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CHAPTER 1
Introduction

The present thesis consists of two parts: Part I focuses on metastability properties of
queue-based random-access protocols for wireless networks; Part II focuses on spectra
of inhomogeneous Erdős-Rényi random graphs.
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In the first part of this thesis we study mathematical models that address funda-
mental challenges in wireless networks. We describe the collective behavior of devices
sharing a wireless medium and we analyze various distributed protocols to improve
the performance of the network.

In Section 1.1.1 we give an overview of wireless networks and describe the Carrier-
Sense Multiple-Access (CSMA) protocol, which is the main object of study of the first
part of the thesis. This is a distributed algorithm that involves randomness to prevent
the devices to transmit simultaneously and their signals to interfere with each other.
In Section 1.1.2 we show how these random-access models can be viewed as interact-
ing particle systems on graphs. The interference between signals in the network is
captured by a hard-core interaction model on an appropriate interference graph. In
Section 1.1.3 we introduce the problem of metastability for general systems and, in
particular, for wireless networks. We describe how these hard-core interaction models
exhibit metastability: when the activation rates become large, the system tends to
stabilize in configurations with the maximum number of active nodes, with extremely
slow transitions between them. In Section 1.1.4 we focus on random-access models
where the activation rates depend on the queues at the nodes. Not much is known
about these queue-dependent models (internal models), since most of the literature
deals with models with fixed activation rates (external models). The joint activ-
ity state together with the joint queue length process evolve as a time-homogeneous
Markov process, whose stationary distribution is challenging to analyze. In Sec-
tion 1.1.5 we introduce the mathematical model, we define the notions of state of a
node, queue length at a node and transition time, and we state the basic assump-
tions on the activation rates. In Section 1.1.6 we give an outline of Chapters 2–4:
in Chapter 2 we study complete bipartite networks; in Chapter 3 we generalize to
arbitrary bipartite networks; in Chapter 4 we consider dynamic bipartite networks in
which the interference graph changes over time.

§1.1.1 Wireless networks and random-access proto-
cols

Wireless communication plays a significant role in our everyday life and has become
an integral part of most of our online activities. It consists of the transmission of
data or information, without any conductor, from one device (transmitter) to another
(receiver) through radio frequency and radio signals. The data packets are transmitted
across the devices, over a few meters to hundreds of kilometers. Depending on the
distance of communication, the range of data and the type of devices involved, we
distinguish between different types of wireless communication technologies: radio
and television broadcasting, satellite communication, cellular communication, global
positioning system, Wi-Fi, bluetooth, radio frequency identification.

Since wireless signals typically propagate in all directions, they are often overheard
by non-intended receivers, and data packets may not be processed correctly if there
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are many conflicting signals on the same frequency channel. We say that a collision
occurs if nearby ongoing conflicting transmissions interfere with each other. In order
to reduce collisions and improve the performance, the network requires a medium
access control mechanism. Many such mechanisms have been proposed and analyzed,
aiming to detect collisions when they occur or to avoid them before they occur. There
are two main classes of collision avoidance medium access algorithms, consisting of
centralized algorithms and distributed algorithms.

• Centralized algorithms. A global control entity has perfect information of all
the interference constraints and coordinates all the transmissions by prescribing
a certain scheduling to the devices in the network. In short, all the devices
connect to a central server, which is the acting agent for all the communications.

• Distributed algorithms. The devices decide autonomously when to start a
transmission using only local information. Most of these algorithms involve
randomness to avoid simultaneous transmissions and share the medium in the
most efficient way. Thanks to their low implementation complexity, randomized
algorithms have become a popular mechanism for distributed-medium access
control. They are also called random-access algorithms.

The main idea behind random-access algorithms is to associate with each device a
random clock, independently of all the other devices. The clock determines when the
device attempts to access the medium in order to transmit. These algorithms can be
described in a simple way and only require local information. However, their macro-
scopic behavior in large networks tends to be very complex: the network performance
critically depends on the global spatial characteristics and the geometry of the net-
work (see [2], [3]). Indeed, nearby devices are typically prevented from simultaneous
transmission in order to prevent them to interfere and to disturb each other’s signals.

One of the first random-access protocols to study wireless networks was developed
in the 1970’s and is called ALOHA (see [1], [90]). It requires that every device remains
inactive for a random amount of time after every attempt of transmission, so that
devices do not start transmitting at the same time. This back-off mechanism was de-
veloped to avoid simultaneous activity of nearby devices and to reduce the chances of
collisions. The Carrier-Sense Multiple-Access (CSMA) algorithm is a collision avoid-
ance protocol that refines the ALOHA protocol by combining the random back-off
mechanism with interference sensing (see [71]). It is a carrier-sense (CS) protocol,
since the devices first sense the shared medium and only start a packet transmis-
sion if no ongoing transmission activity from interfering devices is detected. They
attempt to transmit after a random back-off time, but if they sense activity of inter-
fering devices, then they freeze their back-off timer until the transmission medium
is sensed idle again. It is a multiple-access (MA) protocol, since several devices can
transmit by accessing the same medium alternately. The CSMA protocol provides
collision avoidance, since it tries to ensure that devices do not start a transmission
at the same time in order to prevent collisions. CSMA algorithms are popular in
distributed random-access networks and various versions are currently implemented
in IEEE 802.11 Wi-Fi networks.
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In this thesis we consider different stochastic models for CSMA algorithms in
order to investigate the effects of different network geometries and how the spatial
configuration of the transmitter-receiver pairs affects the network performance.

