
Wireless random-access networks and spectra of random graphs
Sfragara, M.

Citation
Sfragara, M. (2020, October 28). Wireless random-access networks and spectra of random
graphs. Retrieved from https://hdl.handle.net/1887/137987
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/137987
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/137987


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/137987 holds various files of this Leiden University 
dissertation. 
 
Author: Sfragara, M. 
Title: Wireless random-access networks and spectra of random-graphs 
Issue Date: 2020-10-28 
 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/137987
https://openaccess.leidenuniv.nl/handle/1887/1�




CHAPTER 3
Arbitrary bipartite interference

graphs

This chapter is based on:
S.C. Borst, F. den Hollander, F.R. Nardi, M. Sfragara. Wireless random-access net-
works with bipartite interference graphs. [arXiv:2001.02841], 2020.

Abstract

We consider random-access networks where each node represents a server with a
queue. Each node can be either active or inactive. A node deactivates at unit rate,
and activates a rate that depends on its queue length, provided none of its neighbors
is active. We consider arbitrary bipartite graphs in the limit as the queues become
large, and we identify the transition time between the two states where one half of
the network is active and the other half is inactive. We decompose the transition into
a succession of transitions on complete bipartite subgraphs, and formulate a greedy
algorithm that takes the graph as input and gives as output the set of transition paths
the system is most likely to follow. Along each path we determine the mean transition
time and its law on the scale of its mean. Depending on the activation rate functions,
we identify three regimes of behavior.



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

§3.1 Introduction

This chapter is a continuation of Chapter 2. We turn our attention to general bipartite
interference graphs: the node set can be partitioned into two nonempty sets U and
V , but not necessarily all nodes in U interfere with all nodes in V .

In Section 3.1.1 we describe the setting and the mathematical model of interest in
this chapter. In Section 3.1.2 we introduce the key idea behind our main results and
give an outline of the remainder of the chapter.

§3.1.1 Setting
We refer to Sections 1.1.5 and 2.1.1 for a general introduction to the mathematical
model. In this section we refine it with some extra notions we will need in the chapter.

Consider the bipartite graph G = ((U, V ), E), where U tV is the set of nodes and
E is the set of (undirected) edges that connect a node in U to a node in V , and vice
versa (see Figure 3.1 for examples). Through the chapter we assume |V | = N .

Figure 3.1: Examples of bipartite graphs: cyclic ladder (left), hypercube (center), even torus
(right).

We study the internal model with activation rates depending on the queue lengths
as in (1.5). We assume the activation rates to satisfy Definition 1.1.4 and we focus
on the following.

Definition 3.1.1 (Assumptions on the activation rates).
We assume polynomial activation functions of the form

gU (x) ∼ Bxβ , x→∞,
gV (x) ∼ B′xβ′ , x→∞, (3.1)

with B,B′, β, β′ ∈ (0,∞). We assume that nodes in V are much more aggressive than
nodes in U , namely,

β′ > β + 1. (3.2)

As we will see later, this ensures that the transition from u to v can be decomposed
into a succession of transitions on complete bipartite subgraphs.

70



§3.1. Introduction

C
h
a
pter

3

We begin by recalling the results for complete bipartite graphs from Chapter 2
(Theorem 2.1.6). Note that they are strongly related to the initial queue lengths at
the nodes in U , which are assumed in (1.11) to be QU (0) = γUr.

Theorem (Theorem 2.1.6).
Let G be a complete bipartite graph.

(I) β ∈ (0, 1
|U |−1 ): subcritical regime. The transition time satisfies

Eu[TG] = FsubQU (0)β(|U |−1) [1 + o(1)], r →∞, (3.3)

with Fsub = 1
|U |B−(|U|−1) , and

lim
r→∞

Pu
(
TG

Eu[TG]
> x

)
=

∫ ∞
x

Psub(y) dy = e−x, x ∈ [0,∞) (3.4)

with
Psub(z) = e−z, z ∈ [0,∞). (3.5)

(II) β = 1
|U |−1 : critical regime. The transition time satisfies

Eu[TG] = FcrQU (0) [1 + o(1)], r →∞, (3.6)

with Fcr = 1
|U |B−(|U|−1)+(c−ρU )

, and

lim
r→∞

Pu
(
TG

Eu[TG]
> x

)
=

∫ ∞
x

Pcr(y) dy

=

{
(1− Cx)

1−C
C , if x ∈ [0, 1

C ),

0, if x ∈ [ 1
C ,∞),

(3.7)

with

Pcr(z) =

{
(1− C)(1− Cz) 1

C−2, if z ∈ [0, 1
C ),

0, if z ∈ [ 1
C ,∞),

(3.8)

and C = Fcr (c− ρU ) ∈ (0, 1).

(III) β ∈ ( 1
|U |−1 ,∞): supercritical regime. The transition time satisfies

Eu[TG] = FsupQU (0) [1 + o(1)], r →∞, (3.9)

with Fsup = 1
c−ρU , and

lim
r→∞

Pu
(

τ1V
Eu[TG]

> x

)
=

∫ ∞
x

Psup(y) dy =

{
1, if x ∈ [0, 1),

0, if x ∈ [1,∞),
(3.10)

with
Psup(z) = δ1(z), z ∈ [0,∞), (3.11)

where δ1(z) is the Dirac function at 1.

71



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

Theorem 2.1.6 shows that there is a trichotomy: depending on the value of β the
transition exhibits a subcritical regime, a critical regime or a supercritical regime.
Our goal is to extend Theorem 2.1.6 to arbitrary bipartite graphs. Note how the
mean transition time depends on the actual value of the initial queue lengths at nodes
in U : for complete bipartite graphs, those are fixed and equal to γUr; for arbitrary
bipartite graphs, we will see how the mean transition time depends on the way the
queue lengths are changing when nodes in V activate.

Next, we define some key notions that we will need in the chapter.

Definition 3.1.2 (Fork).
For a node v ∈ V , we define the set of neighbors of v as N(v) = {u ∈ U : uv ∈ E}
and the degree of v as d(v) = |N(v)|. Given a node v ∈ V , we refer to fork of v as
the complete bipartite subgraph of G containing only node v, its neighbors N(v) ⊆ U
and the edges between them. We talk about a d-fork when d(v) = d with d ∈ N.

Definition 3.1.3 (Updated queue lengths).
Let QU = {QU,i}|U |i=1 be the sequence of queues associated with the nodes in U ,
and QV = {QV,j}|V |j=1 the sequence of queues associated with the nodes in V . Put
Q = (QU , QV ), and let Qk = (QkU , Q

k
V ) be the pair of sequences representing the

updated queue lengths after k nodes in V activated (see Definition 3.2.9 later for more
details).

We denote by T QG the transition time of the graph G when the initial queue lengths
are Q = (QU , QV ). It represents the time it takes to reach v starting from u. Below,
we define the nucleation time in order to distinguish between the full transition of
G and the successive transitions (nucleations) of the subgraphs of G related to each
node activating in V .

Definition 3.1.4 (Nucleation time).
We call nucleation time of the fork of v the time it takes for the nodes N(v) to
deactivate and for v to activate. We denote this time by T Qv = T QN(v),v, where v
represents the activating node and Q represents the initial queue lengths. It can be
seen as the transition time of the complete bipartite subgraph of G represented by
the fork of v. Note that, for v, w ∈ V , T Qv and T Qw are dependent random variables
when N(v) ∩N(w) 6= ∅.

§3.1.2 Key idea and outline
The key idea behind this chapter is to define an algorithm that allows us to identify
the set of paths A the network is mostly likely to follow while nodes in U deactivate
and nodes in V activate. We label the nodes in V based on their first activation and
we denote by a∗ the path that the network follows. More precisely, a∗ = (v∗1 , . . . , v

∗
N )

with v∗1 , . . . , v∗N all distinct, where v∗1 is the first node that activates and v∗N the last
one. Let E(a∗) denote the event that any of the paths in A occurs. We will prove
that

lim
r→∞

Pu(E(a∗)) = 1. (3.12)

72



§3.2. The algorithm

C
h
a
pter

3

In particular, we will show that if we condition on the event

Aa = {the network follows path a ∈ A}, (3.13)

then we are able to identify how the mean transition time Eu[T QG |Aa] depends on
the sequence of nucleation times of the forks of the nodes in V , ordered as in the
path a (Theorem 3.3.2). We derive the asymptotics of the mean transition time as
r → ∞ (Theorem 3.3.3) and identify the law of the transition time divided by its
mean (Theorem 3.3.5). To do so, we determine how the queue lengths change along
the given path (Theorem 3.4.8). Similarly as for the complete bipartite graph in
Theorem 2.1.6, we distinguish between three regimes for the value of β (subcritical,
critical and supercritical), in which the queues behave differently and, consequently,
so does the transition time.

Outline of the chapter. The remainder of this chapter is organized as follows. In
Section 3.2 we introduce the algorithm, show that it has two important properties,
greediness and consistency, and give an example of how it works. In Section 3.3 we
state our main theorems. In particular, we show how both the mean transition time
and its law on the scale of its mean can be determined according to the path that
the algorithm chooses. In Section 3.4 we show how the nucleation times depend on
the graph structure and we analyze how the queue lengths at the nodes change along
each path that the algorithm chooses. In Section 3.5 we provide the proof of the two
algorithm properties mentioned above and we discuss the algorithm complexity. In
Section 3.6 we prove our main theorems. In Appendix C, we show some technical
computations for the mean nucleation time in the special setting of disjoint forks
competing for activation.

§3.2 The algorithm

In this section we introduce the algorithm that describes, step by step, how the net-
work behaves while nodes in U deactivate and nodes in V activate. The presentation
is organised into a series of definitions and lemmas. In Section 3.2.1 we define how the
algorithm works iteratively. In Section 3.2.2 we show that the algorithm is greedy and
consistent (Propositions 3.2.6–3.2.7). In Section 3.2.3 we explain how the algorithm
is used to capture the nucleation of the forks. An example of a bipartite graph and
how the algorithm acts on it are given in Section 3.2.4.

§3.2.1 Definition of the algorithm
Let N = |V | be the number of nodes in V . The algorithm takes as input the bipartite
graph G = ((U, V ), E) and gives as output a sequence of triples that is needed to
characterise the transition time, namely,

G→ (Yk, d̄k, nk)Nk=1, (3.14)

where Yk is a random variable with values in {1, . . . , N} describing the index of the
node selected at step k, d̄k ∈ N is the degree of the selected node and nk ∈ N is

73



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

a parameter that counts how many possibilities there are at step k to choose the
next node in V (uniformly at random) from the remaining nodes with least degree.
Sometimes we will write v∗k instead of vYk to emphasise that the network is following
a specific order of activation for the nodes in V .

Definition 3.2.1 (Algorithm).
Set G = G1 = ((U1, V1), E1). Given the graph Gk = ((Uk, Vk), Ek), find the graph
Gk+1 = ((Uk+1, Vk+1), Ek+1) by iterating the following procedure until Vk+1 is empty.

• Start from the graph Gk.

• Look at the nodes in Vk and at the minimum degree d̄k in Gk.

• Pick a node uniformly at random from the ones with minimum degree in Gk.

• Denote the chosen node by v∗k and the number of choices by nk.

• Eliminate the node v∗k and all its neighbors in Uk, together with all their adjacent
edges. Denote the resulting bipartite graph by Gk+1.

The idea of eliminating step by step the nodes in U that deactivated comes from
the fact that when a node in V activates, it “blocks” all its neighbors in U , which,
with high probability as r → ∞, will remain inactive for the rest of the time. This
is due to the aggressiveness of the nodes in V compared to the nodes in U (recall
Definition 3.1.1). The following lemma will be proved in Section 3.6.2.

Lemma 3.2.2 (Activation sticks).
Consider a node u ∈ U and let N(u) ⊆ V be the set of neighbors of u. Denote by tu
the first time a node v ∈ N(u) activates. Then, with high probability as r → ∞, u
remains inactive after tu, i.e., Xu(t) = 0 for all t ≥ tu.

