2s 2−k 2
m

∫

S2

a (ŝ)Φ̃(s−λ−1ŝ)dŝ, (16)

where we substituted the Green’s function Fourier transform from Eq. 7. The 2D Fourier
transform is then found by inverse transforming sz back to the spatial domain. In order to do

this we use the residue theorem to integrate around the singularity at s 0
z =+

r

k 2
m

4π2 − s 2
x − s 2

y

using the partial fraction expansion 1
4π2 s 2−k 2

m
= 1

2s 0
z

�

1
sz−s 0

z
− 1

sz+s 0
z

�

,

Ẽs (s2D; z ) =ik 2
m

e i2πs 0
z z

4πs 0
z

∫

S2

a (ŝ)Φ̃(s0−λ−1ŝ)dŝ, (17)
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where s0 = (sx , sy , s 0
z ). Note this requires that Φ̃ contains no singularities, which is true of the

ionosphere.
Equations 15 and 17 are exact for the first-order Born approximation. Let us examine

them qualitatively. Both equations contain exponential terms of a similar form which encode
the propagation of the plane wave spectrum along ẑ. Notice that in the plane wave spectrum

of the scattered wave, Eq. 17, for directions of propagation where s 2
x + s 2

y >
k 2

m
4π2 the wave

decays with z . Such waves are called evanescent waves and are not detectable by radio
interferometers.

Equation 17 is a weighted sum of the incoming wave amplitudes, a (ŝ), with the scattering
potential spectrum, Φ̃, evaluated on a sphere of radius λ−1 with origin offset by s0. For the
purpose of illustration, imagine the scattering potential is an isotropic Gaussian blob with
a characteristic length scale l . This imposes a characteristic length scale in the Fourier
domain of σ = (2πl )−1 beyond which the spectrum amplitude decays to zero, i.e. Φ̃(s) ≈ 0
when |s| � σ. This implies that observers looking in direction ŝ0 will only see scattered
emission from celestial sources with directions, ŝ, satisfying arccos(ŝ0 · ŝ). λ

2πl . The smallest
ionospheric structures often range between 1–5 km with sub-km structures occasionally
occurring [Yeh and Swenson, 1959, Yeh, 1962, Mevius et al., 2016]. At a radio frequency of
150 MHz this implies light from a single source is scattered into a cone of approximately
1.1′[l /km]−1. This implies that diffraction effects are weak.

A useful property of an optical system is whether or not it is isoplanatic [Fellgett and
Linfoot, 1955]. In general, when the electric field plane wave spectrum (Eqs. 15 and 17) at the
detector surface can be sufficiently approximated by a planar convolution of the plane wave
spectrum on the object surface (S2 in our case), then the optical system is called isoplanatic.
We note that both Eqs. 15 and 17 are not planar convolutions but rather convolutions over the
2-sphere. Therefore, in general, an astronomical radio interferometer is not an isoplanatic
optical system. In radio interferometry there are two sources of non-isoplanaticity: one from
the curvature of the celestial sphere, and one from scattering. This can be seen by interpreting
the convolution kernels in Eqs. 15 and 17 as the sources of non-isoplanaticity. Various
methods exist in radio interferometry for handling non-isoplanaticity due to curvature of the
celestial sphere in the case of non-coplanar arrays [e.g. Cornwell and Perley, 1992, Cotton et al.,
2004, Cornwell et al., 2008, van Weeren et al., 2016, Tasse et al., 2018]. The methods introduced
in Chapters 2 and 3, and applied in Chapter 4, are about handling non-isoplanaticity due to
scattering. In general, non-isoplanaticity can be handled by dividing the object surface into
isoplanatic patches [Fellgett and Linfoot, 1955].

