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PART I

QUEUE-BASED RANDOM-ACCESS
PROTOCOLS FOR WIRELESS

NETWORKS
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CHAPTER 2
Complete bipartite interference

graphs

This chapter is based on:
S.C. Borst, F. den Hollander, F.R. Nardi, M. Sfragara. Transition time asymptotics
of queue-based activation protocols for random-access neworks. Stochastic Processes
and Their Applications, 2020.

Abstract

We consider networks where each node represents a server with a queue. An active
node deactivates at unit rate. An inactive node activates at a rate that depends on
its queue length, provided none of its neighbors is active. For complete bipartite
networks, in the limit as the queues become large, we compute the mean transition
time between the two states where one half of the network is active and the other half
is inactive. We show that the law of the transition time divided by its mean exhibits
a trichotomy, depending on the activation rate functions.



2. Complete bipartite interference graphs

C
h
a
pt

er
2

§2.1 Introduction and main results

In Section 2.1.1 we describe the setting and the mathematical model of interest in
this chapter. In Section 2.1.2 we state our main results. In Section 2.1.3 we offer a
brief discussion of these results and give an outline of the remainder of the chapter.

§2.1.1 Setting
We refer to Section 1.1.5 for a general introduction to the mathematical model. In
this section we refine it with some extra notions we will need in the chapter.

Consider a complete bipartite graph G: the node set can be partitioned into two
nonempty sets U and V such that the bond set is the product of U and V , i.e.,
two nodes interfere if and only if one belongs to U and the other belongs to V (see
Figure 2.1 for an example). Thus, the collection of all independent sets of G consists
of all the subsets of U and all the subsets of V .

Figure 2.1: A complete bipartite graph with |U | = 3 and |V | = 4. At time t = 0, square-
shaped nodes are active and circle-shaped nodes are inactive.

We assume the activation rates to satisfy Definition 1.1.4. Moreover, we focus on
the following.

Definition 2.1.1 (Assumption on the activation rates).
We assume polynomial activation functions for nodes in U of the form

gU (x) ∼ Bxβ , x→∞, (2.1)

with B, β ∈ (0,∞). We will discuss more general functions gU in Remark 2.4.1. We
do not require any further assumption on the functions gV : it turns out that the
asymptotic distribution of the transition time is independent of gV .

Next, we define our two main objects of interest.

Definition 2.1.2 (Pre-transition and transition time).
The pre-transition time τG is defined as the first time a node in V activates starting
from u, i.e.,

τG = inf{t > 0: Xi(t) = 1 ∃ i ∈ V, X(0) = u}. (2.2)
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The transition time TG is defined as the first time v is reached starting from u, i.e.,

TG = inf
{
t ≥ 0: Xi(t) = 0 ∀ i ∈ U, Xi(t) = 1 ∀ i ∈ V,X(0) = u

}
. (2.3)

The pre-transition time plays an important role in our analysis of the transition time,
because the evolution of the network is simpler on the interval [0, τG] than on the
interval [τG, TG]. However, we will see that TG − τG � τG when the initial queue
lengths are large, so that both times have the same asymptotic scaling behavior. See
Figure 2.2 for a representation of the pre-transition state.

Figure 2.2: Left: initial state u. Center: pre-transition state. Right: final state v.

We study the transition starting from u and we set the initial queue sizes Qi(0)

to be large for all i ∈ U t V . Hence, initially all the nodes in U are active virtually
all the time, preventing any of the nodes in V to activate. Consequently, the queue
sizes of the nodes in U will tend to decrease at rate c− ρU > 0, while the queue sizes
of the nodes in V will tend to increase at rate ρV > 0. While the packet arrivals and
activity periods are governed by random processes, the trajectories of the queue sizes
will be roughly linear when viewed on the long time scales of interest.

As mentioned in Section 1.1.4, we focus on queue-based random-access protocols
where the activation rates are functions of the queue lengths at the various nodes.
We call these protocols internal models and in particular we study the internal model
with activation rates as described in (1.5). Since we assume identical initial queue
sizes within the sets U and V , the asymptotic distribution of the transition time in
the internal model should be close to that in the external model described in (1.6)
when we choose

hU (t) = gU
(
QU (0)− (c− ρU )t

)
, hV (t) = gV

(
QV (0) + ρV t

)
, (2.4)

with QU (0) = γUr and QV (0) = γV r. Next, we formalize our four main models of
interest.
Definition 2.1.3 (Models).
Let δ > 0.

• In the internal model the deactivation Poisson clocks tick at rate 1, while the
activation Poisson clocks tick at rate

rint
i (t) =

{
gU (Qi(t)), i ∈ U,
gV (Qi(t)), i ∈ V, t ≥ 0. (2.5)
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• In the external model the deactivation Poisson clocks tick at rate 1, while the
activation Poisson clocks tick at rate

rext
i (t) =

{
gU (γUr − (c− ρU )t), i ∈ U,
gV (γV r + ρV t), i ∈ V, t ≥ 0. (2.6)

• In the lower external model the deactivation Poisson clocks tick at rate 1, while
the activation Poisson clocks tick at rate

rlowi (t) =

{
gU (γUr − (c− ρU )t− δr), i ∈ U,
gV (γV r + ρV t+ δr), i ∈ V, t ≥ 0. (2.7)

• In the upper external model the deactivation Poisson clocks tick at rate 1, while
the activation Poisson clocks tick at rate

rupp
i (t) =

{
gU (γUr − (c− ρU )t+ 2δr), i ∈ U,
gV (γV r + ρV t− δr), i ∈ V, t ≥ 0. (2.8)

Note that in the three external models the activation rates depend on time via certain
fixed parameters, while in the internal model they depend on time via the actual
queue lengths at the nodes. In the lower external model the activation rates in U

tend to be less aggressive than in the internal model (i.e., the activation clocks tick
less frequently), while the activation rates in V tend to be more aggressive. In the
upper external model the reverse is true: the activation rates in U are more aggressive
and the activation rates in V are less aggressive. For simplicity, when considering the
external model we sometimes write rU (t) and rV (t) for the activation rates at time t
of nodes in U and nodes in V , respectively. We will see that the upper external model
is actually defined only for t ∈ [0, TU ] with TU = γU

c−ρU r (see Section 2.2 for details).
However, with high probability as r →∞, the transition occurs before time TU .

§2.1.2 Main theorems
The main goal of the chapter is to compare the transition time of the internal model
with that of the external model. Through a large deviation analysis of the queue
length process at each of the nodes, we define a notion of good behavior that allows us
to define perturbed models with externally driven activation rates that sandwich the
queue lengths of the internal model and its transition time. We show with the help of
coupling that, with high probability as r →∞, the asymptotic behavior of the mean
transition time for the internal model is the same as for the external model.

The metastable behavior and the transition time TG of a network in which the
activation rates are time-dependent in a deterministic way was characterized in [14],
with the help of the metastability analysis for hard-core interaction models developed
in [59]. For s ≥ 0, let

ν(s) =
1

Eu[TG](s)
(2.9)

be the inverse mean transition time of the time-homogeneous model where we freeze
the the activation rates rU and rV at time s, i.e., we consider the model with constant
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activation rates
rext
i (t) =

{
rU (s), i ∈ U,
rV (s), i ∈ V, t ≥ 0. (2.10)

Then, for any time scale M = M(r) and any threshold x ∈ [0,∞),

lim
r→∞

Pu
(
TG
M

> x

)
=


0, if Mν(Mx) � 1,

e−
∫ x
0
Mν(Ms)ds, if Mν(Mx) � 1,

1, if Mν(Mx) ≺ 1.
(2.11)

(Here, as r → ∞, a � b means b = o(a), a ≺ b means a = o(b), while a � b means
a = Θ(b).) If we let Mc be the unique solution of the equation

Mν(M) = 1, (2.12)

then the transition occurs on the time scale Mc, in the sense that Pu(TG > t) ≈ 1 for
t ≺Mc and Pu(TG > t) ≈ 0 for t �Mc. On the critical time scale Mc, the transition
time follows an exponential distribution with time-varying rate. It was proven in [59]
that, for a complete bipartite graph and s ∈ [0,∞),

Eu[TG](s) =
1

|U |
rU (s)|U |−1 [1 + o(1)], r →∞. (2.13)

The following two theorems will be proven in Sections 2.4.1–2.4.2 with the help of
(2.9)–(2.13).
Theorem 2.1.4 (Critical time scale in the external model).
The time scale on which the transition occurs is given by

Mc = Fc r
1∧β(|U |−1) [1 + o(1)], r →∞, (2.14)

with

Fc =


γ
β(|U|−1)
U

|U |B−(|U|−1) , if β ∈ (0, 1
|U |−1 ),

γU
|U |B−(|U|−1)+(c−ρU )

, if β = 1
|U |−1 ,

γU
c−ρU , if β = ( 1

|U |−1 ,∞).

(2.15)

Theorem 2.1.5 (Transition time in the external model).
The transition time in the external model satisfies

Eu[T ext
G ] = Fc r

1∧β(|U |−1) [1 + o(1)], r →∞. (2.16)

with Fc as in (2.15), and

lim
r→∞

Pu
(
T ext
G

Eu[T ext
G ]

> x

)
= P(x), x ∈ [0,∞), (2.17)

with

P(x) =



e−x, if β ∈ (0, 1
|U |−1 ), x ∈ [0,∞),

(1− Cx)
1−C
C , if β = 1

|U |−1 , x ∈ [0, 1
C ),

0, if β = 1
|U |−1 , x ∈ [ 1

C ,∞),

1, if β ∈ ( 1
|U |−1 ,∞), x ∈ [0, 1),

0, if β ∈ ( 1
|U |−1 ,∞), x ∈ [1,∞),

(2.18)
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and C = Fc(c−ρU )
γU

∈ (0, 1).