Definition 3.2.3 (Mean nucleation time for the algorithm).
The algorithm generates a sequence v∗1 , . . . , v∗N of successively activating nodes in V .
Associated with step k of the algorithm is the nucleation time of the fork of node v∗k
(see Definition 3.1.2), which according to Theorem 2.1.6 satisfies

Eu[T Q
k−1

v∗k
] = F k (Eu[Qk−1

U ])1∧β(d̄k−1) [1 + o(1)], r →∞. (3.15)

Here F k is a pre-factor that depends on the degree d̄k, which plays the role of |U | in
Theorem 2.1.6, and on its relation with β. The term Eu[Qk−1

U ] represents the mean
updated queue lengths at the nodes in Uk in the subgraph Gk−1 (see Definition 3.1.3),
and plays the role of the initial queue lengths in Theorem 2.1.6. Note that Q0

U is fixed,
while Q1

U , Q
2
U , . . . , Q

N−1
U are random.

Intuitively, the sum of the mean nucleation times associated with the path gener-
ated by the algorithm gives the mean transition time along that path. We will see in
Section 3.4.2 that the pre-factors F k actually need to be adjusted by certain weights
that depend on the graph structure.

74



§3.2. The algorithm

C
h
a
pter

3

§3.2.2 Properties of the algorithm
Definition 3.2.4 (Maximum least degree).
Given the sequence (d̄k)Nk=1 generated by the algorithm, let

d∗ = max
1≤k≤N

d̄k (3.16)

be the maximum least degree of the path associated with (d̄k)Nk=1.

Each time we run the algorithm, it may generate a different sequence, since it decides
uniformly at random which node in V with minimum degree to pick next. We know
that the set of paths A generated by the algorithm is the set of most likely paths
the network follows. The order of the nodes in a path is given by their successive
activation in V .

The following lemma and two propositions will be proved in Section 3.5.2.

Lemma 3.2.5 (Comparing maximum least degrees of different paths).
Consider two different paths a, b such that a ∈ A is generated by the algorithm. For
k = 1, . . . , N , denote by d̄k,a and d̄k,b the minimum degrees at step k in paths a and
b. Let d∗a = max1≤k≤N d̄k,a and d∗b = max1≤k≤N d̄k,b. Then d∗a ≤ d∗b .

In other words, given any path b, its maximum least degree cannot be smaller than
the maximum least degree of a path a generated by the algorithm. We will see
how the maximum least degree d∗ determines the order of the mean transition time.
Depending on how β is related to d∗, we distinguish between the following three
different regimes.

(I) Sucritical regime, if β ∈ (0, 1
d∗−1 ).

(II) Critical regime, if β = 1
d∗−1 .

(III) Supercritical regime, if β ∈ ( 1
d∗−1 ,∞).

The algorithm is greedy, in the sense that it always chooses the node that adds
the least to the total transition time along the path, simply because this node is likely
to be the first to activate. The greedy way in which the algorithm picks the nodes
ensures that the transition time along the chosen path is the shortest possible.

Proposition 3.2.6 (Greediness).
The mean transition time along a path generated by the algorithm is the shortest
possible.

The algorithm is consistent, in the sense that d∗ is unique. Different paths generated
by the algorithm lead to the same order of the mean transition time.

Proposition 3.2.7 (Consistency).
All the paths generated by the algorithm lead to the same order of the mean transition
time.

75



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

§3.2.3 Structure of the algorithm
A node in V activates because it is the one whose complete bipartite fork has the
fastest nucleation, and occurs because of the randomness in the activation and deac-
tivation Poisson clocks and the randomness of the queue length processes that appear
as the arguments of the activation rates.

Definition 3.2.8 (Next nucleation time).
Given that k − 1 nodes in V already activated, we define by next nucleation time τ̄k
the time it subsequently takes for the k-th node in V to activate, i.e.,

τ̄k = minv∈VkT Q
k−1

v . (3.17)

By keeping track of which nodes have been picked, we can compute the updated
queue lengths for the successive mean nucleation times.

Definition 3.2.9 (Updated queue lengths).
For k = 1, . . . , N , define the updated queue lengths Qk−1 by

Qk−1 = (Qk−1
U , Qk−1

V ) =

(
QU

( k−1∑
l=1

τ̄l

)
, QV

( k−1∑
l=1

τ̄l

))
. (3.18)

When a node in V activates, its fork can be of three different types depending on how
its degree is related to β.

Definition 3.2.10 (Subcritical, critical and supercritical nodes).
Given that k− 1 nodes in V already activated, consider the k-th activating node and
its fork of degree d̄k. If β ∈ (0, 1

d̄k−1
), then the node (or its fork) is subcritical. If

β = 1
d̄k−1

, then it is critical. If β ∈ ( 1
d̄k−1

,∞), then it is supercritical.

In the subcritical and critical regimes, with high probability as r → ∞, the next
nucleation time τ̄k is given by the minimum over the nodes with least degree in Vk.
Indeed, with high probability as r → ∞, nodes with least degree activate first. The
following lemma will be proved in Section 3.6.2.

Lemma 3.2.11 (Activation selects low degree).
For k = 1, . . . , N , consider two nodes v, w ∈ Vk such that dk(w) > dk(v) = d̄k.
Suppose that β ∈ (0, 1

d̄k−1
]. Then the probability of w activating before v satisfies

lim
r→∞

Pu
(
T Q

k−1

w < T Q
k−1

v

)
= 0. (3.19)

In the supercritical regime the situation is more delicate. If at step k the least
degree fork has degree d̄k such that β ∈ ( 1

d̄k−1
,∞), then the mean nucleation time

of the next activating fork is the same for all the remaining forks in the graph. The
network does not distinguish between the nodes according to their degree anymore,
since all possibilities contribute equally to the total mean transition time. Indeed,
the mean nucleation time is given by the expected time it takes for the queue lengths
at nodes in U to hit zero. Hence, after the nucleation of the first supercritical fork,

76



§3.2. The algorithm

C
h
a
pter

3

all the queues in U are o(r) and the transition occurs very fast (see Section 3.4.3 for
more details).

In Section 3.3 we will see how the transition time can be computed given the set
of possible paths generated by the algorithm. Moreover, for each fixed path we will
identify the mean transition time and its law on the scale of its mean. Given a path,
we know in which order the nodes activate. In Section 3.6 we will see how we can
identify the nucleation time of a node given in Definition 3.2.8 with the nucleation
time of the complete bipartite fork of the activating node, as written in (3.15). The
sum of all the nucleation times gives us the transition time of the graph. Not all the
terms in the sum contribute significantly as r → ∞. We will need to identify which
are the leading order terms. The answer depends on the sequence of degrees (d̄k)Nk=1

generated by the algorithm and on how the queue lengths change along the path.

§3.2.4 Example
Consider the bipartite graph G = ((U, V ), E) with |U | = 6 and |V | = 4 in Figure 3.2.
This graph serves as a simple example of how the algorithm works.

u6

u5

u4

u3

u2

u1

v4

v3

v2

v1

Figure 3.2: The initial bipartite graph G = G1 = ((U1, V1), E1).

Step k = 1. We start with G = G1 = ((U1, V1), E1). There are two nodes v2, v4 with
minimum degree d̄1 = 2, so n1 = 2. Pick uniformly at random one of them (with
probability 1

n1
= 1

2 ), say Y1 = 2. Eliminate node v2, all its neighbors u2, u3, and
all their edges u2v1, u2v2, u2v3, u3v1, u3v2, u3v3. Denote the new bipartite graph by
G2 = ((U2, V2), E2). The nucleation time associated with this node satisfies

Eu[T Q
0

vY1
] = Eu[T Q

0

v2
] = F 1 (Q0

U )1∧β [1 + o(1)], r →∞. (3.20)

Step k = 2. Node v1 has the minimum degree d̄2 = 1, so Y2 = 1. Eliminate node v1,
all its neighbors, and all their edges. Denote the new graph by G3 = ((U3, V3), E3).
The nucleation time associated with this node satisfies

Eu[T Q
0

vY2
] = Eu[T Q

1

v1
] = F 2 (Eu[Q1

U ])0 [1 + o(1)] = o(1), r →∞. (3.21)

Step k = 3. Node v4 has the minimum degree d̄3 = 2, so Y3 = 4. Eliminate node v4,
all its neighbors, and all their edges. Denote the new graph by G4 = ((U4, V4), E4).

77



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

The nucleation time associated with this node satisfies

Eu[T Q
0

vY3
] = Eu[T Q

2

v4
] = F 3 (Eu[Q2

U ])1∧β [1 + o(1)], r →∞. (3.22)

Step k = 4. Node v3 is the only node left, with degree d̄4 = 1, so Y4 = 3. Eliminate
node v3, all its neighbors, and all their edges, after which the empty graph is left.
The nucleation time associated with this node satisfies

Eu[T Q
0

vY4
] = Eu[T Q

3

v3
] = F 4 (Eu[Q3

U ])0 [1 + o(1)] = o(1), r →∞. (3.23)

The above scenario forms a path that is described by nodes in V activating in the
order v2, v1, v4, v3 (see Figure 3.3).

×
×

×

u6

u5

u4

u1

v4

v3

v1

×
×
×

×

×

u6

u5

u4

v4

v3

×
×

×
×
×

×

×

×

u4 v3

Figure 3.3: The sequence of bipartite graphs G2 = ((U2, V2), E2), G3 = ((U3, V3), E3) and
G4 = ((U4, V4), E4) generated by the algorithm.

Note that the algorithm may pick node v4 at the first step by setting Y1 = 4,
since the choice of the node with minimum degree is uniformly at random. If so,
then the algorithm would follow a different path. At the first step we would get
Y1 = 4 and Eu[T Q0

v4
] = F 1 (Q0

U )1∧β [1 + o(1)]. At the second step, Y2 = 2 and
Eu[T Q1

v2
] = F 2 (Eu[Q1

U ])1∧β [1 + o(1)]. At the third step, Y3 = 1 and Eu[T Q2

v1
] = o(r).

At the fourth step, Y4 = 3 and Eu[T Q3

v3
] = o(r). This choice leads to a different path,

where the nodes in V activate in the order v4, v2, v1, v3.
Each possible scenario is identified with a path in the algorithm, described by the

nodes in V according to the order of their first activation. The total mean transition
time along a path can be thought as a sum of the mean nucleation times associated
with each activating node in the path (see Theorem 3.3.2). We will prove in Sec-
tion 3.5.2 that all the paths generated by the algorithm lead to the same order of the
mean transition time.

§3.3 Main results

In this section we present our main theorems regarding the transition time. In Sec-
tion 3.3.1 we show that E , the event that the network follows the algorithm, occurs
with high probability as r → ∞ (Theorem 3.3.2(i)). We analyze the contributions
along a given path, noting that not all the nucleation times are significant for the total
mean transition time (Theorem 3.3.2(ii)). In Section 3.3.2 we compute the asymptot-
ics of the mean transition time, including the pre-factor, focusing on the significant

78



§3.3. Main results

C
h
a
pter

3

terms only (Theorem 3.3.3). In Section 3.3.3 we identify the law of the transition
time divided by its mean, which turns out to be a convolution of the laws found for
the complete bipartite graph in Theorem 2.1.6 (Theorem 3.3.5). There is again a
trichotomy, depending on the value of β. Proofs will be given in Section 3.6.

§3.3.1 Most likely paths

Let Ω be the set of all possible orderings (permutations) of nodes in V . Denote by
A ⊆ Ω the subset of orderings generated by the algorithm, and denote by Asc the
subset of orderings generated by the algorithm truncated at the first supercritical
node (if there is any). Recall that, according to Definition 3.2.10, a supercritical node
is a node that activates through a supercritical fork. If a = (v1, . . . , vN ) is an element
of A, then asc = (v1, . . . , vsc) is an element of Asc, where vsc denotes the last node of
each truncated ordering. We allow this node to be any of the remaining supercritical
nodes not already present in the sequence.