§1.1.2 Networks as interacting particle systems
Random-access networks with CSMA protocols can be modeled as interacting particle
systems on graphs with hard-core interaction (see [104]). The undirected graph, which
we refer to as the interference graph, describes the conflicting transmissions of the
devices due to interference. Each transmitter-receiver pair is represented by a particle,
which is active when data packets are being transmitted and inactive otherwise. The
interference graph encodes the spatial characteristics and the structure of the network,
since neighboring particles are not allowed to be active simultaneously. Each particle
is equipped with a random clock and the clocks are all independent of each other.
When one of these random clocks ticks, the corresponding particle changes its state.
If the particle is active, then it deactivates, while if the particle is inactive, then it
activates only if all its neighboring particles are inactive. Data packets arrive to each
particle independently and form a queue in the buffer while waiting to be transmitted.

Figure 1.1: The interference graph of a random-access network. Each node represents a
communication link between a transmitter and a receiver (active nodes are in black, while
inactive nodes are in white). Packets arrive to the transmitter and form a queue. The
wireless signals interfere with each other when within a certain interference radius.

Consider the interference graph G = (N,E), where the set of nodes N labels the
transmitter-receiver pairs and the set of edges E indicates which nodes interfere. We
denote by X(t) = (X1(t), . . . , XN (t)) ∈ X the joint activity state at time t, with state
space

X =
{
x ∈ {0, 1}N : xixj = 0 ∀ (i, j) ∈ E

}
, (1.1)

where xi = 0 means that node i is inactive and xi = 1 that it is active.
We assume that nodes activate and deactivate according to i.i.d. Poisson clocks.

Hence (X(t))t≥0 evolves as a Markov process with state space X . We consider scen-
arios in which nodes deactivate at unit rate and become more aggressive over time
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when trying to activate, with higher clock rates for activation compared to deactiv-
ation. This is relevant for networks in high-load regimes, where the system tends to
stabilize in configurations with a maximum number of active nodes, to which we refer
as dominant states. In a high-load regime those states become extremely rigid, in the
sense that we expect extremely slow transitions between them, causing starvation for
the currently inactive nodes.

The above-described model has been thoroughly studied in the case where the
activation rate at each node i is fixed at some value ri, i = 1, . . . , N . In that case
the joint activity process (X(t))t≥0 behaves as a reversible time-homogeneous Markov
process for any interference graph G, and has a product-form stationary distribution

lim
t→∞

P{X(t) = x} = Z−1
X (r1, . . . , rN )

N∏
i=1

rxii , x ∈ X , (1.2)

with ZX (r1, . . . , rN ) denoting the normalization constant. This model was introduced
in the 1980’s to analyze the throughput performance of distributed resource sharing
and random-access schemes in packet radio networks, in particular, the CSMA pro-
tocol (see [9], [10], [68], [69], [87], [103]). The model was rediscovered and further
examined twenty years later in the context of IEEE 802.11 WiFi networks (see [46],
[48], [75], [102]). If we restrict to ri ≡ r for all i = 1, . . . , N , then the product-form
distribution in (1.2) simplifies to

lim
t→∞

P{X(t) = x} = Z−1
X (r) r

∑N
i=1 xi , x ∈ X , (1.3)

with ZX (r) ≡ ZX (r, . . . , r). From an interacting-particle-systems perspective, the
distribution in (1.3) may be recognized as the Gibbs measure of a hard-core interaction
model induced by the graph G.

§1.1.3 Metastability in wireless networks
Metastability is a phenomenon where a physical, chemical or biological system, under
the influence of a noisy dynamics, moves between different regions of its state space
on different time scales (see [22]).

A metastable state is a quasi-equilibrium that persists on a short time scale, but
relaxes to an equilibrium on a long time scale, called a stable state. A metastable
state represents a configuration where the energy of the system has a local minimum.
A stable state represents a configuration where the energy of the system has a global
minimum. When the system is subjected to a small noise, we may ask how the
transition time depends on the depths of the energy valley around the metastable
state and the shape of the bottleneck separating the metastable state from the stable
state.

In the past decades there has been intensive study of metastability for interacting
particle systems on lattices (see [4], [5], [24], [26], [27], [32], [35], [36], [53], [58], [60],
[61], [62], [63], [72], [73], [81], [82], [84]). Different approaches have been proposed,
including the path-wise approach (see [33], [34], [49], [50], [77], [83], [86]) and the
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Figure 1.2: The evolution of the system from a metastable state A (local minimum), through
an unstable state, to a stable state B (global minimum).

potential-theoretic approach (see [6], [19], [20], [21], [23], [37]). Various asymptotic
regimes have been investigated, including metastability at infinite volume and very low
temperature (see [25], [30], [31], [38], [39], [70], [78], [79]), and with vanishig magnetic
field (see [52], [91]). Recently, attention has turned to the study of metastability
for interacting particle systems on graphs, where the lack of periodicity makes the
analysis much more difficult (see [43], [44], [57], [66]). The cases where the graph is
random are particularly challenging, since the metastable crossover depends on the
specific realization of the graph.

Hard-core interaction models are known to exhibit metastability effects. For cer-
tain graphs it takes an exceedingly long time for the activity process to reach a stable
state when starting from a metastable state. In particular, in a regime where the
activation rates become large, the stationary distribution of the joint activity process
concentrates on states where the maximum number of nodes is active, with extremely
slow transitions between them.

Slow transitions between activity states are not immediately apparent from the
stationary distribution. In fact, even when in stationarity each node is active during
the same fraction of time, it may well be that over finite time intervals certain nodes
are basically barred from activity, while other nodes are transmitting essentially all
the time. In other words, the stationary distribution is not directly informative of
the transition times between activity states that govern the performance in terms of
equitable transmission opportunities for the various users during finite time windows.
While the aggregate throughput may improve as the activation rates become large,
individual nodes may experience prolonged periods of starvation, possibly interspersed
with long sequences of transmissions in rapid succession, resulting in severe build-up
of queues and long delays. Indeed, the latter issues have been empirically observed
in IEEE 802.11 Wi-Fi networks, and have also been investigated through the lens of
the above-described model (see [18], [45], [47], [51], [97], [104]).

