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CHAPTER 6
Largest eigenvalue of the adjacency

matrix

This chapter is based on:
A. Chakrabarty, R.S. Hazra, F. den Hollander, M. Sfragara. Large deviation prin-
ciple for the maximal eigenvalue of inhomogeneous Erdős-Rényi random graphs.
[arXiv:2008.08367], 2020.

Abstract

We consider inhomogeneous Erdős-Rényi random graphs GN on N vertices in the
dense regime. The edge between the pair of vertices {i, j} is retained with probability
r( iN ,

j
N ), 1 ≤ i 6= j ≤ N , independently of other edges, where r : [0, 1]2 → (0, 1)

is a symmetric function that plays the role of a reference graphon. Let λN be the
largest eigenvalue of the adjacency matrix of GN . It is known that λN/N satisfies a
large deviation principle as N → ∞. The associated rate function ψr is given by a
variational formula that involves the rate function Ir of a large deviation principle on
graphon space. We analyze this variational formula in order to identify the properties
of ψr, specially when the reference graphon is of rank 1.
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§6.1 Introduction and main results

In Section 6.1.1 we define the mathematical model and we state the large deviation
principle (LDP) for inhomogeneous Erdős Rényi random graphs. In Section 6.1.2 we
present some facts about graphon operators. In Section 6.1.3 we state the LDP for
the largest eigenvalue of the adjacency matrix, together with some properties of the
rate function. Moreover, under the assumption that the connection probabilities have
a multiplicative structure, we identify the scaling behavior of the rate function around
its minimum and its end points. In Section 6.1.4 we briefly discuss these results and
give an outline of the remainder of the chapter.

§6.1.1 Setting
We refer to Section 1.2.3 for a general introduction to spectra of Erdős-Rényi random
graphs. We focus on inhomogeneous Erdős-Rényi random graphs and consider the
dense regime, where the degrees of the vertices diverge linearly with the size of the
graph.

Recall Section 1.2.5 for an introduction to graphon theory. Let r ∈ W be a
reference graphon satisfying

∃ η > 0: η ≤ r(x, y) ≤ 1− η ∀ (x, y) ∈ [0, 1]2. (6.1)

Fix N ∈ N and consider the random graph GN with vertex set [N ] = {1, . . . , N}
where the pair of vertices i, j ∈ [N ], i 6= j, is connected by an edge with probability
r( iN ,

j
N ), independently of other pairs of vertices. Write PN to denote the law of GN .

Use the same symbol for the law on W induced by the map that associates with the
graph GN its graphon hGN , defined by

hGN (x, y) =

{
1, if there is an edge between vertex dNxe and vertex dNye,
0, otherwise.

(6.2)
Recall the equivalence relation ∼ on W defined in Section 1.2.5 and write P̃N to
denote the law of h̃GN .

The following LDP is proved in [145] and is an extension of the celebrated LDP
for homogeneous Erdős-Rényi random graphs derived in [138]. Further properties of
the rate function were derived in [179].

Theorem 6.1.1 (LDP for inhomogeneous Erdős-Rényi random graphs).
Subject to (6.1), the sequence (P̃N )N∈N satisfies the LDP on (W̃, δ�) with rate

(
N
2

)
,

i.e.,

lim sup
N→∞

1(
N
2

) log P̃N (C) ≤ − inf
h̃∈C

Jr(h̃) ∀ C ⊂ W̃ closed,

lim inf
N→∞

1(
N
2

) log P̃N (O) ≥ − inf
h̃∈O

Jr(h̃) ∀O ⊂ W̃ open,
(6.3)

where the rate function Jr : W̃ → R is given by

Jr(h̃) = inf
φ∈M

Ir(h
φ), (6.4)
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where h is any representative of h̃ and

Ir(h) =

∫
[0,1]2

R
(
h(x, y) | r(x, y)

)
dx dy, h ∈ W, (6.5)

with
R
(
a | b

)
= a log a

b + (1− a) log 1−a
1−b (6.6)

the relative entropy of two Bernoulli distributions with success probabilities a ∈ [0, 1],
b ∈ (0, 1) (with the convention 0 log 0 = 0).

It is clear that Jr is a good rate function, i.e., Jr 6≡ ∞ and Jr has compact level sets.
Note that (6.4) differs from the expression in [145], where the rate function is the
lower semi-continuous envelope of Ir(h). However, it was shown in [180] that, under
the integrability conditions log r, log(1 − r) ∈ L1([0, 1]2), the two rate functions are
equivalent, since Jr(h̃) is lower semi-continuous on W̃. Clearly, these integrability
conditions are implied by (6.1).

§6.1.2 Graphon operators
With h ∈ W we associate a graphon operator acting on L2([0, 1]), defined as the linear
integral operator

(Thu)(x) =

∫
[0,1]

h(x, y)u(y) dy, x ∈ [0, 1], (6.7)

with u ∈ L2([0, 1]). The operator norm of Th is defined as

‖Th‖ = sup
u∈L2([0,1])
‖u‖2=1

‖Thu‖2, (6.8)

where ‖·‖2 denotes the L2-norm. Given a graphon h ∈ W, we have that ‖Th‖ ≤ ‖h‖2.
Hence, a graphon sequence converging in the L2-norm also converges in the operator
norm.

The product of two graphons h1, h2 ∈ W is defined as

(h1h2)(x, y) =

∫
[0,1]

h1(x, z)h2(z, y) dz, (x, y) ∈ [0, 1]2, (6.9)

and the n-th power of a graphon h ∈ W as

hn(x, y) =

∫
[0,1]n−1

h(x, z1) · · ·h(zn−1, y) dz1 · · · dzn−1, (x, y) ∈ [0, 1]2, n ∈ N.

(6.10)

Definition 6.1.2 (Eigenvalues and eigenfunctions).
The number µ ∈ R is said to be an eigenvalue of the graphon operator Th if there
exists a non-zero function u ∈ L2([0, 1]) such that

(Thu)(x) = µu(x), x ∈ [0, 1]. (6.11)

The function u is said to be an eigenfunction associated with µ.
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Proposition 6.1.3 (Properties of the graphon operator).
For any h ∈ W the following statements hold.

(i) The graphon operator Th is self-adjoint, bounded and continuous.

(ii) The graphon operator Th is diagonalisable and has countably many eigenvalues,
all of which are real and can be ordered as µ1 ≥ µ2 ≥ . . . ≥ 0. Moreover,
there exists a collection of eigenfunctions which form an orthonormal basis of
L2([0, 1]).

(iii) The largest eigenvalue µ1 of the graphon operator Th is strictly positive and has
an associated eigenfunction u1 satisfying u1(x) > 0 for all x ∈ [0, 1]. Moreover,
µ1 = ‖Th‖, i.e., the largest eigenvalue equals the operator norm.

