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CHAPTER 4
Dynamic bipartite interference

graphs

This chapter is based on:
M. Sfragara. Adding edge dynamics to wireless random-access networks. Preprint,
2020.

Abstract

We consider random-access networks with nodes representing servers with queues.
The nodes can be either active or inactive: a node deactivates at unit rate, while it
activates a rate that depends on its queue length, provided none of its neighbors is
active. In order to model the effects of user mobility in wireless networks, we analyze
dynamic interference graphs where the edges are allowed to appear and disappear
over time. We focus on bipartite graphs, and study the transition time between the
two states where one half of the network is active and the other half is inactive, in the
limit as the queues become large. Depending on the speed of the dynamics, we are
able to obtain a rough classification of the effects of the dynamics on the transition
time.
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§4.1 Introduction and main results

This chapter is a continuation of Chapters 2–3. We introduce an edge dynamics on
the bipartite interference graph, by allowing edges to appear and disappear over time.
This represents a natural basic model to capture the effects of user mobility in wireless
networks.

In Section 4.1.1 we motivate our interest in adding edge dynamics to random-
access network models. In Section 4.1.2 we describe the setting and the mathematical
model of interest in this chapter by specifying edge dynamics. In Section 4.1.3 we
state out main results for the mean transition time with dynamics. In Section 4.1.4
we explain the main idea behind our analysis and give an outline of the remainder of
the chapter.

§4.1.1 Motivation and background
User mobility is one of the major features in wireless networks. Different mobility
patterns can be distinguished (pedestrians, vehicles, aerial, dynamic medium, robot,
and outer space motion) and mathematical models can be developed in order to
generalize such patterns and analyze their characteristics. Understanding the effects
of user mobility in wireless networks is crucial in order to design efficient protocols
and improve the performance of the network.

For example, consider radio communication protocols, for which central radio
stations are used as base-stations for transmitting radio signals. The radio landscape
is partitioned into cells and in each cell a station serves the users in its vicinity. In
such cellular networks the users may be either stationary or mobile. User mobility
leads to problems of handover: when a user moves from one cell to another, the
transmitting signal has to be handed over from one station to another in order to
ensure continuity of service and seamless mobility. If not enough capacity is available
in the adjacent cell, then the transmission might be interrupted. Imagine that a node
transmitting to particular station moves away from its cell and reaches a cell where
another station serves for transmissions. Although initially the node interferes with
a specific group of nodes sharing the same initial station, after the node has moved it
interferes with the nodes in the new cell sharing the new station. In a similar fashion,
imagine a network where nodes represent transmitter-receiver pairs. The signal of
a node interferes with the signals of the nodes in its vicinity. Hence the protocol
allows only one of the interfering nodes to transmit alternately. When allowing node
mobility, we get new groups of nodes interfering with each other depending on their
vicinity. We are therefore dealing with a network whose interference graph changes
over time.

To the best of our knowledge, random-access models with user mobility in the
context of interference graphs have so far not been considered in the literature. All
the studies we are aware of that have examined the impact of user mobility in wireless
networks are concerned with handover mechanisms (see [89], [98]), so-called oppor-
tunistic scheduling algorithms (see [11], [101]), capacity issues in ad hoc and cellular
networks (see [15], [56]), and flow-level performance (see [7], [8], [16], [96]).
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In this chapter we investigate a dynamic version of the random-access protocols in
order to try to capture some features of user mobility in wireless networks. A natural
paradigm for constructing dynamic interference graphs would be to use geometric
graphs, such as unit-disk graphs, with node mobility, where each node follows a ran-
dom trajectory and experiences interference from all nodes within a certain distance.
A feasible state of the interference graph would then be generated by a specific in-
stance of the geometric graph. We follow a different approach and, with an explorative
intention, we consider a model where edges are allowed to appear and disappear from
the graph according to i.i.d. Poisson clocks placed on each edge. We find different
results for the mean transition time depending on the speed of the dynamics. The
evolution of the network is captured by a continuous-time Markov process that keeps
track of how the state, the queue length and the number of active neighbors change
for each node.

We focus on queue-based activation rates, in line with the models and the results in
Chapters 2–3. This leads to two level of complexity, driven by the queue dependencies
of the activation rates and by the edge dynamics. In the appendix we briefly consider
a simplified version of the model where the activation rates are fixed.

§4.1.2 Setting
We refer to Section 1.1.5 for a general introduction to the mathematical model. In
this chapter we add an extra dynamics to the model.

We are interested in analyzing the behavior of the network when we allow the
interference graph to change over time. We mainly focus on the model with queue-
based activation rates and assume these rates to satisfy Definitions 1.1.4 and 3.1.1.

Definition 4.1.1 (Dynamic interefence graphs).
We say that the interference graph is dynamic when the edges appear and disappear
according to a continuous-time flip process. Consider the dynamic bipartite interfer-
ence graph G(·) = (U t V,E(·)), where U t V is the set of nodes, with |U | = M and
|V | = N , and E(t) is the set of edges that are present between nodes in U and nodes
in V at time t. The number of edges |E(·)| changes over time and can vary from
a minimum of 0 to a maximum of MN . We set G(0) = G, where G is the initial
bipartite graph. We denote by GMN = (U t V,EMN ) the complete bipartite graph
associated to (U, V ) and, for every edge e ∈ EMN , at time t we define the Bernoulli
random variable Ye(t) as

Ye(t) =

{
0, if e /∈ E(t),

1, if e ∈ E(t).
(4.1)

In other words, Ye(t) = 0 if edge e is not present in the graph at time t, while Ye(t) = 1

if it is present. The joint edge activity state at time t is denoted by

Y (t) = {Ye(t)}e∈EMN (4.2)

and is an element of the state space

Y =
{
Y ∈ {0, 1}U×V

}
. (4.3)
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The degree of node v at time t is denoted by dv(t).