Metastability properties are not only of conceptual interest, they are also of great
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practical significance. They provide a powerful mathematical paradigm to analyze
the likelihood for such unfairness and starvation issues to persist over long time peri-
ods. Gaining a deeper understanding of metastability properties and slow transitions
is thus instrumental in analyzing starvation behavior in wireless networks, and ul-
timately of vital importance for designing mechanisms to counter these effects and
improve the overall performance as experienced by users.

In this thesis, we study the metastable behavior of a stochastic system of particles
with hard-core interactions in a high-density regime. We exploit the particle descrip-
tion of the network to investigate the long transition times between dominant activity
states, as well as the temporal starvation and delay issues that these cause.

We consider extreme network topologies as prototypical scenarios, namely, bi-
partite graphs. This assumption provides mathematical tractability and serves as a
stepping stone towards more general network topologies. Consider a bipartite inter-
ference graph G = (N,E) = (U tV,E), where the node set N can be partitioned into
two nonempty sets U and V , while E represent the edges describing the interference:
two nodes interfere only if one belongs to U and the other belongs to V . In the liter-
ature the interference graph is almost always assumed to be static. Our work in this
thesis is among the first to explore also the extension to dynamic settings, in which
the edges appear and disappear over time.

We denote by u ∈ X and v ∈ X the joint activity states where all the nodes in
either U or V are active, respectively. The activation rates are assumed to be much
larger than the deactivation rates, and we also assume a slight imbalance between the
activation rates in the two parts of the graph. Starting from state u in which the weak
part is all active (metastable state), the system takes a long time before it reaches
state v in which the strong part is all active (stable state). This transition represents
a global switch in the network. We are interested in studying the distribution of the
time until state v is reached when the system starts from state u at time t = 0, i.e.,

TG = inf
{
t ≥ 0: X(t) = v, X(0) = u

}
. (1.4)

We refer to the time it takes to go from u to v as transition time.

§1.1.4 Queue-based activation protocols
In order to avoid slowdown via metastability, which hinders the performance of the
network, protocols are designed for activation and deactivation of the nodes that take
into account the current load of the nodes. For instance, to avoid queue overflow,
an inactive node with a long queue may want to attempt activation more vigorously,
whereas an active node with an empty queue, or with overcrowded neighbors, may
want to deactivate and hand over the transmission medium to its neighbors. We
assume that packets arrive at the nodes as independent Poisson processes and have
independent exponentially distributed sizes. When a packet arrives at a node, it joins
the queue at that node and the queue length undergoes an instantaneous jump equal
to the size of the arriving packet. The queue decreases at a constant rate (as long as it
is positive) when the node is active. Large deviation techniques have been developed
for various models in order to control the queue behavior over time (see [76], [95]).
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In this thesis we focus on queue-based random-access protocols where the activ-
ation rates depend on the current queues at the nodes. Specifically, the activation
rate is an increasing function of the queue length of the node itself, and possibly a
decreasing function of the queue lengths of its neighbors, so as to provide greater
transmission opportunities to nodes with longer queues. As a result, these rates vary
over time as queues build up or drain when packets arrive or are transmitted. We
refer to these models as internal models, in the sense that the activation rates are
functions of the queue lengths at the various nodes. We denote by Qi(t) the queue
length at node i at time t and by Q(t) = (Q1(t), . . . , QN (t)) ∈ RN≥0 the joint queue
length vector at time t. In internal models the activation rates are of the form

ri(t) =

{
gU (Qi(t)), i ∈ U,
gV (Qi(t)), i ∈ V, (1.5)

where the functions q 7→ gU (q) and q 7→ gV (q) are non-decreasing and such that
limq→∞ gU (q) =∞, limq→∞ gV (q) =∞ and gU (q) = gV (q) = 0 when q < 0.

Note that (X(t), Q(t))t≥0 evolves as a time-homogeneous Markov process with
state space X × RN≥0, since the transition rates depend on time only via the current
state of the vector. The queue state not only depends on the history of the packet
arrival process (which causes upward jumps in the queue lengths), but also on the past
evolution of the activity process itself (through the gradual reduction of the queue
lengths during activity periods). The state-dependent nature of the activation rates
raises interesting and challenging problems from a methodological perspective, whose
solution requires novel concepts in order to handle the two-way interaction between
activity states and queue states. The stationary distribution of the Markov process
in general does not admit a closed form expression and even the basic throughput
characteristics and stability conditions are not known. Indeed, it is not simple to
describe explicitly the stability condition for general network topologies (see [100])
and only structural representations or asymptotic results are known (see [29], [74]).
In order to study activation rates based on queue lengths, powerful algorithms have
been proposed and it has been shown that these achieve throughput optimality under
mild assumptions (see [64], [65], [88], [94]).

Most of the literature refers to models where the activation rates are fixed para-
meters and the underlying Markov process is time-homogeneous (see [59], [83], [105],
[106]). In this setting it has been shown that the transition time from the metastable
to the stable state is approximately exponential on the scale of its mean. The main
idea is to consider the return times to the metastable state of the discrete-time em-
bedded Markov chain as regeneration times. At each regeneration time a Bernoulli
trial is conducted. The trial is successful if the stable state is reached before a return
to the metastable state occurs, while it is unsuccessful otherwise. In the asymptotic
regime, the success probability of each trial is small and the expected length of a
single trial is negligible compared to the expected transition time. It is known that
the first success time of a large number of trials, each having a small probability of
success, is approximately exponentially distributed (see [49], [67]).

Attention has also been paid to models where the activation rates change with
time. The underlying Markov process is therefore time-inhomogeneous, and it has
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been shown that, under appropriate conditions, the transition time is approximately
exponential with a non-constant rate (see [14]). The above-described approach is still
fruitful, but the success probability and the length of each trial now depend on its
starting time. We call these models external models, in the sense that the activation
rates are deterministic functions of time. In external models, the activation rates are
of the form

ri(t) =

{
hU (t), i ∈ U,
hV (t), i ∈ V, (1.6)

for suitable functions t 7→ hU (t) and t 7→ hV (t). It is interesting to note that the meta-
stable behavior of exit times of simulated annealing in a time-inhomogeneous setting
has some similarities with the one of external models: a trichotomy was observed,
similar to the one we will discuss in this thesis (see [80]).