Proof. The claim is a special case of [184, Theorem 7.3] (when the compact Hermitian
operators considered there are taken to be the graphon operators). See also [143,
Theorem 19.2] and [147, Appendix A]. �

§6.1.3 Main theorems
Let λN be the largest eigenvalue of the adjacency matrix AN of GN . Write P∗N to
denote the law of λN/N .

Cr 10

C1
r

C0
r

β

φr(β)

+∞+∞

s

s

s◦◦

Figure 6.1: Graph of β 7→ ψr(β).

Theorem 6.1.4 (LDP for the largest eigenvalue).
Subject to (6.1), the sequence (P∗N )N∈N satisfies the LDP on R with rate

(
N
2

)
and with

rate function

ψr(β) = inf
h̃∈W̃
‖T
h̃
‖=β

Jr(h̃) = inf
h∈W
‖Th‖=β

Ir(h), β ∈ R. (6.12)

Proof. Note that λN/N = ‖ThGN ‖, where h is any representative of h̃ (we use the
fact that ‖Th̃‖ = ‖Thφ‖ for all φ ∈ M). Also note that h̃ 7→ ‖Th̃‖ is a bounded
and continuous function on W̃ [137, Exercises 6.1–6.2, Lemma 6.2]. Hence the claim
follows from Theorem 6.1.1 via the contraction principle (see [167, Chapter 3]). �
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Put
Cr = ‖Tr‖. (6.13)

When β = Cr, the graphon h that minimizes Ir(h) such that ‖Th‖ = Cr is the
reference graphon h = r almost everywhere, for which Ir(r) = 0 and no large deviation
occurs. When β > Cr, we are looking for graphons h with a larger operator norm.
The large deviation cannot go above 1, which is represented by the constant graphon
h ≡ 1, for which Ir(1) = C1

r . Similarly, when β < Cr, we are looking for graphons
h with a smaller operator norm. The large deviation cannot go below 0, which is
represented by the constant graphon h ≡ 0, for which Ir(0) = C0

r (see Figure 6.1).

Theorem 6.1.5 (Properties of the rate function).
Subject to (6.1), the rate function in (6.12) satisfies the following.

(i) The rate function ψr is continuous and unimodal on [0, 1], with a unique zero
at Cr.

(ii) The rate function ψr is strictly decreasing on [0, Cr] and strictly increasing on
[Cr, 1].

(iii) For every β ∈ [0, 1], the set of minimisers of the variational formula for ψr(β)

is non-empty and compact in W̃.

If the reference graphon r is of rank 1, i.e.,

r(x, y) = ν(x) ν(y), (x, y) ∈ [0, 1]2, (6.14)

for some ν : [0, 1]→ [0, 1] that is bounded away from 0 and 1, then we are able to say
more. Define

mk =

∫
[0,1]

ν(x)k dx, k ∈ N. (6.15)

Note that Cr = m2. Abbreviate

Br =

∫
[0,1]2

r(x, y)3(1− r(x, y)) dx dy, (6.16)

and note that Br = m2
3 −m2

4. Further abbreviate

N1
r =

∫
[0,1]2

1− r(x, y)

r(x, y)
dx dy, N0

r =

∫
[0,1]2

r(x, y)

1− r(x, y)
dx dy. (6.17)

Recall from Section 1.2.5 thatM is the set of Lebesgue measure-preserving bijective
maps φ : [0, 1]→ [0, 1].

Theorem 6.1.6 (Scaling of the rate function).
Let ψr be the rate function in (6.12).

(i) Subject to (6.1) and (6.14),

ψr(β) = Kr (β − Cr)2 [1 + o(1)], β → Cr, (6.18)

with

Kr =
C2
r

2Br
=

m2
2

2(m2
3 −m2

4)
. (6.19)
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(ii) Subject to (6.1),

C1
r − ψr(β) = (1− β)

(
log

N1
r

1− β
+ 1 + o(1)

)
, β → 1. (6.20)

(iii) Subject to (6.1),

C0
r − ψr(β) = β

(
log

N0
r

β
+ 1 + o(1)

)
, β → 0. (6.21)

Theorem 6.1.7 (Scaling of the minimisers).
Let hβ ∈ W be any minimiser of the second infimum in (6.12).

(i) Subject to (6.1) and (6.14),

lim
β→Cr

(β − Cr)−1‖hβ − r − (β − Cr)∆‖2 = 0, (6.22)

with
∆(x, y) =

Cr
Br

r(x, y)2(1− r(x, y)), (x, y) ∈ [0, 1]2. (6.23)

(ii) Subject to (6.1),

lim
β→1

(1− β)−1‖1− hβ − (1− β)∆‖2 = 0, (6.24)

with
∆(x, y) =

1

N1
r

1− r(x, y)

r(x, y)
, (x, y) ∈ [0, 1]2. (6.25)

(iii) Subject to (6.1),
lim
β→0

β−1‖hβ − β∆‖2 = 0, (6.26)

with
∆(x, y) =

1

N0
r

r(x, y)

1− r(x, y)
, (x, y) ∈ [0, 1]2. (6.27)

§6.1.4 Discussion and outline
Theorems. Theorem 6.1.5 confirms the picture of ψr drawn in Figure 6.1. It remains
open whether or not ψr is convex. We do not expect ψr to be analytic, because
bifurcations may occur in the set of minimisers of ψr as β is varied. Theorem 6.1.6
identifies the scaling of ψr around its minimum and near its end points, provided
r is of rank 1. The inverse curvature 1/Kr equals the variance in the central limit
theorem derived in [130]. This is in line with the standard folkore of large deviation
theory. Theorem 6.1.7 identifies the corresponding scaling of the minimiser hβ of ψr.
Interestingly, the scaling corrections are not rank 1. It remains open to determine
what happens near Cr when r is not of rank 1 (see Appendix F).

Conditions. It would be interesting to investigate to what extent the condition on
the reference graphon in (6.1) can be weakened to some form of integrability condition.
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Especially for the upper bound in the LDP this is delicate, because the proof in [145]
is based on block-graphon approximation (see [180]).

Outline of the chapter. The remainder of this chapter is organized as follows. In
Section 6.2 we derive an expansion for the operator norm of a graphon around any
graphon of rank 1. In Section 6.3 we prove our main theorems. In Appendix F we
show how the expansion around reference graphons can be extended to finite rank.