We model the dynamics of the graph in the following way. If an edge is not present,
then it appears according to a Poisson clock with rate λ, independently of the other
edges. If an edge is present, then it disappears according to a Poisson clock with rate
λ, independently of the other edges. This is equivalent to having a system of i.i.d.
Poisson clocks with rate λ on the edges and letting an edge change its state every
time its clock ticks. In order to study how the edge dynamics affects the transition
time, we consider Poisson clocks with rates λ = λ(r) depending on the parameter r.

Throughout the chapter we use the notation ≺, � to describe the asymptotic
behavior in the limit r →∞. More precisely, f(r) ≺ g(r) means that f(r) = o(g(r))

as r →∞, and f(r) � g(r) means that g(r) = o(f(r)) as r →∞.

Remark 4.1.2 (Rates on the edges).
We may allow different rates for the edges to change their state. Denote by λ+(r)

and λ−(r) the rates at which edges appear and disappear, respectively. If these are
of the same order, then we are in a situation similar to them being equal to λ(r).
If λ+(r) → ∞ and λ−(r) ≺ λ+(r), then, with high probability as r → ∞, in time
o(1) the dynamics turns the initial graph into the complete bipartite graph with all
the edges present. Analogously, if λ−(r) → ∞ and λ−(r) � λ+(r), then, with high
probability as r →∞, in time o(1) the dynamics turns the initial graph into the empty
graph with all the edges absent. Both these assumptions do not lead to interesting
models. When λ+(r) and λ−(r) are of different order and do not tend to infinity,
we have an intermediate situation where at any time t an edge is either present with
high probability as r → ∞ or absent with high probability as r → ∞, but the total
amount of time the edge has been absent or present, respectively, up to time t is not
always negligible.

Remark 4.1.3 (Appearing edge).
When an edge disappears from the graph, the states of the nodes do not change.
On the other hand, when an edge appears in the graph, it might appear between
two active nodes. In this case, we assume that the active node in U deactivates,
since the model does not allow two connected nodes to be simultaneously active. We
could study alternative models, where the active node in V deactivates or where the
deactivating node is chosen uniformly at random (or with certain probabilities). It is
obvious that these alternative models slow down the transition and lead to a possible
multiple counting of the time it takes for some nodes in V to activate.

§4.1.3 Main theorem
In Chapter 3 we analyzed the mean transition time for arbitrary bipartite graphs.
We introduced a randomized algorithm that takes as input the graph and gives as
output all the possible activation paths for nodes in V . We showed that, depending
on the value of β, the transition exhibits a subcritical regime, a critical regime and a
supercritical regime. Given a graph, the algorithm uniquely identifies the value

d∗ = max
1≤k≤N

d̄k, (4.4)
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which determines the leading order of the mean transition time and together with β
determines the regime we are in. We were also able to identify the law of the transition
time divided by its mean (in the subcritical and supercritical regime). The latter is
beyond the scope of the present chapter, since understanding the effect of the edge
dynamics is rather challenging. Our goal is to extend the results of Theorem 3.3.3 to
dynamic bipartite graphs. We will distinguish between different types of dynamics
and we will see how they affect the mean transition time. We denote by T Q

0

G(·) the
transition time of the dynamic graph G(·) with initial queue lengths Q0.

Theorem 4.1.4 (Mean transition time for dynamic bipartite graphs).
Consider the dynamic bipartite graph G(·) = ((U, V ), E(·)) with the edge dynamics
governed by λ(r) and initial queue lengths Q0.

(FD) If λ(r) → ∞, then the dynamics is fast and, with high probability as r → ∞,
the transition time satisfies

Eu[T Q
0

G(·)] � λ(r)−1 = o(1), r →∞. (4.5)

(RD) If λ(r) = C ∈ (0,∞), then the dynamics is regular and, with high probability as
r →∞, the transition time satisfies

Eu[T Q
0

G(·)] � λ(r)−1 = O(1), r →∞. (4.6)

(SD) If λ(r)→ 0, then the dynamics is slow and the following cases occur.

(SDc) If λ(r) � r−(1∧β(d∗−1)), then the dynamics is competitive and, with high
probability as r →∞, the transition time satisfies

Eu[T Q
0

G(·)] � λ(r)−1, r →∞. (4.7)

More precisely, let λ(r) = r−α with 0 < α ≤ 1 ∧ β(d∗ − 1), and let TU (r)

be the average time it takes for the queue lengths at nodes in U to hit zero.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. With high probability as r →∞,

Eu[T Q
0

G(·)] � r
α [1 + o(1)], r →∞. (4.8)

(II) β = 1
d∗−1 : critical regime. With high probability as r →∞,

Eu[T Q
0

G(·)] � r
α [1 + o(1)], r →∞. (4.9)

In particular, when α = 1, with positive probability,

Eu[T Q
0

G(·)] = TU (r) [1 + o(1)], r →∞. (4.10)

(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. When 0 < α ≤ 1, with high

probability as r →∞,

Eu[T Q
0

G(·)] � r
α [1 + o(1)], r →∞. (4.11)
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In particular, when α = 1, with positive probability,

Eu[T Q
0

G(·)] = TU (r) [1 + o(1)], r →∞. (4.12)

When α > 1, with high probability as r →∞,

Eu[T Q
0

G(·)] = TU (r) [1 + o(1)], r →∞. (4.13)

(SDnc) If λ(r) ≺ r−(1∧β(d∗−1)), then the dynamics is non-competitive and, with
high probability as r →∞, the transition time satisfies Theorem 3.3.3.