Recently, various models for random-access networks with queue-based protocols
have been investigated (see [17], [28], [41], [42], [85], [93]). Breakthrough work has
shown that, for suitable activation rate functions, these protocols achieve maximum
stability, i.e., provide stable queues whenever feasible at all (see [55], [64], [88], [94]).
Thus, these policies are capable of matching the optimal throughput performance of
centralized scheduling strategies, while requiring less computation and operating in
a distributed fashion. On the downside, the very activation rate functions required
for ensuring maximum stability tend to result in long queues and poor delay per-
formance (see [18], [54]). This has sparked an interest in understanding, and possibly
improving, the delay performance of queue-based random-access schemes. Analyzing
metastability properties for the joint activity process is a crucial endeavor in this
regard.

In this thesis we specifically examine the transition time of the joint activity
process in an asymptotic regime where the initial queue lengths Qi(0), and hence the
activation rates ri(Q(t)), i = 1, . . . , N , become large in a suitable sense.

§1.1.5 Mathematical model
Consider the bipartite graph G = (U t V,E) and recall that a node in the network
can be either active or inactive.

Definition 1.1.1 (State of a node).
The state of node i at time t is described by a Bernoulli random variableXi(t) ∈ {0, 1},
defined as

Xi(t) =

{
0, if i is inactive at time t,
1, if i is active at time t.

(1.7)

The joint activity state X(t) at time t is an element of the set X : the feasible config-
urations of the network correspond to the collection of independent sets of G. Recall
that u ∈ X (v ∈ X ) represents the joint activity state where all the nodes in U are
active (inactive) and all the nodes in V are inactive (active). The main object of
interest in this thesis is the transition time between u and v. We write Pu and Eu to
denote probability and expectation on path space given that the initial joint activity
state is u.
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Definition 1.1.2 (Transition time).
The transition time T QG of the graph G given initial queue lengths Q is defined as

T QG = inf
{
t ≥ 0: X(t) = v, X(0) = u

}
. (1.8)

In other words, T QG is the time it takes to reach v starting from u. We sometimes write
TG and omit the dependence on Q when this dependence is clear from the context.

An active node i deactivates according to a deactivation Poisson clock with rate 1:
when the clock ticks the node deactivates. Vice versa, an inactive node i attempts
to activate at the ticks of an activation Poisson clock with rate ri(t): an attempt at
time t is successful when no neighbors of i are active at time t−. The activation rate
of i depends on its current queue length Qi(t) and satisfies (1.5).

Definition 1.1.3 (Queue length at a node).
Let t 7→ Q+

i (t) be the input process describing packets arriving according to a Poisson
process t 7→ N(t) with rate λt and having i.i.d. exponential service times of parameter
µ, Yj ' Exp(µ), j ∈ N. Let t 7→ Q−i (t) be the output process representing the
cumulative amount of work that is processed in the time interval [0, t] at rate c, i.e.,
cTi(t) = c

∫ t
0
Xi(s)ds. Define

∆i(t) = Q+
i (t)−Q−i (t) =

Ni(t)∑
j=0

Yij − cTi(t), (1.9)

and let s∗ = s∗(t) be the value where sups∈[0,t][∆i(t) − ∆i(s)] is reached, namely,
[∆i(t)−∆i(s

∗−)]. Let Qi(t) ∈ R≥0 denote the queue length at node i at time t. Then

Qi(t) = max
{
Qi(0) + ∆i(t), ∆i(t)−∆i(s

∗−)
}
, (1.10)

where Qi(0) is the initial queue length. The maximum is achieved by the first term
when Qi(0) ≥ −∆i(s

∗−) (the queue length never sojourns at 0), and by the second
term when Qi(0) < −∆i(s

∗−) (the queue length sojourns at 0 at time s∗−). In order
to ensure that the queue length remains non-negative, a node deactivates when its
queue length hits zero.

The initial queue lengths are assumed to be

Qi(0) =

{
γUr, i ∈ U,
γV r, i ∈ V, (1.11)

where γU ≥ γV > 0, and r is a parameter that tends to infinity. Thus, the initial
queue lengths are of order r, i.e., Qi(0) � r, and the ones at the nodes in U are larger
than the ones at the nodes in V . Note that the transition time tends to infinity with
r, since the larger the initial queue lengths are, the longer it takes for the transition
to occur. We study different models in the limit as the queue lengths become large,
and so we are interested in asymptotic results for the transition time as r →∞.

For each node i, the input process t 7→ Q+
i (t) =

∑Ni(t)
j=0 Yij is a compound Poisson

process. In the time interval [0, t] packets arrive at node i according to a Poisson
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process t 7→ Ni(t) with rate λU or λV , depending on whether the node is in U or V .
Moreover, each packet j brings the information of its service time: the service time
Yij of the j-th packet at node i is exponentially distributed with parameter µ. Hence
the expected value of Q+

i (t) for a node in U is the product of the expected value
E[Ni(t)] = λU t and the expected value E[Yj ] = 1/µ, i.e., E[Q+

i (t)] = (λU/µ)t = ρU t.
Analogously, for a node in V we have E[Q+

i (t)] = ρV t. The quantities ρU and ρV
denote the common traffic intensity of the nodes in U and V , respectively. We assume
that all the service times are i.i.d. random variables, and are independent of the
Poisson process t 7→ Ni(t).