Definition 3.3.1 (The network follows the algorithm).
Denote by a∗ = (v∗1 , . . . , v

∗
N ) the ordering of the nodes in V along the path a∗ followed

by the network. For fixed a∗, let

E(a∗) = {∃ a ∈ A : a = a∗} ∪
{
∃ asc = (v1, . . . , vsc) ∈ Asc : v1 = v∗1 , . . . , vsc = v∗sc

}
(3.24)

be the event that the network follows any of the paths generated by the algorithm up
to the first supercritical node (if there is any).

Our first main theorem shows how the algorithm helps us to find the mean trans-
ition time. The first statement holds for all three regimes. The second and third
statements hold in the subcritical and critical regimes only (for which the network
follows the algorithm until the last activating node). The idea is that the mean trans-
ition time can be seen as a weighted sum of the mean nucleation times associated
with each activation and of negligible terms representing the time it takes after each
activation to bring the network back in the state with all the remaining nodes in U
active. In the supercritical regime we do not need any statement, because the mean
transition time is known to be the expected time it takes for the queue lengths to hit
zero.

Theorem 3.3.2 (Most likely paths).
Consider the bipartite graph G with initial queue lenghts Q0.

(i) With high probability as r →∞, the network follows the algorithm, i.e.,

lim
r→∞

Pu(E(a∗)) = 1. (3.25)

Consider β ∈ (0, 1
d∗−1 ]: subcritical or critical regime.

79



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

(ii) With high probability as r →∞, the transition time satisfies

Eu[T Q
0

G 1E(a∗)] =

N∑
k=1

∑
i1,...,ik :

(vi1 ,...,vik )∈V1×···×Vk

( k∏
l=1

1

nl

)
fk Eu[T Q

k−1

vik
1E(a∗)] [1 + o(1)],

r →∞,
(3.26)

where nk ∈ N is the number of possible nodes that the algorithm can pick at step
k, while the factor fk ∈ (0, 1) (to be identified in Theorem 3.3.3) comes from
the fact that the node activating at step k is the one that activates first among
the nk nodes with the same least degree. Both nk and fk depend on the sequence
of nodes that activated before step k.

(iii) Conditional on the path a = (v1, . . . , vN ) ∈ A and the event

Aa = {a∗ = a} = {v1 = v∗1 , . . . , vN = v∗N}, (3.27)

with high probability as r →∞, the transition time satisfies

Eu[T Q
0

G |Aa] =

N∑
k=1

fk Eu[T Q
k−1

vk
] [1 + o(1)], r →∞. (3.28)

Theorem 3.3.2 will be proved in Section 3.6.3. Note that the mean transition time
can be split as

Eu[T Q
0

G ] = Eu[T Q
0

G 1E(a∗)] + Eu[T Q
0

G 1E(a∗)C ]. (3.29)

The second term in the right-hand side represents the mean transition time when the
network does not follow the algorithm, and equals

Eu[T Q
0

G 1E(a∗)C ] = Eu[T Q
0

G |E(a∗)C ]Pu(E(a∗)C). (3.30)

Even though we know from Theorem 3.3.2(i) that Pu[E(a∗)C ] tends to zero as r →∞,
a priori this term may still affect the total mean transition time, since the conditional
expectation may be substantial. In what follows we focus on the first term in the
right-hand side, since this captures the typical behavior of the network.

We will see in Theorem 3.3.3 below that, in the supercritical regime, the mean
transition time is the expected time it takes for the queues in U to hit zero, independ-
ently of which path the network took before the activation of the first supercritical
node. Theorem 3.3.2(ii) gives us a way, in the subcritical and critical regimes, to
split the total mean transition time into a sum of mean nucleation times of successive
forks, by taking into account all possible paths that the algorithm may follow, each
with its own probability. Theorem 3.3.2(iii) shows that we can also think of the total
mean transition time as a sum over all possible paths, each with its own probability
and mean transition time, namely,

Eu[T Q
0

G 1E(a∗)] =
∑
a∈A

Eu[T Q
0

G 1Aa ] =
∑
a∈A

Eu[T Q
0

G |Aa]Pu(Aa). (3.31)

80



§3.3. Main results

C
h
a
pter

3

The above expression allows us to compute the mean transition time along a single
path. For every a ∈ A,

Pu(Aa) =

N∏
k=1

1

nk
. (3.32)

We already saw in Proposition 3.2.7 that the order of the mean transition time does
not depend on which path the algorithm generates.

§3.3.2 Mean of the transition time
Consider a path a ∈ A generated by the algorithm and the event Aa that the network
follows this path. Recall that d∗ = max1≤k≤N d̄k is the maximum degree among the
sequence of minimum degrees (d̄k)Nk=1. Let v

∗
k be the k-th activating node in path a.

According to Definition 3.2.3, the mean nucleation time Eu[T Q
k−1

v∗k
] is given by

Eu[T Q
k−1

v∗k
] =


F ksub (Eu[Qk−1

U ])β(d̄k−1) [1 + o(1)], if β ∈ (0, 1
d̄k−1

),

F kcr Eu[Qk−1
U ] [1 + o(1)], if β = 1

d̄k−1
,

F ksup Eu[Qk−1
U ] [1 + o(1)], if β = ( 1

d̄k−1
,∞),

r →∞,

(3.33)
with

F ksub =
1

d̄kB−(d̄k−1)
, F kcr =

1

d̄kB−(d̄k−1) + (c− ρU )
, F ksup =

1

c− ρU
, (3.34)

are constants depending on d̄k, B, c, ρU . Note that F ksub really depends on k, while
F kcr = 1

d̄kB
−(d̄k−1)+(c−ρU )

is the same for every critical node, and F ksup = Fsup is
independent of k. Moreover, note that the first mean nucleation time depends on the
initial queue lengths Q0

U at the nodes in U , but in general the mean nucleation time
associated with a fork depends on the mean queue lengths at the nodes in U at the
moment the fork starts the nucleation.

Our second main theorem identifies the mean transition time along a given path.

Theorem 3.3.3 (Mean transition time).
Consider the bipartite graph G with initial queue lengths Q0.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. The transition time satisfies

Eu[T Q
0

G |Aa] =
∑

1≤k≤N
k: d̄k=d∗

fk
γ
β(d∗−1)
U

d∗B−(d∗−1)
rβ(d∗−1) [1 + o(1)], r →∞, (3.35)

with

fk =
1

nk
. (3.36)

81



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

(II) β = 1
d∗−1 : critical regime. Denote by hk ∈ N0 the number of nodes in V at step

k that already activated through a fork of degree d∗. Then the transition time
satisfies

Eu[T Q
0

G |Aa] =
∑

1≤k≤N
k: d̄k=d∗

fk
γ

(hk)
U

d∗B−(d∗−1) + (c− ρU )
r [1 + o(1)], r →∞,

(3.37)
with

fk =
d̄kB

−(d̄k−1) + (c− ρU )

nkd̄kB−(d̄k−1) + (c− ρU )
(3.38)

and
γ

(hk)
U = γU − (c− ρU )

∑
1≤i≤k
i: d̄i=d

∗

f ′i , (3.39)

where for a critical node vi the coefficient f ′i is defined in a recursive way as

f ′i =
1

nid̄iB−(d̄i−1) + (c− ρU )

(
γU − (c− ρU )

∑
1≤j≤i−1
j: d̄j=d

∗

f ′j

)
> 0. (3.40)

(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. The transition time satisfies

Eu[T Q
0

G ] =
γU

c− ρU
r [1 + o(1)], r →∞. (3.41)

Theorem 3.3.3 will be proved in Section 3.6.4. Both in the subcritical and su-
percritical regimes, Theorem 3.3.3 provides explicit formulas for the mean transition
time in terms of the parameters c, γU , ρU and B, β in our model and the sequence of
numbers (d̄k, nk)Nk=1 that are produced by the algorithm, with d∗ = max1≤k≤N d̄k. In
the critical regime, however, the formula is more delicate, since the pre-factor depends
on how long the critical nucleations take. Indeed, γ(hk)

U in (3.39) represent the mean
updated queue lengths at step k after hk nodes in V activate through critical forks
(see Section 3.4.3 for more details). Recall from Chapter 2 that the queue lengths all
have a good behavior, in the sense that, with high probability as r → ∞, they are
always close to their mean (see Remark 3.4.7). Note that the mean transition time
in the subcritical and critical regimes depends on the path, while in the supercritical
regime it does not.

§3.3.3 Law of the transition time
Theorem 3.3.2 shows how the mean transition time along a path is a sum of terms
related to the successive mean nucleation times of complete bipartite subgraphs of
G. Theorem 3.3.3 tells us that, depending on the value of β, this sum reduces to
a smaller sum of only a few significant terms. It also tells us how to compute the
pre-factors of these terms.

82



§3.3. Main results

C
h
a
pter

3

Definition 3.3.4 (Multiplicity of d∗).
Consider a path a ∈ A generated by the algorithm and its associated degree sequence
(d̄k)Nk=1. Write ma

sub and ma
cr to denote the multiplicity of d∗ in the path a in the

subcritical and critical regimes, i.e.,

ma
sub = |{k : d̄k = d∗ < β−1 + 1}|, (3.42)
ma

cr = |{k : d̄k = d∗ = β−1 + 1}|. (3.43)

Our third main theorem identifies the law of T Q
0

G /Eu[T Q
0

G ]. Recall the laws
Psub,Pcr,Psup arising from Theorem 2.1.6. Write ~ to denote convolution.

Theorem 3.3.5 (Law of the transition time).
Consider the bipartite graph G with initial queue lengths Q0.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. With fk as in (3.36) and ma

sub as in (3.42),
the transition time satisfies

lim
r→∞

Pu
(

T Q
0

G

Eu[T Q0

G |Aa]
> x | Aa

)
=

∫ ∞
x

(
~m

a
sub

k=1 P
fk,Sma

sub

sub

)
(y) dy, x ∈ [0,∞),

(3.44)
with

P
fk,Sma

sub

sub (z) =
Smasub

fk
exp

(
−
Smasub

fk
z

)
, z ∈ [0,∞), (3.45)

and with Smasub
=
∑
i : d̄i=d∗

fi.

(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. The transition time satisfies

lim
r→∞

Pu
(
T Q

0

G

Eu[T Q0

G ]
> x

)
=

∫ ∞
x

Psup(y) dy =

{
1, if x ∈ [0, 1),

0, if x ∈ [1,∞),
(3.46)

with
Psup(z) = δ1(z), z ∈ [0,∞), (3.47)

where δ1(z) is the Dirac function at 1.

Theorem 3.3.5 will be proved in Section 3.6.5. There we will also see why there is
no statement for the critical regime (II).

§3.3.4 Discussion
Intuition. Analyzing the transition time for arbitrary bipartite graphs is much harder
than for complete bipartite graphs. The key idea is to view the transition time as a
sum of subsequent nucleation times for complete bipartite subgraphs. The order in
which nodes activate in V is random, because it depends on the fluctuations of the
activation rates via the queue lengths. However, with high probability as r → ∞,
the nodes with the least number of active neighbors in U activate first. After each
activation, the underlying bipartite graph changes according to which node activates

83



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

and which nodes deactivate. Hence the subsequent activations in V depend on how
the graph changes, as well as on the evolution of the network, since the queue lengths
(and hence the activation rates) change over time as well. Recall that the queue
lengths all have a good behavior (see Remark 3.4.7).