Note that the order of the mean transition time depends on the speed of the
dynamics. When the dynamics is fast (FD), the edges quickly appear and disappear,
reaching in time o(1) the state where nodes in V have no edges connecting them to
U . Since nodes in V are aggressive, they eventually activate in time o(1). When the
dynamics is regular (RD), the situation is similar, but it takes time O(1) to reach
the state where all the edges are simultaneously absent. When the dynamics is slow
(SD), a node in V can also activate through the nucleation of its fork (recall Definition
3.1.2). In the case of competitive dynamics (SDc), the relation between the speed of
the dynamics and the aggressiveness of the nodes in U plays a key role, while in the
case of non-competitive dynamics (SDnc), the network behaves as if the edges were
fixed at the initial configuration and there were no dynamics. Note that, in the cases
of fast, regular and competitive dynamics, the order of the mean transition time is
given by the reciprocal of the rate λ(r).

§4.1.4 Discussion and outline
Intuition. A node in V can activate for two reasons. It can activate when its neigh-
bors are simultaneously inactive or when there are no edges connecting it to nodes
in U . Interpolation between these two situations gives rise to different cases, which
mainly depend on the speed of the dynamics. In the case of competitive dynamics,
we are able to distinguish between different behaviors for the mean transition time by
analyzing the subcritical, critical and supercritical regimes separately. To summarize,
with high probability as r →∞, the order of activation of nodes in V follows one of
the paths generated by the algorithm until the edge dynamics of rate λ(r) becomes
competitive. The competition begins on time scale λ(r)−1, the time scale on which
all the remaining nodes in V activate, if there are any, and the transition occurs.

Pre-factor. In order to give precise asymptotics, including the pre-factor for the
mean transition time, we must analyze a more complicated Markov process describing
how the states of the nodes, the queue lengths and the states of the edges change over
time. This is beyond the scope of the present chapter, but in Section 4.4 we give an
overview of the main challenges.

Outline of the chapter. The remainder of this chapter is organized as follows. In
Section 4.2 we discuss the main effects of the dynamics on the mean transition time
and we explain how it can slow down or speed up the activation of each node in V .
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In Section 4.3 we prove Theorem 4.1.4 by discussing the different types of dynamics
separately. In Section 4.4 we describe the graph evolution and discuss what needs
to be considered in order to compute the pre-factor of the mean transition time. In
Appendix D we consider a model where the activation rates are fixed and not queue-
dependent. We adapt results from this chapter and the previous chapters in order to
study how the dynamics affects the transition time.

§4.2 The edge dynamics

In this section we analyze the effects that different types of dynamics have on the
mean transition time of the network.

§4.2.1 Disconnection time
Recall from Section 3.1.1 that the nucleation time T Qv of the fork of a node v ∈ V
given the initial queue lengths Q is the time it takes for its neighbors to become
simultaneously inactive, so that v can activate as soon as its clock ticks. Due to
the dynamics, a node v ∈ V does not necessarily activate through the nucleation
of its fork, but it can also activate if at some point there are no edges connecting
it to nodes in U . The dynamics, indeed, might sometimes bring the graph to a
configuration where the degree of v is temporarily 0, so that v can activate as soon
as its clock ticks in o(1).

Definition 4.2.1 (Disconnection time).
Given v ∈ V , we call disconnection time of v the time it takes for v to be disconnected
from U , i.e., to have all possible edges connecting it to U simultaneously absent. We
denote the disconnection time of v by DQ0

v , where Q0 indicates the initial queue
lengths.

As introduced in Section 4.1.2, the dynamics affects the network by allowing the
edges to appear and disappear according to a Poisson clock with rate λ(r). The
alternation between the states of each edge e ∈ EMN is described by an exponential
random variable Se ' Exp(λ(r)) with mean µ(r) = λ(r)−1. Note that, with high
probability as r → ∞, Se takes values of the order of its mean, i.e., Se � µ(r).
Indeed, if we pick x ≺ µ(r), then

lim
r→∞

P(Se ≤ x) = lim
r→∞

1− e−λ(r)x = 0, (4.14)

and the same holds for x � µ(r). In other words, if an edge is absent at time t, then,
with high probability as r →∞, it will take an amount of time of order µ(r) for the
Poisson clock to tick and for the edge to become present. Vice versa, if an edge is
present at time t, then it will take an amount of time of order µ(r) for the edge to
become absent.

The arbitrary bipartite initial configuration of the graph plays an important role
in understanding the transition time. Consider a node in v ∈ V of initial degree
dv(0) = d > 0. Since |U | = M , there are M possible total edges connecting v to U .
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We construct a continuous-time Markov chain M where each state k represents the
set of configurations of the M edges in which k edges are present and M − k edges
are absent. State 0 corresponds to all edges being absent, state 1 corresponds to the
M possible configurations with exactly one edge present, and so on (see Figure 4.1
below).

0 1 2 · · · M − 1 M

(M − 1)λ (M − 2)λ λ

Mλ(M − 1)λ2λλ

Figure 4.1: The Markov chain M describing how the edge dynamics changes the degree of a
node in V . It is a birth-death process with M transient states and one absorbing state.

We consider state 0 as an absorbing state, since we are interested in computing
the hitting times to state 0 starting from any other state. From state M we can only
jump to state M − 1, when one of the M present edges disappears, which happens
with rate Mλ. From each state 0 < k < M we jump to the neighboring states also
with rate Mλ. Indeed, as soon as the clock of one of the M possible edges ticks, we
jump to the state k + 1 if the edge was absent and becomes present, while we jump
to the state k − 1 if the edge was present and becomes absent. Hence, we jump from
state k to state k+1 with probability M−k

M , while we jump from state k to state k−1

with probability k
M .