For each node i, the output process is t 7→ Q−i (t) = cTi(t) = c
∫ t

0
Xi(u) du, where

the activity process t 7→ Ti(t) represents the cumulative amount of active time of node
i in the time interval [0, t]. This is not independent of the input process. Intuitively,
the average queue length increases when the node is inactive and decreases when the
node is active, which means that packets are being served at a rate c larger than their
arrival rate, i.e., c > ρU , ρV > 0. Since all nodes in V are initially inactive, for some
time the queue length of these nodes in V is not affected by their output process.
However, as soon as a node in V activates, we have to consider its output process as
well.

The choice of functions gU , gV in (1.5) determines the transition time of the net-
work, since the activation rates of the nodes depend on them.

Definition 1.1.4 (Assumptions on the activation rates).
We assume that the activation functions gU , gV fall in the class

G =
{
g : R→ R≥0 : g non-decreasing and continuous,

g(x) = 0 for x ∈ R≤0, lim
x→∞

g(x) =∞
}
.

(1.12)

Moreover, we assume nodes in V to be more aggressive than nodes in U , i.e.,

lim
x→∞

gV (x)

gU (x)
=∞, (1.13)

so that the transition from u to v can be viewed as the crossover from a metastable
state to a stable state.

§1.1.6 Outline of Part I: Chapters 2–4
The three chapters of Part I of this thesis are based on three papers on queue-based
random-access protocols for wireless networks.

In Chapter 2 we focus on complete bipartite interference graphs, which are useful
for modeling dense networks and which provide a worst-case perspective. While there
is admittedly no specific physical reason for focusing on complete bipartite graphs, this
assumption provides mathematical tractability and serves as a stepping stone towards
more general network topologies. The main goal is to compare the transition time
of the internal model with that of the external model in which the activation rates
depend on the current mean queue length. We define two perturbed models with
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externally driven activation rates that sandwich the queue lengths of the internal
model and its transition time. We show with the help of coupling that with high
probability the mean transition time and its distribution for the internal model are
asymptotically the same as for the external model. The chapter is based on [12].

In Chapter 3 we turn our attention to arbitrary bipartite interference graphs, for
which not necessarily all nodes in U interfere with all nodes in V . In this setting
the problem turns out to be considerably more challenging. In order to achieve the
full transition, the network goes through a succession of subtransitions, in which a
certain succession of complete bipartite subgraphs achieve a metastable crossover and,
in doing so, effectively remove themselves from the network. This succession depends
in a delicate manner on the full structure of the graph. We formulate a greedy
algorithm to analyze the most likely transition paths between dominant states. By
combining the results for complete bipartite graphs with a detailed analysis of the
algorithm, we are able to determine the mean transition time and its distribution
along each transition path. The chapter is based on [13].

In Chapter 4 we study a dynamic version of the random-access protocols to model
wireless networks with user mobility. With an explorative intention, we analyze dy-
namic bipartite interference graphs where the interference between nodes changes over
time: Poisson i.i.d. clocks are attached to the edges, which can appear and disappear
from the graph when their clock ticks. Our approach is based on the intuition that a
node in V can activate either when its neighbors are simultaneously inactive or when
the edges connecting it with its neighbors disappear. Interpolation between these two
situations gives rise to different scenarios and interesting behavior. We identify how
the mean transition time depends on the speed of the dynamics. The chapter is based
on [92].
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§1.2 Introduction to Part II

In the second part of this thesis we study spectral properties of random graphs,
in particular, of inhomogeneous Erdős-Rényi random graphs. Random graphs have
many applications in the modeling of complex physical, biological and social networks.
In order to understand the structure of these networks, we consider the adjacency and
Laplacian matrices associated to the underlying graphs and study their eigenvalues.

In Section 1.2.1 we give a brief overview of random matrices and motivate our
interest in analyzing their spectra. We introduce Wigner matrices, the Wigner semi-
circle law and the universality principle. In Section 1.2.2 we define the adjacency
and Laplacian matrices of a graph together with their empirical spectral distribution.
For random matrices, the eigenvalues are random variables and the empirical spectral
distribution is a random probability measure. In Section 1.2.3 we consider the stand-
ard Erdős-Rényi random graph and discuss the main regimes of behavior depending
on the connection probabilities. We next consider the inhomogeneous Erdős-Rényi
random graph, for which we investigate both the limiting spectral distribution and
the large-deviation behavior of the largest eigenvalue. In order to introduce these two
problems, we discuss known results for standard and inhomogeneous Erdős-Rényi
random graphs. In Section 1.2.4 we give a brief introduction to free probability the-
ory, which can be seen as the analogue of classical probablility for non-commutative
random variables. Its connection to random matrix theory allows us to indentify the
limiting spectral distribution for certain classes of random matrices. In Section 1.2.5
we give a brief intoduction to graphon theory, used to study limits of dense graph
sequences. Graphons also provide crucial tools to study large deviations for dense
random graphs. In Section 1.2.6 we give an outline of Chapters 5–6: in Chapter 5 we
study the empirical spectral distribution and its limiting behavior for the adjacency
and Laplacian matrices in the non-dense non-sparse regime; in Chapter 6 we study
large deviations for the largest eigenvalue of the adjacency matrix in the dense regime
and analyze its rate function in detail.

§1.2.1 Random matrices
The study of random matrices, in particular, the properties of their eigenvalues,
emerged from applications. Random matrices appeared for the first time in 1928,
when Wishart (see [195]) used them in statistics and data analysis. Later, in the
1950s, the natural question regarding their eigenvalue statistics was raised in the pi-
oneering work of Wigner (see [194]). While studying statistical models for nuclear
physics, he noticed from experimental data that gaps in energy levels of large nuclei
tend to follow the same statistics independently the material. We now know from
quantum mechanics that these energy levels correspond to the eigenvalues of a self-
adjoint Hamiltonian operator, but the correct form of this operator was not known
at the time. Wigner’s idea was to model the complex Hamiltonian by a random
matrix with independent entries. He ignored all the physical details of the system
except the symmetry: he modeled systems with time reversal symmetry by real sym-
metric random matrices, and systems without time reversal symmetry by complex
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Hermitian random matrices. Surprisingly, this simplification reproduced the correct
gap statistics, suggesting the existence of a profound universality principle.

