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PART II

SPECTRA OF INHOMOGENEOUS
ERDŐS-RÉNYI RANDOM GRAPHS
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CHAPTER 5
Spectral distribution of the

adjacency and the Laplacian matrix

This chapter is based on:
A. Chakrabarty, R.S. Hazra, F. den Hollander, M. Sfragara. Spectra of adjacency and
Laplacian matrices of Inhomogeneous Erdős-Rényi random graphs. Random Matrices:
Theory and Applications, 2020.

Abstract

We consider inhomogeneous Erdős-Rényi random graphs GN on N vertices in the
non-sparse non-dense regime. The edge between the pair of vertices {i, j} is re-
tained with probability εN f( iN ,

j
N ), 1 ≤ i 6= j ≤ N , independently of other edges,

where f : [0, 1]2 → [0,∞) is a continuous function such that f(x, y) = f(y, x) for all
(x, y) ∈ [0, 1]2. We study the empirical distribution of both the adjacency matrix
AN and the Laplacian matrix ∆N associated with GN , in the limit as N →∞ when
limN→∞ εN = 0 and limN→∞NεN = ∞. In particular, we show that the empir-
ical spectral distributions of AN and ∆N , after appropriate scaling and centering,
converge to deterministic limits weakly in probability. For the special case where
f(x, y) = r(x)r(y) with r : [0, 1] → [0,∞) a continuous function, we give an explicit
characterization of the limiting distributions. Furthermore, we apply our results to
constrained random graphs, Chung-Lu random graphs and social networks.
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§5.1 Introduction and main results

In Section 5.1.1 we define the mathematical model. In Section 5.1.2 we state the exist-
ence of the limiting spectral distributions for the adjancency and Laplacian matrices
after suitable scaling. In Section 5.1.3 we identify those limiting spectral distribu-
tions under the assumption that the connection probabilities have a multiplicative
structure. In Section 5.1.4 we generalize our results to graphs where the connection
probabilities are randomized. In Section 5.1.5 we anticipate some of the applications
that we will discuss later and give an outline of the remainder of the chapter.

§5.1.1 Setting
We refer to Section 1.2.3 for a general introduction to spectra of Erdős-Rényi random
graphs. We focus on inhomogeneous Erdős-Rényi random graphs and consider the
non-dense non-sparse regime, where the degrees of the vertices diverge sublinearly
with the size of the graph.

Let f : [0, 1]2 → [0,∞) be a continuous function, satisfying

f(x, y) = f(y, x) ∀ (x, y) ∈ [0, 1]2. (5.1)

A sequence of positive real numbers (εN : N ≥ 1) is fixed that satisfies

lim
N→∞

εN = 0, lim
N→∞

NεN =∞. (5.2)

Consider the random graph GN on the set of vertices {1, . . . , N} where, for each (i, j)

with 1 ≤ i < j ≤ N , an edge is present between vertices i and j with probability

εNf( iN ,
j
N ), (5.3)

independently of other pairs of vertices. In particular, GN is an undirected graph with
no self loops and no multiple edges. Boundedness of f ensures that εNf( iN ,

j
N ) ≤ 1

for all 1 ≤ i < j ≤ N when N is large enough. If f ≡ c with c a constant, then GN is
the Erdős-Rényi graph with edge retention probability εNc. For general f , GN can
be thought of as an inhomogeneous version of the Erdős-Rényi graph.

We next define our two main objects of interest. We refer to Section 1.2.2 for more
details.

Definition 5.1.1 (Adjacency and Laplacian matrices).
The adjacency matrix of GN is denoted by AN and defined as in (1.15). Clearly,
AN is a symmetric random matrix whose diagonal entries are zero and whose upper
triangular entries are independent Bernoulli random variables, i.e.,

AN (i, j) , BER
(
εNf

(
i
N ,

j
N

))
, 1 ≤ i 6= j ≤ N. (5.4)

The Laplacian matrix of GN is denoted ∆N and defined as in (1.17).
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§5.1.2 Existence of the limiting spectral distribution
We recall the definition of empirical spectral distribution (ESD) in (1.19). It is the
probability measure that puts mass 1/N at every eigenvalue, respecting its algebraic
multiplicity.

Our first theorem states the existence of the limiting spectral distribution of AN
after suitable scaling.

Theorem 5.1.2 (Existence of the limiting spectral distribution of AN).
There exists a symmetric probability measure µ on R such that

lim
N→∞

ESD
(
(NεN )−1/2AN

)
= µ weakly in probability, (5.5)

and µ is compactly supported. Furthermore, if

min
0≤x,y≤1

f(x, y) > 0, (5.6)

then µ is absolutely continuous with respect to Lebesgue measure.

Our second theorem is the analogue of Theorem 5.1.2 with AN replaced by ∆N .

Theorem 5.1.3 (Existence of the limiting spectral distribution of ∆N).
There exists a symmetric probability measure ν on R such that

lim
N→∞

ESD
(
(NεN )−1/2(∆N −DN )

)
= ν weakly in probability, (5.7)

where
DN = Diag

(
E
[
∆N (1, 1)

]
, . . . ,E

[
∆N (N,N)

])
. (5.8)

Furthermore, if
f 6≡ 0, (5.9)

then the support of ν is unbounded.

The ESD of a random matrix is a random probability measure. Note that µ and
ν are both deterministic, i.e., a law of large numbers is in force.

Theorems 5.1.2–5.1.3 are existential, in the sense that explicit descriptions of µ
and ν are missing. We have some control on the Stieltjes transform of µ. In the proof
of Theorem 5.1.2 (in Lemma 5.2.3) we will see that the ESD of (NεN )−1/2AN has
the same limit as the ESD of

ĀN (i, j) =

√
1

N
f

(
i

N
,
j

N

)
Gi∧j,i∨j (5.10)

with (Gi,j : 1 ≤ i ≤ j) a family of i.i.d. standard Gaussian random variables. Such
random matrices are known in the literature as Wigner matrices with a variance profile
(see, for example, [107], [129], [164], [185]). The limiting spectral distribution of ĀN
matches with the one of certain symmetric random matrices with dependent entries
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(see [135] for details). It turns out that, by using the combinatorics of non-crossing
partitions, we can derive a recursive equation for the Stieltjes transform of µ, i.e.,

Gµ(z) =

∫
R

1

z − x
µ(dx), z ∈ C \ R. (5.11)

It turns out that

Gµ(z) =

∫ 1

0

H(z, x) dx, (5.12)

where H(z, x), x ∈ [0, 1], is the unique analytic solution of the integral equation

zH(z, x) = 1 +H(z, x)

∫ 1

0

H(z, y)f(x, y) dy, x ∈ [0, 1]. (5.13)

The form of H(z, x) can also be expressed in terms of non-crossing partitions and
the function f(x, y) (see [134, Section 4.1] for details). We mention that the above
measure is similar to the limiting measure in [196, Theorem 3.4]. There it is shown
that a graphon sequence WN can be associated with a Wigner matrix with a variance
profile (si,j : 1 ≤ i, j ≤ N). If the sequence of graphons WN converges in the cut
norm to W with W (x, y) = f(x, y), then the limiting measure matches with µ.

The description of ν through its Stieltjes transform is hard to obtain, although,
just like before, the ESD of (NεN )−1/2(∆N −DN ) turns out to be the same as that
of

∆̃N = ĀN + YN , (5.14)

where YN is a diagonal matrix of order N defined by

YN (i, i) = Zi

√√√√ 1

N

∑
1≤j≤N, j 6=i

f

(
i

N
,
j

N

)
, 1 ≤ i ≤ N, (5.15)

where (Zi : i ≥ 1) is a family of i.i.d. standard normal random variables, independent
of (Gi,j : 1 ≤ i ≤ j). Suppose that YN is a deterministic diagonal matrix, embedded
in L∞[0, 1] (as a step function). For the case where this function converges to a
function h in the ‖ · ‖∞ norm, the limiting spectral distribution of ĀN + YN was
studied in [185] (see also [186, Theorem 22.7.2]). In our case, due to the presence
in YN of Gaussian random variables (which have unbounded support) and the fact
that the spectral norm of YN tends to infinity as N →∞, the existing results cannot
be applied. One of the major contributions of our paper is to overcome this hurdle.
Also, our proofs ensure that ν has a finite moment generating function (see (5.123)
below) and unbounded support.

§5.1.3 Identification of the limiting spectral distribu-
tion

Our next theorem identifies µ and ν under the additional assumption that f has a
multiplicative structure, i.e.,

f(x, y) = r(x)r(y), (x, y) ∈ [0, 1]2, (5.16)
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for some continuous function r : [0, 1]→ [0,∞). The statement is based on the theory
of (possibly unbounded) self-adjoint operators affiliated with a W ∗-probability space.
Recall Section 1.2.4 for an introduction to free probability theory. A few extra relevant
definitions are given below. For details the reader is referred to [108, Section 5.2.3].