The transition rate matrix H of the Markov chainM is given by

H =



0 1 2 ··· M−1 M

0 0 0 0 0 0 0
1 λ −Mλ (M − 1)λ 0 0 0
2 0 2λ −Mλ · · · 0 0
... 0 0 · · · · · · · · · 0

M−1 0 0 0 · · · −Mλ λ
M 0 0 0 0 Mλ −Mλ


(4.15)

and can be written as

H =

(
0 0
S0 S

)
, (4.16)

where S is an M × M matrix and S0 = −S1M , where 1M represents the M -
dimensional column vector with every element being 1. Let

(a0,a) = (a0, a1, . . . , aM ) (4.17)

be the M + 1 dimensional row vector describing the probability of starting in one of
the M + 1 states. Since dv(0) = d, we have that the d-th entry of a equals 1 and all

116



§4.2. The edge dynamics

C
h
a
pter

4

the other entries equal 0. Computing the disconnection time of a node with initial
degree d is equivalent to computing the hitting time of the Markov chainM to state
0 starting from state d.

Lemma 4.2.2 (Mean and law of the disconnection time).
Consider a node v ∈ V of initial degree dv(0) = d > 0, and let the edge dynamics be
such that Eu[Se] = µ(r) for each e ∈ EMN .

(i) The disconnection time DQ0

v satisfies

Eu[DQ0

v ] = Cd µ(r) [1 + o(1)], r →∞, (4.18)

where (C1 µ(r), . . . , CM µ(r)) is the solution of the linear system of equations

x1 = 1
M

µ(r)
M + M−1

M

(
µ(r)
M + x2

)
x2 = 2

M

(
µ(r)
M + x1

)
+ M−2

M

(
µ(r)
M + x3

)
· · · = · · ·

xM−1 = M−1
M

(
µ(r)
M + xM−2

)
+ 1

M

(
µ(r)
M + xM

)
xM = µ(r)

M + xM−1.

(4.19)

(ii) The law of the disconnection time DQ0

v follows a phase-type distribution PH(a, S)

and is given by

lim
r→∞

Pu(DQ0

v > x) = a exp(Sx)1, x ∈ (0,∞), (4.20)

where a and S are as in (4.17) and (4.16), respectively. In particular, the above
probability equals the sum of the entries in d-th row of the matrix exp(Sx).

Proof. We prove the two statements separately.

(i) Consider the Markov chainM described above. We know that from each state
k > 0, we jump to a neighboring state with rate Mλ. The jump occurs exactly
when the first of the M possible edges changes its state. This corresponds to
the minimum ofM i.i.d. exponential random variables, which is known to follow
an exponential distribution with mean µ(r)

M . If v has initial degree d, then we
start from state d. We denote by xk the mean hitting times of state 0 starting
from state k. The above system of equations allows us to compute the mean
disconnection time of v.

Since, the system of equations is linear in µ(r) and in the variables xi’s, its
solution is linear in µ(r). Hence the mean disconnection time is of order µ(r).

(ii) The disconnection time of a node v ∈ V of initial degree d > 0 is the hitting
time of state 0 of the Markov chainM starting from state d. The distribution
of the hitting time to the unique absorbing state, starting from any of the other
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finite transient states, is said to be phase-type and is denoted by PH(a, S), with
a and S as in (4.17) and (4.16), respectively.

The distribution function of DQ0

v is given by

lim
r→∞

Pu(DQ0

v ≤ x) =

∫ x

0

P(y) dy = 1− a exp(Sx)1, x ∈ (0,∞), (4.21)

where exp(·) indicates the matrix exponential, and

P(z) = a exp(Sz)S0, z ∈ (0,∞), (4.22)

with S0 as in (4.16). Since the vector a has its d-th entry equal to 1 and all the
other entries equal to 0, we have that the product a exp(Sx)1 equals the sum
of the entries in the d-th row of the matrix exp(Sx).

�

Note that the results of Lemma 4.2.2 hold even without letting r →∞.

§4.2.2 Nucleation vs. dynamics
Without loss of generality, we may consider interference graphs with no isolated nodes
in V , since after time o(1) we would be in such a scenario anyway.

Lemma 4.2.3 (Isolated nodes).
Nodes in V with initial degree 0 activate in time o(1) as r →∞.

Proof. Consider the situation where λ(r) ≺ gV (0), i.e., the dynamics is slower than
the average time it takes for the activation clock of nodes in V to tick. Then a node
v ∈ V with initial degree 0 activate as soon as its clock ticks, hence in time o(1). Next,
consider the situation where the dynamics is very fast, λ(r) � gV (0). Then a node
v ∈ V with initial degree 0 might be blocked by some active neighbors in U by the time
its activation clock ticks for the first time. Recall that |U | = M and note that there
are 2M possible configurations of edges connecting v to U . Each time the activation
clock of v ticks, the probability of being in each of the possible configurations tends to
the uniform probability 1/2M as r →∞. Therefore, after a finite number of attempts,
v eventually activates. Since each tick of the activation clock of v takes time o(1),
v activates in time o(1). Lastly, consider the situation where λ(r) � gV (0). If the
activation clock of a node v ∈ V with initial degree 0 ticks before any of its potential
edges appear, then v activates in time o(1). Otherwise, each subsequent activation
attempt will not be successful unless the edge configuration is such that v has no
neighbors. In other words, v can activate only when the Markov chain describing how
its degree changes over time is in state 0. In this case, v activates with a probability
that at time t is given by gV (t)

gV (t)+Mλ(r) > 0 as r → ∞. Since λ(r)−1 = o(1), by using
similar arguments as in the proof of Lemma 4.2.2, the time it takes for the Markov
chain to return to state 0 when starting from state 0 is o(1). Hence, v has the chance
to activate with positive probability every period of time o(1). Therefore, after a
finite number of attempts, v eventually activates in time o(1). �
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We call activation time of v ∈ V the time it takes for v to activate. Depend-
ing on the dynamics, this can be given either by its nucleation time T Q0

v or by its
disconnection time DQ0

v . When the dynamics is fast enough, nodes in V eventually
activate because their clocks tick and no edges connect them to nodes in U . On the
other hand, when the dynamics is particularly slow, it is more likely for nodes in V
to activate through the nucleation of its fork, and the network tends to behave as
if the edges were frozen at the initial configuration. In between these two scenarios
the dynamics is more interesting and, depending on its speed, we distinguish between
different behaviors. Proposition 4.2.4 below describes the competition between the
nucleation and the dynamics.
Proposition 4.2.4 (Nucleation vs. dynamics).
Let v ∈ V be the node of minimum degree at time t = 0, with dv(0) = d > 0.