Wigner matrices are symmetric Hermitian random matrices whose elements are
i.i.d. random variables with mean 0 and variance 1. Wigner showed that the empirical
spectral distribution converges almost surely to the semicircle law he had initially
discovered for random matrices with Gaussian elements (see [194]). The semicirle
law, now called Wigner semicircle law, has density

ρsc(x) =
1

2π

√
4− x2, x ∈ [−2, 2]. (1.14)

The i.i.d. requirement and the constant variance condition are not essential for proving
the semicircle law. Indeed, also generalized Wigner matrices, where the variances of
the elements can be different and each column of the variance profile is stochastic,
obey the semicircle law under various conditions (see [109], [157], [163]).

Figure 1.3: Wigner semicircle law.

The Wigner-Dyson-Gaudin-Mehta conjecture states that the local spectral statist-
ics of Wigner matrices exhibit universality: they only depend on the symmetry class
of the ensemble and not on the distribution of the matrix elements. In particular,
the local spectral statistics are the same as the ones of matrices with Gaussians ele-
ments, for which there are explicit formulas. In the meantime this conjecture has been
solved for all symmetry classes (see [127], [153], [154], [155], [156], [157], [190]). The
universality phenomenon has been recently established also for other models, such as
generalized Wigner matrices (see [157]), Wigner-type matrices ([107]), and adjacency
matrices of Erdős-Rényi random graphs (see [151], [152], [168], [191]).

Motivated by physical applications, in the 1960s a mathematical theory of the
spectrum of random matrices was developed and links with various branches of math-
ematics, including classical analysis and number theory, were established (see [148],
[149], [162], [181]). Over the years, it has become clear that models related to random
matrices play an important role in several areas of mathematics. Nowadays, ran-
dom matrix theory is a central topic in probability and statistical physics, with many
connections to combinatorics, numerical analysis, statistics and computer science.

In this thesis we study properties of the eigenvalues of random matrices arising
from random graphs. Since a random matrix has random entries, its eigenvalues are
random variables. We aim at understanding of the distribution of the eigenvalues
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from knowledge of the distribution of the entries. Random numbers and random
vectors are known to exhibit universal patterns, such as the law of large numbers and
the central limit theorem. It is of great interest to understand their analogues in the
non-commutative setting and to identify the behavior of eigenvalues of large random
matrices.

§1.2.2 The adjacency and Laplacian matrices
We begin with some basic definitions. Consider a finite simple graph G = (V,E)

on N vertices. The adjacency matrix AN = A(G) associated to G is defined as the
{0, 1}-valued N ×N matrix whose elements indicate whether a given pair of vertices
is adjacent or not in the graph, i.e., is connected by an edge:

AN (i, j) =

{
1, i ∼ j ,
0, else.

(1.15)

The diagonal elements of the matrix are all zero, since edges from a vertex to itself
(loops) are not allowed in simple graphs. Note that AN is symmetric. Hence it has
N real eigenvalues, which can be ordered as

λ1(AN ) ≥ . . . ≥ λN (AN ). (1.16)

The eigenvalues of the adjacency matrix have various applications in graph theory:
they carry information about topological features of the graph, such as connectivity
and subgraph counts (see [139], [142]).

The Laplacian matrix ∆N = ∆N (G) associated to G is the N ×N matrix defined
as

∆N (i, j) =

{
−
∑N
k=1AN (i, k), i = j ,

AN (i, j), i 6= j .
(1.17)

Note that also ∆N is symmetric. Hence it also has N real eigenvalues, which can be
ordered as

λ1(∆N ) ≥ . . . ≥ λN (∆N ). (1.18)

The eigenvalues of the Laplacian matrix carry information about random walks on
the graph and allow us to analyze approximation algorithms (see [139]).

For x ∈ R, let δx denote the Dirac measure at x. The empirical spectral distribution
(ESD) of an N × N symmetric matrix M is the probability distribution that puts
mass 1/N at each of the N eigenvalues of M , i.e.,

ESD(M) =
1

N

N∑
i=1

δλi(M). (1.19)

Hence, the empirical spectral distributions of the adjacency matrix AN and the Lapla-
cian matrix ∆N associated to the graph G are defined as

ESD(AN ) =
1

N

N∑
i=1

δλi(AN ) ESD(∆N ) =
1

N

N∑
i=1

δλi(∆N ). (1.20)
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The empirical spectral distribution is a graph invariant and encodes important in-
formation about G. It is therefore one of the main objects of interest in spectral
graph theory (see [139]). From perturbation theory for matrices, it is known that
the eigenvalues are continuous functions of the elements of the matrix. The empir-
ical spectral distributions of the adjacency and Laplacian matrices are both random
probability distributions on R.

§1.2.3 Spectra of Erdős-Rényi random graphs
Spectral graph theory studies the properties of eigenvalues and eigenvectors of the
associated adjacency and Laplacian matrices. In the past 20 years many results have
been derived about spectra of random matrices associated with random graphs (see
[115], [119], [122], [144], [146], [150], [159], [170], [171], [172], [175], [191], [196]).

The standard Erdős-Rényi random graph model G(N, p), first introduced by Erdős
and Rényi (see [158]), is the most basic random graph model. It consists in a graph
on N vertices formed by connecting each pair of vertices i and j with probability
p = p(N), independently of each other. Note that, up to symmetry, the adjacency
matrix of G(N, p) consists of i.i.d. Bernoulli random variables. Each element of the
matrix is 1 with probability p and 0 with probability 1−p, independently of the other
elements.

Depending on the asymptotic behavior of the connection probability p(N) as N →
∞, we distinguish between the following regimes.

(I) Dense regime, p(N) ≡ p ∈ (0, 1). The average degree diverges linearly.

(II) Non-dense non-sparse regime, p(N) → 0 and Np(N) → ∞. The average
degree diverges slower than linearly.