In other words, the mean transition time scales like Mc, while the law of the trans-
ition time divided by its mean is exponential, truncated polynomial or deterministic
(see Figure 2.3). We distinguish between these three regimes of behavior and refer
to them as subcritical regime, critical regime and supercritical regime, respectively.
The deterministic behavior observed in the supercritical regime is also known in the
literature as cut-off.

x

Psub(x)

x

Pcr(x)

1
C

r x

Psup(x)

1

r
Figure 2.3: Trichotomy for x 7→ P(x): β ∈ (0, 1

|U|−1
], subcritical regime (left); β = 1

|U|−1
,

critical regime (middle); β ∈ ( 1
|U|−1

,∞), supercritical regime (right). The curve in the
middle is convex when C ∈ (0, 1/2) and concave when C ∈ (1/2, 1). The curve on the right
is the limit of the curve in the middle as C → 1.

As shown in Remark 2.4.1, we can even include the case β = 0, and get that if
gU (x) = L̂(x) with limx→∞ L̂(x) =∞, then

Eu[T ext
G ] = Mc [1 + o(1)], Mc =

1

|U |
L̂(γUr)

|U |−1 [1 + o(1)], r →∞, (2.19)

and P(x) = e−x, x ∈ [0,∞). Similar properties hold for the lower and the upper
external model, with perturbed F low

c,δ and F upp
c,δ satisfying

lim
δ→0

F low
c,δ = lim

δ→0
F upp
c,δ = Fc. (2.20)

The main result of the chapter is the following sandwich of T int
G between T low

G and
T upp
G , for which we already know the asymptotic behavior. Because of this sandwich

we can deduce the asymptotics of the transition time in the internal model.

Theorem 2.1.6 (Transition time in the internal model).
For δ > 0 small enough, there exists a coupling such that

lim
r→∞

P̂u
(
T low
G ≤ T int

G ≤ T upp
G

)
= 1, (2.21)

where P̂u is the joint law induced by the coupling, with all three models starting from
u. Consequently, the transition time in the internal model satisfies

Eu[T int
G ] = Fc r

1∧β(|U |−1) [1 + o(1)], r →∞, (2.22)
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with Fc as in (2.15), and

lim
r→∞

Pu
(
T int
G

Eu[T int
G ]

> x

)
= P(x), x ∈ [0,∞). (2.23)

with P(x) as in (2.18).

§2.1.3 Discussion and outline
Theorems. Theorem 2.1.5 gives the leading-order asymptotics of the transition
time in the external model, including the lower and the upper external model. The-
orem 2.1.6 is the main result of the chapter and provides the leading-order asymptotics
of the transition time in the internal model, via the coupling in (2.21) and the continu-
ity property in (2.20). Equations (2.15)–(2.16) identify the scaling of the transition
time in terms of the model parameters. The trichotomy between β ∈ (0, 1

|U |−1 ),
β = 1

|U |−1 and β ∈ ( 1
|U |−1 ,∞) is particularly interesting, and leads to different limit

laws for the transition time on the scale of its mean.

Interpretation of the trichotomy. In order to interpret the above trichotomy,
observe first of all that the activation rates of each of the nodes in U remain of order rβ

almost all the way up TU . Specifically, in the absence of the nodes in V , by time yTU ,
y ∈ [0, 1), the queue lengths of the nodes in U have decreased by roughly a fraction y,
and their activation rates are approximately B(1− y)βrβ . Hence the fraction of joint
inactivity time of the nodes in U is of order (1/rβ)|U | = r−β|U |. Since the tike it takes
to leave the joint inactivity state is of order r−β , all nodes in U become simultaneously
inactive for the first time after a period of order r−β/r−β|U | = rβ(|U |−1), which is o(r)
in the subcritical regime when β < 1

|U |−1 . When the nodes in V are actually present,
with high probability as r → ∞, they all activate quickly and the transition occurs
almost immediately (see Section 2.4.3). Note that the queue lengths of the nodes in
U have only decreased by an amount of order rβ(|U |−1) = o(r), and hence are still of
order r. In contrast, in the critical regime when β = 1

|U |−1 , the probability that all
nodes in U become simultaneously inactive before time yTU is approximately π(y)

with π(y) = 1 − (1 − y)(1−C)/C , y ∈ [0, 1) (see (2.18)). Again, with high probability
as r → ∞, all the nodes in V activate quickly and the transition occurs almost
immediately. Note that the queue lengths in the nodes in U have then dropped by
a non-negligible fraction, but are still of order r. A potential scenario is that the
nodes in U do not all become simultaneously inactive until their activation rates have
become of a smaller order than rβ , due to the queue lengths no longer being of order
r just before time TU . However, the fact that π(y) → 1 as y → 1 implies that this
scenario has negligible probability in the limit. In contrast, this scenario does occur
in the supercritical regime when β > 1

|U |−1 , implying that the crossover occurs in a
narrow window around TU (see Sections 2.4.1–2.4.2 for details). We will see that this
window has size O(r1/β(|U |−1)) = o(r). In particular, the window gets narrower as
the activation rates of nodes in U increase.

Proofs. We look at a single-node queue length process t 7→ Q(t) and prove that with
high probability it follows a path that lies in a narrow tube around its mean path (see
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Figure 2.4). We study separately the input process t 7→ Q+(t) and the output process
t 7→ Q−(t): we use Mogulskii’s theorem (a pathwise large deviation principle) for the
first, and Cramér’s theorem (a pointwise large deviation principle) for the second. We
derive upper and lower bounds for the queue length process and we use these bounds
to construct two couplings that allow us to compare the different models.

t

Qi(t)

LB

UBγUr δr

slope = c− ρU

TU t

Qj(t)

UB

LB slope = ρVγV r

δr

Figure 2.4: Sketches of the tubes around the mean of the queue length processes, respectively,
for a node i ∈ U and a node j ∈ V .

Dependent packet arrivals. Our large deviation estimates are so sharp that we
can actually allow the Poisson processes of packet arrivals at the different nodes to be
dependent. Indeed, as long at the marginal processes are Poisson, our large deviation
estimates are valid at every single node, and since the network is finite a simple union
bound shows that they are also valid for all nodes simultaneously, at the expense of a
negligible factor that is proportional to the number of nodes. For modeling purposes
independent arrivals are natural, but it is interesting to allow for dependent arrivals
when we want to study activation protocols that are more involved.

Open problems. If we want to understand how small the term o(1) in (2.22) actually
is, then we need to derive sharper estimates in the coupling. One possibility would be
to study moderate deviations for the queue length processes and to look at shrinking
tubes. We do not pursue such refinements here. Our main focus for the future will
be to extend the model to more complicated settings, where the activation rate at
node i depends also on the queue length at the neighboring nodes of i. We want
to be able to compare models with (externally driven) time-dependent activation
rates and models with (internally driven) queue-dependent activation rates, and show
again that their metastable behavior is similar. We also want to move away from the
complete bipartite interference graph and consider more general graphs that capture
more realistic wireless networks.

Other models. There are other ways to define an internal model. We mention a
few examples.

(i) A simple variant of our model is obtained by fixing the activation rates, but
letting the rate at time t of the Poisson deactivation clock of node i depend on
the reciprocal of the queue length at time t, i.e., 1/gi(Qi(t)) for some gi ∈ G.
This can be equivalently seen as a unit-rate Poisson deactivation clock, where
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node i either deactivates with a probability reciprocal to gi(Qi(t)), or starts
a second activity period. Nodes with a large queue length are more likely to
remain active for a long time before deactivating, while nodes with a short queue
length have extremely short activity periods. If at time t the activation clock
of an inactive node with Qi(t) = 0 ticks, then the node does not activate. On
the other hand, if during an activity period the queue length of an active node
hits zero, then the node deactivates independently of its deactivation rate. For
fixed activation and deactivation rates, this model and our internal model with
rint
i (t) = gi(Qi(t)) for each node i are equivalent up to a time scaling factor. In
particular, they have similar stationary distributions.

(ii) An alternative approach is to use a discrete notion of queue length, namely,
Qi(t) = Ni(t) − Si(t), where Ni(t) is a Poisson process with rate λ, denoting
the number of packets arriving at node i during [0, t], while Si(t) indicates the
total number of times node i activates (or deactivates) during [0, t] (we may use
λU and λV to represent different arrival rates for the two sets U and V ). The
processes t 7→ Si(t) and t 7→ Ni(t) are assumed to be independent. We can
define a model where each time a node activates it serves exactly one packet
and then deactivates again. The activation clocks still have rates gi(Qi(t)) with
gi ∈ G. We can establish results similar to our internal model by adapting the
arguments to the discrete setting.

Outline of the chapter. The remainder of this chapter is organized as follows. In
Section 2.2 we state large deviation bounds for the input and the output process,
which allow us to show that the queue length process at every node has specific lower
and upper bounds that hold with very high probability. The proofs of these bounds
are deferred to Appendices A–B. In Section 2.3 we use the bounds to couple the lower
and the upper external model (with activation rates (2.7) and (2.8), respectively)
to the internal model (with activation rates (2.5)). In Section 2.4 we derive the
scaling results for the external model, and combine these with the coupling to derive
Theorem 2.1.6 (as stated in Section 2.1.2).