In radio interferometry it is not the electric field that is measured but rather the electric
field coherence, V (r, r′) = 〈E (r, t )E ∗(r′, t )〉, where 〈·〉 is averaging over a time period much
longer than λ/c . For simplicity, we assume a perfect receptive sensitivity, i.e. the radio
antennas measure an unbiased electric field4. Using the inverse 2D Fourier transform of the
plane wave spectrum the electric field coherence is given by,

V (r, r′) =

∫




(Ẽi (s2D; z ) + Ẽs (s2D; z ))(Ẽ ∗i (s
′
2D; z ′) + Ẽ ∗s (s

′
2D; z ′))

�

e i2π(s2D ·r2D−s′2D ·r
′
2D )ds2Dds′2D (18)

4Incorporating a receptive sensitivity is simply a matter of multiplying the plane wave spectrum by the directional
sensitivity gain of the antenna.
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The standard equation for electric field coherence seen in radio interferometry is stationary
[e.g. Perley et al., 1989], i.e. depends only on the separation between two positions, however
the assumptions arriving there are often absent. In general, the electric field coherence is
non-stationary [e.g. Mandel and Wolf, 1965, Garcia-Sucerquia et al., 2002], i.e. depends on two
positions, and is only truly stationary for incoherent emission satisfying the homogeneous
Helmholtz equation. This is true of the celestial radiation, Ei , but not true of the scattered
wave, Es . The scattered wave gains spatial coherence similar to how spatially incoherent
monochromatic radiation passing through two closely separated pin holes gains spatial
coherence and produces an interference pattern that is not translation-invariant. However,
the electric field coherence can be approximated as stationary using the same observation
noted earlier; that the sparse incoherent celestial emission is scattered into a narrow cone of
diameter approximately 1′, so that two scattered waves interfere only if their wave vectors are
nearly perfectly aligned. Under this assumption, using Eqs. 15 and 17, Eq. 18 can be worked
out,

V (r− r′) =k 2
m

∫

S2

e i2πλ−1 ŝ·(r−r′)

4s 2
z

�∫

S2

|Φ̃(λ−1ŝ−λ−1ŝ′)|2〈|a (ŝ′)|2〉dŝ′
�

dŝ

+

∫

S2

e i2πλ−1 ŝ·(r−r′)〈|a (ŝ)|2〉dŝ. (19)

Note that due the stationary assumption there are no cross-coherence terms, i.e. 〈Ẽi (s2D; z )Ẽ ∗s (s2D; z ′)〉+
〈Ẽs (s2D; z )Ẽ ∗i (s2D; z ′)〉 = 0, which can be verified directly. Equation 19 comprises inverse
Fourier transforms on the 2-sphere, which are in the class of restricted Fourier transforms [e.g.
Barcelo et al., 1997, Tao, 2003]. Efficient methods of computing (inverse) Fourier transforms
and convolutions on the 2-sphere exist [e.g. Driscoll and Healy, 1994, Jarosz, 2008]. The use of
such methods result is an exact treatment of non-isoplanatic systems [Eastwood et al., 2018],
yet still remain relatively unexplored in radio interferometry. Equation 19 is an oscillatory
integral, so another way to exactly treat non-isoplanaticity is via oscillatory integral methods
such as the method of stationary phase. Such methods are completely unexplored in radio
interferometry.

For incoherent radiation the isoplanatic assumption is equivalent to the condition that
the specific intensity in the detector surface can be written as a planar convolution of the
specific intensity on the object surface. The kernel of the convolution in this case is called
the point spread function (PSF). Again, there are two sources of non-isoplanaticity due to
celestial sphere curvature, and scattering. For a coplanar array (detector surface of constant
z ) an optical system with incoherent radiation becomes isoplanatic. However, recall that
scattering introduces coherence, and therefore a system with scattering is not isoplanatic
even for coplanar arrays.