Definition 5.1.4 (Operators affiliated with a W ∗-probability space).
A C∗-algebra A ⊂ B(H), with H a Hilbert space, is a W ∗-algebra when A is closed
under the weak operator topology. If, in addition, τ is a state such that there exists
a unit vector ξ ∈ H satisfying

τ(a) = 〈aξ, ξ〉 ∀ a ∈ H, (5.17)

then (A, τ) is a W ∗-probability space. In that case a densely defined self-adjoint
(possibly unbounded) operator T on H is said to be affiliated with A if h(T ) ∈ A
for any bounded measurable function h defined on the spectrum of T , where h(T ) is
defined by the spectral theorem. Finally, for an affiliated operator T , its law L(T ) is
the unique probability measure on R satisfying

τ(h(T )) =

∫
R
h(x)(L(T ))(dx) (5.18)

for every bounded measurable h : R→ R.

The distribution of a single self-adjoint operator is defined above. For two or
more self-adjoint operators T1, . . . , Tn, a description of their joint distribution is a
specification of

τ(h1(Ti1) · · ·hk(Tik)), (5.19)

for all k ≥ 1, all i1, . . . , ik ∈ {1, . . . , n}, and all bounded measurable functions
h1, . . . , hk from R to itself. Once the above is specified, it is immediate to see that
L(p(T1, . . . , Tk)) can be calculated for any polynomial p in k variables such that
p(T1, . . . , Tk) is self-adjoint.

Definition 5.1.5 (Free independence of operators).
Let (A, τ) be a W ∗-probability space and a1, a2 ∈ A. Then a1 and a2 are freely
independent if

τ(p1(ai1) · · · pn(ain)) = 0, (5.20)

for all n ≥ 1, all i1, . . . , in ∈ {1, 2} with ij 6= ij+1, j = 1, . . . , n−1, and all polynomials
p1, . . . , pn in one variable satisfying

τ(pj(aij )) = 0, j = 1, . . . , n. (5.21)

For (possibly unbounded) operators a1, . . . , ak and b1, . . . , bm affiliated with A, the
collections (a1, . . . , ak) and (b1, . . . , bm) are freely independent if and only if

p(h1(a1), . . . , hk(ak)) and q(g1(b1), . . . , gm(bm)), (5.22)

are freely independent for all bounded measurable h1, . . . , hk and g1, . . . , gm, and
all polynomials p and q in k and m non-commutative variables, respectively. It is
immediate that the two operators in the above display are bounded, and hence belong
to A.
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We are now in a position to state our next theorem.

Theorem 5.1.6 (Identification of the limiting spectral distribution).
If f is as in (5.16), then

µ = L
(
r1/2(Tu)Tsr

1/2(Tu)

)
, (5.23)

and

ν = L
(
r1/2(Tu)Tsr

1/2(Tu) + αr1/4(Tu)Tgr
1/4(Tu)

)
, (5.24)

where

α =

(∫ 1

0

r(x) dx

)1/2

. (5.25)

Here, Tg and Tu are commuting self-adjoint operators affiliated with a W ∗-probability
space (A, τ) such that, for bounded measurable functions h1, h2 from R to itself,

τ(h1(Tg)h2(Tu)) =

(∫
R
h1(x)φ(x) dx

)(∫ 1

0

h2(u) du

)
, (5.26)

with φ the standard normal density. Furthermore, Ts has a standard semicircle dis-
tribution and is freely independent of (Tg, Tu).

The right-hand side of (5.23) is the same as the free multiplicative convolution
of the standard semicircle law and the law of r(U), where U is a standard uniform
random variable.

The fact that Tg and Tu commute, together with (5.26), specifies their joint distri-
bution. In fact, they are standard normal and standard uniform, respectively, inde-
pendently of each other in the classical sense. Free independence of Ts and (Tg, Tu),
plus the fact that the former follows the standard semicircle law, specifies the joint
distribution of Ts, Tg, Tu.

In order to admit the unbounded operator Tg, a W ∗-probability space is needed.
If all the operators would have been bounded, then a C∗-probability space would have
sufficed.

§5.1.4 Randomization
Theorem 5.1.2 can be generalized to the situation where the function f is random.
Such a randomization helps us to address the applications listed in Section 5.4. Sup-
pose that (εN : N ≥ 1) is a sequence of positive numbers satisfying (5.2). Suppose
further that, for every N ≥ 1, (RNi : 1 ≤ i ≤ N) is a collection of non-negative
random variables (defined on the same probability space) such that there is a determ-
inistic C <∞ for which

sup
N≥1

max
1≤i≤N

RNi ≤ C almost surely. (5.27)
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In addition, suppose that there is a probability measure µr on R such that

lim
N→∞

1

N

N∑
i=1

δRNi = µr weakly almost surely. (5.28)

The non-negativity of RNi and (5.27) ensure that µr is concentrated on [0, C]. Fur-
thermore, the first line of (5.2) ensures that the additional assumption

sup
N≥1

εN ≤
1

C2
(5.29)

entails no loss of generality.
For fixed N and conditional on (RN1, . . . , RNN ), the random graph GN is con-

structed as before, except that there is an edge between i and j with probability
εNRNiRNj , which is at most 1 by (5.29) for all 1 ≤ i < j ≤ N . In other words,
GN has two levels of randomness: one in the choice of (RN1, . . . , RNN ) and one in
the choice of the set of edges. Once again, AN is the adjacency matrix of GN . The
following is a randomized version of Theorem 5.1.2.

Theorem 5.1.7 (Limiting spectral distribution of AN).
Under the assumptions (5.2) and (5.27)–(5.28),

lim
N→∞

ESD
(
(NεN )−1/2AN

)
= µr � µs weakly in probability, (5.30)

where µs is the standard semicircle law.

§5.1.5 Applications and outline
As we will see in Section 5.4, our results can be applied in various ways. A first ap-
plication consists in constrained random graphs. Given a sequence of positive integers,
among the probability distributions for which the sequence of average degrees matches
the given sequence, called the soft configuration model, the one that maximizes the
entropy is the canonical Gibbs measure. It is known that, under a sparsity condition,
the connection probabilities arising out of the canonical Gibbs measure asymptotically
have a multiplicativestructure (see [187]). We show that our results on the adjacency
matrix can be easily extended to cover such situations. Another important applic-
ation consists in Chung-Lu type random graph, which are used to model sociability
patterns in networks. We show how to use the rescaled empirical spectral distribu-
tion and free probability to statistically recover the underlying sociability distribution.

Outline of the chapter. The remainder of this chapter is organized as follows. In
Section 5.2 a number of technical lemmas are proved. These serve as preparation
for the proofs of our main theorems, which are given in Section 5.3. In Section 5.4,
the above applications are discussed, organized into three propositions. Appendix E
collects a few basic facts that are needed along the way.
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§5.2 Preparatory approximations

The proofs of our main theorems rely on several preparatory approximations, which
we organize in Lemmas 5.2.1–5.2.4 and 5.2.6 below. Along the way we need several
basic results, which we collect in Appendix E.

§5.2.1 Centering
The first approximation is that the mean of each off-diagonal entry of AN and ∆N

can be subtracted, with negligible perturbation in the respective empirical spectral
distributions.

Lemma 5.2.1 (Centering).
Let A0

N and ∆0
N be N ×N matrices defined by

A0
N (i, j) = (NεN )−1/2

(
AN (i, j)− E[AN (i, j)]

)
, (5.31)

∆0
N (i, j) = (NεN )−1/2

(
∆N (i, j)− E[∆N (i, j)]

)
, (5.32)

for all 1 ≤ i, j ≤ N . Then

lim
N→∞

L
(
ESD(A0

N ),ESD((NεN )−1/2AN )
)

= 0 in probability,

lim
N→∞

L
(
ESD(∆0

N ),ESD((NεN )−1/2(∆N −DN ))
)

= 0 in probability,
(5.33)

where L(η1, η2) denotes the Lévy distance between the probability measures η1 and η2,
and DN is the diagonal matrix defined in (5.8).

Proof. An appeal to Lemma E.1 shows that

L3
(
ESD(A0

N ),ESD((NεN )−1/2AN )
)

≤ 1

N2εN

N∑
i,j=1

E2[AN (i, j)]

=
1

N2εN

∑
i6=j

ε2
Nf

2

(
i

N
,
j

N

)
= εN

∫
[0,1]2

f2(x, y) dx dy [1 + o(1)], N →∞.

(5.34)

The first claim follows by recalling that εN → 0. The proof the second claim is
verbatim the same. �

§5.2.2 Gaussianisation
One of the crucial steps in studying the scaling properties of ESD is to replace each
entry by a Gaussian random variable.
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Lemma 5.2.2 (Gaussianisation).
Let (Gi,j : 1 ≤ i ≤ j) be a family of i.i.d. standard Gaussian random variables. Define
N ×N matrices AgN and ∆g

N by

AgN (i, j) =

{√
1
N f
(
i
N ,

j
N

)(
1− εNf

(
i
N ,

j
N

))
Gi∧j,i∨j , i 6= j,

0, i = j,
(5.35)

∆g
N (i, j) =

{
AgN (i, j), i 6= j,

−
∑N
k=1,k 6=iA

g
N (i, k), i = j.