Theorems. To keep track of this evolution, we defined a greedy algorithm in Sec-
tion 3.2. If we run the algorithm once, then it generates a specific path of activating
nodes in V . This is enough to determine the leading order of the transition time as
r → ∞, since it only depends on the maximum least degree d∗, which is the same
for all the paths that can be generated. Moreover, given d∗, we can immediately
determine whether we are in the subcritical, critical or supercritical regime. If we
are interested in the pre-factor of the mean transition time and in its law, then we
need to generate all possible paths. Theorem 3.3.2 shows that we can split the mean
transition time into a weighted sum over all possible paths of the mean nucleation
times associated with each activation in the path. Theorem 3.3.3 gives the mean
transition time conditional on the path and shows that the outcome is non-trivial
both in the subcritical and critical regimes. Theorem 3.3.5 gives the law conditional
on the path, but fails to capture the critical regime. The reason is that there are
intricate dependencies between the subsequent nucleation times along the path.

§3.4 Nucleation times and queue lengths

In Section 3.4.1 we introduce the concept of asymptotic independence of forks and
we show that in the subcritical and critical regimes competing forks can be treated
as if they were disjoint, in the limit as r → ∞ (Proposition 3.4.1). In Section 3.4.2
we study the mean and the law of the next nucleation time by using techniques
from metastability and results from Section 3.4.1 (Propositions 3.4.3 and 3.4.6). In
Section 3.4.3 we show how the mean queue lengths change according to which node
activates in V (Theorem 3.4.8).

§3.4.1 Asymptotic independence of forks
In this section we show that, as r →∞, forks can be treated as being independent of
each other even when they share some nodes. We introduce the concept of asymptotic
independence of forks, which holds only as r → ∞ and which allows us to treat
overlapping forks as if they were disjoint. We show that the nucleation time of a fork
is not influenced by the behavior of other forks sharing nodes with it.

In Chapter 2 it is shown that, as soon as all the nodes in U of a complete bipartite
graph become simultaneously inactive, the first node in V (and subsequently all the
others nodes) activates in a very short time interval, negligible compared to the time
it takes for all the nodes in U to deactivate. Hence, the time it takes for the nodes
in U to become all simultaneously inactive is the same as the time it takes for the
first node in V to activate, up to an error term that is negligible as r → ∞. In our
setting, to study the nucleation times of forks it is enough to study the time it takes
for all their respective nodes in U to deactivate, without considering the set V .

84



§3.4. Nucleation times and queue lengths

C
h
a
pter

3

Proposition 3.4.1 (Asymptotic independence).
Consider the graph Gk and the d̄k-fork W , where d̄k is the minimum degree of the
nodes in Vk. Denote by TW the time it takes for fork W to nucleate for the first time.
Consider the event

E =

{
∃ {s1, . . . , sα} ⊂ {u1, . . . , ud̄k} = W ∩ Uk : ∃ 0 ≤ t < τ̄k s.t.

Xsi

( k−1∑
j=1

τ̄j + t

)
= 0 ∀ i = 1, . . . , α

}
(3.48)

of having a subset of α nodes in Uk belonging to fork W that are simultaneously
inactive at a time t after the last nucleation. The following statements hold.

(i) The mean nucleation time of W satisfies

Eu[TW | E ] = Eu[TW ] [1 + o(1)], r →∞. (3.49)

(ii) The law of the nucleation time of W satisfies

lim
r→∞

Pu(TW > x | E) = lim
r→∞

Pu(TW > x), x ∈ [0,∞). (3.50)

Proof. We prove the two statements separately.

(i) We denote by S the event that after time t all the nodes ofW that are still active
become simultaneously inactive before any of the inactive nodes in {s1, . . . , sα}
activates again. We know that the time it takes for d̄k − α nodes to become
simultaneously inactive is an exponential random variable TS with mean of
order rβ(d̄k−α−1), while the time it takes for one of the α inactive nodes to
activate is an exponential random variable with mean of order 1/rβ . Hence the
probability of S is of order r−β(d̄k−α) = o(1). If S occurs, then W nucleates in
time TW = t+ TS . Note that t must be of order rβ(α−1), hence

Eu[TW | E ∩ S] = O
(
rβ(α−1)

)
+O

(
rβ(d̄k−α−1)

)
= o
(
rβ(d̄k−1)

)
, r →∞.

(3.51)
On the other hand, if the complementary event SC occurs, then, with high
probability as r → ∞, in a negligible time o(1) the network reaches the state
with all the nodes u1, . . . , ud̄k active, and from there it takes time Eu[TW ] for
W to nucleate. Hence

Eu[TW | E ∩ SC ] = o(1) + Eu[TW ], r →∞. (3.52)

Putting the two complementary events together, we obtain that

Eu[TW | E ] = Eu
[
TW | E ∩ S

]
Pu(S) + Eu

[
TW | E ∩ SC

]
Pu(SC)

= o
(
rβ(d̄k−1)

)
o(1) +

(
o(1) + Eu[TW ]

)
(1− o(1))

= Eu[TW ] [1 + o(1)], r →∞.
(3.53)

85



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

(ii) Using the complementary events S and SC , we can write for all x ≥ 0

lim
r→∞

Pu(TW > x | E) = lim
r→∞

Pu({TW > x} ∩ S | E)Pu(S)

+ lim
r→∞

Pu({TW > x} ∩ SC | E)Pu(SC)

= lim
r→∞

Pu(TW > x),

(3.54)

since limr→∞ Pu(S) = 0 and, when conditioning on SC , with high probability
as r →∞, the network reaches the initial state in a negligible time after t, hence
it behaves as if at time t all nodes in U were active.

�

The above proposition shows that, as r → ∞, the mean nucleation time of a
fork and its law are not influenced by the fact that some of its nodes might be
simultaneously inactive at some time. The intuition is that, as r →∞, the nucleation
of a fork is so hard to achieve and takes so long that sharing some nodes with other
forks does not help to make the nucleation happen appreciably faster. The network
tends to quickly reach the initial state with all the remaining nodes in U active, and
hence the nucleation time of a fork can be seen as the time it takes for its nodes
in U to deactivate starting from all of them being active. In particular, in case of
overlapping forks, the nucleation time of a fork is not influenced by the behavior of
other forks sharing nodes with it.

§3.4.2 Next nucleation time
Given the graph Gk, consider the next nucleation time τ̄k from Definition 3.2.8. The
next node that activates is the one that completes the fastest nucleation among the
nk nodes with least degree. We want to find an expression for Eu[τ̄k].

In Appendix A we show the computations for the mean next nucleation time
in the case when the competing forks are disjoint, hence described by i.i.d. random
variables. Recall that in the subcritical regime we are considering a minimum of
nucleation times that are exponential random variables, while in the critical regime
we are considering a minimum of nucleation times that follow a truncated polynomial
law (see Theorem 2.1.6). By using Proposition 3.4.1, we are also able to give explicit
asymptotics for the mean next nucleation time without assuming the forks being
independent.

Each nucleation of a fork can be seen as a successful escape from a metastable
state, which is represented by the initial state where the nodes in Uk in the fork are
active and the node in Vk in the fork is inactive. When considering multiple forks, we
can view the network as an ergodic Markov process on a state space Ω representing
the collection of all the feasible joint activity states of Gk. The first nucleation can
be described by a regenerative process where the Markov process leaves a metastable
state x0 (with all the nodes in Uk active) and reaches a stable set S, which represents
the set of states where at least one of the forks of minimum degree has all its nodes
in Uk simultaneously inactive. The set S is rare for the Markov process, in the sense

86



§3.4. Nucleation times and queue lengths

C
h
a
pter

3

that the probability of reaching S starting from x0 is small. We denote by T kx0→S = τ̄k
the time it takes to go from x0 to S.
Lemma 3.4.2 (Mean return time to metastable state).
For k = 1, . . . , N , suppose that k − 1 nodes in V already activated. Then, with high
probability as r →∞, the time RxUk it takes for the network Gk to reach the state with
all the nodes in Uk active (the metastable state x0) starting from any other state x is
negligible, i.e.,

Eu[RxUk ] = o(1), r →∞. (3.55)

In particular, let Rk−1
Uk

be the time it takes for the network Gk to reach the state with
all the nodes in Uk active starting from the moment the (k−1)-th node in V activated.
Then, with high probability as r →∞,

Eu[Rk−1
Uk

] = o(1), r →∞. (3.56)

Proof. At any time t, the activation and deactivation of a node u ∈ Uk are described
by i.i.d. exponential random variables with rates gU (Qu(t)) and 1, respectively. Hence,
an active node takes on average one unit of time to deactivate, while an inactive node
u takes on average 1/gU (Qu(t)) time to activate. Since in the subcritical and critical
regimes the queue lengths at any node at any moment are of order r (see Section 3.4.3
for more details), we can say that 1/gU (Qu(t)) = o(1) for each u ∈ Uk. Suppose that,
at some time t, node u1 ∈ Uk is inactive and node u2 ∈ Uk is active, i.e., Xu1(t) = 0

and Xu2(t) = 1. Since

lim
r→∞

Pu(u1 activates < u2 deactivates) = 1, (3.57)

and there is a finite number of nodes in Uk, with high probability as r →∞, starting
from any state x all the nodes in Uk will be active on average in time o(1). Hence, as
r →∞, Eu[RxUk ] = o(1), and in particular Eu[Rk−1

Uk
] = o(1). �

We are now ready to state a result for the mean next nucleation time in the
subcritical and critical regimes.
Proposition 3.4.3 (Mean next nucleation time).
Consider the graph Gk. Recall that d̄k is the minimum degree of a node in Vk, nk is
the number of forks of degree d̄k in Gk, and hk is as in (3.74).

(I) β ∈ (0, 1
d̄k−1

): subcritical regime. The mean next nucleation time sastisfies

Eu[τ̄k] = fk Eu[T Q
k−1

v∗k
] = fk F

k
sub Eu[Qk−1

U ]β(d̄k−1) [1+o(1)], r →∞, (3.58)

with
fk =

1

nk
. (3.59)

(II) β = 1
d̄k−1

: critical regime. The mean next nucleation time sastisfies

Eu[τ̄k] = fk Eu[T Q
k−1

v∗k
] = fk F

k
cr Eu[T Q

k−1

v∗k
] [1 + o(1)], r →∞, (3.60)

with

fk =
d̄kB

−(d̄k−1) + (c− ρU )

nkd̄kB−(d̄k−1) + (c− ρU )
. (3.61)

87



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

Proof. By Proposition 3.4.1, as r →∞ we may consider arbitrarily overlapping forks
as if they were disjoint. Therefore the computations for the mean next nucleation
time carried out in Appendix C for the case of disjoint forks can be used for the case
of overlapping forks as well. For completeness, in the subcritical regime (I) we offer a
proof that uses a different argument, which cannot be used in the critical regime (II)
because the queues are changing on scale r over time.

Consider the stationary distribution π of the Markov process mentioned above.
The probability of the set S is given by

π(S) =

nk∑
j=1

π(Sj) [1 + o(1)] = nk

(
1

B (Qk−1
U )β

)d̄k
[1 + o(1)], r →∞, (3.62)

where Sj is the event that the j-th fork has all its nodes simultaneously inactive.
The terms representing multiple forks with all their nodes simultaneously inactive
contribute in a negligible way to π(S). Moreover, we know that, for j = 1, . . . , nk,

π(Sj) =
Eu[time spent in Sj ]

Eu[time spent in Sj ] + Eu[T kx0→Sj ]

=

1
d̄k

1

B (Qk−1
U )β

1
d̄k

1

B (Qk−1
U )β

+ F ksub (Qk−1
U )β(d̄k−1)

[1 + o(1)]

=

1
d̄k

1

B (Qk−1
U )β

F ksub (Qk−1
U )β(d̄k−1)

[1 + o(1)] =

(
1

B (Qk−1
U )β

)d̄k
[1 + o(1)], r →∞.