(III) Sparse regime, p(N) → 0 and Np(N) → a ∈ (0, 1). The degree distribution
is asymptotically Poisson with parameter a.

(IV) Sub-sparse regime, p(N)→ 0, Np(N)→ 0 and N2p(N)→∞. Most vertices
have degree 0, but the total number of edges diverges.

(V) Ultra-sparse regime, p(N)→ 0 and N2p(N)→ b ∈ (0, 1). The total number
of edges is asymptotically Poisson with parameter 1

2b.

The regimes (I) and (II) are often denoted in the literature as dilute regime or non-
sparse regime. Note that the regime where N2p(N) → 0 is not interesting because
all the edges will be missing with high probability.

In this thesis we focus on a generalization of standard Erdős-Rényi random graphs.
Namely, we consider inhomogeneous Erdős-Rényi random graphs, where each pair of
vertices i and j is connected with probability pij = pij(N), independently of each
other. Many popular graph models arise as special cases of inhomogeneous Erdős-
Rényi random graphs, such as random graphs with given expected degrees (see [141]),
stochastic block models (see [166]) and W -random graphs (see [123], [177]).
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We address two different problems. We first study the limiting spectral distribu-
tions of the adjacency and Laplacian matrices in the non-dense non-sparse regime (II).
We next study the large deviation principle for the largest eigenvalue of the adjacency
matrix in the dense regime (I).

Limiting spectral distribution

One of the challenges in the study of spectra of random graphs is to investigate the
convergence of the empirical spectral distributions to a limiting spectral distribution
for the adjacency and Laplacian matrices as the size of the graph becomes large.

Various results have been proved for standard Erdős-Rényi random graphs. In
the non-sparse regime, the adjacency matrix falls into the Wigner class and its em-
pirical spectral distribution converges (after appropriate scaling and centering) to a
semicircle law (see [128], [146], [191]). In the sparse regime, the adjacency matrix
can be viewed as a singular Wigner ensemble, since the distribution of its elements is
highly concentrated around 0. Its analysis is more challenging than in the non-sparse
regime. The empirical spectral distribution of the Laplacian matrix converges (again
after appropriate scaling) to a free additive convolution of a Gaussian and a semicircle
law (see [128], [146], [170]). Both spectra are well understood.

Our goal is to extend these results to inhomogeneous Erdős-Rényi random graphs.
Recently, some properties of the empirical spectral distribution of adjacency matrices
have been derived via the theory of graphons (see [196]).

Largest eigenvalue

Another interesting challenge in the study of spectra of random graphs is to analyze
the behavior of the largest eigenvalue of the adjacency matrix.

For standard Erdős-Rényi random graphs it has been shown that, in the dense
regime, the largest eigenvalue asymptotically has a normal distribution (see [160])
and satisfies a weak law of large numbers (see [173]). Moreover, it is asymptotically
equivalent to the maximum of the maximal mean degree d and the square root of the
largest degree (see [173]). In the sparse regime, the behavior of the largest eigenvalue
of inhomogeneous Erdős-Rényi random graphs exhibits a crossover at d � logN

(which corresponds to the crossover from disconnected to connected graphs). When
d � logN there is a sharp increase in the density of eigenvalues towards the centre
of the spectrum, while when d� logN the extreme eigenvalues converge to the edge
of the support of the asymptotic eigenvalue distribution (see [116], [117]).

Large deviations for the largest eigenvalue have also been intensely studied. Large
deviation theory for random matrices started with the study of large deviations for the
empirical spectral distribution of β-ensembles with a quadratic potential (see [111]).
The rate was shown to be the square of the number of vertices, and the rate function
was shown to be given by a non-commutative notion of entropy. The largest eigenvalue
for such ensembles was also studied (see [110]). More recently, large deviations for
the empirical spectral distribution of random matrices with non-Gaussian tails were
derived (see [121]), and the largest eigenvalue was studied (see [112], [113]). The
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adjacency matrix of an Erdős-Rényi random graph does not fall in this regime, and
hence different techniques are needed.

For dense Erdős-Rényi random graphs, the breakthrough work of Chatterjee and
Varadan (see [138]) introduced a general framework for large deviation principles via
Szemerédi’s regularity lemma (see [188]) and the theory of graphons (see [125], [177],
[178]). It expresses the structure of the random graph conditional on a large deviation
in terms of a variational problem involving graphons. The framework was initially
set up for subgraph densities, but the results extend to so-called graph parameters,
including the operator norm of graphons, which is the extension of the spectral norm
(largest eigenvalue) to the space of graphons. Consequently, the large deviation rate
function for the upper and lower tails of the largest eigenvalue, and the behavior of
the graph conditional on large deviations, can be described in detail (see [137]). The
original question from Chatterjee and Varadan was the following. “Fix 0 < p < r < 1

and take G ∼ G(N, p) conditioned to have at least as many triangles as is typical
for G(N, r). Is G close in cut-distance to a typical G(N, r)?". The region of (p, r)

where the answer is positive is called replica symmetric phase and has recently been
identified. Analagous results have been derived also in the setting where the largest
eigenvalue of G ∼ G(N, p) is conditioned to exceed the typical value of the largest
eigenvalue of G(N, r) (see [179]).

Recently, a large deviation principle for uniform dense random graphs with a
given degree sequence has been established via the above-described framework (see
[145]). Dense inhomogeneous Erdős-Rényi random graphs fall in this class. Hence, a
large deviation principle holds and general results on large deviations for the largest
eigenvalue follow. Our goal is to study the large deviation principle for the largest
eigenvalue and to analyze the associated rate function in detail.