For illustrative purposes, assume the special case of a coplanar array z = z ′, and let the
electric field coherence be measured everywhere in the plane of the interferometer. We
observe that the second term in Eq. 19 reduces to a 2D Fourier transform relation between
the electric field coherence and the 2D power spectrum of the incoming electric field5, which
we call the specific intensity, sky-brightness, or image, in units of Jy sr−1. This is known as
the Wiener-Khinchin theorem. Observe that the first term does not simplify for a coplanar

5This technically requires changing the domain of integration to R2 and defining the integrands as zero outside
the unit disk.
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array due to the s 2
z in the denominator. However, if we additionally add the assumption that

the celestial emission is restricted to a narrow field of view, such that s 2
z ≈ 1, then we can

also apply the Wiener-Khinchin theorem. In this case, we see that there are two images; one
corresponding to the celestial emission and one to scattered emission respectively,

Ii (ŝ) =〈|a (ŝ)|2〉 (20)

Is (ŝ) =
k 2

m

4s 2
z

∫

S2

|Φ̃(λ−1ŝ−λ−1ŝ′)|2〈|a (ŝ′)|2〉dŝ′. (21)

The interpretation of Eq. 21 can be thought of with a toy model. Imagine the ionosphere
is a flat layer perpendicular to zenith with a sinusoidal wave of refractive index with a spatial
frequency, sion, and let there be one source at zenith. Then, clearly Φ̃(s)will have a delta peak at
±sion. Now, Eq. 21, says that a fraction of the source flux will be shifted symmetrically by±sion.
This would look like two speckles offset from the source at zenith. Therefore, the intuition
behind Eq. 21 is that speckles are symmetrically displaced radially from sources according
to the magnitude and direction of strong spatial modes in the ionosphere. Over the course
of an observation the integral effect of scattering would be perceived as a halo of speckles,
which grows brighter proportional to the specific intensity of the source. Since the aperture
of an Earth rotation synthesis radio interferometer [Högbom, 1974] is sparsely covered, a
displaced speckle would appear as a displaced instantaneous PSF [Born and Wolf, 1999].
Another characteristic comes from the property of temporal continuity in the ionosphere.
Since wind speed in the ionosphere can be several hundreds of metres per second [Phillips,
1952]we expect temporal continuity of the FED and the speckles should move continuously.
Therefore, during periods of high ionosphere activity the speckles should ‘draw’ radial spokes
emanating from bright sources, e.g. as seen in Figure 3.3 in Chapter 3.

Finally, observe that Eq. 21 is a relation between the 3D scattering potential spectrum
and the 2D scattered intensity. The relation is invertible given knowledge of the celestial sky
intensity, 〈|a (ŝ)|2〉, a measured scattered intensity Is (ŝ), and a prior over the scattering power
spectrum. Given the above restriction on diffraction to a cone of approximately 1′, without
priors the relation is only invertible if 〈|a (ŝ)|2〉 is dense with respect to this separation. The
fact that the complete information of a 3D object can be stored in a 2D object is the principle
of holography, first introduced by Dennis Gabor for microscopic wavefront reconstruction
that bypasses the diffraction limit of a lens [Gabor, 1949].

Incoherent light is radiation of which we know only certain
data of a statistical nature: the energy or intensity, the

polarization, the spectral composition. If we interrupt an
optical tract at an arbitrary plane, we see only an

almost-uniform blur. It must strike one as something of a
miracle that a lens can sort out the intermingling wavelets and

restore a picture of an object – at least in one plane.

DENNIS GABOR, 1969

Rytov approximation. The Rytov approximation gives a different interpretation of the
effects of scattering in terms of what are called gains. Gains form the basis of most radio
interferometry calibration procedures, and are closely related to Chapters 2 to 4.
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The Rytov approximation makes the eikonal transformation, E Rytov(r) = E0(r)e φ(r), where
E0 satisfies the homogeneous Helmholtz equation (∇2 + k 2

m )E0 = 0 and (∇E0)/E0 = ∇φ0,
for some function φ0 [Born and Wolf, 1999]. We choose E0(r, ŝ) = a (ŝ)e ikm ŝ·r which clearly
satisfies the homogeneous Helmholtz equation and (∇E0)/E0 =∇(ikm ŝ · r). If we substitute
the eikonal transformation into Eq. 9 then we get a non-linear Riccatian equation forφ. If
|∇φ ·∇φ| � |k 2

mΦ| everywhere in V , then the non-linear Riccatian equation can also be solved
by making the substitution w =φ/E0 yielding [Blackledge, 2005],