(3.63)

This proves (3.62).
Using the same type of argument, we can compute Eu[Tx0→S ]. Indeed,

π(S) =
Eu[time spent in S]

Eu[time spent in S] + Eu[T kx0→S ]

=

1
d̄k

1

B (Qk−1
U )β

1
d̄k

1

B (Qk−1
U )β

+ Eu[T kx0→S ]
[1 + o(1)] =

1
d̄k

1

B (Qk−1
U )β

Eu[T kx0→S ]
[1 + o(1)], r →∞.

(3.64)
After inverting, we get

Eu[τ̄k] = Eu[T kx0→S ] =

1
d̄k

1

B (Qk−1
U )β

π(S)
[1 + o(1)] =

1
d̄k

1

B (Qk−1
U )β

nk
(

1

B (Qk−1
U )β

)d̄k [1 + o(1)]

= fk F
k
sub (Qk−1

U )β(d̄k−1) [1 + o(1)], r →∞,

(3.65)

with
fk =

1

nk
. (3.66)

This completes the proof. �

88



§3.4. Nucleation times and queue lengths

C
h
a
pter

3

Corollary 3.4.4 (Pre-factor adjustment).
Given the graph Gk, conditional on the next activating node of degree d̄k,

Eu[τ̄k|Yk = ik] = Eu
[
minv∈VkT Q

k−1

v

∣∣∣ Yk = ik

]
= fk Eu[T Q

k−1

vik
], r →∞, (3.67)

where fk is as in (3.59) or (3.61) when a subcritical node or a critical node activates,
respectively.

Proof. The claim follows from Proposition 3.4.3. �

In the subcritical regime (I), the queue lengths do not change on scale r and
therefore the renewal theory developed in [49] applies, which is tailored to exponential
behavior in metastable regimes. In the critical regime (II), however, the queue lengths
do change on scale r and [49] does not apply. For details, see Section 3.4.3. Recall
that Ω is the state space of the Markov process and that, in our notation, τ̄k = Tx0→S .

Definition 3.4.5 (Recurrence property).
Let H > 0 and h ∈ (0, 1). We say that the pair (x0, S) satisfies the property Rec(H,h)

if
sup
x∈Ω

P
(
Tx→{x0,S} > H

)
≤ h. (3.68)

The following result is the equivalent of [49, Theorem 2.3].

Proposition 3.4.6 (Law of the next nucleation time).
Consider the pair (x0, S) such that the property Rec(H,h) holds for 0 < H < Eu[τ̄k],
with ε = H/Eu[τ̄k] and h sufficiently small. Then there exist functions C(ε, h) and
λ(ε, h), satisfying C(ε, h), λ(ε, h)→ 0 as ε, h→ 0, such that, for any t > 0,∣∣∣∣P( τ̄k

Eu[τ̄k]
> t

)
− e−t

∣∣∣∣ ≤ Ce−(1−λ)t. (3.69)

Proof. We choose H to be a constant, and without loss of generality set H = 1. We
claim that the pair (x0, S) satisfies the property Rec(H,h) with h sufficiently small.
Indeed, starting from any state x ∈ Ω, the network reaches the set {x0, S} in a small
time o(1).

If the starting state x is one of the states Sj , j = 1, . . . , nk, corresponding to the
set S, then we are done. Otherwise, by Lemma 3.4.2, the metastable state x0 attracts
in time o(1) every state x for which some forks have some nodes in U inactive. It is
therefore immediate that, with high probability as r →∞, Tx→{x0,S} is smaller than
H, which is what we need in order to claim that (3.68) holds when h is sufficiently
small. Note that we can let h→ 0 as r →∞.

We recover from Proposition 3.4.3 that the ratio between H and the mean next
nucleation time is sufficiently small. Indeed, ε = H/Eu[τ̄k] → 0 as r → ∞. Hence a
straightforward application of [49, Theorem 2.3] allows us to conclude that the next
nucleation time divided by its mean follows an exponential law with unit rate. �

89



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

§3.4.3 Updated queue lengths
In this section we analyze in more detail how the mean queue lengths change over
time and how they affect the mean nucleation times associated with each step of the
algorithm.
Remark 3.4.7 (Good behavior).
Recall from Definition 2.3.1 and Lemma 2.3.2 in Chapter 2 that, with high probability
as r →∞, the queue lengths all have a good behavior in the interval [0, TU (r)] with
TU (r) = γU

c−ρU r [1 + o(1)] as r → ∞, representing the expected time it takes for
the queue lengths to hit zero. More precisely, for δ > 0 small enough and for all
t ∈ [0, TU (r)],

lim
r→∞

Pu
(
Eu[QU (t)]− δr ≤ QU (t) ≤ Eu[QU (t)] + δr

)
= 1, (3.70)

which means that the queue lengths are always close to their mean for all times smaller
than TU (r).

Recall that we start with initial queue lengths Q0 = (Q0
U , Q

0
V ) = (γUr, γV r). We

are interested in studying how the queue lengths change along a fixed path, depending
on which types of forks we encounter at each activation. Fix a path and consider the
sequence of nodes activating in V .

Similarly to (3.33), the next nucleation time τ̄k = minv∈Vk T Q
k−1

v (recall Defini-
tion 3.2.8) satisfies

Eu[τ̄k] = f ′k r
1∧β(d̄k−1) [1 + o(1)], r →∞, (3.71)

where f ′k depends on fk, on the constants F ksub, F
k
cr, F

k
sup (for the three regimes, re-

spectively), and on the mean updated queue lengths. The following theorem shows
how the mean queue lengths change according to which type of node activates in V .
Theorem 3.4.8 (Mean updated queue lengths).
Let (d̄k)Nk=1 be the sequence of degrees in a fixed path and d∗ = max1≤k≤N d̄k.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. After step k, the mean queue length at a node

in U is
Eu[QkU ] = γUr [1 + o(1)], r →∞. (3.72)

(II) β = 1
d∗−1 : critical regime. After step k, the mean queue length at a node in U ,

after hk critical nodes in V activated, is

Eu[QkU ] = γ
(hk)
U r [1 + o(1)], r →∞, (3.73)

with
γ

(hk)
U = γU − (c− ρU )

∑
1≤i≤k
i: d̄i=d

∗

f ′i > 0, (3.74)

where for a critical node vi the coefficient f ′i is defined in a recursive way as

f ′i =
1

nid̄iB−(d̄i−1) + (c− ρU )

(
γU − (c− ρU )

∑
1≤j≤i−1
j: d̄j=d

∗

f ′j

)
> 0. (3.75)

90



§3.4. Nucleation times and queue lengths

C
h
a
pter

3

(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. After step k, the mean queue length at a

node in U , if any supercritical node in V activated, is

Eu[QkU ] = o(r), r →∞. (3.76)

Proof. We treat the three regimes separately.

(I) β ∈ (0, 1
d∗−1 ). All the nodes in V are subcritical, in particular the first node

v1 ∈ V . Then Eu[τ̄1] = o(r) as r →∞. The mean queue lengths at nodes in U
after node v1 activates are

Eu[QU (τ̄1)] = Eu[γUr − (c− ρU )τ̄1] = γUr − (c− ρU )Eu[τ̄1]

= γUr [1 + o(1)], r →∞,
(3.77)

which means that after the first activation the mean queue lengths are the same
as before, up to an error term o(1). Iterating this reasoning, we conclude that
the mean queue lengths remain approximately the same as long as subcritical
nodes in V activate.

(II) β = 1
d∗−1 . If the first node v1 ∈ V is subcritical, then the time it takes to

nucleate its fork does not influence the mean queue lengths by much, as seen
in (I). Without loss of generality, we may therefore assume that v1 is critical.
Then Eu[τ̄1] = f ′1r is of order r. The mean queue lengths at nodes in U after
node v1 activates are

Eu[QU (τ̄1)] = Eu[γUr − (c− ρU )τ̄1] = γUr − (c− ρU )Eu[τ̄1]

= (γU − (c− ρU )f ′1)r [1 + o(1)] = γ
(1)
U r [1 + o(1)], r →∞,

(3.78)

where γ(1)
U = γU − (c− ρU )f ′1 > 0.

If the second node v2 ∈ V is subcritical, then again the time it takes to nucleate
its fork does not influence the mean queue lengths by much. Assume therefore
that v2 is critical. Then the fork requires a nucleation time of order r, namely,
Eu[τ̄2] = f ′2r. The mean queue lengths at nodes in U after node v2 ∈ V activates
are

Eu[QU (τ̄1 + τ̄2)] = Eu[γUr − (c− ρU )(τ̄1 + τ̄2)]

= γUr − (c− ρU )(Eu[τ̄1] + Eu[τ̄2])

= (γU − (c− ρU )(f ′1 + f ′2))r [1 + o(1)]

= γ
(2)
U r [1 + o(1)], r →∞,

(3.79)

where γ(2)
U = γU − (c− ρU )(f ′1 + f ′2) > 0.

More generally, assume that hk critical nodes activated in the first k steps. Then

Eu[QkU ] = γ
(hk)
U r [1 + o(1)], r →∞, (3.80)

91



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

with
γ

(hk)
U = γU − (c− ρU )

∑
1≤i≤k
i: d̄i=d

∗

f ′i > 0, (3.81)

where the last sum is over all the hk critical nodes. Each of them contributes
with a positive coefficient f ′i which is given by the recursive relation

f ′i = fi F
i
cr γ

(hi−1)
U

=
d̄iB

−(d̄i−1) + (c− ρU )

nid̄iB−(d̄i−1) + (c− ρU )

1

d̄iB−(d̄i−1) + (c− ρU )
γ

(hi−1)
U

=
1

nid̄iB−(d̄i−1) + (c− ρU )

(
γU − (c− ρU )

∑
1≤j≤i−1
j: d̄j=d

∗

f ′j

)
.

(3.82)

Note that the coefficients f ′k introduced in (3.71) are well defined for every
k = 1, . . . , N , but in the above computations we are only interested in the ones
associated with the critical nodes. For example,

f ′1 =

{ 1
n1

1
d̄1B−(d̄1−1) γU , if d̄1 < d∗,

1
n1d̄1B−(d̄1−1)+(c−ρU )

γU , if d̄1 = d∗.
(3.83)

(III) β ∈ [ 1
d∗−1 ,∞). If the first node v1 ∈ V is subcritical, then its nucleation time

does not influence the mean queue lengths by much, as seen in (I). If v1 is critical,
then the mean queue lengths decrease but remain of order r, as seen in (II).
We therefore assume that v1 is supercritical. Then Eu[τ̄1] = γU

c−ρU r [1 + o(1)], as
r →∞. Indeed, from Theorem 2.1.6 we know that the mean nucleation time of
a supercritical fork is given by the expected time it takes for the queue length
to hit zero. This holds for every supercritical node in V and therefore it is true
also for Eu[τ̄1]. Hence, the mean queue lengths at nodes in U after node v1 ∈ V
activates are

Eu[QU (τ̄1)] = Eu[γUr− (c− ρU )τ̄1] = γUr− (c− ρU )Eu[τ̄1] = o(r), r →∞.
(3.84)

More generally, the mean queue lengths become o(r) as soon as the first super-
critical node activates, independently of which nodes activated before. Thus,
after any step k the mean queue length at a node in U , if any supercritical node
activated, is

Eu[QkU ] = o(r), r →∞. (3.85)

�

In summary, we have shown that if a subcritical node activates, then we do not
change the mean queue lengths at nodes in U by much: they only decrease by a factor
o(1). On the other hand, if a critical node activates, then the mean queue lengths
drop significantly, but still remain of order r. Finally, if a supercritical node activates,

92



§3.5. Analysis of the algorithm

C
h
a
pter

3

then the mean queue lengths become o(r), and remain so during all the successive
nucleations. With the help of (3.71) we know how to relate the mean next nucleation
times of the forks to the mean updated queue lengths after each activation. Hence
we know that, once a node that contributes order r to the total mean transition time
activates, we can ignore the contribution of all the previous and all the subsequent
subcritical nodes. Once a supercritical node activates, we can ignore the contribution
of all the subsequent nodes, since their queue lengths are o(r).