§2.2 Bounds for the input and output processes

In this section we state the main results of our analysis of the input process and the
output process at a fixed node (recall Definition 1.1.3). With the help of path large
deviation techniques, we show that, with high probability as r →∞, the input process
lies in a narrow tube around the deterministic path t 7→ (λ/µ)t (Proposition 2.2.1).
For simplicity, we suppress the index for the arrival rates λU and λV , and consider a
general rate λ. The same holds for ρ = λ/µ. We study the output process only for
nodes in U , and we give lower and upper bounds in (2.27) and Proposition 2.2.4. We
look at a single node and suppress its index, since the queues are independent of each
other as long as the nodes remain active or inactive. The proofs of the propositions
below for the input process and the output process are given in Appendices A–B,
respectively.
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Proposition 2.2.1 (Tube for the input process).
For δ > 0 small enough and time horizon S > 0, let

ΓS,δS =

{
γ ∈ L∞([0, S]) :

λ

µ
s− δS < γ(s) <

λ

µ
s+ δS ∀ s ∈ [0, S]

}
. (2.24)

With high probability as r →∞, the input process lies inside ΓS,δS as S →∞, namely,

P
(
Q+([0, S]) /∈ ΓS,δS

)
= e−KδS [1+o(1)], S →∞. (2.25)

Kδ = (λ+ δµ) + λ− 2
√
λ(λ+ δµ) ∈ (0,∞). (2.26)

(Note that ΓS,δS contains negative values. This is of no concern because the path is
always non-negative.)

We want to derive lower and upper bounds for the output process for a node in
U . An upper bound is trivial by definition, namely,

Q−(t) ≤ ct, t ≥ 0. (2.27)

It is more delicate to compute a lower bound, for which we need some preparatory
definitions. We first introduce an auxiliary time that will be useful in our analysis.

Definition 2.2.2 (Auxiliary time).
Consider the internal model and recall that the initial queue lengths at nodes in U

are γUr. Define TU to be the expected time at which the queue length at a node in
U hits zero if the transition has not occurred yet. We can write

TU = TU (r) ∼ αr, r →∞, (2.28)

with
α =

γU
c− ρU

. (2.29)

Note that the quantity αr is the expected time at which the queue length at a node in
U hits zero when the node is always active. Since the total inactivity time of a node
in U before time TU will turn out to be negligible compared to αr, we have TU ∼ αr
as r →∞.

Next, we introduce the isolated model, an auxiliary model that will help us to
derive a lower bound for the output process. We will see later that the internal model
behaves in exactly the same way as the isolated model up to the pre-transition time,
in particular, the pre-transition times in the internal and the isolated model coincide
in distribution.

Definition 2.2.3 (Isolated model).
In the isolated model the activation of nodes in U is not affected by the activity states
of nodes in V , i.e., they behave as if they were in isolation. On the other hand, nodes
in V are still affected by nodes in U , i.e., they cannot activate until every node in U
deactivates. Nodes in V have zero output process.
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We study the output process for the isolated model up to time TU . We will see later
in Corollary 2.4.3 that, with high probability as r →∞, the transition in the internal
model occurs before TU , so it is enough to look at the time interval [0, TU ]. In the
rare case when the transition does not occur before TU , we expect it to occur in a
very short time after TU . We are now ready to give the lower bound for the output
process.

Proposition 2.2.4 (The output process in the isolated model).
Consider a node in U . For δ, ε, ε1, ε2 > 0 small enough, the output process satisfies

Pu
(
Q−(t) < ct− εr ∀t ∈ [0, TU ]

)
≤ e−Kδαr [1+o(1)] + e−K1r [1+o(1)]

+ e
−
(
K2r+K3

r
gU (r)

+K4r log gU (r)
)

[1+o(1)]
, r →∞,

(2.30)
with

K1 =

(
γU −

2δα

c− ρU

)
ε1 − log(1 + ε1)

1 + ε1
,

K2 =

(
γU −

2δα

c− ρU

)
(1 + ε1)

(
− 1− log

(
ε2(

γU − 2δα
c−ρU

)
(1 + ε1)

))
,

K3 = ε2,

K4 =

(
γU −

2δα

c− ρU

)
(1 + ε1),

(2.31)

satisfying K1,K2,K3,K4 ∈ (0,∞).

By combining the bounds for the input process and the output process, and picking
δ = ε and S = r, we obtain lower and upper bounds for the queue length process Q(t)

of a node in U .
Corollary 2.2.5 (The queue length process in the isolated model).
For δ > 0 small enough, with high probability as r → ∞, the following bounds hold
for a node in U :

(LB)U : Q(t) ≥ QLB
U (t) = γUr − (c− ρU )t− δr, t ≥ 0,

(UB)U : Q(t) ≤ QUB
U (t) = γUr − (c− ρU )t+ 2δr, t ∈ [0, TU ].

(2.32)

Similarly, with high probability as r →∞, the following bounds hold for a node in V :

(LB)V : Q(t) ≥ QLB
V (t) = γV r + ρV t− δr, t ≥ 0,

(UB)V : Q(t) ≤ QUB
V (t) = γV r + ρV t+ δr, t ≥ 0.

(2.33)

Proof. The claim follows from Propositions 2.2.1 and 2.2.4 in combination with the
bound in (2.27). �

§2.3 Coupling the internal and the external model

In Sections 2.3.1–2.3.2 we use the bounds defined in Section 2.2 to construct two coup-
lings that allow us to compare the internal and the external model (Proposition 2.3.5,

45



2. Complete bipartite interference graphs

C
h
a
pt

er
2

respectively, Proposition 2.3.8 and Corollary 2.3.9). Throughout the sequel we as-
sume that the deactivation rates are fixed, i.e., the deactivation Poisson clocks ring at
rate 1. A node can activate only if all its neighbors are inactive. If a node is inactive,
then the activation Poisson clocks ring at rates that vary over time in a deterministic
way, or as functions of the queue lengths.

We are interested in coupling the models in the time interval [0, TU ] and on the
following event.

Definition 2.3.1 (Good behavior).
Let Eδ be the event that the queue length processes in the internal model all have
good behavior in the interval [0, TU ], in the sense that

Eδ =
{
QLB
U (t) ≤ Qi(t) ≤ QUB

U (t) ∀ t ∈ [0, TU ] ∀ i ∈ U
}

∪
{
QLB
V (t) ≤ Qi(t) ≤ QUB

V (t) ∀ t ∈ [0, TU ] ∀ i ∈ V
}
,

(2.34)

i.e., the paths lie between their respectively lower and upper bounds for nodes in U
and V . This event depends on the perturbation parameter δ.

Lemma 2.3.2 (Probability of good behavior).
For δ > 0 small enough,

lim
r→∞

Pu(Eδ) = 1. (2.35)

Proof. The claim follows from Corollary 2.2.5. �

In what follows we couple on the event Eδ only. The coupling can be extended
in an arbitrary way off the event Eδ. The way this is done is irrelevant because of
Lemma 2.3.2.

§2.3.1 Coupling the internal and the lower external
model

The lower external model defined in (2.7) can also be described in the following way.
At time t ≥ 0 the activation rates are

rlowi (t) =

{
gU (QLB

U (t)), i ∈ U,

gV (QUB
V (t)), i ∈ V.

(2.36)

Note that when the lower bound QLB
U (t) becomes negative the activation function gU

is zero by definition. In this way we are able extend the coupling to any time t ≥ 0,
even though we consider only the interval [0, TU ].

Lemma 2.3.3 (Upper bound in the lower external model).
With high probability as r →∞, the transition time T low

G in the lower external model
is smaller than TU , i.e.,

lim
r→∞

Pu(T low
G ≤ TU ) = 1. (2.37)
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Proof. As we will see in Section 2.4.2, with high probability as r →∞, the transition
time in the external model is smaller than TU . Since the lower external model is
defined for an arbitrarily small perturbation δ > 0, we conclude by using the continuity
of gU , gV . �

We introduce a system that allows us to couple the internal model with the lower
external model.

Definition 2.3.4 (Coupling system for the lower external model).
Suppose that hi(t) ≥ max{QUB

U (t), QUB
V (t)} for all i ∈ U t V and all t ∈ [0, TU ].

Consider a system Hlow where clocks are associated with each node in the following
way.

• A Poisson deactivation clock ticks at rate 1. Both the nodes in the lower external
model and in the internal model are governed by this clock:

– if both nodes are active, then they deactivate together;

– if only one node is active, then it deactivates;

– if both nodes are inactive, then nothing happens.

• A Poisson activation clock ticks at rate gU (hi(t)) at time t for a node i ∈ U . Both
the nodes in the lower external model and in the internal model are governed
by this clock:

– if both nodes are active, or both are inactive but have active neighbors,
then nothing happens;

– if the node in the internal model is active and the node in the lower external
model is not, then the latter node activates (if it can) with probability

rlowi (t)

gU (hi(t))
; (2.38)

– if both nodes are inactive but can be activated, then this happens with
probabilities

rlowi (t)

gU (hi(t))
for the lower external model,

rint
i (t)

gU (hi(t))
for the internal model,

(2.39)

where
rlowi (t)

gU (hi(t))
≤ rint

i (t)

gU (hi(t))
, (2.40)

in such a way that if the node in the lower external model activates, then
it also activates in the internal model.
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• A Poisson activation clock ticks at rate gV (hi(t)) at time t for a node i ∈ V .
The same happens as for the nodes in U , but the activation probabilities are

rlowi (t)

gV (hi(t))
for the lower external model,

rint
i (t)

gV (hi(t))
for the internal model,

(2.41)

where
rlowi (t)

gU (hi(t))
≥ rint

i (t)

gU (hi(t))
, (2.42)

in such a way that if the node in the internal model activates, then it also
activates in the lower external model.

With the constructions above, we are now able to compare the transition times of the
two models.
Proposition 2.3.5 (Coupling the internal and the lower external model).
The following statements hold.

(i) Under the coupling Hlow, the joint activity processes in the internal and in the
lower external model are ordered for all t ∈ [0, TU ], i.e.,

X low
i (t) ≤ X int

i (t), i ∈ U,
X int
i (t) ≤ X low

i (t), i ∈ V.
(2.43)

(ii) With high probability as r → ∞, the transition time T int
G in the internal model

is at least as large as the transition time T low
G in the lower external model, i.e.,

lim
r→∞

P̂u(T low
G ≤ T int

G ) = 1, (2.44)

where P̂u is the joint law induced by the coupling with starting u.