§6.2 Expansion around rank-one graphons

In this section we show how we can expand the operator norm of a graphon around any
graphon of rank 1. This prepares for the perturbation analysis in Sections 6.3.2–6.3.4.
Lemma 6.2.1 (Rank-one expansion).
Consider a graphon h̄ ∈ W of rank 1 such that h̄(x, y) = ν̄(x)ν̄(y), (x, y) ∈ [0, 1]2.
For any h ∈ W such that ‖Th−h̄‖ < ‖Th‖, the operator norm µ = ‖Th‖ is a solution
of the equation

µ =
∑
n∈N0

1

µn
Fn(h, h̄), (6.28)

where
Fn(h, h̄) =

∫
[0,1]2

ν̄(x)(h− h̄)n(x, y)ν̄(y) dx dy. (6.29)

Proof. By Proposition 6.1.3, we have

Thu = µu, (6.30)

where µ equals both the norm and the largest eigenvalue of Th, and u is the eigen-
function associated with µ. Put g = h− h̄ and we have (µ− Tg)u = Th̄u. This gives

u = (µ− Tg)−1ν̄〈ν̄, u〉, (6.31)

where we use that µ−Tg is invertible because ‖Tg‖ = ‖Th−h̄‖ < ‖Th‖. Hence, taking
the inner product of u with ν̄ and observing that 〈ν̄, u〉 6= 0, we get

〈ν̄, u〉 = 〈ν̄, u〉〈ν̄, (µ− Tg)−1ν̄〉, (6.32)

which gives
µ = 〈ν̄, (1− Tg/µ)−1ν̄〉. (6.33)

We can expand the above to get

µ =

〈
ν̄,
∑
n∈N0

(
Tg
µ

)n
ν̄

〉
=
∑
n∈N0

1

µn

∫
[0,1]n+1

ν̄(x0)g(x0, x1) · · · g(xn−1, xn)ν̄(xn) dx0 dx1 · · · dxn

=
∑
n∈N0

1

µn
Fn(h, h̄),

(6.34)

and this completes the proof. �
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Subject to (6.14), it follows from Lemma 6.2.1 with h = h̄ = r that

Cr = ‖Tr‖ = m2, (6.35)

because only the term with n = 0 survives in the expansion.

Remark 6.2.2 (Higher rank).
The expansion around reference graphons of rank 1 can be extended to finite rank.
We provide the details in Appendix F. In this chapter we focus on rank 1, for which
Lemma 6.2.1 allows us to analyse the behavior of ψr(β) near the values β = Cr, β = 1

and β = 0. Note that both the graphons h = r and h ≡ 1 are of rank 1.

§6.3 Proofs of the main results

In this section we prove the theorems in Section 6.1.3. In Section 6.3.1 we prove
Theorem 6.1.5. In the last three sections we prove Theorems 6.1.6–6.1.7 by analyzing
graphon perturbations around the minimum of the rate function and near its end
points. The proofs of the theorems rely on the variational formula in (6.12). Since
the largest eigenvalue is invariant under relabeling of the vertices, we can work directly
with Ir in (6.5) without worrying about the equivalence classes.

§6.3.1 Proof: properties of the rate function
Proof of Theorem 6.1.5. We follow [137, Chapter 6]. Even though this monograph
deals with constant reference graphons only, most arguments carry over to r satisfying
(6.1). Define

ψ+
r (β) = inf

h∈W
‖Th‖≥β

Ir(h), ψ−r (β) = inf
h∈W
‖Th‖≤β

Ir(h), β ∈ R. (6.36)

(i) Because h 7→ ‖Th‖ is a nice graph parameter, in the sense of [137, Definition 6.1],
it follows that β 7→ ψ+

r (β) is non-decreasing and continuous, while β 7→ ψ−r (β) is
non-increasing and continuous (see [137, Proposition 6.1]). The proof requires
the fact that ‖fn − f‖2 → 0 implies Ir(fn) → Ir(f) and that Ir(f) is lower
semi-continuous on W. The continuity and unimodality of ψr follow from the
proof of (iii). Moreover, since Ir(h) = 0 if and only if h = r almost everywhere,
it is immediate that Cr is the unique zero of ψr.

(ii) The proof is by contradiction. Suppose that β 7→ ψ+
r (β) is not strictly increasing

on [Cr, 1]. Then there exist β1, β2 ∈ [Cr, 1], β1 < β2, such that ψ+
r is constant on

[β1, β2]. Consequently, there exist minimisers hφ1

β1
, hφ2

β2
, φ1, φ2 ∈ M, satisfying

r ≤ hφ1

β1
≤ hφ2

β2
, such that Ir(h

φ1

β1
) = Ir(h

φ2

β2
) and ‖T

h
φ1
β1

‖ = β1 < β2 = ‖T
h
φ2
β2

‖.
However, since a 7→ R(a | b) is strictly increasing on [b, 1] (recall (6.5)), it follows
that hφ1

β1
= hφ2

β2
almost everywhere. This in turn implies that ‖T

h
φ1
β1

‖ = ‖T
h
φ2
β2

‖,
which is a contradiction. A similar argument shows that β 7→ ψ−r (β) cannot
have a flat piece on [0, Cr].
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(iii) The variational formulas in (6.36) achieve minimisers. In fact, the sets of minim-
iser are non-empty compact subsets of W̃ (see [137, Theorem 6.2]). In addition,
all minimisers h of φ+

r (h) satisfy h ≥ r almost everywhere, while all minimisers
h of φ−r satisfy h ≤ r almost everywhere (see [137, Lemma 6.3]). Moreover,
because

h1 ≥ h2 ≥ r =⇒ ‖Th1
‖ ≥ ‖Th2

‖, Ir(h1) ≥ Ir(h2),

h1 ≤ h2 ≤ r =⇒ ‖Th1‖ ≤ ‖Th2‖, Ir(h1) ≤ Ir(h2),
(6.37)

(use that a 7→ R(a | b) is unimodal on [0, 1] with unique zero at b), it follows
that both variational formulas achieve minimisers with norm equal to β, and so

ψr(β) =

{
ψ+
r (β), β ≥ Cr,

ψ−r (β), β ≤ Cr.
(6.38)

�

§6.3.2 Proof: perturbation around the minimum
Note that when β = Cr, the infimum in (6.12) is attained at h = r and ψr(Cr) = 0.
Take β = Cr + ε with ε > 0 small, and assume that the infimum is attained by a
graphon of the form h = r + ∆ε, where ∆ε : [0, 1]2 → R represents a perturbation of
the graphon r. Note that r + ∆ε ∈ W, hence we are dealing with a perturbation ∆ε

which is symmetric and bounded. We compare

ψr(Cr + ε) = inf
∆ε : [0,1]2→R
r+∆ε∈W

‖Tr+∆ε‖=Cr+ε

Ir(r + ∆ε) (6.39)

with ψr(Cr) = 0 by computing the difference

δr(ε) = ψr(Cr + ε)− ψr(Cr) = ψr(Cr + ε) (6.40)

and studying its behavior as ε → 0. Since r(x, y) = ν(x)ν(y), (x, y) ∈ [0, 1]2, we can
use Lemma 6.2.1 to control the norm of Th = Tr+∆ε