(i) If λ(r) � r−(1∧β(d−1)), then, with high probability as r →∞, the activation time
of v is given by its disconnection time, i.e.,

lim
r→∞

Pu(DQ0

v < T Q
0

v ) = 1. (4.23)

(ii) If λ(r) � r−(1∧β(d−1)), then the activation time of v is given either by its nuc-
leation time with positive probability or by its disconnection time with positive
probability.

(iii) If λ(r) ≺ r−(1∧β(d−1)), then, with high probability as r →∞, the activation time
of v is given by its nucleation time, i.e.,

lim
r→∞

Pu(T Q
0

v < DQ0

v ) = 1. (4.24)

Proof. Recall that µ(r) = λ(r)−1 and that the disconnection time DQ0

v is given by
a phase-type random variable with mean of order µ(r). Since phase-type random
variables are constructed by convolutions of exponential random variables, we have
that, with high probability as r → ∞, DQ0

v takes values of order µ(r). Recall also
that, depending on the relation between β and d, the nucleation time T Q0

v is given by
an exponential random variable with mean of order rβ(d−1), by a polynomial random
variable with mean of order r, or by TU (r), which is the average time it takes for the
queue lengths at nodes in U to hit zero. Hence, with high probability as r →∞, T Q0

v

takes values of order r1∧β(d−1). It is therefore immediate to distinguish between the
three cases.

(i) Since µ(r) ≺ r1∧β(d−1), with high probability as r → ∞, v activates due to
absence of edges.

(ii) Since µ(r) � r1∧β(d−1), there is a competition between the nucleation time T Q0

v

and the phase-type random variable DQ0

v . Depending on their parameters, each
of them can occur before the other with positive probability.

(iii) Since µ(r) � r1∧β(d−1), with high probability as r → ∞, v activates through
the nucleation of its fork.

�
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§4.3 Proofs of the main results

In this section we prove Theorem 4.1.4 by analyzing the different types of dynamics
separately.

§4.3.1 Proof: fast dynamics
Consider the fast dynamics (FD) where λ(r)→∞ as r →∞.

Proof of Theorem 4.1.4 (FD). With high probability as r → ∞, for each edge the
random intervals between clock ticks are of order λ(r)−1 = o(1). By Lemma 4.2.2,
the mean disconnection time of a node in V is of order λ(r)−1. Moreover, by Pro-
position 4.2.4, with high probability as r →∞, each node activates due to absence of
edges and not through the nucleation of its fork, and hence it activates in a time of
order λ(r)−1. In conclusion, with high probability as r → ∞, the transition time of
G(·) with initial queue lengths Q0 satisfies

Eu[T Q
0

G(·)] � λ(r)−1 = o(1), r →∞, (4.25)

hence the claim is settled. �

§4.3.2 Proof: regular dynamics
Consider the regular dynamics (RD) where λ(r) = C ∈ (0,∞).

Proof of Theorem 4.1.4 (RD). With high probability as r → ∞, for each edge the
random intervals between clock ticks are of order λ(r)−1 = O(1). By Lemma 4.2.2,
the mean disconnection time of a node in V is of order λ(r)−1. Note that nodes in
V of initial degree 1 can activate either because their only neighbor deactivates in
O(1) or due to absence of edges with a mean disconnection time of order λ(r)−1.
Moreover, by Proposition 4.2.4, with high probability as r →∞, nodes in V of initial
degree greater than 1 activate due to absence of edges in a time of order λ(r)−1. In
conclusion, with high probability as r → ∞, the transition time of G(·) with initial
queue lengths Q0 satisfies

Eu[T Q
0

G(·)] � λ(r)−1 = O(1), r →∞, (4.26)

hence the claim is settled. �

§4.3.3 Proof: non-competitive dynamics

Consider the slow dynamics where λ(r) → 0 as r → ∞ with λ(r) ≺ r−(1∧β(d∗−1)),
called the non-competitive dynamics (SDnc). In this case the dynamics is so slow
that it has no effect on the transition.
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Proof of Theorem 4.1.4 (SDnc). The mean disconnection time of any node in V is of
order larger than r1∧β(d∗−1). Hence each node in V activates through the nucleation
of its fork, which is at most of order r1∧β(d∗−1). The dynamics is very slow, almost
frozen, and so it does not affect the nucleation of the forks. Hence, with high prob-
ability as r → ∞, the transition time of G(·) with initial queue lengths Q0 satisfies
Theorem 3.3.3 and the network behaves as if there were no dynamics. Hence the
claim is settled. �

§4.3.4 Proof: competitive dynamics
Consider the slow dynamics (SD) where λ(r) → 0 as r → ∞ with λ(r) = r−α,
with 0 < α ≤ 1 ∧ β(d∗ − 1), called the competitive dynamics (SDc). This is the
most interesting type of dynamics, since it competes with the fork nucleations. The
activation of the nodes in V can occur both because of the absence of their edges and
because of the nucleation of their forks. Recall the algorithm defined in Section 3.2
in Chapter 3.