(5.36)

Fix z ∈ C \ R and a three times continuously differentiable function h : R → R such
that

max
0≤j≤3

sup
x∈R
|h(j)(x)| <∞. (5.37)

For an N ×N real symmetric matrix M , define

HN (M) =
1

N
Tr
(
(M − zIN )−1

)
, (5.38)

where IN is the identity matrix of order N . Then

lim
N→∞

E
[
h
(
<HN (AgN )

)
− h
(
<HN (A0

N )
)]

= 0, (5.39)

lim
N→∞

E
[
h
(
=HN (AgN )

)
− h
(
=HN (A0

N )
)]

= 0, (5.40)

and

lim
N→∞

E
[
h
(
<HN (∆g

N )
)
− h
(
<HN (∆0

N )
)]

= 0, (5.41)

lim
N→∞

E
[
h
(
=HN (∆g

N )
)
− h
(
=HN (∆0

N )
)]

= 0, (5.42)

where < and = denote the real and the imaginary part of a complex number, respect-
ively.

Proof. We only prove (5.41). The proofs of the other claims are similar. We use ideas
from [136]. Let z = u+ iv ∈ C+ and n = N(N − 1)/2. Define φ : Rn → C as

φ(x) = HN (∆(x)) (5.43)

where ∆(x) is the N ×N symmetric Laplacian matrix given by

∆(x)(i, j) =

{
−
∑N
k=1,k 6=i xi,k, i = j,

xi∧j,i∨j , i 6= j.
(5.44)

Note that ∂∆(x)/∂xij is the N ×N matrix that has −1 at the i-th and j-th diagonal
and 1 at (i, j)-th and (j, i)-th entry. The following identities were derived in [136,
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Section 2]:

∂φ

∂xi,j
= −N−1 Tr

(
∂∆

∂xi,j
K2

)
,

∂2φ

∂x2
i,j

= 2N−1 Tr

(
∂∆

∂xi,j
K

∂∆

∂xi,j
K2

)
, (5.45)

∂3φ

∂x3
i,j

= −6N−1 Tr

(
∂∆

∂xi,j
K

∂∆

∂xi,j
K

∂∆

∂xi,j
K2

)
,

where K(x) = (∆(x)− zI)−1. Now using these identities we get∥∥∥ ∂φ

∂xij

∥∥∥
∞
≤ 4

|=z|2
1

N
,

∥∥∥ ∂2φ

∂x2
ij

∥∥∥
∞
≤ 8

|=z|3
1

N
,

∥∥∥ ∂3φ

∂x3
ij

∥∥∥
∞
≤ 48

|=z|4
1

N
. (5.46)

If we define

λ2(φ) = sup

{∥∥∥ ∂φ

∂xi,j

∥∥∥2

∞
,
∥∥∥ ∂2φ

∂x2
i,j

∥∥∥
∞

}
, (5.47)

λ3(φ) = sup

{∥∥∥ ∂φ

∂xi,j

∥∥∥3

∞
,
∥∥∥ ∂2φ

∂x2
i,j

∥∥∥2

∞
,
∥∥∥ ∂3φ

∂x3
i,j

∥∥∥
∞

}
, (5.48)

then there exist constants C2 and C3 depending on =z such that λ2(φ) ≤ C2N
−1 and

λ3(φ) ≤ C3N
−1. Hence, using λr(<φ) ≤ λr(φ) and

U = <
(
HN (∆0

N )
)
, V = =

(
HN (∆g

N )
)
, (5.49)

we have from [136, Theorem 1.1]∣∣E[h(U)]− E[h(V )]
∣∣

≤ C1(h)λ2(φ)
∑

1≤i 6=j≤N

(
E[A0

N (i, j)2; |A0
N (i, j)| > K]

+ E[AgN (i, j)2; |AgN (i, j)| > K]
)

+ C2(h)
λ3(φ)

(NεN )3/2

∑
i 6=j

(
E[A0

N (i, j); |A0
N (i, j)| > K]

+ E[AgN (i, j)3; |AgN (i, j)| > K]
)
.

(5.50)

Using the fact that εN → 0, we have that E[A0
N (i, j)4] = O(N−2ε−1

N ). Also

P(|A0
N (i, j)| > K) ≤ O(N−1). (5.51)

So, by the Cauchy-Schwartz inequality and the above bounds, we have

E[A0
N (i, j)2; |A0

N (i, j)| > K] ≤ O
(
ε
−1/2
N N−3/2

)
. (5.52)

Since NεN →∞, we have

λ2(φ)
∑

1≤i 6=j≤N

E[A0
N (i, j)2; |A0

N (i, j)| > K] ≤ CN−1/2ε
−1/2
N , (5.53)
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which tends to 0 as N →∞. Similarly, we have

λ3(φ)
∑
i 6=j

E[A0
N (i, j)3; |A0

N (i, j)| > K] ≤ C

N5/2ε
3/2
N

N2εN , (5.54)

which also tends to 0 as N →∞. Using Gaussian tail bounds, we can also show that
the other two terms in (5.50) tend to 0 as N → ∞, which settles (5.41). In order
to prove (5.42), a similar computation can be done for the imaginary part in (5.49).
The proofs of (5.39) and (5.40) are analogous (and, in fact, closer to the argument in
[136]). �

§5.2.3 Leading order variance

Next, we show that another minor tweak to the entries of AgN and ∆g
N results in a

negligible perturbation.

Lemma 5.2.3 (Leading order variance).
Define an N ×N matrix AN by

ĀN (i, j) =

√
1

N
f

(
i

N
,
j

N

)
Gi∧j,i∨j , 1 ≤ i, j ≤ N, (5.55)

and let

∆̄N = ĀN −XN , (5.56)

where XN is a diagonal matrix of order N defined by

XN (i, i) =

N∑
k=1,k 6=i

ĀN (i, k), 1 ≤ i ≤ N. (5.57)

Then

lim
N→∞

L
(
ESD(AgN ),ESD(ĀN )

)
= 0 in probability, (5.58)

lim
N→∞

L
(
ESD(∆g

N ),ESD(∆̄N )
)

= 0 in probability. (5.59)
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Proof. To prove (5.59), yet another application of Lemma E.1 implies that

E
[
L3
(
ESD(∆g

N ),ESD(∆̄N )
)]

≤ 1

N
E
[

Tr
((

∆g
N − ∆̄N

)2)]
=

1

N

∑
1≤i 6=j≤N

Var(ĀN (i, j)−AgN (i, j))

+
1

N

N∑
i=1

Var

( N∑
j=1,j 6=i

(ĀN (i, j)−AgN (i, j))

)
+

1

N2

N∑
i=1

f

(
i

N
,
i

N

)

=
4

N2

∑
1≤i<j≤N

f

(
i

N
,
j

N

)(
1−

√
1− εNf

(
i

N
,
j

N

))2

+
1

N2

N∑
i=1

f

(
i

N
,
i

N

)
,

(5.60)

which tends to 0 as N → ∞ because f is bounded. Thus, (5.59) follows. The proof
of (5.58) is similar. �

§5.2.4 Decoupling

The (diagonal) entries of XN are nothing but the row sums of ĀN . However, the
correlation between an entry of ĀN and that of XN is small. The following decoupling
lemma shows that it does not hurt when the entries ofXN are replaced by a mean-zero
Gaussian random variable of the same variance that is independent of ĀN .

Lemma 5.2.4 (Decoupling).
Let (Zi : i ≥ 1) be a family of i.i.d. standard normal random variables, independent
of (Gi,j : 1 ≤ i ≤ j). Define a diagonal matrix YN of order N by

YN (i, i) = Zi

√√√√ 1

N

N∑
j=1,j 6=i

f

(
i

N
,
j

N

)
, 1 ≤ i ≤ N, (5.61)

and let
∆̃N = ĀN + YN . (5.62)

Then, for every k ∈ N,

lim
N→∞

1

N
E
[

Tr
(
(∆̃N )2k − (∆̄N )2k

)]
= 0, (5.63)

and

lim
N→∞

1

N2
E
[

Tr2
(
(∆̃N )k

)
− Tr2

(
(∆̄N )k

)]
= 0. (5.64)
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Proof. Without loss of generality we may assume that f ≤ 1. For N ≥ 1, define the
N ×N matrices M̄N and M̃N by

M̄N (i, j) =

{
N−1/2Gi∧j,i∨j , i 6= j,

N−1/2Gi,i −
∑N
k=1, k 6=i M̄N (i, k), i = j,

(5.65)

and

M̃N (i, j) =

{
M̄N (i, j), i 6= j,

N−1/2Gi,i + Zi

√
N−1
N , i = j.

(5.66)

Note that, in the special case where f is identically 1, M̄N and M̃N are identical to
∆̄N and ∆̃N , respectively. For k ∈ N and Π a partition of {1, . . . , 2k}, let

Ψ(Π, N) =
{
i ∈ {1, . . . , N}2k : iu = iv ⇐⇒ u, v belong to the same block of Π

}
.