Proof. We prove the two statements separately.

(i) For each node i ∈ U and for all t ∈ [0, TU ], we have that QLB
i (t) ≤ Qi(t) and

gU (QLB
i (t)) ≤ gU (Qi(t)) by the monotonicity of the function gU . On the other

hand, for each node i ∈ V , Qi(t) ≤ QUB
i (t) and gV (Qi(t)) ≤ gV (QUB

i (t)) by the
monotonicity of the function gV . Under the system Hlow, at any moment the
random variable describing the state of a node i ∈ U in the lower external model
is dominated by the one in the internal model, i.e., by (2.40) for all t ∈ [0, TU ],

X low
i (t) ≤ X int

i (t). (2.45)

On the other hand, the random variable describing the state of a node j ∈ V
in the lower external model dominates the one in the internal model, i.e., by
(2.42) for all t ∈ [0, TU ],

X int
i (t) ≤ X low

i (t). (2.46)

Hence the joint activity processes in the two models are ordered.
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(ii) Using the coupling construction and the ordering above, we can show that, on
the event Eδ, the nodes in U in the lower external model deactivate earlier than
in the internal model, and the nodes in V activate earlier in the lower external
model. Hence the transition occurs earlier in the lower external model.

Note that we are able to compare the transition times only when T low
G ≤ TU ,

so we look at the coupling also on the event {T low
G ≤ TU}, which has high

probability as r → ∞ (Lemma 2.3.3). On this event we have T low
G ≤ T int

G .
Therefore

1 = lim
r→∞

P̂u(Eδ, T low
G ≤ TU , T low

G ≤ T int
G ) = lim

r→∞
P̂u(T low

G ≤ T int
G ). (2.47)

�

§2.3.2 Coupling the isolated and the upper external
model

The upper external model defined in (2.8) can also be described in the following way.
At time t ∈ [0, TU ] the activation rates are

rupp
i (t) =

{
gU (QUB

U (t)), i ∈ U,

gV (QLB
V (t)), i ∈ V.

(2.48)

Lemma 2.3.6 (Upper bound in the upper external model).
With high probability as r →∞, the transition time T upp

G in the upper external model
is smaller than TU , i.e.,

lim
r→∞

Pu(T upp
G ≤ TU ) = 1. (2.49)

This statement is to be read as follows. Let δ be the perturbation parameter in the
upper external model appearing in (2.8). Then for every δ > 0 there exists a δ′(δ) > 0,
satisfying limδ→0 δ

′(δ) = 0, such that limr→∞ Pu(T upp
G ≤ [1 + δ′(δ)]TU ) = 1.

Proof. Analogous to the proof of Lemma 2.3.3. �

We introduce a system that allows us to couple the isolated model with the upper
external model up to time τ iso

G .

Definition 2.3.7 (Coupling system for the upper external model).
Suppose that hi(t) ≥ max{QUB

U (t), QUB
V (t)} for all i ∈ U t V and all t ∈ [0, τ iso

G ].
Couple the processes in the same way as in Definition 2.3.4 forHlow, but with different
activation probabilities. The probabilities for the isolated model and for the upper
external model are such that

risoi (t)

gU (hi(t))
≤ rupp

i (t)

gU (hi(t))
, i ∈ U,

rupp
i (t)

gV (hi(t))
≤ risoi (t)

gV (hi(t))
, i ∈ V,

(2.50)
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where for t ∈ [0, τ iso
G ]

risoi (t) =

{
gU (Qi(t)), i ∈ U,

gV (Qi(t)), i ∈ V.
(2.51)

Note that when τ iso
G ≤ TU , the isolated model behaves exactly as the internal

model in the interval [0, τ iso
G ], as shown in Appendix B.2. Moreover, the coupling

is defined only when τ iso
G ≤ TU . We look then at the coupling also on the event

{T upp
G ≤ TU}, which has high probability as r →∞ (Lemma 2.3.6). In the following

proposition we see how this ensures that the coupling is well defined, and we compare
the pre-transition times of the two models.

Proposition 2.3.8 (Coupling the isolated and the upper external model).
The following statements hold.

(i) Under the coupling Hupp, the joint activity processes in the isolated model and
in the upper external model are ordered up to time τ iso

G , i.e., for all t ∈ [0, τ iso
G ],

X iso
i (t) ≤ Xupp

i (t), i ∈ U,
Xupp
i (t) ≤ X iso

i (t), i ∈ V.
(2.52)

(ii) With high probability as r → ∞, the pre-transition time τupp
G in the upper ex-

ternal model is at least as large as the pre-transition time τ iso
G in the isolated

model, i.e.,
lim
r→∞

P̂u(τ iso
G ≤ τupp

G ) = 1, (2.53)

where P̂u is the joint law induced by the coupling with starting u.

Proof. We prove the two statements separately.

(i) The proof is analogous to that of Proposition 2.3.5, but this time we use the
system Hupp up to time τ iso

G and all the inequalities are reversed.

(ii) Using the coupling construction and the ordering above, we can show that, on
the event Eδ ∩ {T upp

G ≤ TU}, the nodes in U in the isolated model deactivate
earlier than in the upper external model, and the first activating node in V

activates earlier in the isolated model. Hence the pre-transition occurs earlier
in the isolated model, and we have τ iso

G ≤ τupp
G ≤ T upp

G ≤ TU . Therefore the
coupling is well defined and

1 = lim
r→∞

P̂u(Eδ,TU , T
upp
G ≤ TU , τ iso

G ≤ τupp
G ) = lim

r→∞
P̂u(τ iso

G ≤ τupp
G ). (2.54)

�

Corollary 2.3.9 (Comparing times between models).
With high probability as r →∞, the transition time T upp

G in the upper external model
is at least as large as the pre-transition time τ int

G in the internal model, i.e.,

lim
r→∞

P̂u(τ int
G ≤ T upp

G ) = 1. (2.55)
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Proof. Since limr→∞ P(τ iso
G ≤ TU ) = 1, we have, as shown in Proposition B.6 in

Appendix B.2, that the pre-transition times in the isolated model and in the internal
model coincide. Hence

1 = lim
r→∞

P̂u(τ iso
G ≤ τupp

G ) = lim
r→∞

P̂u(τ int
G ≤ τupp

G ) ≤ lim
r→∞

P̂u(τ int
G ≤ T upp

G ), (2.56)

which completes the proof. �

§2.4 Proofs of the main results

The goal of this section is to identify the asymptotic behavior of the transition time
in the internal model. In Sections 2.4.1–2.4.2 we look at the external model and
prove Theorems 2.1.4–2.1.5, respectively. In Section 2.4.3 we show that the difference
between the transition time and the pre-transition time is negligible for all the models
considered. In Section 2.4.4 we put these results together to prove Theorem 2.1.6.

§2.4.1 Proof: critical time scale in the external model
In this section we prove Theorem 2.1.4. From now on we write a(r) ∼ b(r) to
indicate that limr→∞ a(r)/b(r) = 1, while we write a(r) � b(r) to indicate that
0 < lim infr→∞ a(r)/b(r) ≤ lim supr→∞ a(r)/b(r) <∞.

Proof of Theorem 2.1.4. In order to compute the critical time scaleMc, we must solve
the equation Mν(M) = 1 in (2.12). We know from (2.9) and (2.13) that

ν(s) ∼ |U |rU (s)1−|U |, r →∞. (2.57)

We want to identify how the transition time is related to the choice of gU in Defini-
tion 2.1.1. Consider the time scale Mc = Fcr

γ , where γ ∈ (0, 1] and Fc ∈ (0,∞). As
r →∞, we have

1 = r0 = Mcν(Mc) = Fcr
γ ν(Fcr

γ) ∼ Fcrγ |U |rU (Fcr
γ)−(|U |−1)

= Fcr
γ |U |gU

(
γUr − (c− ρU )Fcr

γ
)−(|U |−1)

∼ Fcrγ |U |B−(|U |−1)
(
γUr − (c− ρU )Fcr

γ
)−β(|U |−1)

.

(2.58)

Recall from (2.29) that α = γU
c−ρU . We distinguish between three cases.

(I) Case γ ∈ (0, 1) and Fc ∈ (0,∞). As r →∞, the criterion in (2.58) reads

1 = r0 ∼ Fcrγ |U |B−(|U |−1)(γUr)
−β(|U |−1). (2.59)

In order for the exponents of r to match, we need

β =
γ

|U | − 1
. (2.60)

Inserting (2.60) into (2.59), we get

Fc|U |B−(|U |−1)γ
−β(|U |−1)
U = 1, (2.61)
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which gives

Fc =
γ
β(|U |−1)
U B(|U |−1)

|U |
. (2.62)

Hence

Mc =
(BγβU )|U |−1

|U |
rβ(|U |−1), r →∞. (2.63)

(II) Case γ = 1 and Fc ∈ (0, α). As r →∞, the criterion in (2.58) reads

1 = r0 ∼ Fc|U |B−(|U |−1)(γU − (c− ρU )Fc)
−β(|U |−1)r1−β(|U |−1). (2.64)

In order for the exponents of r to match, we need

β =
1

|U | − 1
. (2.65)

Inserting (2.65) into (2.64), we get

Fc|U |B−(|U |−1)

γU − (c− ρU )Fc
= 1, (2.66)

which gives
Fc =

γU
|U |B−(|U |−1) + (c− ρU )

. (2.67)

Hence
Mc =

γU
|U |B−(|U |−1) + (c− ρU )

r, r →∞. (2.68)

Recall from (2.28) that TU ∼ αr is the expected time at which the queue length
at a node in U hits zero. We will see in Section 2.4.2 that the transition in the
external model typically occurs before the queues are empty.