Proof of Theorem 4.1.4 (SDc). Denote by d̂ the largest integer such that β(d̂−1) < α.
Let the algorithm generate all possible activation paths for nodes in V and denote
this set by A. Fix a path a ∈ A. Consider the sequence of activating nodes along
the path a up to the step in which the degree is larger than d̂. Say that at step
k we have d̄k > d̂. Consider only the first k − 1 steps. We indicate by Aa(α) the
event that the network follows the path a ∈ A until time scale rα. On time scale
rα the dynamics starts competing with the nucleation, and the order of activation of
the remaining nodes described by the algorithm is not preserved anymore. In other
words, the order of activation of nodes in V follows the order of activation of the
path a only for the first k − 1 nodes. With each of these k − 1 nodes is associated a
nucleation time of order less than or equal to r1∧β(d̂−1). Hence, by Proposition 4.2.4,
with high probability as r → ∞, the activation time of these nodes is given by their
nucleation time. We apply Proposition 4.2.4 to each iteration of the graph, each time
by considering a node with minimum degree d̄j for j = 1, . . . , k− 1. Indeed, we know
from Lemma 4.2.2, that the mean disconnection time of a node is of order rα. We
treat the subcritical, critical and supercritical regimes separately.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. We have 0 < α ≤ β(d∗ − 1) < 1. The

activation time of the next activating node is of order rα. It cannot be of
smaller order since at step k we have d̄k > d̂ by construction. It cannot be of
higher order either since the disconnection time of any of the remaining nodes
is of order rα. After this activation, there might be nodes whose degree has
decreased and whose nucleation time is of smaller order. When we sum the
mean activation times of the nodes in V to compute the mean transition time,
we see that these nodes will not contribute significantly as r → ∞. All the
remaining nodes are likely to activate in any possible order, but none of them
will have an activation time of order larger than rα. To know how many nodes
contribute to the transition time with an activation time of order rα, we need
to have more control on how the degrees of the nodes evolve over time. To

121



4. Dynamic bipartite interference graphs

C
h
a
pt

er
4

conclude, the order of activation of nodes in V follows the path a as long as the
nucleation times associated to the nodes are of order smaller than rα. After that,
the remaining nodes can activate with positive probability in any order with an
activation time of order at most rα. Hence, the transition time conditional on
the event Aa(α) satisfies

Eu[T Q
0

G(·) |Aa(α)] � rα [1 + o(1)], r →∞, (4.27)

and we get
Eu[T Q

0

G(·)] � r
α [1 + o(1)], r →∞. (4.28)

(II) β = 1
d∗−1 : critical regime. For 0 < α < 1, the situation is the same as in the

subcritical regime described above. For α = 1, the activation time of the next
activating node is of order r. After this activation, all the remaining nodes are
likely to activate in any possible order, but none of them will have an activation
time of order larger than r. The order of activation of nodes in V follows the
path a as long as the nucleation times associated to the nodes are of order smaller
than r. After that, the remaining nodes can activate with positive probability
in any order with an activation time of order at most r. Hence, the transition
time conditional on the event Aa(α) satisfies

Eu[T Q
0

G(·) |Aa(α)] � r [1 + o(1)], r →∞, (4.29)

and we get
Eu[T Q

0

G(·)] � r [1 + o(1)], r →∞. (4.30)

Note that if any of the nodes has an activation time of order r but larger than
TU (r), then the transition time conditional on the event Aa(α) is the time it
takes for the queue lengths at nodes in U to hit zero, which satisfies

Eu[T Q
0

G(·) |Aa(α)] = TU (r) [1 + o(1)], r →∞. (4.31)

Hence,
Eu[T Q

0

G(·)] = TU (r) [1 + o(1)], r →∞. (4.32)

(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. For 0 < α < 1, the situation is the same

as in the subcritical regime described above. For α = 1, the situation is the
same as in the critical regime described above. For α > 1, the transition time
conditional on the event Aa(α) is the time it takes for the queue lengths at
nodes in U to hit zero, which satisfies

Eu[T Q
0

G(·) |Aa(α)] = TU (r) [1 + o(1)], r →∞. (4.33)

Hence,
Eu[T Q

0

G(·)] = TU (r) [1 + o(1)], r →∞. (4.34)

�
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Note that the order of the transition time does not depend on the path along which
we compute it. The algorithm generates all possible activation paths of the nodes
nucleating before time scale λ(r)−1 = rα. The remaining nodes can activate in any
order depending on the dynamics. To compute the pre-factor of the mean transition
time along these paths, we need to analyze in detail the Markov process describing
the graph evolution, in particular, the degrees of the nodes changing over time. Our
methods do not capture this detail and we are only able to state a result for the
leading order term.

§4.4 The graph evolution

In this section we discuss the Markov process describing the graph evolution under the
dynamics. Control on this process is the key to obtaining a more precise asymptotics
for the mean transition time of the network.

§4.4.1 The graph evolution process
Consider a dynamics with rate λ(r) = r−α. We have seen in Proposition 4.2.4 that
each node in V whose nucleation time is of smaller order than rα activates through
the nucleation of its fork. On time scale rα the dynamics starts competing with
the nucleation and the order of activation of the remaining nodes described by the
algorithm is not preserved anymore. Note that the algorithm updates the graph at
each iteration in order to keep track of the degree of the remaining nodes after each
activation. When introducing the dynamics on the edges, we need information about
the states of the nodes and the edges in the graph. We assume that the algorithm
does not update the graph at each iteration anymore, but we focus on the number of
active neighbors each node has.