φ =
k 2

m

E0

∫

V

gΦE0 dV . (22)

In the Rytov approximation we choose additivity – in the sense of linear operators – in phase
rather than electric field. In other words, by making the eikonal transformation, we get a
linear differential equation for phase, and not electric field as in the Born approximation.
Nonetheless, the principle of super position of electric fields applies and the scattered electric
field is given by the difference between the solution and the incoming electric field, E Rytov

s =
E0(e φ − 1). We note that Eq. 22 looks similar to the scattered wave in the first-order Born
approximation,

E Born
s =E0φ, (23)

when we make the choice Ei = E0. Equation 23 in combination with Eq. 14 implies that
E Rytov = E0[exp(E Born

1 /E0)−1], and when the spectral radius of g ?Φ is less than unity then,
E Rytov ≈ E Born

1 . This shows that the two approaches are equivalent in the regime of the typical
ionosphere.

Let us make now make the connection between the Rytov approximation and classical
non-diffractive tomography as introduced by Johann Radon [Radon, 1917]. From the discus-
sion on the Born approximation we already know that diffraction is approximately limited to
a cone on the angular scale of 1′. Given that the average separation between bright celestial
sources is greater than this, it makes sense to consider the non-diffractive limit. In this setting
we choose to align the coordinate axes with ẑ pointing in the direction of the single plane
wave ŝ. If we take the 2D Fourier transform of Eq. 23, use the definition of the the plane wave
spectrum of the Born scattered wave, Eq. 17, and rearrange we get,

Φ̃(s0−λ−1ŝ) =− i
4π

k 2
m

s 0
z e −i2πs 0

z z φ̃(s2D −λ−1ŝ2D; z ). (24)

where s0 = (sx , sy , s 0
z =

q

λ−2− s 2
x − s 2

y ) and ŝ = (0,0,1). Equation 24 is an exact relation

between the Rytov and first-order Born approximations. Let us make the substitution s′ =
s0−λ−1ŝ. Now, from our discussion in the Born approximation we have that the ionosphere
is only weakly diffracting and therefore |s′|2 = 2λ−2(1− ŝ0 · ŝ)�λ−2 from which we have that
s 0

z ≈λ
−1 and s ′z ≈ 0. Equation 24 becomes,

Φ̃(s′)≈− i
4π

λk 2
m

φ̃(s′2D; z ). (25)

If we take the inverse Fourier transform of both sides, using that s ′z ≈ 0, and rearrange we get
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the classic non-diffractive tomography relation,
∫

e −i2πs ′z zΦ(r)dz =− i
4π

λk 2
m

φ(r) (26)

=⇒ φ(r)≈i
λk 2

m

4π

∫

Φ(r)dz . (27)

This is precisely the equation that is foundational to Chapter 2. Another way to arrive at
this result is via the Jeffreys-Wentzel-Kramers-Brillouin (JWKB) approximation [e.g. Jeffreys,
1925]. In the JWKB approximation one makes the extra assumption on the eikonal phase,
that∇2φ can also be neglected, which results in the geometric optics regime. The eikonal
representation in the JWKB approximation gives rise to Jones and Müller algebra treatment
of ray optics [Jones, 1941, Parke, 1949].

Given Eq. 27 the Rytov solution for a super position of incoming incoherent plane waves,
Eq. 10, is given by,

E Rytov(r) =

∫

G (ŝ, r)a (ŝ)e ikm ŝ·r dŝ, (28)

where we define the gains, G (ŝ, r) = exp
h

i
λk 2

m
4π

∫

r̂·ŝ=1
Φ(r)dV (r)

i

. This implies that the electric

field coherence is given by,

V (r, r′) =

∫

G (ŝ, r)G ∗(ŝ, r′)〈|a (ŝ)|2〉e ikm ŝ·(r−r′)dŝ. (29)

Equation 29 is the radio interferometry measurement equation for scalar electric fields and
perfect antenna sensitivity [Hamaker et al., 1996]. Importantly, we note that in the non-
diffractive limit the gains contain no amplitude information. When the full Eq. 22 is used
then the resulting gains would contain amplitude information, and this is possibly an avenue
of future research.