(III) Case γ = 1 and Fc = α −Dr−δ, δ ∈ (0, 1). As r → ∞, the criterion in (2.58)
reads

1 = r0 ∼ αr|U |B−(|U |−1)
(
(c− ρU )Dr1−δ)−β(|U |−1)

. (2.69)

In order for the exponents of r to match, we need

β =
1

(1− δ)(|U | − 1)
. (2.70)

Inserting (2.70) into (2.69), we get

α|U |B−(|U |−1)((c− ρU )D)−β(|U |−1) = 1, (2.71)

which gives

D =
(α|U |B−(|U |−1))1/β(|U |−1)

c− ρU
. (2.72)

Hence

Mc = αr − (α|U |B−(|U |−1))1/β(|U |−1)

c− ρU
r1/β(|U |−1) = αr, r →∞, (2.73)
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and so the crossover takes place in a window of size O(r1/β(|U |−1)) = o(r) around
αr. Note that this window gets narrower as β increases, i.e., as the activation
rates of nodes in U increase.

�

In the following remark we discuss more general activation functions gU .

Remark 2.4.1 (Modulation with slowly varying functions).
Consider activation functions of the form gU (x) = xβL̂(x) with β ∈ (0,∞) and L̂(x) a
slowly varying function (i.e., limx→∞ L̂(ax)/L̂(x) = 1 for all a > 0). LetMc = rγL(r)

with γ ∈ (0, 1) and L(r) a slowly varying function. As r →∞, we have

1 = r0 ∼ rγL(r)|U |
(
γUr − (c− ρU )rγL(r)

)−β(|U |−1)L̂(γUr − (c− ρU )rγL(r))−(|U |−1)

∼ rγL(r)|U |(γUr)−β(|U |−1)L̂(γUr)
−(|U |−1).

(2.74)

In order for the exponents of r to match, we again need

β =
γ

|U | − 1
. (2.75)

We get

L(r) =
γ
β(|U |−1)
U

|U |
L̂(γUr)

|U |−1, r →∞. (2.76)

Hence

Mc =
γ
β(|U |−1)
U

|U |
rβ(|U |−1)L̂(γUr)

|U |−1, r →∞. (2.77)

We can even include the case β = 0, in which we obtain that if gU (x) = L̂(x) with
limx→∞ L̂(x) =∞, then

Mc =
1

|U |
L̂(γUr)

|U |−1, r →∞. (2.78)

§2.4.2 Proof: transition time in the external model
In this section we prove Theorem 2.1.5. We already know that the transition occurs
on the critical time scale Mc computed in Section 2.4.2.

Proof of Theorem 2.1.5. Knowing the critical time scale Mc, we can compute the
mean transition time from (2.11). As r →∞, we have

Eu[T ext
G ] =

∫ ∞
0

Pu(T ext
G > x) dx = Mc

∫ ∞
0

Pu
(
T ext
G

Mc
> x

)
dx

∼Mc

∫ ∞
0

e−
∫ x
0
Mcν(Mcs) ds dx = Mc

∫ ∞
0

e−
∫ x
0
Mcν(Mcs)
Mcν(Mc)

ds dx

=Mc

∫ ∞
0

e
−

∫ x
0

(
γUr−(c−ρU )Mcs

γUr−(c−ρU )Mc

)−β(|U|−1)
ds
dx,

(2.79)

where the choice of β is important. We distinguish between the three cases.
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(I) Case β ∈ (0, 1
|U |−1 ), Mc = Fcr

γ , γ ∈ (0, 1). We have

lim
r→∞

(
γUr − (c− ρU )Mcs

γUr − (c− ρU )Mc

)−β(|U |−1)

= 1. (2.80)

Hence, as r →∞,

Eu[T ext
G ] ∼Mc

∫ ∞
0

e−
∫ x
0
ds dx = Mc

∫ ∞
0

e−x dx = Mc. (2.81)

The law of T ext
G is exponential, i.e.,

lim
r→∞

Pu
(
T ext
G

Eu[T ext
G ]

> x

)
= e−x, x ∈ [0,∞). (2.82)

(II) Case β = 1
|U |−1 , Mc = Fcr, Fc ∈ (0, α). We have

lim
r→∞

(
γUr − (c− ρU )Fcrs

γUr − (c− ρU )Fcr

)−β(|U |−1)

=
γU − (c− ρU )Fc
γU − (c− ρU )Fcs

=
1− c−ρU

γU
Fc

1− c−ρU
γU

Fcs

=
1− Fc

α

1− Fc
α s

=
1− C
1− Cs

,

(2.83)

with C = Fc/α. Hence, as r →∞,

Eu[T ext
G ] ∼Mc

∫ 1
C

0

e−
∫ x
0

1−C
1−Csds dx = Mc

∫ 1
C

0

e− log(1−Cx)−
1−C
C dx

= Mc

∫ 1
C

0

(1− Cx)
1−C
C dx = Mc

[
(1− Cx)1+ 1−C

C
1

(1 + 1−C
C )(−C)

] 1
C

0

= Mc

[
− (1− Cx)

1
C

] 1
C

0

= Mc.

(2.84)
Here, the integral must be truncated at x = 1/C because for larger x the
integrand becomes negative. Indeed, note that when x = 1/C = α/Fc, which
corresponds to time TU = αr, we have

lim
r→∞

Pu
(
T ext
G > TU

)
= lim
r→∞

Pu
(
T ext
G >

α

Fc
Fcr

)
= lim
r→∞

Pu
(
T ext
G

Mc
>

α

Fc

)
=

(
1− C α

Fc

) 1−C
C

= 0,

(2.85)

because C = Fc/α. This means that, with high probability as r → ∞, the
transition occurs before time TU . The law of T ext

G is truncated polynomial:

lim
r→∞

Pu
(
T ext
G

Eu[T ext
G ]

> x

)
=

{
(1− Cx)

1−C
C , x ∈ [0, 1

C ),

0, x ∈ [ 1
C ,∞).

(2.86)
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(III) Case β ∈ ( 1
|U |−1 ,∞), Mc = αr. This case corresponds to the limit C → 1 of

the previous case. In this limit, (2.86) becomes

lim
r→∞

Pu
(
T ext
G

Eu[T ext
G ]

> x

)
=

{
1, x ∈ [0, 1),

0, x ∈ [1,∞).
(2.87)

�

Note that the three cases above corresponds to the three regimes of behavior: re-
spectively, the subcritical regime, the critical regime and the supercritical regime.

§2.4.3 Negligible gap in the internal model
In this section we focus on the internal model and estimate the length of the interval
[τ int
G , T int

G ], which, with high probability as r → ∞, turns out to be very small with
respect to τ int

G . This implies that the transition time has the same asymptotic behavior
as the pre-transition time.

We know that the queue at a node i ∈ V is of order r at time τ int
G , i.e., Qi(τ int

G ) � r,
since it starts at γV r, with γV > 0, and only the input process is present until this
time. Hence all the activation Poisson clocks at nodes in V tick at a very aggressive
rate. The idea is that within the activation period (which has an exponential distri-
bution with mean 1) of the first node activating in V , all the other nodes in V activate
because they are not “blocked" by any node in U . Consequently, the network quickly
reaches v.
Theorem 2.4.2 (Negligible gap).
In the internal model

lim
r→∞

Pu
(
T int
G − τ int

G = o

(
1

gV (r)

))
= 1. (2.88)

Proof. Starting from τ int
G , a node x ∈ V remains inactive for an exponential period

with mean 1/rint
x (τG) = 1/gV (Q(τG)) � 1/gV (r). Denote by Wx the length of an

inactivity period for a node x ∈ V . Let x1 be the first node activating in V . We then
have i.i.d. inactivity periods Wx ' Exp(gV (Q(τG))) for all x ∈ V \{x1}. We label the
remaining nodes x2, . . . , x|V | in an arbitrary way. We also have i.i.d. activity periods
Zx ' Exp(1) for all x ∈ V .

Consider a time t1 = o(1/gV (r)). With high probability as r →∞, all the nodes
in V activate before time t1, i.e.,

lim
r→∞

Pu
(
Wxi < t1, ∀ i = 2, . . . , |V |

)
= lim
r→∞

Pu
(
Wx2 < t1

)|V |−1

= lim
r→∞

(
1− e−gV (Q(τG))t1

)|V |−1
= 1.

(2.89)

Moreover, with high probability as r → ∞, once they activated, all nodes in V stay
active for a period of length at least t2 � 1/gV (r) > t1, i.e.,

lim
r→∞

Pu
(
Zxi > t2 ∀ i = 1, . . . , |V |

)
= lim
r→∞

Pu
(
Zx1 > t2

)|V |
= lim
r→∞

(e−t2)|V | = 1.
(2.90)
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In conclusion, with high probability as r →∞, every node in V activates before time
t1 and remains active for at least a time t2 > t1. This ensures that the transition
occurs before time t2. In particular, it occurs when the last node in V activates (which
occurs even before time t1), so that T int

G − τ int
G = o(1/gV (r)). �

Note that this argument extends to any “external” model with activation rates that
tend to infinity with r, in particular, to all the models considered in the chapter. The
transition always happens quickly after the pre-transition, due to the high level of
aggressiveness of nodes in V .

Corollary 2.4.3 (Upper bound on the transition time).
With high probability as r → ∞, the transition time in the internal model is smaller
than TU , i.e.,

lim
r→∞

Pu(T int
G ≤ TU ) = 1. (2.91)

Proof. The claim follows from Lemma 2.3.6, Corollary 2.3.9 and Theorem 2.4.2. �

§2.4.4 Proof: transition time in the internal model
In this section we prove Theorem 2.1.6. First we derive the sandwich of the transition
times in the lower external, the internal and the upper external model. After that
we identify the asymptotics of the transition time for the internal model by using the
results for the external models.