Definition 4.4.1 (Active degree).
We define the active degree of a node as the number of its active neighbors. For
u ∈ U , the active degree at time t is given by

d̃u(t) =
∣∣{v ∈ V : uv ∈ E(t), Xv(t) = 1}

∣∣. (4.35)

Analogously, for v ∈ V , the active degree at time t is given by

d̃v(t) =
∣∣{u ∈ U : uv ∈ E(t), Xu(t) = 1}

∣∣. (4.36)

Note that for a node to activate, its active degree must be 0. It is immediate to see
that the active degree of a node cannot exceed its degree, i.e., for any u ∈ U and
v ∈ V ,

d̃u(t) ≤ du(t), d̃v(t) ≤ dv(t). (4.37)

The main challenge in describing the graph evolution is that any of the remaining
nodes could activate next with positive probability. The activation of a node due to
absence of edges is captured by the scenario in which its active degree hits 0. The
activation of a node through the nucleation of its fork depends on the aggressiveness of
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the activation rates and on the number of active neighbors. Both types of activation
are determined by the degree evolution. Assume, for example, that an edge between
two active nodes appears. By our model assumptions (see Remark 4.1.3), the node
in U deactivates, implying that the active degrees of its neighbors in V decrease by
1. If the mean nucleation time of the new fork of one of the neighbors is of order less
than or equal to rα, then this neighbor will be more likely to activate through the
nucleation of its fork. The degree evolution induced by the dynamics affects both the
disconnection and the nucleation times of the nodes.

The node activity process (X(t), Q(t))t≥0 and the edge activity process (Y (t))t≥0

form a continuous-time Markov process on

X × R≥0 × Y (4.38)

that describes the evolution of the graph under the effect of the dynamics. We refer
to this process as the graph evolution process. Note that if we know which nodes are
active and which edges are present, then we can recover the degree and the active
degree of each node in the graph. Hence, understanding the graph evolution process
is crucial to describe how the degrees of the nodes change over time and how nodes
activate.

§4.4.2 Transitions
Consider a feasible state where some nodes are active and some edges are present. By
feasible we mean that it respects the constraints given by the edges, for which two
connected nodes cannot be active simulteneously. Recall that |U | = M, |V | = N and
|EMN | = MN . Hence, an arbitrary feasible state at time t has h active nodes in U
with h = 0, . . . ,M , k active nodes in V with k = 0, . . . , N , and l present edges with
l = 0, . . . ,MN . Consequently, there are M − h inactive nodes in U , N − k inactive
nodes in V , and MN − l absent edges. Note that the initial state u is described by
h = M , k = 0 and l = |E(0)|, while the transition occurs as soon as state v is reached,
for which k = N .

Clock ticks. The graph evolution is governed by different Poisson clocks ticking at
various rates: the activation clocks, the deactivation clocks and the edge clocks. We
analyze how the network evolves each time one of these clock ticks. Moreover, note
that the queue lengths, hence the input process (recall Definition 1.1.3), also play a
role, since the activation rates depend on them.

• The activation clock of a node u ∈ U ticks at rate gU (Qu(t)) at time t. The
probability of this clock being the first one to tick is given by

gU (Qu(t))

Z
, (4.39)

with

Z =

M−h∑
i=1

gU (Qi(t)) +

N−k∑
j=1

gV (Qj(t)) + h+ k +MNλ(r). (4.40)
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The tick has two possible effects on the network. If the neighbors of u are all
inactive, then u activates and the active degrees of all its neighbors increase by
1. If there is at least one active neighbor of u, then the activation attempt fails
and nothing happens.

• The deactivation clock of a node u ∈ U ticks at rate 1. The probability of this
clock being the first one to tick is given by

1

Z
. (4.41)

Node u deactivates and the active degrees of all its neighbors decrease by 1.

• The activation clock of a node v ∈ V ticks at rate gV (Qv(t)) at time t. The
probability of this clock being the first one to tick is given by

gV (Qv(t))

Z
. (4.42)

The tick has two possible effects on the network. If the neighbors of v are all
inactive, then v activates and the active degrees of all its neighbors increase by
1. If there is at least one active neighbor of v, then the activation attempt fails
and nothing happens.

• The deactivation clock of a node v ∈ V ticks at rate 1. The probability of this
clock being the first one to tick is given by

1

Z
. (4.43)

Node v deactivates and the active degrees of all its neighbors decrease by 1.

• The activation clock of an edge e ∈ EMN ticks at rate λ(r). The probability of
this clock being the first one to tick is given by

λ(r)

Z
. (4.44)

Depending on which edge appears or disappears and on the nodes involved, the
tick has different effects on the network, which are described below.

Edge appearing and disappearing. If we know the number of active nodes in U
and V , then we can compute the probabilities of each of the following scenarios with
simple combinatorial arguments. There are four possible scenarios in which an edge
can appear.

(◦ ◦) When an edge between two inactive nodes appears, their degrees increase by 1.

(◦ •) When an edge between an inactive node in U and an active node in V appears,
the active degree of the node in U increases by 1 and the degree of the node in
V increases by 1.
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(• ◦) When an edge between an active node in U and an inactive node in V appears,
the degree of the node in U increases by 1 and the active degree of the node in
V increases by 1.

(• •) When an edge between two active nodes appears, the node in U deactivates, its
active degree increases by 1, the active degrees of all its neighbors in V decrease
by 1 and the degree of the node in V increases by 1.

In a similar fashion, there are three possible scenarios in which an edge can disappear.
Recall that there cannot be an edge between two active nodes.

(◦ ◦) When an edge between two inactive nodes disappears, their degrees decrease by
1.

(◦ •) When an edge between an inactive node in U and an active node in V disappears,
the active degree of the node in U decreases by 1 and the degree of the node in
V decreases by 1.

(• ◦) When an edge between an active node in U and an inactive node in V disappears,
the degree of the node in U decreases by 1 and the active degree of the node in
V decreases by 1.

The transition time is related to the graph evolution process, since the activation
times of the nodes in V depend on the activation rates, the speed of the dynamics
and the degree evolution. The complicated nature of the process prevents us from
deriving an explicit formula for the pre-factor of the mean transition time, which
would require a better control on the precise asymptotics of each activation.