§3.5 Analysis of the algorithm

In Section 3.5.1 we describe how the algorithm acts on an arbitrary bipartite graph.
(In Section 3.2.4 we already illustrated this via an example.) In Section 3.5.2 we prove
the greediness and the consistency of the algorithm.

§3.5.1 Recursion
Consider the graph G = G1 = ((U1, V1), E1). The first node activating in V1 is
the one with the least degree, since this requires the least number of nodes in U1 to
become simultaneously inactive. Since the expected time form nodes in U1 to become
simultaneously inactive is of order r1∧β(m−1), with high probability as r → ∞, the
first node that activates in V1 is vY1 such that d(vY1) = d̄1 = minv∈V1 d(v), where d(v)

denotes the degree of node v in the graph G1. We make the algorithm pick as first
node a node vY1 with least degree in V1. If there are multiple nodes with the same
least degree, then the algorithm chooses one of them uniformly at random. If the least
degree d̄1 is such that β(d̄1 − 1) > 1, then the algorithm chooses a node uniformly at
random among all nodes in V1. Let G′1(U ′1, V

′
1) be the complete bipartite subgraph

of G1 with U ′1 = {u ∈ U1 : uvY1 is an edge of G1} and V ′1 = {vY1}. According to
Theorem 2.1.6, the associated nucleation time T Q0

vY1
satisfies

Eu[T Q
0

vY1
] = F 1 (Q0

U )1∧β(d̄1−1) [1 + o(1)], r →∞. (3.86)

Reasoning as above, we see that the algorithm picks as second node a node vY2

with the least number of active neighbors left in G. Consider the bipartite graph
G2(U2, V2) with U2 = U1 \U ′1 and V2 = V1 \V ′1 = V1 \{vY1}. If we denote by d2(v) the
degree of a node v ∈ V2 in G2, then vY2 is such that d2(vY2) = d̄2 = minv∈V2 d2(v). If
there are multiple nodes with the same least degree, then the algorithm again chooses
one uniformly at random. If the least degree d̄2 is such that β(d̄2 − 1) > 1, then we
choose a node uniformly at random among all nodes in V2. Let G′2(U ′2, V

′
2) be the

complete bipartite subgraph of G with U ′2 = {u ∈ U2 : uvY2 is an edge of G2} and
V ′2 = {vY2}. The associated nucleation time T Q1

vY2
satisfies

Eu[T Q
1

vY2
] = F 2 (Q1

U )1∧β(d̄2−1) [1 + o(1)], r →∞, (3.87)

Iterating this procedure until all the nodes in V1 are active, we find one of the
paths that the algorithm follows in terms of successive activation of the nodes in V1.

93



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

Note that, depending on the choice the algorithm makes at each step, there may be
different paths for the activation.

§3.5.2 Greediness and consistency
We first prove Lemma 3.2.5. After that we prove Propositions 3.2.6–3.2.7.

Proof of Lemma 3.2.5. The proof is by contradiction. Suppose that d∗a > d∗b . Denote
by dk,a(v) and dk,b(v) the degrees of node v ∈ Vk at step k = 1, . . . , N in paths a and
b, respectively.

We start by considering node w1 ∈ V such that, at some step ka1 in path a,
dka1 ,a(w1) = d̄ka1 ,a = d∗a. Then d(w1) ≥ d∗a in G. On the other hand, in path b, when
w1 activates at some step kb1, it has degree dkb1,b(w1) ≤ d∗b . This implies that some of
the edges of w1 (at least d∗a−d∗b edges) have already been processed via previous forks
in path b. At least one of these forks must have nucleated before the fork of w1, in
path b but not in path a, say, the fork of w2. Hence there exists a node w2 ∈ V such
that, at some step kb2 < kb1 in path b, dkb2,b(w2) ≤ d∗b . This node has not yet activated
by step ka1 in path a, so it must be that dka1 ,a(w2) ≥ d∗a, otherwise the algorithm
would choose node w2 before node w1. Say that node w2 will activate at step ka2 > ka1
in path a. Then, d(w2) ≥ d∗a in G. As before, this implies that some of its edges have
already been processed with previous forks in path b. Again, at least one of these
forks must have nucleated before the fork of w2, in path b but not in path a, say, the
fork of w3. Hence there exists a node w3 ∈ V such that, at some step kb3 < kb2 in
path b, dkb3,b(w3) ≤ d∗b . This node has not yet activated by step ka2 in path a, nor by
step ka1 , so dka1 ,a(w3) ≥ dka1 ,a(w1) ≥ d∗a, otherwise the algorithm would choose node
w3 before node w1. Hence d(w3) ≥ d∗a in G.

We can iterate this argument. Since there are only N nodes in V , we get a
contradiction after we have considered all the nodes. �

We are now able to prove the greediness and the consistency of the algorithm.

Proof of Proposition 3.2.6. By Lemma 3.2.5, we know that the maximum least degree
of a path generated by the algorithm is the smallest possible. We know that the order
of the mean transition time along a path is related to d∗ and depends on the value of
β. Hence, Lemma 3.2.5 implies that the mean transition time along a path generated
by the algorithm is the shortest possible, in the sense that it has the smallest order
of r possible. �

Proof of Proposition 3.2.7. Lemma 3.2.5 proves equality for any two paths generated
by the algorithm. This leads to the same order of the mean transition time. �

Despite the fact that d∗ does not depend on which path the algorithm generates, its
multiplicity does. Figure 3.4 shows a graph on which the algorithm can generate two
different paths with the same maximum least degree but with different multiplicity.

94



§3.5. Analysis of the algorithm

C
h
a
pter

3

u7

u6

u5

u4

u3

u2

u1

v3

v2

v1

Figure 3.4: The algorithm may generate the path v1, v2, v3 or the path v3, v1, v2 with different
multiplicity of d∗.

§3.5.3 Algorithm complexity

The algorithm we constructed can be implemented in different ways according to what
we want to compute.

• In order to know the leading order of the mean transition time, it is enough
to recover the maximum least degree d∗ from the graph. By Proposition 3.2.7
we know that d∗ is the same for all paths the algorithm can generate. Hence
it is enough to run it once and comparing the value of d∗ with the value of
β we can immediately determine whether we are in the subcritical, critical or
supercritical regime.

In this case the computational complexity of the algorithm is polynomial in
the number of nodes in V , and so the leading order of the mean transition
time is quickly determined. More precisely, the algorithm has a complexity of
O(|U ||V |2).

• If we are interested in the precise asymptotics of the mean transition time and
in its law as r →∞, then we need to compute the pre-factor of the leading order
term. To do so, we need to run the algorithm multiple times, until all possible
paths are generated, in order to recover all the possible sequences (d̄k)Nk=1 and
(nk). A proper approach is to let a (deterministic) depth-first search algorithm
run through all possible paths and enumerate them. Theorem 3.3.2 shows that
if we know the total mean transition time along each path, then we can recover
the mean transition time of the graph.

In this case the computational complexity of the algorithm is factorial in the
number of nodes in V , since it depends in a delicate manner on the architecture
of the graph. More precisely, the algorithm has a complexity of O(|U ||V |2|V |!).

See [99] for a deeper analysis of the algorithm complexity.

95



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

§3.6 Proofs of the main results

The aim of this section is to prove the theorems in Section 3.3. In Section 3.6.1
we introduce some further definitions. In Section 3.6.2 we prove Lemmas 3.2.2 and
3.2.11. In the last three sections we prove the three main theorems, respectively: in
Section 3.6.3 we prove Theorem 3.3.2, in Section 3.6.4 we prove Theorem 3.3.3, and
in Section 3.6.5 we prove Theorem 3.3.5.

§3.6.1 Preparatory results
Consider an arbitrary bipartite graph G = ((U, V ), E) with |V | = N and let v1, . . . , vN
be the nodes in V . The activation path that the network follows is denoted by
v∗1 , . . . , v

∗
N , while the indices of the nodes that the algorithm picks are denoted by

Y1, . . . , YN (as in Definition 3.2.1). We want to study the transition time when the
network follows a path generated by the algorithm. When conditioning the network
on a specific activation order, we can write

{Yk = i} = {v∗k = vi}, (3.88)

in the sense that saying that the k-th index Yk chosen by the algorithm equals i is
equivalent to saying that the k-th activating node v∗k equals vi.
Definition 3.6.1 (Iteration graph).
For k = 1, . . . , N , suppose that k − 1 nodes in V already activated. Denote by
Gk = ((Vk, Uk), Ek) the subgraph of G = ((U, V ), E) consisting of:

• Vk = V \ {{vYi}0<i<k} ⊆ V , the set of nodes in V that have not yet activated;

• Uk = U \
⋃

0<i<kN(vYi) ⊆ U , the set of nodes in U that are not neighbors of
some of the nodes in V that already activated;

• Ek = {uv : u ∈ Uk, v ∈ Vk} ⊆ E, the set of edges between Uk and Vk.

Let d̄k be the minimum degree of the nodes in Vk and nk be the number of least
degree forks in Gk.

Definition 3.6.2 (Minimum degree subset).
Define the set of nodes with minimum degree in V as

M(V ) = {v′ ∈ V : d(v′) = minv∈V d(v)}. (3.89)

Lemma 3.6.3 (Probability of choosing the next node).
Given the graph Gk, in the subcritical and critical regimes, the probability that the
next node activating in Vk is node vi is

P(Yk = i) =

{
1
nk
, if β ∈ (0, 1

d̄k−1
], vi ∈M(Vk),

0, if β ∈ (0, 1
d̄k−1

], vi ∈ Vk \M(Vk),
(3.90)

which depends on the sequence of nodes already active in V .

Proof. By construction, the algorithm picks nodes in M(Vk) before before it picks
nodes in Vk \M(Vk). It is therefore enough to count the number of forks of minimum
degree at step k, which is nk. �

96



§3.6. Proofs of the main results

C
h
a
pter

3

§3.6.2 Proof: activation sticks and selects low degrees
We next prove two lemmas from Section 3.2 that will be needed to prove Theorem 3.3.2
in Section 3.6.3.

Proof of Lemma 3.2.2. Recall Definition 3.1.1. We claim that if a node u ∈ U deac-
tivates and one of its neighbors in V activates at time tu, then, with high probability
as r →∞, it will not activate anymore after time tu. The moments when u could pos-
sibly activate again are the moments when all its neighbors in V are simultaneously
inactive. We consider the worst case scenario when u has only one active neighbor
v ∈ V . Denote by tv the first moment when v deactivates after tu. This happens
many times, since the activity period of a node is described by an exponential variable
Z with rate 1. Instead, the inactivity periods are very short, since the nodes in V are
very aggressive and the activation rates grow with the queue lengths, which tend to
infinity as r → ∞. We consider a time period of length equal to the total transition
time, and we assume the transition time to be the longest possible (of order r). Then
on average we have a number of possibilities for u to activate that is equal to

E[T Q
0

G ]

E[Z]
= E[T Q

0

G ] = Cr [1 + o(1)], r →∞, (3.91)

with C a positive constant. At each of these times, nodes u and v are both inactive
and are competing with each other to activate again. Denote by Zu and Zv the lengths
of the inactivity periods of u and v, respectively. Then Zu ' Exp(gU (Qu(tv))) and
Zv ' Exp(gV (Qv(tv))) and so, with high probability as r → ∞, node v activates
before node u, i.e.,

lim
r→∞

P(Zv < Zu) = lim
r→∞

gV (Qv(tv))

gU (Qu(tv)) + gV (Qv(tv))
= lim
r→∞

K ′rβ
′

Krβ +K ′rβ′

= lim
r→∞

1

1 + (K/K ′)r−(β′−β)
= 1,

(3.92)

where we use that β′ > β, and K,K ′ are positive constants.
Note that the queue lengths in U are always of order r, except when we are in

the supercritical regime. In this regime we are not interested in the competition
between u and v anymore, since we know how long the transition takes. The queue
lengths in V start being of order r, increase while u is active and decrease when v is
active, but remain of order r. Indeed, if there are other nodes in U that take long
enough to activate so that the queue length of v becomes o(r), then we must be in
the supercritical regime. In the worst case scenario, nodes u and v compete with
each other for the duration of the transition, i.e., order r times. The probability of v
winning every competition is

lim
r→∞

P(Zv < Zu)r = lim
r→∞

(
1

1 + (K/K ′)r−(β′−β)

)Cr
= lim
r→∞

(
e−(K/K′)r−(β′−β)

)Cr
= lim
r→∞

e−C(K/K′)r−(β′−β−1)

= 1,

(3.93)

97



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

where we use that β′ > β + 1. Hence, with Pu-probability tending to 1 as r → ∞,
node u will never win any competition against node v, and hence will remain blocked
for the duration of the transition. �

Proof of Lemma 3.2.11. We distinguish between node v being subcritical or critical.