(5.67)
For fixed Π and N , an immediate application of Wick’s formula shows that, for all
i, j ∈ Ψ(Π, N),

E
[ 2k∏
u=1

M̄N (iu, iu+1)

]
= E

[ 2k∏
u=1

M̄N (ju, ju+1)

]
, (5.68)

with the convention that i2k+1 ≡ i1, and

E
[ 2k∏
u=1

M̃N (iu, iu+1)

]
= E

[ 2k∏
u=1

M̃N (ju, ju+1)

]
, (5.69)

Therefore, for any i ∈ Ψ(Π, N), we can unambiguously define

ψ(Π, N) = E
[ 2k∏
u=1

M̄N (iu, iu+1)

]
− E

[ 2k∏
u=1

M̃N (iu, iu+1)

]
. (5.70)

As shown in [128, Lemma 4.12], for a fixed Π,

lim
N→∞

N−1|ψ(Π, N)||Ψ(Π, N)| = 0. (5.71)

An immediate observation is that, for all 1 ≤ i, j, i′, j′ ≤ N ,

Cov
(
M̃N (i, j), M̃N (i′, j′)

)
= 0 if (i ∧ j, i ∨ j) 6= (i′ ∧ j′, i′ ∨ j′), (5.72)

and likewise for ∆̃N . Furthermore,

Var
(
M̃N (i, j)

)
= Var

(
M̄N (i, j)

)
, 1 ≤ i, j ≤ N, (5.73)

and likewise for ∆̃N and M̄N . For N ≥ 1 and 1 ≤ i, j, i′, j′ ≤ N , define

ηN (i, j, i′, j′) =


Cov
(

∆̄N (i,j),∆̄N (i′,j′)
)

Cov
(
M̄N (i,j),M̄N (i′,j′)

) , if the denominator is non-zero,

0, otherwise.
(5.74)
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It is easy to check that the assumption f ≤ 1 ensures that |ηN (i, j, i′, j′)| ≤ 1. There-
fore, for all N and 1 ≤ i, j, i′, j′ ≤ N ,

Cov
(
∆̄N (i, j), ∆̄N (i′, j′)

)
= ηN (i, j, i′, j′)Cov

(
M̄N (i, j), M̄N (i′, j′)

)
,

Cov
(
∆̃N (i, j), ∆̃N (i′, j′)

)
= ηN (i, j, i′, j′)Cov

(
M̃N (i, j), M̃N (i′, j′)

)
.

For fixed Π, N and i ∈ Ψ(Π, N), by an appeal to Wick’s formula the above implies
that there exists a ξ(i,N) ∈ [−1, 1] such that

E
[ 2k∏
u=1

∆̄N (iu, iu+1)

]
− E

[ 2k∏
u=1

∆̃N (iu, iu+1)

]
= ξ(i,N)ψ(Π, N), (5.75)

and therefore, by (5.71),

∑
i∈Ψ(Π,N)

∣∣∣∣E[ 2k∏
u=1

∆̄N (iu, iu+1)

]
− E

[ 2k∏
u=1

∆̃N (iu, iu+1)

]∣∣∣∣
=

∑
i∈Ψ(Π,N)

|ξ(i,N)||ψ(Π, N)| ≤ |ψ(Π, N)||Ψ(Π, N)| = o(N), N →∞.

(5.76)

Since this holds for every partition Π of {1, . . . , 2k}, (5.63) follows. The proof of
(5.64) follows along similar lines. �

§5.2.5 Combinatorics from free probability
The final preparation is a general result from random matrix theory. To state this,
the following notions from the theory of free probability are borrowed. We refer to
Section 1.2.4 for an introduction to free probability theory and to [186] for more
details.

Definition 5.2.5 (Kreweras complement).
For an even positive integer k, NC2(k) is the set of non-crossing pair partitions
of {1, . . . , k}. For σ ∈ NC2(k), its Kreweras complement K(σ) is the maximal
non-crossing partition σ̄ of {1̄, . . . , k̄}, such that σ ∪ σ̄ is a non-crossing partition
of {1, 1̄, . . . , k, k̄}. For example,

K({(1, 4), (2, 3)}) = {(1, 3), (2), (4)},
K({(1, 2), (3, 4), (5, 6)}) = {(1), (2, 4, 6), (3), (5)}.

(5.77)

The second example is illustrated as

1 1̄ 2 2̄ 3 3̄ 4 4̄ 5 5̄ 6 6̄
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For σ ∈ NC2(k) and N ≥ 1, define

S(σ,N) =
{
i ∈ {1, . . . , N}k : iu = iv ⇐⇒ u, v belong to the same block of K(σ)

}
(5.78)

and
C(k,N) = {1, . . . , N}k \

( ⋃
σ∈NC2(k)

S(σ,N)

)
. (5.79)

In other words, S(σ,N) is the same as Ψ(K(σ), N) defined in (5.67).

Lemma 5.2.6 (Trace of product of random matrices).
Suppose that, for each N ≥ 1, WN,1, . . . ,WN,k are N × N real (and possibly asym-
metric) random matrices, where k is a positive even number. Suppose further that,
for each u = 1, . . . , k,

max
1≤i,j≤N

E
[
WN,u(i, j)k

]
= O(N−k/2) (5.80)

and

lim
N→∞

E
[(

1

N

∑
i∈C(k,N)

Pi

)2 ]
= 0, (5.81)

and that, for every σ ∈ NC2(k), there exists a deterministic and finite β(σ) such that

lim
N→∞

E
(

1

N

∑
i∈S(σ,N)

Pi

)
= β(σ), (5.82)

lim
N→∞

E
[(

1

N

∑
i∈S(σ,N)

Pi

)2 ]
= β(σ)2, (5.83)

where

Pi = WN,1(i1, i2) · · ·WN,k−1(ik−1, ik)WN,k(ik, i1), i ∈ {1, . . . , N}k. (5.84)

Furthermore, let V1, V2, . . . be i.i.d. random variables drawn from some distribution
with all moments finite, independent of (WN,j : N ≥ 1, 1 ≤ j ≤ k), and let

UN = Diag(V1, . . . , VN ), N ≥ 1. (5.85)

Then, for all choices of n1, . . . , nk ≥ 0,

lim
N→∞

1

N
Tr
(
Un1

N WN,1 · · ·UnkN WN,k

)
= c in L2 (5.86)

for some deterministic c ∈ R (depending on k, n1, . . . , nk).

Proof. The fact that the sets S(σ,N) are disjoint for different σ ∈ NC2(k) allows us
to write

Tr
(
Un1

N WN,1 · · ·UnkN WN,k

)
=

∑
σ∈NC2(k)

∑
i∈S(σ,N)

P̃i +
∑

i∈C(k,N)

P̃i, (5.87)
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where

P̃i =

k∏
j=1

(
V
nj
ij
WN,j(ij , ij+1)

)
, i ∈ {1, . . . , N}k. (5.88)

In order to show that the second sum in the right-hand side is negligible after scaling
by N , the independence of (V1, V2, . . .) and (WN,j : N ≥ 1, 1 ≤ j ≤ k), together with
the fact that the common distribution of the former has finite moments, implies that

E
[(

1

N

∑
i∈C(k,N)

P̃i

)2 ]
≤ KN−2

∑
i,j∈C(k,N)

E[PiPj ],

where K is a finite constant. Assumption (5.81) shows that

lim
N→∞

1

N

∑
i∈C(k,N)

P̃i = 0 in L2. (5.89)

In order to complete the proof, it suffices to show that for every σ ∈ NC2(k) there
exists a θ(σ) ∈ R with

lim
N→∞

1

N

∑
i∈S(σ,N)

P̃i = θ(σ) in L2. (5.90)

To that end, fix σ ∈ NC2(k) and note that, for i ∈ S(σ,N),

E[P̃i] = E[Pi]E
[ k∏
j=1

V
nj
ij

]
= E[Pi]

∏
u∈K(σ)

E
[
V

∑
j∈u nj

1

]
, (5.91)

the product in the last line being taken over every block u of K(σ). Putting

θ(σ) = β(σ)
∏

u∈K(σ)

E
[
V

∑
j∈u nj

1

]
, (5.92)

we see that (5.82) gives

lim
N→∞

E
[

1

N

∑
i∈S(σ,N)

P̃i

]
= θ(σ). (5.93)

Let us call i, j ∈ Nk “disjoint” if no coordinate of i matches any coordinate of j, i.e.,

min
1≤u,v≤k

|iu − jv| ≥ 1. (5.94)

Since K(σ) has exactly 1
2k + 1 blocks, (5.80) implies that

lim
N→∞

N−2
∑

i,j∈S(σ,N)
i,j not disjoint

E[P̃iP̃j ] = 0. (5.95)

148



§5.3. Proofs of the main results

C
h
a
pter

5

If i, j ∈ S(σ,N) are disjoint, then it is immediate that

E[P̃iP̃j ] =

( ∏
u∈K(σ)

E
[
V

∑
j∈u nj

1

])2

E[PiPj ]. (5.96)

The above two displays, in conjunction with (5.83), show that

lim
N→∞

E
[(

1

N

∑
i∈S(σ,N)

P̃i

)2 ]
= θ(σ)2. (5.97)

This, along with (5.93), establishes (5.90), from which the proof follows. �

§5.3 Proofs of the main results

In this section we prove the theorems in Section 5.1. In Section 5.3.1 we prove
Theorems 5.1.2–5.1.3 on the existence of the limiting spectral distributions of AN
and ∆N . In Section 5.3.2 we identify those distributions by proving Theorem 5.1.6.
In Section 5.3.3 we prove Theorem 5.1.7.