§D Appendix: a model with fixed activation rates

We have seen how the dynamics influences the mean transition time of wireless
random-access models where the activation rates depend on the current queue lengths
at the nodes. The model is quite challenging and deals with two levels of complexity,
namely, the queue-based activation rates and the edge dynamics. Not much is known
in the literature for random-access protocols with dynamic interference graph, even
for models with fixed activation rates. In this section we adapt the theory built up
in Chapters 2–3 to study the effect of the dynamics on such type of models. Assume
that the activation rates are of the form

ri(t) =

{
rβ , if i ∈ U,
rβ
′
, if i ∈ V, (4.45)

with β, β′ ∈ (0,∞) and β′ > β + 1. We recall that we are interested in the transition
time asymptotics as r →∞.

We start by adapting the results for complete bipartite graphs in Chapter 2 to
the model with fixed activation rates. The following theorem is consistent with [59,
Example 4.1].
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Theorem D.1 (Complete bipartite graphs with fixed activation rates).
Consider the complete bipartite graph G = ((U, V ), E) with initial queue lengths Q0

as in (1.11). Suppose that (4.45) holds.

(I) β ∈ (0, 1
|U |−1 ): subcritical regime. The transition time satisfies

Eu[T Q
0

G ] =
1

|U |
rβ(|U |−1) [1 + o(1)], r →∞. (4.46)

(II) β = 1
|U |−1 : critical regime. The transition time satisfies

Eu[T Q
0

G ] =
1

|U |
r [1 + o(1)], r →∞. (4.47)

(III) β ∈ ( 1
|U |−1 ,∞): supercritical regime. The transition time satisfies

Eu[T Q
0

G ] =
γU

c− ρU
r [1 + o(1)], r →∞. (4.48)

Proof. The claims follow from Sections 2.4.1–2.4.2 in Chapter 2. We compute the
critical time scale and the mean transition time using fixed activation rates instead of
time depending ones. In both the critical and subcritical regimes, the pre-factor turns
out to be 1

|U | and the law is exponential. In the critical regime, we know that the
queue lengths decrease significantly after a time of order r. However, this does not
affect the transition time, since now the activation rates do not depend on the queue
lengths. In the supercritical regime, we still have the same behavior as in the model
with queue-dependent activation rates. Indeed, when the queue lengths at nodes in
U hit zero, the nodes in U deactivate by assumption and the transition occurs. �

Next, we state a result for arbitrary bipartite graphs with fixed activation rates
(analogue of Theorem 3.3.3 in Chapter 3). Note that the algorithm still plays a crucial
role in determining the mean transition time.

Theorem D.2 (Arbitrary bipartite graphs with fixed activation rates).
Consider the bipartite graph G = ((U, V ), E) with initial queue lengths Q0 as in (1.11).
Suppose that (4.45) holds. Let Aa be the event that the network follows the path a ∈ A,
among the paths generated by the algorithm.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. The transition time satisfies

Eu[T Q
0

G |Aa] =
∑

1≤k≤N
k: d̄k=d∗

1

nkd∗
rβ(d∗−1) [1 + o(1)], r →∞. (4.49)

(II) β = 1
d∗−1 : critical regime. Then the transition time satisfies

Eu[T Q
0

G |Aa] =
∑

1≤k≤N
k: d̄k=d∗

1

nkd∗
r [1 + o(1)], r →∞. (4.50)
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The above result holds as long as the pre-factor is below the value γU
c−ρU , which

corresponds to the time it takes for the queue lengths at nodes in U to hit zero.
Otherwise, the supercritical regime applies.

(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. The transition time satisfies

Eu[T Q
0

G ] =
γU

c− ρU
r [1 + o(1)], r →∞. (4.51)

Proof. The claims follow from Theorem D.1 and the analysis of the algorithm and
the next nucleation times in Sections 3.2 and 3.4.2 in Chapter 3. We derive the
mean transition time along the paths generated by the algorithm by computing the
next nucleation times at each step. In the subcritical regime, the nucleation times of
nodes in V are all exponentially distributed and independent of each other. Indeed,
the activation rates are the same, independently of the queue lengths decreasing over
time. At each step k, the next nucleation time is the minimum of nk i.i.d. exponential
random variables, and hence its mean exhibits the term fk = 1

nk
in the pre-factor.

In the critical regime, the pre-factor of the mean transition time along each path
must be below the value γU

c−ρU , otherwise the supercritical regime applies and the
transition occurs because the queue lengths at nodes in U hit 0. If we assume that
γU
c−ρU > 1, then the nucleation of a fork occurs before the queue lengths at nodes in
U hit zero. We are able to derive the law of the transition time along each path for
both the subcritical and critical regimes. Both are described by convolutions of the
exponential laws of the next nucleation times of the activating nodes in V . In the
supercritical regime, we have the same behavior as in the model with queue-dependent
activation rates. �

Finally, we show that the results from Theorem 4.1.4 also hold when we consider
a dynamic bipartite graph with fixed activation rates. We are able to compute the
order of the mean transition time, while the pre-factor still depends on the graph
evolution described in Section 4.4.

Theorem D.3 (Dynamic bipartite graphs with fixed activation rates).
Consider the dynamic bipartite graph G(·) = ((U, V ), E(·)) with the edge dynamics
governed by λ(r) and initial queue lengths Q0. Suppose that (4.45) holds. Then the
results of Theorem 4.1.4 hold.

Proof. The claim follows from Theorem D.2 and the intuition behind Proposition 4.2.4.
The order of the mean transition time in the model with fixed activation rates is the
same as in the model with queue-dependent activation rates. The dynamics com-
petes with the nucleations of the nodes in the same way, depending on its speed.
The different type of dynamics (fast, regular and slow) lead to the same results as in
Theorem 4.1.4. �
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