. Pick h̄ = r and h = r + ∆ε in
(6.28) such that ‖∆ε‖2 → 0 as ε → 0. Note that ‖T∆ε

‖ ≤ ‖∆ε‖2 < Cr for ε small
enough. Hence, writing out the expansion for the norm, we get

‖Tr+∆ε
‖ = Cr +

∑
n∈N

1

‖Tr+∆ε
‖n
Fn(r + ∆ε, r). (6.41)

Since ‖Tr+∆ε‖ = Cr + ε, we have

Cr + ε = Cr +
〈ν,∆εν〉
Cr + ε

+
∑

n∈N\{1}

1

(Cr + ε)n
〈ν,∆n

ε ν〉 (6.42)

with 〈ν,∆εν〉 =
∫

[0,1]2
r∆ε. So

ε(Cr + ε) =

∫
[0,1]2

r∆ε +
∑

n∈N\{1}

1

(Cr + ε)n−1
〈ν,∆n

ε ν〉. (6.43)
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Since ν is bounded, using the generalized Hölder’s inequality (see [179, Theorem 3.1])
we get

|〈ν,∆n
ε ν〉| ≤ ‖∆ε‖n2 . (6.44)

Since ‖∆ε‖2 → 0 as ε→ 0, we can choose ε small enough such that ‖∆ε‖2 < 1
2 (Cr+ε),

which gives ∑
n∈N\{1}

1

(Cr + ε)n−1
〈ν,∆n

ε ν〉 = O
(
‖∆ε‖22

)
. (6.45)

The constraint ‖r + ∆ε‖ = Cr + ε therefore reads∫
[0,1]2

r∆ε = εCr + ε2 +O
(
‖∆ε‖22

)
. (6.46)

Observe that if ∆ε = ε∆ for some function ∆ ∈ L2([0, 1]2), then∫
[0,1]2

r∆ = Cr [1 + o(1)]. (6.47)

Small perturbation on a given region. In what follows we use the standard
notation o(·), O(·), � to describe the asymptotic behavior in the limit as ε→ 0. We
first show that it is enough to consider ∆ε of the form ε∆ for some ∆ ∈ L2([0, 1]2),
because these perturbations contribute to the minimum cost.

Lemma 6.3.1 (Order of minimal cost).
Let ∆ε : [0, 1]2 → R be such that r + ∆ε ∈ W and ‖Tr+∆ε‖ = Cr + ε. Then

Ir(r + ∆ε) ≥ 2ε2. (6.48)

Moreover, if ∆ε = ε∆, then

Ir(r + ε∆) = 2ε2
∫

[0,1]2

∆(x, y)2

4r(x, y)(1− r(x, y))
dx dy [1 + o(1)], ε→ 0. (6.49)

Proof. Fix b ∈ [0, 1] and abbreviate (recall (6.6))

χ(a) = R(a | b) = a log
a

b
+ (1− a) log

1− a
1− b

, a ∈ [0, 1]. (6.50)

Note that
χ(b) = χ′(b) = 0, χ′′(a) ≥ 4, a ∈ [0, 1]. (6.51)

Consequently,
χ(a) ≥ 2(a− b)2, a ∈ [0, 1], (6.52)

and hence
Ir(r + ∆ε) ≥ 2

∫
[0,1]2

∆2
ε = 2‖∆ε‖22. (6.53)

Next observe that

Cr + ε = ‖Tr+∆ε
‖ = ‖Tr + T∆ε

‖ ≤ ‖Tr‖+ ‖T∆ε
‖ ≤ Cr + ‖∆ε‖2, (6.54)
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which gives ‖∆ε‖2 ≥ ε. Inserting this lower bound into (6.53), we get (6.48). To get
(6.49), we need a higher-order expansion of χ, namely,

χ(x) = 1
2χ
′′(b)(x− b)2 +O((x− b)3), x→ b. (6.55)

Since r is bounded away from 0 and 1, and the constraint r + ∆ε ∈ W implies that
∆ε(x, y) ∈ [−1, 1], we see that the third-order term is smaller than the second-order
term when ∆ε = ε∆. Hence (6.49) follows. �

Next we consider different types of small perturbations in a given region and
compute their total cost.

Lemma 6.3.2 (Cost of small perturbations).
Let B ⊆ [0, 1]2 be a measurable region with area |B|. Suppose that ∆ε = εα∆ on B,
with ε > 0, α > 0 and ∆: [0, 1]2 → R. Then the contribution of B to the cost Ir(h) is∫

B

R(h | r) = ε2α
∫
B

∆2

2r(1− r)
[1 + o(1)], ε→ 0. (6.56)

If the integral diverges, then the contribution decays slower than ε2α.

Proof. The proof is similar to that of Lemma 6.3.1. �

Approximation by block graphons. We next introduce block graphons, which
will be useful for our perturbation analysis. It follows from Lemma 6.3.1 that optimal
perturbations with ∆ε must satisfy ‖∆ε‖2 � ε, and hence it is desirable to have
∆ε = ε∆. We argue through block graphon approximations that this is indeed the
case.
Definition 6.3.3 (Block graphons).
Let WN ⊂ W be the space of graphons with N blocks having a constant value on
each of the blocks, i.e., f ∈ WN is of the form

f(x, y) =

{
fi,j , if (x, y) ∈ Bi ×Bj ,
0, otherwise,

(6.57)

where Bi = [ i−1
N , iN ), 1 ≤ i ≤ N − 1 and BN = [N−1

N , 1] and fi,j ∈ [0, 1]. Write
Bi,j = Bi ×Bj . With each f ∈ W associate the block graphon fN ∈ WN given by

fN (x, y) = N2

∫
Bi,j

f(x′, y′) dx′ dy′ = f̄N,ij , (x, y) ∈ Bi,j . (6.58)

Observe that if fN is the block graphon associated with a graphon f , then

‖TfN − Tf‖ = ‖TfN−f‖ ≤ ‖fN − f‖2. (6.59)

We know from [137, Proposition 2.6] that, for any f ∈ W and its associated sequence
of block graphons (fN )N∈N, ‖fN − f‖2 → 0 and hence limN→∞ ‖TfN ‖ = ‖Tf‖. The
following lemma shows that the cost function associated with the graphons r and f
is well approximated by the cost function associated with the block graphons rN and
fN .
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Lemma 6.3.4 (Convergence of the cost function).
For any f ∈ W

lim
N→∞

IrN (fN ) = Ir(f). (6.60)

Proof. Since f ∈ L2([0, 1]2), fN is bounded. The assumption in (6.1) implies that
η ≤ rN ≤ 1 − η for all N ∈ N. We know from [145, Lemma 2.3] that there exists a
constant c > 0 independent of f such that

|IrN (f)− Ir(f)| ≤ c ‖rN − r‖1 ≤ c ‖rN − r‖2. (6.61)

Hence

|IrN (fN )− Ir(f)| ≤ |IrN (fN )− Ir(fN )|+ |Ir(fN )− Ir(f)|
≤ c ‖rN − r‖2 + |Ir(fN )− Ir(f)|.