Proof of Theorem 2.1.6. Using Proposition 2.3.5, Corollary 2.3.9 and Theorem 2.4.2,
we have that there exists a coupling such that

1 = lim
r→∞

P̂u
(
T low
G ≤ T int

G , T int
G = τ int

G + o

(
1

gV (r)

)
, τ int
G ≤ T upp

G

)
= lim

r→∞
P̂u
(
T low
G ≤ T int

G ≤ T upp
G + o

(
1

gV (r)

))
= lim

r→∞
P̂u
(
T low
G ≤ T int

G ≤ T upp
G

)
,

(2.92)

where P̂u is the joint law of the three models on the same probability space all three
starting from u.

By Theorem 2.1.5, we know the law of the transition time in the external model.
By construction, we have Eu[T low

G ] ≤ Eu[T ext
G ] ≤ Eu[T upp

G ]. When considering the
lower and the upper external model, the transition time asymptotics are controlled
by the prefactors F low

c,δ and F upp
c,δ , respectively, which are perturbations of the prefactor

Fc due to the perturbations of the activation rates. In particular, we know from (2.20)
that limδ→0 F

low
c,δ = limδ→0 F

upp
c,δ = Fc. Hence, for all ε > 0,

Eu[T int
G ] = (Fc ± ε)rβ(|U |−1) [1 + o(1)], r →∞, (2.93)

and since ε can be taken arbitrarily small, it may be absorbed into the o(1)-term, as

Eu[T int
G ] = Fcr

β(|U |−1) [1 + o(1)], r →∞. (2.94)
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The same kind of argument applies to the law of the transition time, since for any
x ∈ [0,∞),

lim
r→∞

Pu(T low
G > x) ≤ lim

r→∞
Pu(T int

G > x) ≤ lim
r→∞

Pu(T upp
G > x). (2.95)

This completes the proof. �

§A Appendix: the input process

The main target of this appendix is to prove Proposition 2.2.1 in Section 2.2. We use
path large deviation techniques. For simplicity, we suppress the index for the arrival
rates λU and λV , and consider a general rate λ. We show that, with high probability
as r → ∞, the input process lies in a narrow tube around the deterministic path
t 7→ (λ/µ)t.

Consider a single queue, and for simplicity suppress its index. For T > 0, define
the scaled process

Q+
n (t) =

1

n
Q+(nt) =

1

n

N(nt)∑
j=1

Yj , t ∈ [0, T ], (2.96)

with Q+
n (0) = 0. We have

E[Q+
n (t)] =

1

n

λnt

µ
=
λ

µ
t, (2.97)

and, by the strong law of large numbers, Q+
n (t)→ (λ/µ)t almost surely for every t as

n→∞.
When studying the process t 7→ Q+

n (t), we need to take into account that this is
a combination of the Poisson arrival process t 7→ N(nt) and the exponential service
times Yj , j ∈ N. Two different types of fluctuations can occur: packets arrive at a
slower or faster rate than λ, respectively, service times for each packet are shorter or
longer than their mean 1/µ. Both need to be considered for a proper large deviation
analysis.

§A.1 Large deviation principle for the two compon-
ents

Definition A.1 (Space of paths).
Consider the space L∞([0, T ]) of essentially bounded functions in [0, T ], with the norm
‖f ||∞ = ess supx∈[0,T ] |f(x)| called the essential norm. A function f is essentially
bounded, i.e., f ∈ L∞([0, T ]), when there is a measurable function g on [0, T ] such
that f = g except on a set of measure zero and g is bounded. Let ACT ⊂ L∞([0, T ])

denote the space of absolutely continuous functions f : [0, T ]→ R such that f(0) = 0.
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Given the Poisson arrival process t 7→ N(nt) with rate λ, define the scaled process
t 7→ Zn(t) by

Zn(t) =
1

n
N(nt) =

1

n

nt∑
i=1

Xi =
1

n

bntc∑
i=1

Xi, t ∈ [0, T ], (2.98)

whereXi ' Poisson(λ) are i.i.d. random variables and bxc denotes the greatest integer
smaller than or equal to x. Note that N(nt) ' Poisson(λnt). Let νn be the law of
(Zn(t))t∈[0,T ] on L∞([0, T ]). Note that Zn(t) is asymptotically equivalent to N(t)

with mean E[Zn(t)] = λt, and (Zn(t))t∈[0,T ] tends to (λt)t∈[0,T ] as n→∞.
We recall the definition of large deviation principle.

Definition A.2 (Large deviation principle (LDP)).
A family of probability measures (Pn)n∈N on a Polish space X is said to satisfy the
large deviation principle (LDP) with rate n and with good rate function I : X → [0,∞]

if

lim sup
n→∞

1

n
logPt(C) ≤ −I(C) ∀C ⊂ X closed,

lim inf
n→∞

1

n
logPt(O) ≥ −I(O) ∀O ⊂ X open,

(2.99)

where I(S) = infx∈S I(x), S ⊂ X . A good rate function satisfies: (1) I 6≡ ∞, (2) I is
lower semi-continuous, (3) I has compact level sets.

We begin by stating the LDP for the arrival process (Zn(t))t∈[0,T ].

Lemma A.3 (LDP for the arrival process).
The family of probability measures (νn)n∈N satisfies the LDP on L∞([0, T ]) with rate
n and with good rate function IN given by

IN (η) =

{ ∫ T
0

Λ∗N (η̇(t)) dt, η ∈ ACT ,
∞, otherwise,

(2.100)

where Λ∗N (x) = x log(x/λ)− x+ λ, x ∈ (0,∞).

Proof. Apply Mogulskii’s theorem (see [40, Theorem 5.1.2]). Use the fact that Λ∗N
is the Fenchel-Legendre transform of the cumulant generating function Λ defined by
Λ(θ) = logE(eθX1), θ ∈ R. �

For Γ ⊂ L∞([0, T ]), define IN (Γ) = infη∈Γ IN (η). Consequently, the LDP implies
that, if Γ ⊂ L∞([0, T ]) is an IN -continuous set, i.e., IN (Γ) = IN (int(Γ)) = IN (cl(Γ)),
then

lim
n→∞

1

n
logP

(
Zn([0, T ]) ∈ Γ

)
= −IN (Γ). (2.101)

Informally, the LDP reads as the approximate statement

P
(
Zn([0, T ]) ≈ η([0, T ]

)
= e−nIN (η)[1+o(1)], n→∞, (2.102)
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where ≈ stands for close in the essential norm. Informally, on this event we may
approximate

Q+
n (t) =

1

n

N(nt)∑
j=1

Yj =
1

n

nZn(t)∑
j=1

Yj ≈
1

n

nη(t)∑
j=1

Yj =
1

n

bnη(t)c∑
j=1

Yj , t ∈ [0, T ], (2.103)

where ≈ now stands for close in the Euclidean norm. Given η ∈ L∞([0, T ]), let µηn
denote the law of the last sum in (2.103). Below we state the LDP for the input
process subject to the arrival process.
Lemma A.4 (LDP for the input process subject to the arrival process).
Given η ∈ L∞([0, T ]), the family of probability measures (µηn)n∈N satisfies the LDP
on L∞([0, T ]) with rate n and with good rate function IηQ given by

IηQ(φ) =

{ ∫ T
0

Λ∗Q

(
dφ(t)
dη(t)

)
dη(t), φ ∈ ACT ,

∞, otherwise,
(2.104)

where Λ∗Q(x) = xµ− 1− log(xµ), x ∈ (0,∞).

Proof. Again apply Mogulskii’s theorem, this time with η(t) as the time index. Use
that Λ∗ is the Fenchel-Legendre transform of the cumulant generating function Λ

defined by Λ(θ) = logE(eθY1), θ ∈ R. �

§A.2 Measures in product spaces
The rate function IηQ describes the large deviations for the sequence of processes
(Q+

n (t))t∈[0,T ] given the path η. To derive the LDP averaged over η, we need a small
digression into measures in product spaces.
Definition A.5 (Product measures).
Define the family of probability measures (ρn)n∈N such that ρn = νnµ

η
n. These meas-

ures are defined on the product space L∞([0, T ])×L∞([0, T ]) given by the Cartesian
product of the space L∞([0, T ]) with itself, equipped with the product topology.

The open sets in the product topology are unions of sets of the form U1 × U2 with
U1, U2 open in L∞([0, T ]). Moreover, the product of base elements of L∞([0, T ])

gives a basis for the product space L∞([0, T ]) × L∞([0, T ]). Define the projections
Pri : L∞([0, T ]) × L∞([0, T ]) → L∞([0, T ]), i = 1, 2, onto the first and the second
coordinates, respectively. The product topology on L∞([0, T ]) × L∞([0, T ]) is the
topology generated by sets of the form Pr−1

i (Ui), i = 1, 2, where and U1, U2 are open
subsets of L∞([0, T ]).

Lemma A.6 (Product LDP).
The family of probability measures (ρn)n∈N satisfies the LDP on L∞([0, T ])×L∞([0, T ])

with rate n and with good rate function I given by

I(φ, η) =

{ ∫ T
0

Λ∗Q

(
dφ(t)
dη(t)

)
dη(t) +

∫ T
0

Λ∗N (η̇(t)) dt, φ, η ∈ ACT ,
∞, otherwise.