§5.3.1 Proof: existence
Proof of Theorem 5.1.2. From [129, Theorem 2.1] we know that, as N →∞,

lim
N→∞

ESD(ĀN ) = µ weakly in probability, (5.98)

for a compactly supported symmetric probability measure µ. Lemma 5.2.3 immedi-
ately tells us that

lim
N→∞

ESD(AgN ) = µ weakly in probability, (5.99)

and hence for h and HN as in Lemma 5.2.2,

lim
N→∞

E
[
h
(
<HN (AgN )

)]
= h

(
<
∫
R

1

x− z
µ(dx)

)
. (5.100)

The claim in (5.39) shows that AgN can be replaced by A0
N in the above display.

Since the right-hand side is deterministic and the above holds for any h satisfying the
hypothesis of Lemma 5.2.2, it follows that

lim
N→∞

<HN (A0
N ) = <

∫
R

1

x− z
µ(dx) in probability. (5.101)

A similar argument works for the imaginary part, which shows that

lim
N→∞

ESD(A0
N ) = µ weakly in probability. (5.102)

Lemma 5.2.1 completes the proof of (5.5).
Finally, if f is bounded away from 0, then the combination of [129, Lemma 3.1]

and [120, Corollary 2] implies that µ is absolutely continuous with respect to the
Lebesgue measure (see also [131]). �
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A close inspection of the proof reveals that it suffices to assume that f is bounded
and Riemann integrable instead of continuous. In other words, if f is symmetric and
bounded, and its set of discontinuities has Lebesgue measure zero, then the result
holds. However, continuity will be used later in (5.107) in the proof of Theorem 5.1.3.
Furthermore, if εN = 1 for all N , then

lim
N→∞

ESD
(
N−1/2(AN − E(AN ))

)
= µ√

f(1−f)
weakly in probability, (5.103)

where the right-hand side is the probability measure obtained after replacing f with√
f(1− f) in [129, Theorem 2.1].

Proof of Theorem 5.1.3. The proof comes in three steps.

1 (Riemann approximation). For N ≥ 1, define the N ×N diagonal matrix QN by

QN (i, i) = F (i/N)Zi, 1 ≤ i ≤ N, (5.104)

where

F (x) =

(∫ 1

0

f(x, y) dy

)1/2

, x ∈ [0, 1], (5.105)

and (Zi : i ≥ 1) is as in Lemma 5.2.4. Lemma E.2 implies that∣∣∣∣( 1

N
Tr
(
(∆̃N )k

))1/k

−
(

1

N
Tr
(
(ĀN +QN )k

))1/k∣∣∣∣ ≤ ( 1

N
Tr
(
(YN −QN )k

))1/k

.

(5.106)
Since, f being continuous,

E
[
N−2 Tr2

(
(YN −QN )k

)]
= O(1) sup

x∈[0,1]

[
F (x)−

(
1

N

N∑
j=1,j 6=[Nx]/N

f

(
x,

j

N

))1/2 ]2k

, N →∞,
(5.107)

and it tends to 0 as N →∞, we get that, for every even k,(
1

N
Tr
(
(∆̃N )k

))1/k

−
(

1

N
Tr
(
(ĀN +QN )k

))1/k

(5.108)

tends to 0 in L2k as N →∞.
Our next step is to show that, for every even integer k,

lim
N→∞

1

N
Tr
(
(ĀN +QN )k

)
= γk in L2 (5.109)

for some γk ∈ R. The above will follow once we show that, for all m ≥ 1 and
n1, . . . , nm ≥ 0,

lim
N→∞

1

N
Tr
(
Qn1

N ĀN · · ·Q
nm
N ĀN

)
= θ in L2 (5.110)
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for some θ ∈ R (depending on m,n1, . . . , nm). To that end, define the diagonal
matrices UN and BN by

UN (i, i) = Zi and BN (i, i) = F (i/N), (5.111)

for i = 1, . . . , N . Observe that

QN = BNUN = UNBN , (5.112)

and hence the left-hand side of (5.110) is the same as

1

N
Tr
(
Un1

N WN,1 · · ·UnmN WN,m

)
, (5.113)

where
WN,j = B

nj
N ĀN , j = 1, . . . ,m. (5.114)

In order to apply Lemma 5.2.6 we need to verify its hypotheses.

2 (Verification of the hypotheses). Our next claim is that WN,1, . . . ,WN,m satisfy
(5.80)–(5.83). To that end, observe that for N ≥ 1 and j = 1, . . . ,m,

WN,j(u, v) = Fnj
(
u

N

)
f1/2

(
u

N
,
v

N

)
N−1/2Gu∧v, u∨v, 1 ≤ u, v ≤ N. (5.115)

Let
Hj(x, y) = Fnj (x)f1/2(x, y), (x, y) ∈ [0, 1]2. (5.116)

Fix a partition Π of {1, . . . ,m}. Recall the notation Ψ(Π, N) introduced in the proof
of Lemma 5.2.4. Clearly, for every i ∈ Ψ(Π, N),

E
[ m∏
j=1

WN,j(ij , ij+1)

]
= N−m/2ψ(Π)

( m∏
j=1

Hj

(
ij
N
,
ij+1

N

))
, (5.117)

where

ψ(Π) = E
[ m∏
j=1

Gij∧ij+1,ij∨ij+1

]
, (5.118)

which does not depend on i ∈ Ψ(Π, N). The standard arguments leading to a proof
via the method of moments of the Wigner semicircle law show that

lim
N→∞

N−m/2+1 ψ(Π) |Ψ(Π, N)|

=

{
1, if m is even, and Π = K(σ) for some σ ∈ NC2(m),

0, otherwise.

(5.119)

Assume for the moment that m is even, and let σ ∈ NC2(m). It is known that K(σ)

has m/2 + 1 blocks. Define a function Lσ : {1, . . . ,m} → {1, . . . , 1
2m + 1} such that
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Lσ(j) = Lσ(k) if and only if j, k are in the same block of K(σ). It follows that for
Π = K(σ),

lim
N→∞

1

N

∑
i∈Ψ(Π,N)

E
[ m∏
j=1

WN,j(ij , ij+1)

]

=

∫
[0,1](m/2)+1

∏
(u,v)∈σ,u<v

Hu

(
xLσ(u), xLσ(v)

)
dx1 · · · dx(m/2)+1.

(5.120)

This shows that hypothesis (5.82) holds. The hypotheses (5.81) and (5.83) follow
similarly by an analogue of the standard arguments, while (5.80) is trivial.

Thus, WN,1, . . . ,WN,m and UN satisfy the hypotheses of Lemma 5.2.6. The claim
of that lemma shows that the random variable in (5.113) converges in L2 to a finite
deterministic constant as N → ∞, i.e., (5.110) holds. This in turn proves (5.109),
which in conjunction with (5.108) shows that

lim
N→∞

1

N
Tr
(
(∆̃N )k

)
= γk in L2. (5.121)

Lemma 5.2.4 asserts that

lim
N→∞

1

N
Tr
(
(∆̄N )k

)
= γk in L2, (5.122)

and hence also in probability.

3 (Uniqueness of the limiting measure). Equation (5.109) ensures that there exists a
symmetric probability measure on R whose k-th moment is γk for every even integer
k. Our next claim is that such a measure is unique, i.e., (γk : k ≥ 1) determines the
measure. It is not obvious how to check Carleman’s condition, and therefore we argue
as follows. It suffices to exhibit a probability measure ν whose odd moments are zero
and whose k-th moment is γk for even k such that∫

R
etxν(dx) <∞ ∀ t ∈ R. (5.123)

To do so we bring in the notion of a non-commutative probability space (NCP), which
is defined in Appendix E. For K > 0 and N ≥ 1, define

UNK = Diag
(
Z11(|Z1| ≤ K), . . . , Z11(|ZN | ≤ K)

)
, (5.124)

and
QNK = BNUNK . (5.125)

The arguments leading to (5.110) can be easily tweaked to show that, for fixed K > 0

and a fixed polynomial p in two non-commuting variables,

lim
N→∞

1

N
E
[

Tr
(
p(ĀN , QNK)

)]
(5.126)

152



§5.3. Proofs of the main results

C
h
a
pter

5

exists. Lemma E.4 implies that there exist self-adjoint elements q and a in a tracial
NCP (A, φ) such that the above limit equals φ [p (a, q)] for every polynomial p in two
non-commuting variables. Hence

lim
N→∞

EESD
[
p(ĀN , QNK)

]
= L(p (a, q)) in distibution, (5.127)

for any symmetric polynomial p, where EESD denotes the expectation of ESD. The-
orem 5.1.2 implies that the limiting spectral distribution of ĀN , which is L(a) by
(5.127), is compactly supported, and hence a is a bounded element. The spectrum of
q is clearly a subset of [−K,K]. The second claim in Lemma E.4 allows us to assume
that (A, φ) is a W ∗-probability space.