(6.62)

Since limN→∞ ‖rN−r‖2 = 0, the first term tends to zero. Since limN→∞ ‖fN−f‖2 = 0

and Ir is continuous in the L2-topology onW (see [180, Lemma 3.4]), also the second
term tends to zero and the claim follows. �

Block graphon perturbations. In what follows we fix N ∈ N, analyze different
types of perturbation and identify which one is optimal. For each N ∈ N, we associate
with the perturbed graphon h = r + ∆ε the block graphon hN ∈ WN given by

hN,ij(x, y) = rN,ij(x, y) + ∆εN,ij(x, y), (x, y) ∈ Bi,j , (6.63)

with

rN,ij = N2

∫
Bi,j

r(x′, y′) dx′ dy′, ∆εN,ij = N2

∫
Bi,j

∆ε(x
′, y′) dx′ dy′. (6.64)

Observe that optimal perturbations must have ‖∆ε‖2 = O(ε), and hence the con-
straint in (6.46) becomes

N∑
i,j=1

∫
Bi,j

r(x, y)∆ε(x, y) dx dy =

N∑
i,j=1

1

N2
r∆εN,ij = Crε [1 + o(1)], ε→ 0.

(6.65)
The block constraint in (6.65) implies that the sum over each block must be of order
ε. We therefore must have that

r∆εN,ij = O(ε), ε→ 0, ∀(i, j), (6.66)

which means that
∆εN,ij = O(ε), ε→ 0, ∀(i, j), (6.67)

since (6.1) implies that r∆εN,ij � ∆εN,ij . There are the following two possible cases.

(I) All blocks contribute to the constraint with a term of order ε (balanced perturb-
ation).
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(II) Some blocks contribute to the constraint with a term of order ε and some with
o(ε) (unbalanced perturbation).

Perturbations of type (I) consist of a small perturbation on each block, i.e., ∆εN,ij � ε
for each block Bi,j . By Lemma 6.3.2, this contributes a term of order ε2 to the
total cost. Since all blocks have the same type of perturbation, they all contribute
in the same way, and so we get IrN (hN ) � ε2. We will see in Corollary 6.3.6 that
perturbations of type (II) are worse than perturbations of type (I). Let 1 ≤ k ≤ N2−1

be the number of blocks that contribute a term of order o(ε) to the constraint, i.e.,
∆εN,ij = o(ε). By Lemma 6.3.2, these blocks contribute order o(ε2) to the total cost.
The remaining blocks must fall in the class of blocks of type (I), with a perturbation
of order ε on each of them. Corollary 6.3.6 below shows that the cost function attains
its infimum when the small perturbation of order ε is uniform on [0, 1]2.

Optimal perturbation. We have shown that perturbations of type (I) lead to the
minimal total cost. They consist of perturbations of order ε on all blocks, and hence
on [0, 1]2. A sequence of such perturbations (∆ε,N )N∈N converges to a perturbation
∆ε as N → ∞. We can identify the cost of ∆ε = ε∆ with ∆: [0, 1]2 → R, which we
refer to as balanced perturbation.

Lemma 6.3.5 (Balanced perturbations).
Suppose that ∆ε = ε∆ with ∆: [0, 1]2 → R. Let M be the set of Lebesgue measure-
preserving bijective maps. Then

δr(ε) = Krε
2 [1 + o(1)], ε→ 0, (6.68)

with

Kr =
1

2
C2
r inf
φ∈M

Dφ
r

(Bφr )2
, (6.69)

where Bφr =
∫

[0,1]2
rφr2(1− r) and Dφ

r =
∫

[0,1]2
(rφ)2r(1− r).

Proof. The constraint in (6.46) becomes∫
[0,1]2

r∆ = Cr [1 + o(1)], ε→ 0, (6.70)

and we get

δr(ε) = inf
∆: [0,1]2→R
r+ε∆∈W∫

[0,1]2
r∆=Cr [1+o(1)]

Ir(r + ε∆)

= inf
∆: [0,1]2→R
r+ε∆∈W∫

[0,1]2
r∆=Cr [1+o(1)]

∫
[0,1]2

R
(
(r + ε∆)(x, y) | r(x, y)

)
dx dy.

(6.71)

By Lemma 6.3.2 (with α = 1), we have

δr(ε) = Krε
2 [1 + o(1)], ε→ 0, (6.72)
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with

Kr = inf
∆: [0,1]2→R
r+ε∆∈W∫

[0,1]2
r∆=Cr [1+o(1)]

∫
[0,1]2

∆(x, y)2

2r(x, y)(1− r(x, y))
dx dy. (6.73)

The term 1 + o(1) in (6.72) arises after we scale ∆ by 1 + o(1) in order to force∫
[0,1]2

r∆ = Cr. Note that the optimization problem in (6.73) no longer depends on
ε.

We can apply the method of Lagrange multipliers to solve this constrained optim-
ization problem. To that end we define the Lagrangian

LAr (∆) =

∫
[0,1]2

∆2

2 r(1− r)
+Ar

∫
[0,1]2

r∆, (6.74)

where Ar is a Langrange multiplier. Since
∫

[0,1]2
r =

∫
[0,1]2

rφ for any Lebesgue
measure-preserving bijective map φ ∈M, we get that the minimizer (in the space of
functions from [0, 1]2 → R) is of the form

∆φ(x, y) = −Ar rφ(x, y)r(x, y)(1− r(x, y)), (x, y) ∈ [0, 1]2, φ ∈M. (6.75)

We pick Ar such that the constraint is satisfied, i.e.,

−ArBφr = Cr [1 + o(1)] (6.76)

with

Bφr =

∫
[0,1]2

r(x, y)φr(x, y)2(1− r(x, y)) dx dy. (6.77)

We get

∆φ(x, y) =
Cr

Bφr
rφ(x, y)r(x, y)(1− r(x, y)), (x, y) ∈ [0, 1]2, φ ∈M, (6.78)

and

Kr = inf
φ∈M

∫
[0,1]2

(∆φ)2

2r(1− r)
=

1

2
C2
r inf
φ∈M

Dφ
r

(Bφr )2
(6.79)

with

Dφ
r =

∫
[0,1]2

(rφ)2r(1− r). (6.80)