(2.105)

Proof. The claim follows from standard large deviation theory (see [40]). �
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§A.3 Large deviation principle for the input process
The contraction principle allows us to derive the LDP averaged over η. Indeed, let
X = L∞([0, T ])×L∞([0, T ]) and Y = L∞([0, T ]), let (ρn)n∈N be a sequence of product
measures on X , and consider the projection Pr1 onto Y, which is a continuous map.
Then the sequence of induced measures (µn)n∈N given by µn = ρn Pr−1

1 satisfies the
LDP on L∞([0, T ]) with good rate function

ĨQ(φ) = inf
(φ,η)∈Pr−1

1 ({φ})
I(φ, η) = inf

η∈L∞([0,T ])
I(φ, η). (2.106)

We can now state the LDP for the input process (Q+
n (t))t∈[0,T ].

Proposition A.7 (LDP for the input process).
The family of probability measures (µn)n∈N satisfies the LDP on L∞[0, T ] with rate n
and with good rate function Î given by

ÎQ(Γ) = inf
φ∈Γ

ĨQ(φ). (2.107)

In particular, if Γ is ÎQ-continuous, i.e., ÎQ(Γ) = ÎQ(int(Γ)) = ÎQ(cl(Γ)), then

lim
n→∞

1

n
logP

(
Q+
n ([0, T ]) ∈ Γ

)
= −ÎQ(Γ). (2.108)

Proof. The claim follows from the contraction principle (see [40]). �

It is interesting to look at a specific subset of L∞([0, T ]) that gives good bounds
for the input process. We are now in a position to prove Proposition 2.2.1.

Proof. If we compute the Fenchel-Legendre transforms Λ∗Q and Λ∗N , and we pick
η(t) = λt and φ(t) = (1/µ)η(t) = (1/µ)λt, we can easily check that the rate function
attains its minimal value zero. Hence, with high probability as r → ∞, the input
process is close to this deterministic path.

We can now estimate the probability of the scaled input process to go outside
ΓT,δ, which represents a tube of width 2δ around the mean path in the interval [0, T ].
More precisely,

ΓT,δ =

{
γ ∈ L∞([0, T ]) :

λ

µ
t− δ < γ(t) <

λ

µ
t+ δ ∀ t ∈ [0, T ]

}
. (2.109)

We may set T = 1 for simplicity and look at the scaled input process in the time
interval [0, 1]. We have

ÎQ((Γ1,δ)
c) = ÎQ(int((Γ1,δ))

c) = ÎQ(cl((Γ1,δ))
c). (2.110)

Hence (Γ1,δ)
c is ÎQ-continuous, and so according to (2.108),

lim
n→∞

1

n
logP

(
Q+
n ([0, 1]) /∈ Γ1,δ

)
= −ÎQ((Γ1,δ)

c). (2.111)
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Since

lim
n→∞

1

n
logP

(
Q+
n ([0, 1]) /∈ Γ1,δ

)
= lim
n→∞

1

n
logP

({
λ

µ
t− δ < Q+

n (t) <
λ

µ
t+ δ ∀ t ∈ [0, 1]

}c)
= lim
S→∞

1

S
logP

({
λ

µ
s− δS < Q+(s) <

λ

µ
s+ δS ∀ s ∈ [0, S]

}c)
,

(2.112)

where we put s = nt and S = n, we conclude that the probability to go out of ΓS,δS
is

P
({

λ

µ
s−δS < Q+(s) <

λ

µ
s+δS ∀ s ∈ [0, S]

}c)
= e−S ÎQ((Γ1,δ)

c) [1+o(1)], S →∞.

(2.113)
Because IQ is convex, to compute ÎQ((Γ1,δ)

c) it suffices to minimise over the linear
paths. The minimizer turns out to be one of the two linear paths that go from the
origin (0, 0) to (1, λ/µ ± δ), i.e., γ∗(t) = kt with k = (λ ± δµ)/µ. By construction,
ÎQ((Γ1,δ)

c) = ĨQ(γ∗) = infη∈L∞([0,1]) I(γ∗, η), where

I(γ∗, η) =

∫ 1

0

Λ∗Q

(
dγ∗(t)

dη(t)

)
dη(t) +

∫ 1

0

Λ∗N (η̇(t)) dt. (2.114)

We want to minimize the sum over all paths η such that η(0) = 0. Both integrals
are convex as a function of γ∗ and η, hence they are minimized by linear paths. Our
choice of γ∗(t) = kt is linear, so we set η(t) = ct with some constant c > 0. We can
then write

I(γ∗, η) =

∫ η(1)

0

Λ∗Q

(
dγ∗(t)

cdt

)
cdt+

∫ 1

0

Λ∗N (η̇(t)) dt

=

∫ c

0

Λ∗Q

(
k

c

)
cdt+

∫ 1

0

Λ∗N (c) dt

= c

[
k

c
µ− 1− log

(
kµ

c

)]
+ c log

( c
λ

)
− c+ λ.

(2.115)

The value of c that minimizes the right-hand side is c =
√
λkµ. Substituting this into

the formula above, we get

Kδ = ĨQ(γ∗) = kµ+ λ− 2
√
λkµ = (λ+ δµ) + λ− 2

√
λ(λ+ δµ). (2.116)

Note that Kδ > 0 for all δ > 0 and limδ→0Kδ = 0. This completes the proof. �

§B Appendix: the output process

The main goal of this appendix is to prove Proposition 2.2.4 in Section 2.2. In
Section B.1 we show a lower bound for the output process for the nodes in U , in a
setting where the nodes in U are not influenced by the nodes in V . We study the
network evolution up to time TU . In Section B.2 we show that, until the pre-transition
time, the network in the internal model behaves actually as we described.
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§B.1 The output process in the isolated model
Recall that in the isolated model a node in U keeps activating and deactivating in-
dependently of the nodes in V , until its queue length hits zero. We again consider a
single queue for a node in U and for simplicity suppress its index. In order to show
that, with high probability as r → ∞, the output process t 7→ Q−(t) = cT (t) when
properly rescaled is close to a deterministic path, we will provide a lower bound for
the output process. The upper bound Q−(t) ≤ ct is trivial and holds for any t ≥ 0,
by the definition of output process.

Lemma B.1 (Auxiliary output process).
For all δ > 0 and T large, the following statements hold.

(i) With high probability as r →∞, the process

QLB,T (t) = γUr + ρU t− δT − ct, t ∈ [0, T ], (2.117)

is a lower bound for the actual queue length process (Q(t))t∈[0,T ].

(ii) The probability of the lower bound in (i) failing is

1

2
e−KδT [1+o(1)], T →∞, (2.118)

with Kδ = (λ+ δµ) + λ− 2
√
λ(λ+ δµ).

Proof. We prove the two statements separately.

(i) By Proposition 2.2.1, with high probability as r →∞, we have Q+(t) ≥ ρU t−δT
for any δ > 0. Trivially, Q−(t) ≤ ct. It is therefore immediate that, with high
probability as r →∞, QLB,T (t) ≤ Q(t).

(ii) The exponentially small probability of Q+(t) going below the lower bound is
half of the probability given by Proposition 2.2.1, i.e.,

1

2
e−KδT [1+o(1)], T →∞, (2.119)

with Kδ = (λ+ δµ) + λ− 2
√
λ(λ+ δµ).

�

We study the network evolution up to time TU defined in Definition 2.2.2, the
expected time a single node queue takes to hit zero. We will prove in Appendix B.2
that, with high probability as r → ∞, the pre-transition time in the internal model
coincides in distribution with the pre-transition time in the isolated model, which
occurs before TU . Hence it is enough to study the isolated model up to TU .

Definition B.2 (Auxiliary times).
We next define two times that will be useful in our analysis.
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(T ∗U ) Consider the auxiliary output process QLB,TU (t) up to time TU . We define T ∗U
as the time needed for the process to hit zero, i.e.,

T ∗U = T ∗U (r) =
γur − δTU
c− ρU

=
γu − δα
c− ρU

r = α′r, (2.120)

with α′ = γu−δα
c−ρU . The difference TU − T ∗U = δα

c−ρU r is of order r. The queue
length at time T ∗U is not zero, but still of order r.

(T ∗∗U ) We define a smaller time T ∗∗U in such a way that, not only Q(T ∗∗U ) � r, but also
QLB,TU (T ∗∗U ) � r, i.e.,

T ∗∗U = T ∗∗U (r) = TU − 2(TU − T ∗U ) =

(
γU − 2δα

c− ρU

)
r = α′′r, (2.121)

with α′′ = γU−2δα
c−ρU .

Definition B.3 (Inactivity process).
Define the inactivity process by setting

W (t) = t− T (t), (2.122)

which equals the total amount of inactivity time until time t.

Recall that the service process t 7→ Q−(t) with Q−(0) = 0 is an alternating
sequence of activity periods and inactivity periods. The activity periods Zi, i ∈ N, are
i.i.d. exponential random variables with mean 1. The inactivity periods Wm, m ∈ N,
are exponential random variables with a mean that depends on the actual queue
length at the time when each of these periods starts, namely, if Wm =

[
t
(i)
m , t

(f)
m

]
,

then Wm ' Exp(gU (Q(t
(i)
m )) + O(1/r)). The queue length during this inactivity

intervals is actually increasing, but we are considering very small intervals, whose
lengths are of order 1/r, so that the queue length does not change much and the error
is then O(1/r).

To state our lower bound on the output process, we need the following two lemmas.

Lemma B.4 (Upper bound on number of activity periods).
LetM(t) be the number of activity periods that end before time t. Then, for all ε1 > 0,
the following statements hold.

(i) With high probability as r →∞,

M(T ∗∗U ) ≤ (1 + ε1)T ∗∗U . (2.123)

(ii) The probability of the upper bound in (i) failing is

Pu(M(T ∗∗U ) > (1 + ε1)T ∗∗U ) ≤ e−K1r [1+o(1)] +
1

2
e−Kδαr [1+o(1)], r →∞,

(2.124)
with K1 = α′′ ε1−log(1+ε1)

1+ε1
, Kδ as in Lemma B.1
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Proof. We prove the two statements separately.