Let
νK = L(a+ q). (5.128)

If C is a finite constant such that

−C1 ≤ a ≤ C1, (5.129)

then clearly
a+ q ≤ C1 + q. (5.130)

Applying the method of moments to QNK , we find by an appeal to (5.127) that the
law of q is the same as the law of

F (V )Z11(|Z1| ≤ K),

where V is standard uniform independently of Z1, and F is as in (5.105). Under the
assumption that f ≤ 1, which represents no loss of generality,∫

R
etx
(
L(q)

)
(dx) ≤ et

2/2, t ∈ R. (5.131)

By [118, Corollary 3.3] applied to (5.130), it follows that∫
R
etxνK(dx) ≤

∫
R
etx
(
L(C1 + q)

)
(dx) ≤ exp

(
1
2 t

2 + tC
)
, t > 0. (5.132)

Lemma E.1 applied to ĀN +QNK1
and ĀN +QNK1

shows that

sup
N≥1

L
(
EESD[ĀN +QNK1

],EESD[ĀN +QNK2
]
)

(5.133)

is small for large K1 and K2. Thus, (νK : K > 0) is Cauchy in the Lévy metric, and
hence there exists a probability measure ν such that

lim
K→∞

νK = ν. (5.134)

This, along with (5.132), establishes that∫
R
etxν(dx) ≤ exp

(
1
2 t

2 + tC
)
, t > 0, (5.135)
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and
lim
K→∞

∫
R
xkνK(dx) =

∫
R
xkν(dx), k ≥ 1. (5.136)

Clearly, ∫
R
xkνK(dx) = lim

N→∞
N−1E

[
Tr
(
(ĀN +QNK)k

)]
. (5.137)

Therefore, by keeping track of the limit in (5.126), we can show (with some effort)
that

lim
K→∞

∫
R
xkνK(dx) =

{
γk, k even,
0, k odd.

(5.138)

Thus, ν has the desired moments. By extending (5.135) to the case t < 0, we see
that (5.123) follows. Thus, ν is the only symmetric probability measure whose even
moments are (γk).

Equation (5.122) and the claim proved above show that

lim
N→∞

ESD(∆̄N ) = ν weakly in probability. (5.139)

Hence Lemmas 5.2.1–5.2.3 imply that

lim
N→∞

ESD
(
(NεN )−1/2(∆N −DN )

)
= ν weakly in probability. (5.140)

as in the proof of Theorem 5.1.2.
It remains to show that if f is not identically zero, then the support of ν is

unbounded. To that end, recall that (5.109), together with the fact that ν is the only
symmetric probability measure whose even moments are (γk), establish that

lim
N→∞

ESD(ĀN +QN ) = ν weakly in probability, (5.141)

where ĀN and QN are as in (5.55) and (5.104), respectively. Fix 0 < p < 1/2, and for
any N × N real symmetric matrix Σ, enumerate its eigenvalues in descending order
by λ1(Σ), . . . , λN (Σ). Weyl’s inequality (see [189, Equation (1.54)]) implies that

λ2dNpe−1(QN ) ≤ λdNpe(ĀN +QN ) + λdNpe(−ĀN ), (5.142)

where dxe denotes the smallest integer larger than or equal to x. Therefore

lim sup
N→∞

λdNpe(ĀN +QN ) ≥ lim sup
N→∞

λ2dNpe−1(QN )− lim inf
N→∞

λdNpe(−ĀN )

≥ lim sup
N→∞

λ2dNpe−1(QN )− C,
(5.143)

where C is as in (5.129). Letting p→ 0 and appealing to Lemma E.6, we find that

sup(Supp(ν)) = lim
p→0

lim sup
N→∞

λdNpe(ĀN +QN )

≥ lim
p→0

lim sup
N→∞

λ2dNpe−1(QN )− C =∞,
(5.144)

where the last line uses the fact that, as N → ∞, ESD(QN ) converges weakly in
probability to the distribution of F (V )Z1, the support of which is unbounded because
f is not identically zero. �

154



§5.3. Proofs of the main results

C
h
a
pter

5

§5.3.2 Proof: identification
Proof of Theorem 5.1.6. Let (Gi,j : 1 ≤ i ≤ j) and (Zi : i ≥ 1) be as in Lemma 5.2.4.
For N ≥ 1, define the N ×N matrices

GN (i, j) = N−1/2Gi∧j,i∨j , 1 ≤ i, j ≤ N, (5.145)

RN = Diag
(√

r(1/N), . . . ,
√
r(1)

)
, (5.146)

UN = Diag(Z1, . . . , ZN ). (5.147)

The notation UN is exactly as in the proof of Theorem 5.1.3. Let ĀN and QN be as
in (5.55) and (5.104), respectively. Observe that, under the assumption (5.16),

ĀN = RNGNRN , (5.148)

and
QN = αR

1/2
N UNR

1/2
N , (5.149)

where α is as defined in the statement of Theorem 5.1.6. Proceeding as in the proofs
of Theorems 5.1.2–5.1.3, wee see that it suffices to show that

lim
N→∞

ESD (RNGNRN ) = L
(
r1/2(Tu)TsT

1/2(Tu)
)

weakly in probability (5.150)

and

lim
N→∞

ESD
(
RNGNRN + αR

1/2
N UNR

1/2
N

)
= L

(
r1/2(Tu)TsT

1/2(Tu) + αr1/4(Tu)Tgr
1/4(Tu)

)
weakly in probability,

(5.151)

where Ts, Tg, Tu are as in the statement. Define UNK to be the “truncated” version
of UN , for a fixed K > 0, as in the proof of Theorem 5.1.3. Both (5.150) and (5.151)
will follow once we show that

lim
N→∞

1

N
Tr
(
p
(
R

1/2
N , UNK , GN

))
= τ

(
p(Tr, T

′
g, Ts)

)
in probability, (5.152)

where Tr = r1/4(Tu) and T ′g = Tg1{|Tg|≤K}, for any symmetric polynomial p in three
non-commuting variables. It is a well known fact that, for all k ≥ 1,

lim
N→∞

1

N
Tr(GkN ) = τ(T ks ) in probability. (5.153)

Since RN and UNK are diagonal matrices, they commute. This, in conjunction
with the strong law of large numbers, implies that, for any k ≥ 1, m1, . . . ,mk and
n1, . . . , nk ≥ 0,

lim
N→∞

1

N
Tr
(
Rm1

N Un1

NK · · ·R
mk
N UnkNK

)
=

∫ 1

0

r(m1+...+mk)/4(u) du

∫ K

−K
(2π)−1/2xn1+...+nke−x

2/2 dx almost surely

(5.154)
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The above, in conjunction with (5.26) and the fact that Tg and Tr commute, implies
that

lim
N→∞

1

N
Tr
(
p
(
R

1/2
N , UNK

))
= τ

(
p(Tr, T

′
g)
)

almost surely (5.155)

for any polynomial p in two variables.
Thus, all that remains to show is the asymptotic free independence of Ts and

(Tr, T
′
g), which is precisely the claim of Lemma E.5, i.e., (5.153) and (5.155) imply

(5.152). Applying (5.152) to p(x, y, z) = x2zx2 and p(x, y, z) = x2zx2 +αxyx, we get
the truncated versions of (5.150) and (5.151), respectively. Yet another application of
Lemma E.1 allows us to let K → ∞, obtaining (5.150) and (5.151). This completes
the proof of (5.23) and (5.24). �

§5.3.3 Proof: randomization
Proof of Theorem 5.1.7. As before, Lemma 5.2.1 and (5.2) imply that the mean of the
entries of AN can be subtracted at the cost of a negligible perturbation of the ESD.
The inequalities (5.2) and (5.27) ensure that the Gaussianization as in Lemma 5.2.2
goes through by conditioning on RN1, . . . , RNN . That is, if (Gij : 1 ≤ i ≤ j)

is a collection of i.i.d. standard normal random variables that are independent of
(RNi : 1 ≤ i ≤ N,N ≥ 1), W g

N is an N ×N matrix defined by

W g
N (i, j) = Gi∧j,i∨j , 1 ≤ i, j ≤ N, (5.156)

and
ΘN = Diag

(√
RN1, . . . ,

√
RNN

)
, (5.157)

then the ESD of AN/
√
NεN is close to that of ΘNW

g
NΘN/

√
N .

The assumptions (5.27) and (5.28) imply that, for k ≥ 1,

lim
N→∞

1

N
Tr
(
Θ2k
N

)
=

∫
R
xkµr(dx) almost surely. (5.158)

Finally, Lemma E.5 together with (5.27) shows the asymptotic free independence of
ΘN and W g

N , that is,

lim
N→∞

ESD
(
N−1/2ΘNW

g
nΘN

)
= µr � µs weakly in probability. (5.159)

This completes the proof. �

§5.4 Applications

In this section we discuss three applications, explained in Sections 5.4.1–5.4.3.

§5.4.1 Constrained random graphs
Let SN be the set of all simple graphs on N vertices. Suppose that we fix the degrees
of the vertices, namely, vertex i has degree k∗i . Here, k∗ = (k∗i : 1 ≤ i ≤ N) is a
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sequence of positive integers of which we only require that they are graphical, i.e.,
there is at least one simple graph with these degrees. The so-called canonical ensemble
PN is the unique probability distribution on SN with the following two properties.

(I) The average degree of vertex i, defined by
∑
G∈SN ki(G)PN (G), equals k∗i for

all 1 ≤ i ≤ N .

(II) The entropy of PN , defined by −
∑
G∈SN PN (G) logPN (G), is maximal.