This completes the proof. �

We next show that the infimum in (6.79) is uniquely attained when φ is the
identity. For this we show that Dφ

r /(B
φ
r )2 ≥ 1/Br with equality if and only if φ = Id.
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Indeed, write

BrD
φ
r − (Bφr )2

=

∫
[0,1]2

r(x, y)(1− r(x, y)) dx dy

∫
[0,1]2

r(x̄, ȳ)(1− r(x̄, ȳ)) dx̄ dȳ

×
(
r(x, y)2rφ(x̄, ȳ)2 − r(x, y)rφ(x, y)r(x̄, ȳ)rφ(x̄, ȳ)

)
=

∫
[0,1]2

r(x, y)(1− r(x, y)) dx dy

∫
[0,1]2

r(x̄, ȳ)(1− r(x̄, ȳ)) dx̄ dȳ

× 1

2

(
r(x, y)2rφ(x̄, ȳ)2 + rφ(x, y)2r(x̄, ȳ)2 − 2r(x, y)rφ(x, y)r(x̄, ȳ)rφ(x̄, ȳ)

)
=

∫
[0,1]2

r(x, y)(1− r(x, y)) dx dy

∫
[0,1]2

r(x̄, ȳ)(1− r(x̄, ȳ)) dx̄ dȳ

× 1

2

(
r(x, y)rφ(x̄, ȳ)− rφ(x, y)r(x̄, ȳ)

)2

,

(6.81)

where the second equality uses the symmetry between the integrals. Hence we obtain
BrD

φ
r − (Bφr )2 ≥ 0, with equality if and only if r(x, y)/rφ(x, y) = C for almost every

(x, y) ∈ [0, 1]2. Clearly, for non-constant r this can hold only for C = 1, which
amounts to φ = Id.

We conclude that the infimum in (6.79) equals 1/Br, and so we find that

Kr =
C2
r

2Br
. (6.82)

Finally, note that Cr = m2 by (6.35), and that Br = m2
3 −m2

4 by (6.15). This settles
the expression for Kr in (6.19).

Corollary 6.3.6 (Unbalanced perturbations).
Perturbations of order ε that are not balanced, i.e., that do not cover the entire unit
square [0, 1]2, are worse than the balanced perturbation in Lemma 6.3.5.

Proof. The argument of the variational formula can be reduced to an integral that
considers only those regions that contribute order ε2, which constitute a subset of
[0, 1]2. Applying the method of Lagrange multipliers as in Lemma 6.3.5, we obtain
that the solution is given by

δr(ε) = [1 + o(1)]K ′rε
2, ε→ 0, (6.83)

with K ′r > Kr. The strict inequality comes from the fact that the optimal balanced
perturbation ∆Id found in (6.75) is non-zero everywhere. �

Proof of Theorems 6.1.6(i)–6.1.7(i). We have shown that a balanced perturbation is
optimal and we have identified in (6.78) the form of the optimal balanced perturbation.
The claim in Theorem 6.1.6(i) is settled by Lemma 6.3.5 and (6.82), while (6.78) settles
the claim in Theorem 6.1.7(i). �
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§6.3.3 Proof: perturbation near the right end
For β = 1− ε consider a graphon of the form h = 1−∆ε, where ∆ε : [0, 1]2 → [0,∞)

represents a symmetric and bounded perturbation of the constant graphon h ≡ 1. We
compare

ψr(1− ε) = inf
∆ε : [0,1]2→[0,∞)

1−∆ε∈W
‖T1−∆ε‖=1−ε

Ir(1−∆ε) (6.84)

with
C1
r = Ir(1) (6.85)

by computing the difference

δr(ε) = ψr(1)− ψr(1− ε) (6.86)

and studying its behavior as ε→ 0. Since Ir(1) is a constant, we can write

δr(ε) = sup
∆ε : [0,1]2→[0,∞)

1−∆ε∈W
‖T1−∆ε‖=1−ε

(
Ir(1)− Ir(1−∆ε)

)
. (6.87)

We again use the expansion in Lemma 6.2.1. Pick h̄ = 1 and h = 1−∆ε in (6.28), to
get

‖T1−∆ε
‖ = 1 +

∑
n∈N

1

‖T1−∆ε
‖n
Fn(1−∆ε, 1). (6.88)

Since ‖T1−∆ε
‖ = 1− ε, this gives

1− ε = 1 +
〈1, (−∆ε)1〉

1− ε
+
〈1, (−∆ε)

21〉
(1− ε)2

+
∑

n∈N\{1,2}

〈1, (−∆ε)
n1〉

(1− ε)n
. (6.89)

For ε→ 0 we have ‖∆ε‖2 → 0 and |〈1, (−∆ε)
n1〉| = O(‖∆ε‖n2 ). Therefore

ε(1− ε) =

∫
[0,1]2

∆ε −
〈1,∆2

ε1〉
(1− ε)

+O
(
‖∆ε‖32

)
. (6.90)

The restriction 1−∆ε ∈ W implies that ∆ε ∈ [0, 1]. Hence ‖∆ε‖22 ≤ ‖∆ε‖1. Moreover,

1− ε = ‖T1−∆ε
‖ ≤ ‖1−∆ε‖2 ≤

√
‖1−∆ε‖1. (6.91)

Since ‖1−∆ε‖1 = 1− ‖∆ε‖1, we have

‖∆ε‖1 ≤ 1− (1− ε)2 = ε(2− ε). (6.92)

Since ‖∆ε‖32 = O(ε3/2), (6.90) reads

1

1− ε

∫
[0,1]3

∆ε(x, y)(1−∆ε(y, z)) dx dy dz−
ε

1− ε
‖∆ε‖1 = ε(1− ε)+O(ε3/2), (6.93)

182



§6.3. Proofs of the main results

C
h
a
pter

6

which, because ‖∆ε‖1 = O(ε), further reduces to∫
[0,1]3

∆ε(x, y)(1−∆ε(y, z)) dx dy dz = ε [1 +O(ε1/2)]. (6.94)

Note that when ∆ε = ε∆, the constraint reads∫
[0,1]2

∆ = 1 +O(ε1/2), ε→ 0. (6.95)

The following lemma gives an upper bound for Ir(1)− Ir(1−∆ε).

Lemma 6.3.7 (Order of minimal cost).
Let ∆ε : [0, 1]2 → [0, 1] be such that 1 −∆ε ∈ W and ‖T1−∆ε

‖ = 1 − ε. Then, for ε
small enough,

Ir(1)− Ir(1−∆ε) ≤ ‖∆ε‖1 log
1

‖∆ε‖1
+O(‖∆ε‖1). (6.96)

Moreover, δr(ε) ≤ ε log 1
ε +O(ε).