In comparing Eq. 29 with Eq. 19 we can clearly see the different approximations lead
to different interpretations. For the Born approximation, the effect of the scattering on the
image is intuitive in terms of the plane wave spectrum. For the Rytov approximation, the
effect on the electric field coherence is intuitive in terms of gains. It should be made clear that
both are valid – indeed equivalent – approaches. It is the author’s opinion that there is still
much to gain in radio interferometry by better understanding the foundational equations.
Often improvements and understanding come from returning to the basics of a theory, e.g.
understanding ‘ghosts’ in images due to over-calibration [Grobler et al., 2014].

Next-generation radio interferometry

The next generation of radio interferometry is pushing technology to it’s limit. In particu-
lar, science with the near-future Square Kilometre Array [SKA; Dewdney et al., 2009] at full
capacity is not technologically feasible with current techniques. The key parameters of a
radio interferometer are its sensitivity, angular and spectral resolution, bandwidth, and field
of view. In terms of instrumental attributes these parameters correspond to surface area,
baseline coverage, number of channels, and the type of antenna.
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In an aperture synthesis radio interferometer [Högbom, 1974], as collecting surface area
increases the volume of data grows quadratically as this typically corresponds to adding more
antennas, which adds one extra source of data for every pre-existing antenna. The SKA is a
near-future radio interferometer that has been envisioned for over two decades [Braun, 1996,
van de Weygaert and van Albada, 1996], and aims to provide 1 km2 of effective collecting area
[Hollitt et al., 2017]. The SKA is the "pie in the sky" of radio interferometry, since with current
technology it would only be possible to utilise a mere fraction of its capacity for science. The
expected data rate of the SKA is tens of petabytes per day, or about 1 Internet – the same
volume as the entire internet. This challenge has spawned a huge interest in algorithms [e.g.
Lindner et al., 2015, Offringa, 2016, Wijnholds et al., 2018, Cai et al., 2018, 2019, Lyon et al.,
2019] and technology [e.g. Hassan et al., 2013, Isaev and Tarasov, 2016] for handing huge data
volumes.

The demand for higher angular resolution means longer baselines are required, and
antennas become further separated. This raises the challenge of keeping antennas synchro-
nised and transferring massive amounts of data to a common correlator. This ultimately
would result in improved internet infrastructure around the world. Another challenge with
long baseline arrays is dealing with the curvature of the Earth, which breaks the coplanarity
assumption. This challenge was already beginning to be addressed several decades ago [e.g.
Cornwell and Perley, 1992], and was largely solved within the last decade [Cornwell et al.,
2008]. The divergence of the radio interferometer from the classical optical detector plane
description, wherein fast Fourier transforms do everything, also sparked much work in more
general treatments of interferometric imaging [e.g. Tasse et al., 2013].

In this thesis we work with two world-class radio interferometers: Low-Frequency Array
[LOFAR; van Haarlem et al., 2013], and the Giant Metre-wave Radio Telescope [GMRT; Gupta
et al., 2017].

LOFAR is a high-sensitivity, high-resolution, wide-band, wide-field, low-frequency, fiber-
optic connected, phased-array aperture synthesis radio interferometer than spans Europe,
from Ireland to Latvia, and France to northern Sweden. It has two operating bands, the
high-band antennae (HBA; 115–240MHz) and the low-band antennae (LBA; 10–80MHz).
In this thesis, we make use of the Dutch LOFAR array, with baselines out to 80km, and an
effective collecting area of 0.04 km2 at 150 MHz. The expected sensitivity of a standard
8.5 hour observation with the full Dutch LOFAR-HBA and 24 subbands is 72.8 µJy beam−1.
The original primary aim of LOFAR was to survey the entire Northern sky with unprecedented
resolution, depth, and fidelity. The science that comes out of LOFAR now spans all radio
fields and domains of astronomy including: cosmic dawn [e.g. Patil et al., 2017, Mertens
et al., 2020], early star-formation [e.g. Saxena et al., 2018], active galactic nuclei [e.g. Williams
et al., 2018], radio transients [e.g. Kuiack et al., 2019], galaxy clusters [e.g. van Weeren et al.,
2019, Mandal et al., 2019], radio exo-planets [e.g. Callingham et al., 2020], and more. LOFAR
is a pathfinder for SKA-low, and comes with a great number of technological challenges
[Noordam, 2004]. In some ways the Murchison Widefield Array [MWA; Tingay et al., 2013]
in Australia is a Southern-hemisphere counterpart to LOFAR, acting as a precursor to the
SKA-low.