The name canonical ensemble comes from Gibbs theory in equilibrium statistical
physics. The probability distribution PN describes a random graph of which we have
no prior information other than the average degrees, and is called the soft configuration
model. It is known that, because of property (II), PN takes the form (see [169])

PN (G) =
1

ZN (θ∗)
exp

[
−

N∑
i=1

θ∗i ki(G)

]
, G ∈ SN , (5.160)

where θ∗ = (θ∗i : 1 ≤ i ≤ N) is a sequence of real-valued Lagrange multipliers that
must be chosen in such a way that property (I) is satisfied. The normalization constant
ZN (θ∗), which depends on θ∗, is called the partition function in Gibbs theory.

The gradients of the constraints in property (I) are linearly independent vectors
and the matching of property (I) uniquely fixes θ∗. It turns out that

PN (G) =
∏

1≤i<j≤N

(p∗ij)
AN [G](i,j) (1− p∗ij)1−AN [G](i,j), G ∈ SN , (5.161)

where AN [G] is the adjacency matrix of G, and p∗ij represent a reparameterisation of
the Lagrange multipliers, namely,

p∗ij =
x∗i x

∗
j

1 + x∗i x
∗
j

, 1 ≤ i 6= j ≤ N, (5.162)

with x∗i = e−θ
∗
i (see [187] for more details). Thus, we see that PN is nothing other than

an inhomogeneous Erdős-Rényi random graph where the probability that vertices i
and j are connected by an edge equals p∗ij . In order to match property (I), these
probabilities must satisfy

k∗i =

N∑
j=1,j 6=i

p∗ij , 1 ≤ i ≤ N, (5.163)

which constitutes a set of N equations for the N unknowns x∗1, . . . , x∗N .
In order to state the next result, we need to make some assumptions on the

sequence (k∗Ni : 1 ≤ i ≤ N). For the sake of notational simplification, the dependence
on N will be suppressed from the notation.

Proposition 5.4.1 (Theorem 5.1.7 for constrained random graphs).
Let (k∗i : 1 ≤ i ≤ N) be a graphical sequence of positive integers. Define

mN = max
1≤`≤N

k∗` . (5.164)

157



5. Spectral distribution of the adjacency and the Laplacian matrix

C
h
a
pt

er
5

Assume that
lim
N→∞

mN =∞, lim
N→∞

mN/
√
N = 0, (5.165)

and

lim
N→∞

1

N

N∑
i=1

δk∗i /mN = µr weakly, (5.166)

for some probability measure µr. Let x∗i and p∗ij be determined by (5.162) and (5.163).
Let AN be the adjacency matrix of an inhomogeneous Erdős-Rényi random graph on
N vertices, with p∗ij the probability of an edge being present between vertices i and j
for 1 ≤ i 6= j ≤ N . Then

lim
N→∞

ESD
(
(NεN )−1/2AN

)
= µr � µs weakly in probability. (5.167)

Proof. Abbreviate

σN =

N∑
`=1

k∗` . (5.168)

In [187] it is shown that

max
1≤`≤N

x∗` = o(1), N →∞, (5.169)

in which case (5.162) and (5.163) give

x∗i =
k∗i√
σN

[1 + o(1)] and p∗ij =
k∗i k
∗
j√

σN
[1 + o(1)], N →∞, (5.170)

with the error term uniform in 1 ≤ i 6= j ≤ N . Pick

εN =
m2
N

σN
. (5.171)

It follows from (5.165) that

lim
N→∞

εN = 0, lim
N→∞

NεN =∞. (5.172)

As in the proof of Theorem 5.1.7, Lemmas 5.2.1–5.2.2 imply that the upper triangular
entries of AN can be replaced by independent mean-zero normal random variables.
In other words, if (Gij : 1 ≤ i ≤ j) are i.i.d. standard normal, and AgN is the random
matrix defined by

AgN (i, j) =
√
p∗ij Gi∧j,i∨j , 1 ≤ i, j ≤ N, (5.173)

with p∗ii = 0 for all 1 ≤ i ≤ N , then ESD
(
(NεN )−1/2AN

)
and ESD

(
(NεN )−1/2AgN

)
are asymptotically close. The second part of (5.170) implies that

√
p∗ij =

√
εN

k∗i k
∗
j

m2
N

[1 + o(1)], N →∞, (5.174)
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uniformly in 1 ≤ i 6= j ≤ N , and hence

N∑
i,j=1

(√
p∗ij −

√
εN

k∗i k
∗
j

m2
N

)2

= o(N2εN ), N →∞. (5.175)

In other words, if ÃN is defined by

ÃN (i, j) =

√
k∗i k
∗
j

m2
N

Gi∧j,i∨j , 1 ≤ i, j ≤ N, (5.176)

then
lim
N→∞

1

N
E
[

Tr
(
(NεN )−1/2AgN −N

−1/2ÃN
)2]

= 0. (5.177)

Lemma E.1 implies that

lim
N→∞

L
(
ESD

(
(NεN )−1/2AgN

)
,ESD

(
N−1/2ÃN

))
= 0 in probability. (5.178)

Finally, by an appeal to Lemma E.5, (5.166) implies that

lim
N→∞

ESD
(
N−1/2ÃN

)
= µr � µs weakly in probability, (5.179)

where µs is the standard semicircle law. Hence

lim
N→∞

ESD
(
(NεN )−1/2AN

)
= µr � µs weakly in probability, (5.180)

and this completes the proof. �

Remark 5.4.2 (Example).
We look at a concrete example of a graphical sequence (k∗i : 1 ≤ i ≤ N) satisfying
(5.165)–(5.166). For N ≥ 1, let

k∗i = bi1/3c, 1 ≤ i ≤ N, (5.181)

where bxc denotes the greatest integer smaller than or equal to x. Then [165, The-
orem 7.12] implies that (k∗i : 1 ≤ i ≤ N) is graphical for N large enough. Since
mN = bN1/3c, it is immediate that (5.165) holds and that

lim
N→∞

(
1

N

N∑
i=1

δk∗i /mN

)
(·) = P

(
U1/3 ∈ ·

)
weakly, (5.182)

with U a standard uniform random variable.

§5.4.2 Chung-Lu graphs
The following random graph introduced by [140] is similar to the one discussed in
Section 5.4.1. For N ≥ 1, let (dNi : 1 ≤ i ≤ N) be a sequence of positive real
numbers. Abbreviate

mN = max
1≤i≤N

dNi, σN =

N∑
i=1

dNi. (5.183)
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Assume that

lim
N→∞

m2
N

σN
= 0, lim

N→∞
N
m2
N

σN
=∞, (5.184)

and

lim
N→∞

1

N

N∑
i=1

δdNi/mN = µr weakly (5.185)

for some measure µr on R. Consider an inhomogeneous Erdős-Rényi graph on N

vertices where an edge exists between i and j, 1 ≤ i 6= j ≤ N , with probability
dNidNj/σN . Such graph is called a Chung-Lu graph. If AN denotes its adjacency
matrix, then the following result follows from Theorem 5.1.7.

Proposition 5.4.3 (Theorem 5.1.7 for Chung-Lu graphs).
Under the hypotheses mentioned above,

lim
N→∞

ESD
(
(NεN )−1/2AN

)
= µr � µs weakly in probability, (5.186)

where

εN =
m2
N

σN
(5.187)

and µs is the standard semicircle law.

§5.4.3 Social networks
Consider a community consisting of N individuals. Data is available on whether
the i-th individual and the j-th individual are acquainted, for every pair (i, j) with
1 ≤ i, j ≤ N . Based on this data, the sociability pattern of the community has to be
inferred statistically. Examples arise in social networks and collaboration networks.

The above situation can be modeled in several ways, one being the following.
Denote by ρ the sociability distribution of the community, which is a compactly sup-
ported probability measure on [0,∞). Let (Ri)1≤i≤N be i.i.d. random variables drawn
from ρ. Think of Ri as the sociability index of the i-th individual. Fix εN > 0 such
that εNm2 ≤ 1, where m is the supremum of the support of ρ, so that

0 ≤ εNRiRj ≤ 1, 1 ≤ i 6= j ≤ N. (5.188)

Suppose that, conditional on (Ri)1≤i≤N , the i-th and the j-th individual are ac-
quainted with probability εNRiRj . In other words, the graph in which the vertices
are individuals and the edges are mutual acquaintances is an inhomogeneous Erdős-
Rényi random graph GN with random connection parameters that are controlled by
ρ. The data that is available is the adjacency matrix AN of this graph. The goal
is to draw information about ρ from this data. This statistical inference problem
boils down to estimating ρ from AN . Without loss of generality we assume that ρ is
standardized, i.e., ∫ ∞

0

xρ(dx) = 1. (5.189)
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Proposition 5.4.4 (Theorem 5.1.7 for social networks).
Under the assumptions N−1 � εN � 1 and (5.189),

lim
N→∞

ESD

(√
N

Tr(A2
N )

AN

)
= ρ� µs weakly in probability, (5.190)

where µs is the standard semicircle law.