§1.2.4 Free probability
In 1983 Voiculescu introduced free probability theory in the context of operator algeb-
ras in order to address the isomorphism problem of free group factors (see [192]). The
theory reached a new level when he discovered connections to random matrix theory
(see [193]). The tools developed in operator algebras and free probability theory can
now be applied to many classes of random matrices, in particular, to indentify the
limiting spectral distribution (see [182]). Since random matrices are also widely used
in applied fields, such as wireless communications or statistics, free probability has
become quite common. Moreover, it has close connections to combinatorics, repres-
entations of symmetric groups, large deviations and quantum information theory.

Definition 1.2.1 (Non-commutative probability space).
We say that the pair (A, φ) is a non-commutative probability space if A is a unital
algebra and φ is a linear functional φ : A → C with φ(1) = 1.

Let I be an index set. We call (non-commutative) random variables the elements
of A, we call moments of a random variable a ∈ A the numbers φ(an), n ∈ N, and
we call joint distribution of the random variables a1, . . . , ak ∈ A the collection of all
mixed moments φ(ai(1) · · · ai(l)), where l ∈ N, i(1), . . . , i(l) ∈ {1, . . . , k}.
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Definition 1.2.2 (Free independence).
For each i ∈ I, let Ai ⊂ A be unital subalgebras of A. The subalgebras (Ai)i∈I are
said to be free or freely independent if φ(a1 · · · ak) = 0 whenever:

(i) aj ∈ Ai(j), i(j) ∈ I and φ(aj) = 0, for all j = 1, . . . , k, with k ∈ N;

(ii) i(1) 6= i(2), i(2) 6= i(3), . . . , i(k − 1) 6= i(k), i.e., neighboring elements belong to
different subalgebras.

For i ∈ I, let xi ∈ A. The random variables (xi)i∈I are said to be free or freely
independent if their generated unital subalgebras (Ai)i∈I are free, where Ai is the
unital subalgebra of A generated by xi.

Note that freeness between two random variables x and y is a rule for calculating the
mixed moments in x and y from the moments of x and the moments of y. Freeness
can be seen as a non-commutative analogue of the classical probabilistic concept of
independence for random variables, which is why it is called free independence.

§1.2.5 Graphons
The analysis of large networks is one of the main challenges in modern graph theory.
It is important to have proper definitions of convergence for graph sequences in order
to identify limiting objects. A solution to this problem is provided by graphon the-
ory, introduced in 2006 by Lovász and Szegedy, which defines graphons as limits of
dense graph sequences (see [177]). Graphons characterize the convergence of graph
sequences with the help of graph homomorphism densities (see [125], [126]).

Definition 1.2.3 (Graphon).
A graphon is a symmetric Lebesgue-measurable function from the unit square to the
unit interval. More precisely, the set of graphons W is defined as

W =
{
h : [0, 1]2 → [0, 1] : h(x, y) = h(y, x) ∀ (x, y) ∈ [0, 1]2

}
. (1.21)

On the set of graphons it is possible to define a metric in the following way.

Definition 1.2.4 (Cut-metric).
Let M be the set of Lebesgue measure-preserving bijective maps φ : [0, 1] 7→ [0, 1].
The cut-distance between two graphons h1, h2 ∈ W is defined by

d�(h1, h2) = sup
S,T⊆[0,1]

∣∣∣∣ ∫
S×T

(h1(x, y)− h2(x, y)) dx dy

∣∣∣∣, (1.22)

where S, T run over all measurable subsets of [0, 1]. The cut-metric δ� is defined by

δ�(h1, h2) = inf
φ∈M

d�(h1, h
φ
2 ), (1.23)

where hφ2 (x, y) = h2(φ(x), φ(y)).
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The cut-metric defines an equivalence relation ∼ on the space of graphons W by
declaring h1 ∼ h2 if and only if δ�(h1, h2) = 0, and leads to the quotient space
W̃ = W/∼. For h ∈ W we write h̃ to denote the equivalence class of h in W̃. The
pair (W̃, δ�) is a compact metric space (see [176]).

There is a natural way to embed a simple graph in the space of graphons. Consider
a graph G on N vertices and contruct the associated graphon hG in the following way.
Divide the unit square [0, 1]2 into N2 equal boxes of equal size and assign to each box
the value of the corresponding element of the adjacency matrix. More precisely,

hG(x, y) =

{
1, if there is an edge between vertex dNxe and vertex dNye,
0, else,

(1.24)

where dxe denotes the smallest integer larger than or equal to x.

Figure 1.4: Graphon representation of a graph.

Graphon theory is not only connected to graph theory, but also to measure the-
ory, probability theory and functional analysis. Recently, graphon theory has been
generalized to include sparse graph sequences (see [123], [124], [161], [174]).

§1.2.6 Outline of Part II: Chapters 5–6
The two chapters of Part II of this thesis are based on two papers on spectral properties
of inhomogeneous Erdős-Rényi random graphs.

In Chapter 5 we consider inhomogeneous Erdős-Rényi random graphs in the non-
dense non-sparse regime, where the degrees of the vertices diverge sublinearly with
the size of the graph. We are interested in the limiting behavior of the empirical
spectral distributions of the adjacency and Laplacian matrices. We identify their
scaling limit. When the connection probabilities have a multiplicative structure, we
are able to give an explicit description of the scaling limits using tools from free
probability theory. Inhomogeneous Erdős-Rényi random graphs with a multiplicative
structure for the connection probabilities arise naturally in different contexts. For
instance, they have been shown to play a crucial role in the identification of the
limiting spectral distribution of the adjacency matrix of the configuration model (see
[144]). The chapter is based on [132].

In Chapter 6 we focus on the behavior of the largest eigenvalue of the adjacency
matrix in the dense regime, where the degrees of the vertices are proportional to the
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size of the graph. Using the framework of Chatterjee and Varadan and the theory of
graphons, we prove a large deviation principle for dense inhomogeneous Erdős-Rényi
random graphs. We derive a large deviation principle for the largest eigenvalue and
analyze the associated rate function in detail. When the connection probabilities have
a multiplicative structure, we are able to identify its scaling properties. The chapter
is based on [133].
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