(I) β ∈ (0, 1
d̄k−1

). From Theorem 2.1.6 we know the law of the nucleation time for
the fork of v, namely,

lim
r→∞

Pu
(
T Qk−1

v

Eu[T Qk−1

v ]
> x

)
= P1(x) = e−x, x ∈ [0,∞). (3.94)

From the same equations we also know the law of the nucleation time for the
fork of w, which depends on how β and d(w) are related to each other. It is
enough to verify that

lim
r→∞

Pu
(
T Qk−1

w

Eu[T Qk−1

w ]
> x

)
= P(x), x ∈ [0,∞), (3.95)

with P(x) ↑ 1 when x ↓ 0 and P(x) ↓ 0 when x ↑ ∞. To that end, assume that
T Qk−1

v and T Qk−1

w deviate from their mean such that T Qk−1

v > T Qk−1

w . This
happens with probability tending to 0 as r →∞, since the deviations must be
of order r. Thus,

lim
r→∞

Pu
(
T Q

k−1

v > T Q
k−1

w

)
= lim
r→∞

Pu
(
X k−1
v,v > X k−1

v,w

)
, (3.96)

where we abbreviate X k−1
v,w = T Qk−1

w /Eu[T Qk−1

v ]. For fixedM <∞, we can split
the right-hand side of (3.96) without the limit r →∞ as

Pu
(
X k−1
v,v > X k−1

v,w

)
= Pu

(
X k−1
v,v > X k−1

v,w

∣∣ X k−1
v,w > M

)
Pu
(
X k−1
v,w > M

)
+ Pu

(
X k−1
v,v > X k−1

v,w

∣∣ X k−1
v,w ≤M

)
Pu
(
X k−1
v,w ≤M

)
≤ P1(M)Pu

(
X k−1
v,w > M

)
+ Pu

(
X k−1
v,v > X k−1

v,w

∣∣ X k−1
v,w ≤M

)
Pu
(
X k−1
v,w ≤M

)
.

(3.97)

Pick ε > 0 so small that, for r > r0(ε),

Pu
(
X k−1
v,w ≤M

)
= Pu

(
X k−1
w,w ≤M

Eu[T Qk−1

v ]

Eu[T Qk−1

w ]

)
≤ Pu

(
X k−1
w,w ≤Mε

)
. (3.98)

Letting r →∞ followed by ε ↓ 0, we get

lim
ε↓0

lim
r→∞

Pu
(
X k−1
w,w ≤Mε

)
= lim

ε↓0
[1− P(Mε)] = 0. (3.99)

We can now let M →∞ and use (3.96)–(3.97) to arrive at

lim
r→∞

Pu
(
T Q

k−1

v > T Q
k−1

w

)
= 0. (3.100)

98



§3.6. Proofs of the main results

C
h
a
pter

3

(II) β = 1
d̄k−1

. As before, we know the law of the nucleation time for the fork of v and

w. As shown in Chapter 2, with high probability as r →∞, T Qk−1

w /Eu[T Qk−1

w ]

tends to 1. Moreover, with high probability as r → ∞, any nucleation time
of a complete bipartite graph in the critical regime (including the fork of v) is
smaller than the transition time of the same graph in the supercritical regime.

�

§3.6.3 Proof: most likely paths
Proof of Theorem 3.3.2. We prove the three statements separately.

(i) Assuming that the network does not follow the algorithm is equivalent to as-
suming that at some step k with β ∈ (0, d̄k − 1] a node w that does not have a
minimum degree is chosen instead of a node v with degree d̄k. The probability
of a group of d > d̄k nodes becoming simultaneously inactive before a group of
d̄k nodes is equivalent to the probability of w activating before v, which satisfies

lim
r→∞

Pu
(
T Q

k−1

w < T Q
k−1

v

)
= 0 (3.101)

by Lemma 3.2.11. Hence, with high probability as r →∞, nodes in V activate
in a greedy way, as described by the algorithm. By Lemma 3.2.2, we also know
that the nodes in U that deactivated remain inactive for the duration of the
transition process. Consequently, they do not influence any future activation
attempt of the nodes in V , whose activation therefore follows the algorithm. In
the supercritical regime, we are only interested in the order of activation of the
nodes until the first supercritical node, for which the above reasoning still holds.

(ii) Note that the queues Qk depend on the sequence of indices (Y1, . . . , Yk−1)

describing the order of the activating nodes in V . Indeed, we have seen in
Section 3.4.3 that the queues change according to which nodes already activ-
ated. Moreover, for k > 1, also the probabilities 1

nk
depend on the sequence

(Y1, . . . , Yk−1). The reader should keep this in mind while going through the
proof. The proof evolves in three steps.

1. Denote the graph G = ((U, V ), E) by G1 = ((U1, V1), E1). Write

Eu[T Q
0

G 1E(a∗)] = Eu[T Q
0

G1
1E(a∗)] =

∑
i1: vi1∈V1

Eu[T Q
0

G1
1E(a∗) | Y1 = i1]P(Y1 = i1).

(3.102)
By Lemma 3.6.3, when β(d̄1 − 1) ≤ 1 not all the terms in the above sum have
positive probability, only the ones corresponding to forks of minimum degree d̄1

(which all have the same probability). Recall that this probability is 1
n1

. We

can write the random variable T Q
0

G1
as sum of three random variables

T Q
0

G1
= τ̄1 +R1

U2
+ T Q

1

G2
, (3.103)

99



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

where G2 = ((U2, V2), E2) is the subgraph with U2 = U1\N(vY1
), V2 = V1\{vY1

}
and E2 = E1 \ {(u, v) : u ∈ N(vY1

)}, while Q1 = Q(τ̄1) represents the updated
queue lengths. The first variable represents the time it takes for the the first
node to activate, the second variable represents the time it takes (after the
activation of the first node) to reach the state with all the nodes in U2 active
(see Lemma 3.4.2), while the third variable represents the transition time of
the remaining graph when we take the first activating node out. Note that, by
Corollary 3.4.4, if we condition the network to follow a path generated by the
algorithm with a specific first activating node, then we get

Eu[τ̄1 | Y1 = i1] = f1 Eu[T Q
0

vi1
], r →∞, (3.104)

where f1 is the factor that arises from considering the minimum of random
variables. Also the variable T Q

1

G2
changes accordingly, but with an abuse of

notation we may write it in the same way. Thus, with high probability as
r →∞, by Lemma 3.4.2,

Eu
[
T Q

0

G1
1E(a∗) | Y1 = i1

]
=Eu

[
(τ̄1 +R1

U2
+ T Q

1

G2
) | E(a∗) ∩ {Y1 = i1}

]
=Eu[τ̄11E(a∗) | Y1 = i1] + o(1)

+ Eu
[
T Q

1

G2
1E(a∗) | Y1 = i1

]
= f1 Eu

[
T Q

0

vi1
1E(a∗)

]
+ o(1)

+ Eu
[
T Q

1

G2
1E(a∗)

]
, r →∞.

(3.105)

We want to analyze the latter in a recursive way. The k-th iteration gives

Eu
[
T Q

k−1

Gk
1E(a∗)

]
=

∑
ik: vik∈Vk

Eu
[
T Q

k−1

Gk
1E(a∗) | Yk = ik

]
P(Yk = ik). (3.106)

2. We can again write the random variable T Q
k−1

Gk
as sum of three random

variables

T Q
k−1

Gk
= τ̄k +RkUk+1

+ T Q
k

Gk+1
, (3.107)

where Gk+1 = ((Uk+1, Vk+1), Ek+1), Uk+1 = Uk \ g(vYk), Vk+1 = Vk \ {vYk},
Ek+1 = Ek \ {(u, v) : u ∈ g(vYk)}, while Qk = Q(

∑k−1
j=1 T Q

j−1

vij
). By Corol-

lary 3.4.4, we again have that

Eu[τ̄k | Yk = ik] = fk Eu
[
T Q

k−1

vik

]
, r →∞, (3.108)

and also the variable T Q
k

Gk+1
changes accordingly when it is conditioned (again,

with an abuse of notation we write it in the same way). With high probability

100



§3.6. Proofs of the main results

C
h
a
pter

3

as r →∞, the conditional expectation in (3.106) can be written as

Eu
[
T Q

k−1

Gk
1E(a∗) | Yk = ik

]
=Eu

[
(T Q

k−1

vYk
+RkUk+1

+ T Q
k

Gk+1
)1E(a∗) | Yk = ik

]
=Eu

[
T Q

k−1

vYk
1E(a∗) | Yk = ik

]
+ o(1)

+ Eu
[
T Q

k

Gk+1
1E(a∗) | Yk = ik

]
= fk Eu

[
T Q

k−1

vik
1E(a∗)] + o(1)

+ Eu[T Q
k

Gk+1
1E(a∗)

]
, r →∞.

(3.109)

At each iteration the conditional expectation reduces to a sum of three terms:
the first term represents the expected time it takes to switch the following node
on (adjusted by a factor that keeps track of the fact that the node activates
before the other nodes), the second term represents the expected time it takes
(after the previous node activation) to reach the state with all the nodes re-
maining in U active, while the third term represents the mean transition time
of the remaining network when we take the following activating node out.

3. Note that, for each k = 1, . . . , N , the graph Gk+1 depends on the sequence
of indices (Y1, . . . , Yk). Moreover, we know that also the queue lengths Qk

depend on the indices (Y1, . . . , Yk−1). Thus, all the conditional expectations
depend on the sequence of indices of activated nodes. By Lemma 3.6.3, the
first iteration comes with a probability 1

n1
of choosing the first node activating,

while each iteration with k > 1 comes with a probability 1
nk

, also depending on
the sequence (Y1, . . . , Yk−1). After k = 2 steps, using (3.106) and (3.109), with
high probability as r →∞,

Eu
[
T Q

0

G1
1E(a∗)

]
=

∑
i1: vi1∈V1

1

n1

(
f1 Eu

[
T Q

0

vi1
1E(a∗)

]
+ o(1) + Eu

[
T Q

1

G2
1E(a∗)

])

=
∑

i1: vi1∈V1

1

n1

(
f1 Eu

[
T Q

0

vi1
1E(a∗)

]
+ o(1)

+
∑

i2: vi2∈V2

1

n2

(
f2 Eu

[
T Q

1

vi2
1E(a∗)

]
+ o(1) + Eu

[
T Q

2

G3
1E(a∗)

]))
, r →∞.

(3.110)

After N steps, the last node in V activates and the conditional expectation

101



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

becomes

Eu
[
T Q

N−1

GN
1E(a∗)

]
=

∑
iN : viN∈VN

1

nN

(
fN Eu

[
T Q

N−1

viN
1E(a∗)

]
+ Eu[RNUN+1

]

+ Eu
[
T Q

N

GN+1
1E(a∗)

])
=

∑
iN : viN∈VN

1

nN
fN Eu

[
T Q

N−1

viN
1E(a∗)

]
, r →∞.