Proof. It is immediate that

lim
N→∞

1

N

N∑
i=1

δRi = ρ weakly almost surely. (5.191)

Theorem 5.1.7 implies that if N−1 � εN � 1, then

lim
N→∞

ESD
(
(NεN )−1/2AN

)
= ρ� µs weakly in probability. (5.192)

Since AN (i, j) is either 0 or 1,

E
[

Tr(A2
N )
]

=

N∑
i,j=1

E[AN (i, j)] =
∑

1≤i 6=j≤N

εNE[RiRj ] = εNN(N − 1), (5.193)

where the last equality follows from (5.189). Consequently,

lim
N→∞

1

N2εN
E
[

Tr(A2
N )
]

= 1. (5.194)

The fact that the variance equals the sum of the expectation of the conditional vari-
ance and the variance of the conditional expectation, implies that

Var
(

Tr(A2
N )
)

= Var

(
2

∑
1≤i<j≤N

AN (i, j)

)

= 4E

( ∑
1≤i<j≤N

εNRiRj(1− εNRiRj)
)

+ 4Var

( ∑
1≤i<j≤N

εNRiRj

)
= O(N2εN ) + 4ε2

N

∑
1≤i<j≤N

∑
1≤k<l≤N

Cov(RiRj , RkRl)

= O(N3ε2
N ), N →∞,

(5.195)

where the last line follows from the observation that if i, j, k, l are distinct, then
Cov(RiRj , RkRl) vanishes. Hence,

lim
N→∞

Var

(
1

N2εN
Tr(A2

N )

)
= 0. (5.196)

The above in conjunction with (5.194) shows that

lim
N→∞

1

N2εN
Tr(A2

N ) = 1 in probability. (5.197)

This, together with (5.192), completes the proof. �
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Thus, ρ� µs can in principle be statistically estimated from AN . Subsequently, ρ
can be computed because the moments of ρ� µs are functions of the moments of ρ,
as shown below. We know from [183, Equation (14.5)] that, for n ≥ 1,∫

R
x2n ρ� µs(dx) =

∑
σ∈NC2(2n)

n+1∏
j=1

∫
R
xlj(σ)ρ(dx), (5.198)

where l1(σ), . . . , ln+1(σ) are block sizes of K(σ), the Kreweras complement of σ.
With the help of the above, the n-th moment of ρ can be written in terms of the
2n-th moment of ρ�µs, and the first n− 1 moments of ρ. Therefore, the moments of
ρ can be recursively computed from those of ρ� µs. Since ρ is compactly supported,
it can be computed from its moments.

§E Appendix: basic facts

The following is [114, Corollary A.41], and is also a corollary of the Hoffman-Wielandt
inequality.

Lemma E.1 (Lévy distance between empirical spectral distributions).
If L denotes the Lévy distance between two probability measures, then for N × N

symmetric matrices A and B,

L3
(
ESD(A),ESD(B)

)
≤ 1

N
Tr
(
(A−B)2

)
. (5.199)

The following is a consequence of the Minkowski and k-Hoffman-Wielandt inequal-
ities. The latter can be found in Exercise 1.3.6 of [189].

Lemma E.2 (Difference of traces).
For real symmetric matrices A and B of the same order, and an even positive integer
k, ∣∣Tr1/k(Ak)− Tr1/k(Bk)

∣∣ ≤ Tr1/k
(
(A−B)k

)
. (5.200)

Definition E.3 (Non-commutative probability space).
A non-commutative probability space (NCP) (A, φ) is a unital ∗-algebra A equipped
with a linear functional φ : A → C that is unital, i.e.,

φ(1) = 1, (5.201)

and positive, i.e.,
φ(a∗a) ≥ 0 ∀ a ∈ A. (5.202)

An NCP (A, φ) is tracial if

φ(ab) = φ(ba), a, b ∈ A. (5.203)

Lemma E.4 (Limit of polynomials in an NCP).
Suppose that, for every n ∈ N, (An, φn) is a tracial NCP, and there exist self-adjoint
an1, . . . , ank ∈ An such that, for every polynomial p in k non-commuting variables,

lim
n→∞

φn
(
p(an1, . . . , ank)

)
= αp ∈ C. (5.204)
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Then there exists a tracial NCP (A∞, φ∞) and self-adjoint a∞1, . . . , a∞k ∈ A∞ such
that, for every polynomial p in k non-commuting variables,

φ∞
(
p(a∞1, . . . , a∞k)

)
= αp. (5.205)

Furthermore, if

sup
1≤i≤k, j≥1

(
φ∞
(
a2j
∞i
))1/2j

<∞, (5.206)

then (A∞, φ∞) can be embedded into a W ∗-probability space.

Proof. Let
A∞ = C[X1, . . . , Xk], (5.207)

the set of all polynomials in k non-commuting variables. For a monomial

p = αXi1 . . . Xim , (5.208)

define
p∗ = αXim . . . Xi1 . (5.209)

This defines the ∗-operation on the whole of A. Let

φ∞(p) = αp ∀ p ∈ A∞. (5.210)

It is immediate from (5.204) that φ∞ is positive and unital, i.e., (A∞, φ∞) is an NCP.
The desired conclusions are ensured by defining

a∞1 = X1, . . . , a∞k = Xk. (5.211)

Finally, (5.206) implies that a∞,1, . . . , a∞,k are bounded. Hence, by going from poly-
nomials to continuous functions with the help of the Bolzano-Weierstrass theorem,
we can embed (A∞, φ∞) into a W ∗-probability space. �

The next lemma follows from [182, Theorem 4.20] (which is due to Voiculescu)
and the discussion immediately following it.

Lemma E.5 (Polynomials and independence in an NCP).
Suppose that WN is an N ×N scaled standard Gaussian Wigner matrix, i.e., a sym-
metric matrix whose upper triangular entries are i.i.d. normal with mean zero and
variance 1/N . Let D1

N and D2
N be (possibly random) N×N symmetric matrices such

that there exists a deterministic C satisfying

sup
N≥1,i=1,2

‖Di
N‖ ≤ C <∞, (5.212)

where ‖ · ‖ denotes the usual matrix norm (which for a symmetric matrix is the same
as the largest absolute value of its eigenvalues). Furthermore, assume that there is a
W ∗-probability space (A, τ) in which there are self-adjoint elements d1 and d2 such
that, for any polynomial p in two variables, it

lim
N→∞

1

N
Tr
(
p(D1

N , D
2
N )
)

= τ
(
p(d1, d2)

)
almost surely. (5.213)
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Finally, suppose that (D1
N , D

2
N ) is independent ofWN . Then there exists a self-adjoint

element s in A (possibly after expansion) that has the standard semicircle distribution
and is freely independent of (d1, d2), and is such that

lim
N→∞

1

N
Tr
(
p(WN , D

1
N , D

2
N )
)

= τ
(
p(s, d1, d2)

)
almost surely (5.214)

for any polynomial p in three variables.

Lemma E.6 (Support of the limiting measure of random variables).
Suppose that for all n ≥ 1, Zn1 ≥ . . . ≥ Znn are random variables such that

lim
n→∞

1

n

n∑
j=1

δZnj = µ weakly in probability, (5.215)

for some probability measure µ on R, where δx is the probability measure that puts
mass 1 at x. Then,

lim
p→0

lim sup
n→∞

Zn dnpe = sup(Supp(µ)) almost surely, (5.216)

where dxe denotes the smallest integer larger than or equal to x.

Proof. Our first claim is that if x ∈ R and 0 < p < 1 are such that

µ((−∞, x)) < 1− p, (5.217)

then
lim sup
n→∞

Zn dnpe ≥ x almost surely. (5.218)

To see why, fix p, x as above and ε > 0 such that µ({x − ε}) = 0, and note that the
hypothesis implies that

lim
n→∞

1

n

∣∣{1 ≤ j ≤ n : Znj ≤ x− ε}
∣∣ = µ((−∞, x− ε]) in probability. (5.219)

Therefore,

P

(
lim sup
n→∞

Zn dnpe ≤ x− ε
)

≤ P
(

1

n

∣∣{1 ≤ j ≤ n : Znj ≤ x− ε}
∣∣ ≥ 1− 1

n
dnpe for large n

)
≤ lim sup

n→∞
P

(
1

n

∣∣{1 ≤ j ≤ n : Znj ≤ x− ε}
∣∣ ≥ 1− 1

n
dnpe

)
= 0,

(5.220)

where the last step follows from (5.219) and the observation that

lim
n→∞

1− 1

n
dnpe = 1− p > µ((−∞, x)) ≥ µ((−∞, x− ε]). (5.221)

Since ε > 0 can be chosen to be arbitrarily small such that µ({x − ε}) = 0, (5.218)
follows.
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It is immediate to see that lim supn→∞ Zn dnpe is monotone in p, and hence the
almost sure limit exists as p→ 0. Furthermore,

lim
p→0

lim sup
n→∞

Zn dnpe ≤ α almost surely, (5.222)

where
α = sup(Supp(µ)). (5.223)

To complete the proof, choose xk such that xk → α and xk < α. Since α is the
right end point of the support of µ, it follows that

µ((−∞, xk)) < 1. (5.224)

Choosing

0 < pk < [1− µ((−∞, xk))] ∧ 1

k
, k ≥ 1, (5.225)

we see that (5.218) implies

lim sup
n→∞

Zn dnpke ≥ xk almost surely. (5.226)

Therefore, since xk → α,

lim inf
k→∞

lim sup
n→∞

Zn dnpke ≥ α almost surely. (5.227)

Since pk → 0, the left-hand side above equals that of (5.222). �
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