The GMRT is an aperture synthesis radio interferometer composed of 30 massive steerable
45 m parabolic dishes situated just 80 km north of Pune, India. It had three narrow bands
(32 MHz wide) situated at 150 MHz, 320 MHz, and 610 MHz. Given the large collecting
area of the dishes, approximately 0.03 km2, the GMRT was one of the most sensitive radio
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interferometers prior to LOFAR, being approximately three times larger that the Very Large
Array [VLA; Condon et al., 1998] and equally large as the single dish giant Arecibo Radio
Telescope [Heiles et al., 2001]. It has enabled a host of science ranging from cosmic dawn
[e.g. Paciga et al., 2013], radio transients [e.g. Bhattacharyya et al., 2016], radio exo-planets
[e.g. Hess and Zarka, 2011], galaxy clusters [e.g. Venturi et al., 2008], to stellar radio emission
[Quiroga-Nuñez et al., 2020]. The GMRT was recently upgraded to a wideband version
[uGMRT; Gupta et al., 2017], however in this thesis we only made use of the GMRT.

About this thesis

In some sense the SKA, being a far-off intangible goal, has provided the motivation to come
together as a community and solve the technological challenges of today’s telescopes. Radio
interferometry has seen a huge boost in its algorithms in the last decade as we prepare to
meet the challenges of SKA. One of the many challenges is direction dependent ionospheric
calibration. There are several common methods for ionospheric calibration, e.g. field-based
calibration [Cotton et al., 2004] which models image domain apparent source shifts, and
facet-based calibration [Intema et al., 2009, van Weeren et al., 2016, Tasse et al., 2018]which
performs calibration on disjoint patches of the sky called facets. In this thesis we focus
entirely on the facet-based approach.

Facet-based calibration has several orders of complexity. The simplest method is to form
an independent data set per facet, by subtracting a model of the rest of the sky, and then
perform calibration independently per facet. The result solutions can then be spatially filtered
to remove noise and to try to make them spatially consistent with some model. This is the
basis of Source Peeling and Atmospheric Modelling [SPAM; Intema et al., 2009]. An extension
on this is to also enforce a linear phase model during solve, e.g. that the ionospheric phase
distortions are∝ ν−1. This makes forms the basis of Facet Calibration for LOFAR [FACTOR;
van Weeren et al., 2016]. The more complicated method is to simultaneously and jointly
calibrate all facets on all the visibilties [Tasse, 2014b, Smirnov and Tasse, 2015]. Following this
post-processing can enforce a linear phase model, e.g.∝ ν−1 dependence for ionospheric
terms. This forms the basis of killMS and DDFacet [Tasse et al., 2018]. All facet-based methods
make use of self-calibration [Pearson and Readhead, 1984].

Common to all of these methods is that 1) they are limited by the density of infield-
calibrators to form facets, and 2) they do not use any spatial information of the ionosphere.
One of the big open questions in radio interferometry is: Is it possible to use the physics of a
weakly scattering random medium to improve on these methods of ionospheric calibration?
In this thesis we answer this question in theory and in practice.