(3.111)

Indeed, as soon as the last node in V activates, we are actually done and we
are not interested in what happens after. We can set RNUN+1

= 0 and we have

VN+1 = ∅, which implies Eu[T Q
N

GN+1
] = 0. Thus, we have arrived at (3.26).

(iii) The claim follows from steps analogous to the ones in (ii), given any path a ∈ A
that the algorithm generates.

�

§3.6.4 Proof: mean of the transition time

Proof of Theorem 3.3.3. Recall that, in the subcritical and critical regimes, we are
computing the mean transition time conditioned on the event that the nucleation
follows a fixed path a = (v1, . . . , vN ) ∈ A. We again distinguish between the three
regimes.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. Every term in the sum is o(r), which means

that the significant terms are the ones with d̄k = d∗ only. The pre-factors of
these terms are given by subcritical forks, and so

Eu
[
T Q

0

G

]
=

∑
k: d̄k=d∗

fk Eu
[
T Q

k−1

vk

]
=

∑
k: d̄k=d∗

fk
Eu[Qk−1

U ]β(d∗−1)

d∗B−(d∗−1)
[1 + o(1)]

=
∑

k: d̄k=d∗

fk
γ
β(d∗−1)
U

d∗B−(d∗−1)
rβ(d∗−1) [1 + o(1)], r →∞,

(3.112)

with fk = 1
nk

. The last equality comes from (3.72) in Theorem 3.4.8.

(II) β = 1
d∗−1 : critical regime. Every term in the sum is o(r), except the terms with

d̄k = d∗, which is of order r. The significant terms are the ones with d̄k = d∗

102



§3.6. Proofs of the main results

C
h
a
pter

3

only. The pre-factors of these terms are given by critical forks, and so

Eu
[
T Q

0

G

]
=

∑
k: d̄k=d∗

fk Eu
[
T Q

k−1

vk

]
=

∑
k: d̄k=d∗

fk
Eu[Qk−1

U ]

d∗B−(d∗−1) + (c− ρU )
[1 + o(1)]

=
∑

k: d̄k=d∗

fk
γ

(k−1)
U

d∗B−(d∗−1) + (c− ρU )
r [1 + o(1)], r →∞,

(3.113)

with γ(k−1)
U defined in (3.74) in Theorem 3.4.8 and

fk =
d̄kB

−(d̄k−1) + (c− ρU )

nkd̄kB−(d̄k−1) + (c− ρU )
. (3.114)

(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. Denote by vsc the first supercritical node.

We know from (3.76) in Theorem 3.4.8 that, after vsc activates, the queue lengths
become negligible (order o(r)), and the mean transition time is given by the
expected time it takes for them to hit zero, i.e.,

Eu
[
T Q

0

G

]
=

γU
c− ρU

r [1 + o(1)], r →∞. (3.115)

�

§3.6.5 Proof: law of the transition time
Proof of Theorem 3.3.5. We again distinguish between the three regimes.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. Recall that the significant terms in the sum

for the mean transition time are those coming from nodes with degree d̄k = d∗

with d∗ < 1
β + 1. There are ma

sub such terms, where ma
sub depends on the path

a ∈ A, and each term comes with a multiplicative factor fk. We can write the
transition time along path a divided by its mean as

T Q
0

G |Aa
Eu[T Q0

G |Aa]
=

∑N
k=1 τ̄k +

∑N
k=2R

k−1
Uk

Eu[T Q0

G |Aa]

=

∑
k′ : d̄k′=d

∗ τ̄k′ +
∑
k′′ : d̄k′′<d

∗ τ̄k′′ +
∑N
k=2R

k−1
Uk

Eu[T Q0

G |Aa]
.

(3.116)

We know that the law of a sum of independent random variables has a density
given by the convolution of their densities. Here the nucleation times and the
return times can be considered as independent, since they only depend on the
queue lengths, which remain close to the initial value in the subcritical regime.

There are three types of sums in the numerator of the last line of (3.116). The
first type of sum is of the form τ̄k′/Eu[T Q

0

G |Aa], with k′ such that d̄k′ = d∗. As

103



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

r → ∞, these are the significant terms in the sum, since they are of the same
order as the mean transition time. For each of them, i.e., for each k′, we have

lim
r→∞

Pu
(

τ̄k′

Eu[T Q0

G |Aa]
> x

)
= lim
r→∞

Pu
(

τ̄k′

Eu[τ̄k′ ]
>

Eu[T Q
0

G |Aa]

Eu[τ̄k′ ]
x

)
= exp

(
−
∑
i : d̄i=d∗

Eu[τ̄i]

Eu[τ̄k′ ]
x

)
= exp

(
−
∑
i : d̄i=d∗

fi

fk′
x

)
, x ∈ [0,∞),

(3.117)

where in the second step we use Proposition 3.4.6. We write the density as

P
fk′ ,Smasub

sub (x) =
Smasub

fk′
exp

(
−
Smasub

fk′
x

)
, x ∈ [0,∞), (3.118)

with
Smasub

=
∑

i : d̄i=d∗

fi. (3.119)

The second type of sum is of the form τ̄k′′/Eu[T Q
0

G |Aa], with k′′ such that
d̄k′′ < d∗. As r → ∞, these are negligible, since they are of smaller order than
the mean transition time. For each of them, i.e., for each k′′, we have

lim
r→∞

Pu
(

τ̄k′′

Eu[T Q0

G |Aa]
> x

)
= lim
r→∞

Pu
(

τ̄k′′

Eu[τ̄k′′ ]
>

Eu[T Q
0

G |Aa]

Eu[τ̄k′′ ]
x

)
, x ∈ [0,∞),

(3.120)
and the density is δ0, the Dirac function at 0. The third type of sum is of the
form Rk−1

Uk
/Eu[T Q

0

G |Aa], with k = 2, . . . , N . As r →∞, these are also negligible,
since they are o(1) by Lemma 3.4.2, and hence their density is also δ0.

The density of T Q
0

G |Aa/Eu[T Q
0

G |Aa] is given by the convolution of the densities
of the three types of terms. Since δ0 gives the identity for the convolution, we
can write

lim
r→∞

Pu
(

T Q
0

G

Eu[T Q0

G |Aa]
> x | Aa

)
=

∫ ∞
x

(
~m

a
sub

k′=1 P
fk′ ,Smasub

sub

)
(y)dy, x ∈ [0,∞),

(3.121)
and we can rename the index k′ by k.

(II) β = 1
d∗−1 : critical regime. For two reasons we do not know how to handle

this regime: (a) We do not know the law of the next nucleation times because
Proposition 3.4.6 only holds in the subcritical regime. (b) The next nucleation
times are dependent random variables, and so convolution is no longer relevant.

(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. Recall that TU = γU

c−ρU r [1 + o(1)] as
r → ∞. The law of the transition time is given by P3(x) from Theorem 2.1.6.

104



§C. Appendix: minimum of independent forks

C
h
a
pter

3

Indeed, the mean transition time is the expected time it takes for the queue
lengths in U to hit zero and. With high probability as r → ∞, the transition
does not occur before or after its mean. Since

lim
r→∞

Pu
(
T Q

0

G > Eu
[
T Q

0

G

])
= lim
r→∞

Pu
(
T Q

0

G > TU
)

= 0, (3.122)

we can write

lim
r→∞

Pu
(
T Q

0

G

Eu[T Q0

G ]
> x

)
= 0, x ∈ [1,∞). (3.123)

We also have

lim
r→∞

Pu
(
T Q

0

G

Eu[T Q0

G ]
> x

)
= 1, x ∈ [0, 1). (3.124)

Hence the density is the Dirac function at 1.

�

§C Appendix: minimum of independent forks

In this appendix we compute the mean next nucleation time in the situation where
the forks competing for nucleation are disjoint, i.e., they have no nodes in common.
Recall that, in the subcritical regime, the nucleation time of a fork is given by an
exponential random variable, while in the critical regime it is given by a “polynomial"
random variable, in the sense that its law is truncated polynomial.

§C.1 Subcritical regime: exponential random vari-
ables

Let X1, . . . , Xn be i.i.d. exponential random variables with rate λ and let their min-
imum be Z = min{X1, . . . , Xn}. Then

P(Z > t) = P(X1 > t, . . . ,Xn > t) = P(X1 > t)n = e−nλt. (3.125)

Hence, Z is an exponential random variable with rate nλ, and we have

E[Z] =
1

nλ
=

1

n
E[X1]. (3.126)

If we consider X1, . . . , Xnk to be the nucleation times of disjoint forks of degree d̄k,
and Z to be the next nucleation time at step k, then we get

Eu[τ̄k] = f iid
k Eu

[
T Q

k−1

v∗k

]
, r →∞, (3.127)

with f iid
k = 1

nk
.

105



3. Arbitrary bipartite interference graphs

C
h
a
pt

er
3

§C.2 Critical regime: polynomial random variables
Let X1, . . . , Xn be i.i.d. polynomial random variables such that

P
(

Xi

E[Xi]
> x

)
=

{
(1− Cx)

1−C
C , if x ∈ [0, 1

C ),

0, if x ∈ [ 1
C ,∞),

i = 1, . . . , n, (3.128)

with
C =

c− ρU
d̄kB−(d̄k−1) + (c− ρU )

. (3.129)

Let Z = min{X1, . . . , Xn}. Then, for t = xE[Xi],

P(Xi > t) =


(
1− C

E[Xi]
t
) 1−C

C , if t ∈ [0, E[Xi]
C ),

0, if t ∈ [E[Xi]
C ,∞),

i = 1, . . . , n. (3.130)

Abbreviate C = C1

C1+C2
, where C1 = c−ρU and C2 = d̄kB

−(d̄k−1). Then the exponent
1−C
C becomes C2

C1
. We have

P(Z > t) = P(X1 > t, . . . ,Xn > t)

= P(X1 > t)n =


(
1− C

E[Xi]
t
)nC2

C1 , if t ∈ [0, E[X1]
C ),

0, if t ∈ [E[X1]
C ,∞).

(3.131)

The density function of Z is

fz(t) =
d

dt

[
1− P(Z > t)

]
=

 C
E[X1]n

C2

C1

(
1− C

E[X1] t
)nC2

C1
−1
, if t ∈ [0, E[X1]

C ),

0, if t ∈ [E[X1]
C ,∞).

(3.132)
Hence

E[Z] =

∫ E[X1]
C

0

fZ(t)t dt =
C

E[X1]
n
C2

C1

∫ E[X1]
C

0

(
1− C

E[X1]
t
)nC2

C1
−1

t dt. (3.133)

Substituting u = 1− C
E[X1] t, we get

E[Z] =
E[X1]

C
n
C2

C1

∫ 1

0

un
C2
C1
−1(1− u) du

=
E[X1]

C
n
C2

C1

[ ∫ 1

0

un
C2
C1
−1 du−

∫ 1

0

un
C2
C1 du

]
=

E[X1]

C
n
C2

C1

[
1

nC2

C1

− 1

nC2

C1
+ 1

]
=

E[X1]

C
n
C2

C1

[
1

nC2

C1
(nC2

C1
+ 1)

]
=

E[X1]

C

[
1

nC2

C1
+ 1

]
= E[X1]

C1 + C2

nC2 + C1

=
d̄kB

−(d̄k−1) + (c− ρU )

nd̄kB−(d̄k−1) + (c− ρU )
E[X1].

(3.134)

106



§C. Appendix: minimum of independent forks

C
h
a
pter

3

If we consider X1, . . . , Xnk to be the nucleation times of disjoint forks of degree d̄k,
and Z to be the next nucleation time at step k, then we get

Eu[τ̄k] = f iid
k Eu[T Q

k−1

v∗k
], r →∞, (3.135)

with

f iid
k =

d̄kB
−(d̄k−1) + (c− ρU )

nkd̄kB−(d̄k−1) + (c− ρU )
. (3.136)

107