(i) Note thatM(T ∗∗U ) counts the number of activity periods before time T ∗∗U , each of
which has an average duration 1. Since activity periods alternate with inactivity
periods, we expect M(T ∗∗U ) to be less than T ∗∗U . Assume now, for small ε1 > 0,
that M(T ∗∗U ) > (1 + ε1)T ∗∗U , which means that the number of activity periods
before T ∗∗U is greater than the length of the interval [0, T ∗∗U ]. This implies that
the average length of each activity period before time T ∗∗U is strictly less than
1, namely, that 1

T∗∗U

∑T∗∗U
i=1 Zi ≤ 1/(1 + ε1). According to Cramér’s theorem, we

can compute the probability of this last event as

Pu

T∗∗U∑
i=1

Zi ≤
(

1

1 + ε1

)
T ∗∗U

 = e−T
∗∗
U I
(

1
1+ε1

)
[1+o(1)], r →∞, (2.125)

with rate function I(x) = x log(x) − x + 1. Therefore, it occurs with exponen-
tially small probability. Hence M(T ∗∗U ) > (1 + ε1)T ∗∗U must also occur with a
probability which is also exponentially small. With high probability as r →∞,
we then have that

M(T ∗∗U ) ≤ (1 + ε1)T ∗∗U . (2.126)

Recall that T ∗∗U = α′′r. The counting of alternating activity and inactivity
periods gets affected when the queue length hits zero, since then the node de-
activates and the lengths of the activity periods are not regular anymore. At
time T ∗∗U , with high probability as r → ∞, the queue length is still of order
r. Hence, the probability that it hits zero at any time in the interval [0, T ∗∗U ]

is very small, since this event would imply the node to have a queue length
that is below the lower bound, Q(T ∗∗U ) ≤ QLB,TU (T ∗∗U ), which happens with an
exponentially small probability by Lemma B.1.

(ii) We can write

Pu(M(T ∗∗U ) > (1 + ε1)T ∗∗U ) ≤ e−T
∗∗
U I
(

1
1+ε1

)
[1+o(1)] +

1

2
e−KδTU [1+o(1)]

= e−K1r [1+o(1)] +
1

2
e−Kδαr [1+o(1)], r →∞,

(2.127)

with K1 = α′′I
(

1
1+ε1

)
= α′′ ε1−log(1+ε1)

1+ε1
, Kδ as in Lemma B.1.

�

Lemma B.5 (Upper bound on inactivity process).
For all δ, ε1, ε2 > 0 small, the following statements hold.

(i) With high probability as r →∞,

W (T ∗∗U ) ≤ ε2r. (2.128)
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(ii) The probability of the upper bound in (i) failing is

Pu
(
W (T ∗∗U ) > ε2r

)
≤ e−Kδαr [1+o(1)] + e−K1r [1+o(1)]

+ e
−
(
K2r+K3

r
gU (r)

+K4r log gU (r)
)

[1+o(1)]
, r →∞,

(2.129)

with K2 = α′′(1 + ε1)
(
− 1− log

(
ε2

α′′(1+ε1)

))
,K3 = ε2,K4 = α′′(1 + ε1).

Proof. We prove the two statements separately.

(i) Since M(t) counts the number of activity periods, and we start with an active
node (initially all nodes in U are active), we have

W (T ∗∗U ) ≤
M(T∗∗U )∑
m=1

Wm ≤
M(T∗∗U )∑
m=1

Ŵm, (2.130)

where Ŵm are i.i.d. exponential random variables with rate gU (QLB,TU (T ∗∗∗U )),
and T ∗∗∗U is the starting point of the last inactivity period before time T ∗∗U .
By the construction of T ∗∗U , we know that QLB,TU (T ∗∗∗U ) is of order r. The
last inactivity period is expected to be longer than the previous ones, since the
activation rates depend on the actual queue length, which is decreasing over
time. To make the inactivity periods Ŵm longer, we consider the lower bound
QLB,TU (t) for the actual queue length given in Lemma B.1.

By Lemma B.4, with high probability as r →∞, M(T ∗∗U ) ≤ (1 + ε1)T ∗∗U , and so

W (T ∗∗U ) ≤
M(T∗∗U )∑
m=1

Ŵm ≤
(1+ε1)T∗∗U∑
m=1

Ŵm. (2.131)

Define n = [(1 + ε1)T ∗∗U ]. By Cramér’s theorem, for small ε3 > 0,

Pu

(1+ε1)T∗∗U∑
m=1

Ŵm ≥ ε3T ∗∗U

 ≤ Pu

(
n∑

m=1

Ŵm ≥
ε3

1 + ε1
n

)

= e−nI
(

ε3
1+ε1

)
[1+o(1)]

= e−T
∗∗
U (1+ε1)I

(
ε3

1+ε1

)
[1+o(1)], n→∞,

(2.132)

where I is the rate function given by

I(x) =
x

gU
(
QLB,TU (T ∗∗∗U )

) − 1− log x+ log gU
(
QLB,TU (T ∗∗∗U )

)
. (2.133)

We take ε3 > (1 + ε1)/gU
(
QLB,TU (T ∗∗∗U )

)
� 1/gU (r) arbitrarily small, so that

we can apply Cramér’s theorem. Combining (2.131)–(2.132), we obtain that,
with high probability as r →∞,

W (T ∗∗U ) ≤ ε3T ∗∗U = ε3α
′′r = ε2r, (2.134)

where ε2 = ε3α
′′ can be taken arbitrarily small.
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(ii) We can write

Pu

(1+ε1)T∗∗U∑
m=1

Ŵm > ε3T
∗∗
U


≤ e−T

∗∗
U (1+ε1)I

(
ε3

1+ε1

)
[1+o(1)]

= e
−α′′r(1+ε1)

(
ε3

(1+ε1)gU (r)
−1−log

(
ε3

1+ε1

)
+log gU (r)

)
[1+o(1)]

= e
−
[
α′′(1+ε1)

(
−1−log

(
ε3

1+ε1

))
r+ε3α

′′ r
gU (r)

+α′′(1+ε1)r log(gU (r))
]

[1+o(1)]

= e
−
(
K2r+K3

r
gU (r)

+K4r log gU (r)
)

[1+o(1)]
, r →∞,

(2.135)

where the constants K2 = α′′(1 + ε1)
(
− 1 − log

(
ε2

α′′(1+ε1)

))
,K3 = ε3α

′′ = ε2
and K4 = α′′(1 + ε1). We also have to consider the probabilities computed in
(2.118) and (2.124), and the claim in (2.129) is settled.

�

We are now in a position to prove Proposition 2.2.4.

Proof. The equation Q−(t) ≥ ct−εr can be read as T (t) ≥ t−εr/c. This is equivalent
to saying thatW (t) ≤ εr/c for all t ∈ [0, TU ]. By taking ε2 = ε/(3c) in Lemma B.5, we
know that, for all t ∈ [0, T ∗∗U ], W (t) ≤ W (T ∗∗U ) ≤ εr/(3c). Moreover, in the interval
[T ∗∗U , TU ], the cumulative amount of inactivity time is trivially bounded from above
by the length of the interval, which is 2δr

c−ρU ≤ 2εr/(3c), and ε can be taken arbitrarily
small, since δ can be taken arbitrarily small. Putting the two bounds together, we
find that, with high probability as r →∞,

W (t) ≤ ε2r +
2δr

c− ρU
≤ 1

3

εr

c
+

2

3

εr

c
=
εr

c
, t ∈ [0, TU ], (2.136)

and the probability of this not happening is given by (2.129). �

The above lower bound Q−(t) ≥ ct − εr and the trivial upper bound Q−(t) ≤ ct

imply that, with high probability as r →∞, the output process Q−(t) stays close to
the path c 7→ ct by sending ε to zero. In other words, the node stays almost always
active all the time before TU .

§B.2 The output process in the internal model
In this section we want to couple the isolated model and the internal model and show
that they have identical behavior in the time interval [0, τ int

G ]. Hence it follows that
the output process in the internal model for nodes in U actually behaves as in the
isolated model described in Section B.1, until the pre-transition time.

Proposition B.6 (Coupling the internal and the isolated model).
Let X int

i (t) and X iso
i (t) denote the activity state of a node i at time t in the internal

and the isolated model, respectively. Then

lim
r→∞

Pu
(
X int
i (t) = X iso

i (t) ∀ i ∈ U t V ∀ t ∈ [0, τ int
G ]
)

= 1. (2.137)
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Consequently, with high probability as r →∞, the pre-transition times in the internal
and the isolated model coincide, i.e.,

lim
r→∞

Pu(τ int
G = τ iso

G ) = 1. (2.138)

Proof. In Section B.1 we determined upper and lower bounds for the output process
for nodes in U in the isolated model up to time TU . Assume now that τ int

G ≤ TU .
When considering the internal model and the set of nodes in V , note that these bounds
are not true for the whole interval [0, TU ], since at time τ int

G some nodes in V already
start to activate and influence the behavior of nodes in U .

If we look at the interval [0, τ int
G ], then we note that the queue length process for

a node i ∈ U is not affected by nodes in V , and so it behaves in exactly the same
way as if the node were isolated. The activation and deactivation Poisson clocks at
node i are synchronized, and are ticking at the same time in the isolated model and
in the internal model, so that X int

i (t) = X iso
i (t). Moreover, the activity states of

nodes in V are always equal to 0 in both models. Hence we conclude that the activity
states of every node coincide up to the pre-transition time τ int

G . Consequently, the
pre-transition times in the internal and the isolated model coincide on the event
{τ int
G ≤ TU}, which can then be written as the event {τ iso

G ≤ TU}. For the latter
we know that it has a high probability as r → ∞ (see proof of Proposition 2.3.8 in
Section 2.3.2). �

67