The thesis is split into two parts. In the Chapter 1 we investigate diffuse synchrotron emis-
sion in a high redshift galaxy cluster. We use this investigation to gain a working experience
of radio interferometry, as well as to explore an interesting field in astronomy, i.e. the study
of the largest scale structure in the Universe. In Chapters 2 to 4 we then tackle the problem
of probabilistic calibration of the ionosphere using a physical model of weakly scattering
random media. The scope of the project is aimed at investigating ways to solve the problem
of the ionosphere for LOFAR, as a path finder for SKA.

In Chapter 2 we apply well-known physics of non-diffractive, or non-dispersive, phase
distortions to derive a probabilistic tomographic prior for the ionospheric distortions. The
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result is a mean and covariance function for a Gaussian process [Rasmussen and Williams,
2006b], with hyper parameters that encode information about the geometry of the ionosphere
including height, thickness, and spectral density. We show, using simulated ionospheres, that
the resulting Gaussian process surpasses all other common Gaussian processes in modelling
ionospheric distortions and is computationally feasible.

Following this, in Chapter 3, we devise a method that can apply this to real interferometric
data. Using DDFacet we acquire calibration data which we use as data in our model. There
are a number of challenges we face. Firstly, the calibrator data is low signal-to-noise. This
complicates extracting ionospheric information from them. We devise a variational hidden
Markov model [HMM; e.g. Rabiner and Juang, 1986] which provides a Bayesian estimate
of the distribution of the ionospheric distortions, which forms the input to our model. In
applying the method to real data we are forced to make several approximations to the model
for computational feasibility. Ultimately, we apply it to a single LOFAR observation and find
we are able to significantly reduce ionospheric artefacts.

Finally, in Chapter 4 we assess the feasibility of the method on the deep Lockman Hole
data set comprosing 12 8.5 hour LOFAR observations. We find that the method significantly
improves 10/12 data set, and that 2/12 data sets only show subtle improvements. In no
cases it the image quality degraded over the current state-of-the-art. We also jointly image
all 100 hours of the deep Lockman Hole data set and find that the improvements extend to
multi-epoch observations. In the process we uncover a modelling systematic, which we are
able to isolate and characterise. We find that there is a direction-dependent non-ionospheric
component that limits the resulting noise level around sources to a few times thermal noise.
We propose a correction to the method which shows, in principle, that we can account for it,
although we leave the extension of the method to a following paper.

Future directions

Given the success of the model at LOFAR-HBA frequencies, a natural extension is to apply it to
LOFAR-LBA. This likely comes with a number of challenges. For example, at lower frequencies
the number of suitable calibrators will be far fewer because sensitivity over appropriate time
scales will be much lower. In Chapter 2 we showed that the full tomographic version of the
model can handle LOFAR-LBA conditions. Therefore, a possible future avenue will be making
the full tomographic version computationally feasible to handle this sparse and noisy regime.

In this thesis we focus purely on the ionospheric modelling aspect, and do not attempt
to alter the way in which calibration and imaging occurs. However, the author recognises
the potential for new calibration and imaging techniques that implicitly account for the
ionosphere. Currently, there are no methods that take into account the spatial information
and physics of the ionosphere when inverting the visibilties. Furthermore, currently the
standard description of the ionosphere in radio astronomy excludes the amplitude infor-
mation of the ionosphere from the model. The model could be extended to incorporate a
model for amplitudes, however this would likely require modelling the ionosphere directly
on visibilities.

Another possible future direction has to do with the definition of the radio interferometry
measurement equation. The current definition [Hamaker et al., 1996]was formed in a time
prior to big-data, tomographic ionosphere corrections, and all development of the past two
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decades. Currently, the definition stems from the use of Jones algebra which means that
we choose additivity in phase space and that wave-fronts never distort. We therefore see
the visibilities as a convex sum of complex exponentials weighted by the celestial specific
intensity. There are a several side-effects of this including non-linearity of the visibility
model, and phase-wrapping of all propagation effects. However, if we were to take the Born
approximation, we would naturally gain linearity of the visibility model, which would make
least-squares calibration much more well-founded. This could have extensive implications
for calibrating the ionosphere phase and amplitude effects directly from visibilities.

21



Introduction

22