Proof. Abbreviate (recall (6.6))

χ(a) = R(a | r) = a log
a

r
+ (1− a) log

1− a
1− r

, a ∈ [0, 1]. (6.97)

Then

χ(1)− χ(1−∆ε(x, y)) = ∆ε(x, y) log

(
1−∆ε(x, y)

∆ε(x, y)

1− r(x, y)

r(x, y)

)
− log(1−∆ε(x, y)),

(6.98)
and so

Ir(1)− Ir(1−∆ε) =

∫
[0,1]2

(
∆ε log

(
1−∆ε

∆ε

1− r
r

)
− log(1−∆ε)

)
. (6.99)

Let µε be the probability measure on [0, 1]2 whose density with respect to the
Lebesgue measure is Z−1

ε (1−∆ε(x, y)), where Zε =
∫

[0,1]2
(1−∆ε) = 1−O(ε). Since

u 7→ s̄(u) = u log(1/u) is strictly concave, by Jensen’s inequality we have∫
[0,1]2

∆ε log

(
1−∆ε

∆ε

)
= Zε

∫
[0,1]2

µεs̄

(
∆ε

1−∆ε

)
≤ Zεs̄

(
Z−1
ε ‖∆ε‖1

)
= ‖∆ε‖1 log

(
Zε
‖∆ε‖1

)
.

(6.100)

Moreover,∫
[0,1]2

∆ε log

(
1− r
r

)
= O(‖∆ε‖1), −

∫
[0,1]2

log(1−∆ε) = O(‖∆ε‖1). (6.101)

Hence

Ir(1)− Ir(1−∆ε) ≤ ‖∆ε‖1 log
1

‖∆ε‖1
+O(‖∆ε‖1), ε→ 0, (6.102)

and since ‖∆ε‖1 = O(ε) also δr(ε) ≤ ε log 1
ε +O(ε). �
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The following is the analogue of Lemma 6.3.2 for perturbations near the right end.

Lemma 6.3.8 (Cost of small perturbations).
Let B ⊆ [0, 1]2 be a measurable region of area |B|. Suppose that ∆ε = εα∆ on B with
ε > 0, α > 0 and ∆: [0, 1]2 → [0,∞). Then the contribution of B to the cost Ir(h) is∫

B

R(1 | r)−R(h | r) =

∫
B

εα∆ log

(
1− r
εα∆r

)
[1 + o(1)], ε→ 0. (6.103)

Proof. Observe that

R(1 | r)−R(1− εα∆ | r) = εα∆ log

(
1− r
εα∆r

)
[1 + o(1)], ε→ 0. (6.104)

The proof is analogous to that of Lemma 6.3.2. �

Following the argument in Section 6.3.2, we can approximate the cost function by
using block graphons. The constraint becomes

N∑
i,j=1

∫
Bi,j

∆ε,N (x, y) dx dy =

N∑
i,j=1

1

N2
∆εN,ij = ε [1 + o(1)], ε→ 0. (6.105)

The block constraint in (6.105) implies that the sum over each block must be of order
ε. Hence

∆εN,ij = O(ε), ε→ 0, ∀ (i, j). (6.106)

There are two cases to distinguish: all blocks contribute to the constraint with a term
of order ε (balanced perturbation), or some of the blocks contribute to the constraint
with a term of order ε and some with o(ε). Analogously to the analysis in Section
6.3.2, using Lemma 6.3.8, we can compute the total cost that different types of block
perturbations produce. This again shows that the optimal perturbations are the
balanced perturbations, consisting of small perturbations of order ε on every block.
As N → ∞, a sequence of such perturbations converges to a perturbation ∆ε = ε∆

with ∆: [0, 1]2 → [0,∞), which we analyze next.

Lemma 6.3.9 (Balanced perturbations).
Suppose that ∆ε = ε∆ with ∆: [0, 1]2 → [0,∞). Then

δr(ε) =

(
ε+ ε log

(
N1
r

ε

))
[1 +O(ε1/2)] +O(ε2), ε→ 0. (6.107)

Proof. By (6.95) and (6.99),

δr(ε) = sup
∆: [0,1]2→[0,∞)

1−ε∆∈W∫
[0,1]2

∆=1+O(ε1/2)

(Ir(1)− Ir(1− ε∆))

= sup
∆: [0,1]2→[0,∞)

1−ε∆∈W∫
[0,1]2

∆=1+O(ε1/2)

∫
[0,1]2

(
ε∆ log

(
1− ε∆
ε∆

1− r
r

)
− log(1− ε∆)

)
.

(6.108)

184



§6.3. Proofs of the main results

C
h
a
pter

6

The integral in (6.108) equals∫
[0,1]2

(
ε∆ log

(
1− r
ε∆r

)
− (1− ε∆) log(1− ε∆)

)
=

∫
[0,1]2

ε∆ log

(
1− r
ε∆r

)
+ ε

∫
[0,1]2

∆ +O(ε2).

(6.109)

Hence

δr(ε) =

(
ε+ sup

∆: [0,1]2→[0,∞)∫
[0,1]2

∆=1

∫
[0,1]2

ε∆ log

(
1− r
ε∆r

))
[1 + O(ε1/2)] +O(ε2), (6.110)

where we scale ∆ by 1+O(ε1/2) in order to force
∫

[0,1]2
∆ = 1. Note that the constraint

under the supremum no longer depends on ε.
We can solve the optimization problem by applying the method of Lagrange mul-

tipliers. To that end we define the Lagrangian

LAr (∆) =

∫
[0,1]2

ε∆ log

(
1− r
ε∆r

)
+Ar

∫
[0,1]2

∆, (6.111)

where Ar is a Langrange multiplier. Since
∫

[0,1]2
log 1−r

r =
∫

[0,1]2
log 1−rφ

rφ
for any

Lebesgue measure-preserving bijective map φ ∈M, we get that the minimizer (in the
space of functions from [0, 1]2 → R) is of the form

∆φ(x, y) = e−
ε−Ar
ε

1

ε

1− rφ(x, y)

rφ(x, y)
, (x, y) ∈ [0, 1]2, φ ∈M. (6.112)

We pick Ar such that the constraint
∫

[0,1]2
∆ = 1 is satisfied. This gives

∆φ(x, y) =
1

N1
r

1− rφ(x, y)

rφ(x, y)
, (x, y) ∈ [0, 1]2, φ ∈M, (6.113)

with N1
r =

∫
[0,1]2

(1−r)
r . Hence the supremum in (6.110) becomes

sup
φ∈M

∫
[0,1]2

ε∆φ log

(
1− r
ε∆φr

)
. (6.114)

We have∫
[0,1]2

ε∆φ log

(
1− r
ε∆φr

)
= ε log

(
N1
r

ε

)
− ε
∫

[0,1]2
∆φ log

(
∆φ

∆

)
, (6.115)

where we use that
∫

[0,1]2
∆φ = 1. Since the function u 7→ s(u) = u log u is strictly

convex on [0,∞), Jensen’s inequality gives∫
[0,1]2

∆φ log

(
∆φ

∆

)
=

∫
[0,1]2

∆ s

(
∆φ

∆

)
≥ s
(∫

[0,1]2
∆

∆φ

∆

)
= s

(∫
[0,1]2

∆φ

)
= s(1) = 0,

(6.116)
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where we use that
∫

[0,1]2
∆ = 1. Equality holds if and only if ∆ = ∆φ almost

everywhere on [0, 1]2, which amounts to φ = Id. Hence the supremum in (6.114) is
uniquely attained at φ = Id and equals∫

[0,1]2
ε

1

N1
r

(1− r)
r

log

(
N1
r

ε

)
= ε log

(
N1
r

ε

)
. (6.117)

Consequently, (6.110) gives (6.107), and this completes the proof. �

Proof of Theorems 6.1.6(ii)–6.1.7(ii). The claim in Theorem 6.1.6(ii) is settled by
Lemma 6.3.9. Since we have shown that a balanced perturbation is optimal, (6.113)
settles the claim in Theorem 6.1.7(ii). �

§6.3.4 Proof: perturbation near the left end
For β = ε consider a graphon of the form h = ∆ε, where ∆ε : [0, 1]2 → [0,∞)

represents a symmetric and bounded perturbation of the constant graphon h ≡ 0.
We compare

ψr(ε) = inf
∆ε : [0,1]2→[0,∞)

∆ε∈W
‖T∆ε‖=ε

Ir(∆ε) (6.118)

with
ψr(0) = Ir(0) (6.119)

by computing the difference

δr(ε) = ψr(ε)− ψr(0) (6.120)

and studying its behavior as ε→ 0.
We claim that analyzing (6.120) is equivalent to analyzing

δr̂(ε) = φr̂(1)− φr̂(1− ε), (6.121)

where r̂ is the reflection of r defined as

r̂(x, y) = 1− r(x, y), (x, y) ∈ [0, 1]2. (6.122)

Indeed,

Ir(0) =

∫
[0,1]2

R(0 | r) =

∫
[0,1]2

log

(
1

1− r

)
=

∫
[0,1]2

R(1 | r̂) = Ir̂(1) (6.123)

and

Ir(∆ε) =

∫
[0,1]2

R(∆ε | r) =

∫
[0,1]2

(
∆ε log

(
∆ε

r

)
+ (1−∆ε) log

(
1−∆ε

1− r

))
=

∫
[0,1]2

R(1−∆ε | r̂) = Ir̂(1−∆ε).

(6.124)
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We can therefore use the results in Section 6.3.3. From Lemma 6.3.9 we know that

δr̂(ε) =

(
ε+ ε log

(
N1
r̂

ε

))
[1 +O(ε1/2)] +O(ε2), ε→ 0, (6.125)

and hence we obtain

δr(ε) =

(
ε+ ε log

(
N0
r

ε

))
[1 +O(ε1/2)] +O(ε2), ε→ 0. (6.126)

The optimal perturbation is then given by the balanced perturbation ∆ε = ε∆ with

∆(x, y) =
1

N0
r

r(x, y)

1− r(x, y)
, (x, y) ∈ [0, 1]2, (6.127)

with N0
r =

∫
[0,1]2

r
1−r .

Proof of Theorems 6.1.6(iii)–6.1.7(iii). The claim in Theorem 6.1.6(iii) is settled by
the scaling in (6.126). Since we have shown that a balanced perturbation is optimal,
(6.127) settles the claim in Theorem 6.1.7(iii). �

§F Appendix: finite-rank expansion

The following lemma shows how the expansion around reference graphons of rank 1
can be extended to finite rank.

Lemma F.1 (Finite-rank expansion).
Consider a graphon h̄ ∈ W such that

h̄(x, y) =

k∑
i=1

θiν̄i(x)ν̄i(y), (x, y) ∈ [0, 1]2, (6.128)

for some k ∈ N, where θ1 > θ2 ≥ . . . ≥ θk ≥ 0 and {ν̄1, ν̄2, . . . , ν̄k} is an orthonormal
set in L2([0, 1]). Then there exists an ε > 0 such that, for any h ∈ W satisfying
‖Th−h̄‖ < min(ε, ‖Th‖), the operator norm ‖Th‖ solves the equation

‖Th‖ = λk

( ∑
n∈N0

1

‖Th‖n
Fn(h, h̄)

)
, (6.129)

where λk(M) is the largest eigenvalue of a k × k Hermitian matrix M , and Fn(h, h̄)

is a k × k matrix whose (i, j)-th entry is√
θiθj

∫
[0,1]2

ν̄i(x)(h− h̄)n(x, y)ν̄j(y) dx dy (6.130)

for 1 ≤ i, j ≤ k and n ∈ N0.

Proof. Put µ = ‖Th‖, and let u be the eigenfunction corresponding to µ, i.e.,

Thu = µu. (6.131)
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Put g = h− h̄ and rewrite the above as

(µ− Tg)u = Th̄u. (6.132)

The assumption ‖Th−h̄‖ < ‖Th‖ implies that µ− Tg is invertible, which allows us to
write

u = (µ− Tg)−1Th̄u =

k∑
j=1

θj〈ν̄j , u〉(µ− Tg)−1ν̄j . (6.133)

For fixed 1 ≤ i ≤ k, it follows that

〈ν̄i, u〉 =

k∑
j=1

θj〈ν̄j , u〉〈ν̄i, (µ− Tg)−1ν̄j〉. (6.134)

Multiplying both sides by µ
√
θi, we get

Mv = µv, (6.135)

where M = (Mij)1≤i,j≤k is the k × k real symmetric matrix with elements

Mij =
√
θiθj

〈
ν̄i,

(
1− Tg

µ

)−1

ν̄j

〉
, 1 ≤ i, j ≤ k, (6.136)

and
v =

(√
θ1〈ν̄1, u〉, . . . ,

√
θk〈ν̄k, u〉

)′
. (6.137)

The first entry of v is non-zero for ε small with ‖Tg‖ < ε. Thus, (6.135) means that
µ is an eigenvalue of M . By studying the diagonal entries of M , we can shown with
the help of the Gershgorin circle theorem that, for small ‖Tg‖,

µ = λk(M). (6.138)

With the help of the observation

Mij =
√
θiθj

∑
n∈N0

1

µn
〈ν̄i, gnν̄j〉, 1 ≤ i, j ≤ k, (6.139)

i.e.,

M =
∑
n∈N0

1

µn
Fn(h, h̄), (6.140)

this completes the proof. �

188



§F. Appendix: finite-rank expansion

C
h
a
pter

6

189




