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CHAPTER 1
Introduction

The present thesis consists of two parts: Part I focuses on metastability properties of
queue-based random-access protocols for wireless networks; Part II focuses on spectra
of inhomogeneous Erdős-Rényi random graphs.



1. Introduction

C
h
a
pt

er
1 §1.1 Introduction to Part I

In the first part of this thesis we study mathematical models that address funda-
mental challenges in wireless networks. We describe the collective behavior of devices
sharing a wireless medium and we analyze various distributed protocols to improve
the performance of the network.

In Section 1.1.1 we give an overview of wireless networks and describe the Carrier-
Sense Multiple-Access (CSMA) protocol, which is the main object of study of the first
part of the thesis. This is a distributed algorithm that involves randomness to prevent
the devices to transmit simultaneously and their signals to interfere with each other.
In Section 1.1.2 we show how these random-access models can be viewed as interact-
ing particle systems on graphs. The interference between signals in the network is
captured by a hard-core interaction model on an appropriate interference graph. In
Section 1.1.3 we introduce the problem of metastability for general systems and, in
particular, for wireless networks. We describe how these hard-core interaction models
exhibit metastability: when the activation rates become large, the system tends to
stabilize in configurations with the maximum number of active nodes, with extremely
slow transitions between them. In Section 1.1.4 we focus on random-access models
where the activation rates depend on the queues at the nodes. Not much is known
about these queue-dependent models (internal models), since most of the literature
deals with models with fixed activation rates (external models). The joint activ-
ity state together with the joint queue length process evolve as a time-homogeneous
Markov process, whose stationary distribution is challenging to analyze. In Sec-
tion 1.1.5 we introduce the mathematical model, we define the notions of state of a
node, queue length at a node and transition time, and we state the basic assump-
tions on the activation rates. In Section 1.1.6 we give an outline of Chapters 2–4:
in Chapter 2 we study complete bipartite networks; in Chapter 3 we generalize to
arbitrary bipartite networks; in Chapter 4 we consider dynamic bipartite networks in
which the interference graph changes over time.

§1.1.1 Wireless networks and random-access proto-
cols

Wireless communication plays a significant role in our everyday life and has become
an integral part of most of our online activities. It consists of the transmission of
data or information, without any conductor, from one device (transmitter) to another
(receiver) through radio frequency and radio signals. The data packets are transmitted
across the devices, over a few meters to hundreds of kilometers. Depending on the
distance of communication, the range of data and the type of devices involved, we
distinguish between different types of wireless communication technologies: radio
and television broadcasting, satellite communication, cellular communication, global
positioning system, Wi-Fi, bluetooth, radio frequency identification.

Since wireless signals typically propagate in all directions, they are often overheard
by non-intended receivers, and data packets may not be processed correctly if there

12
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are many conflicting signals on the same frequency channel. We say that a collision
occurs if nearby ongoing conflicting transmissions interfere with each other. In order
to reduce collisions and improve the performance, the network requires a medium
access control mechanism. Many such mechanisms have been proposed and analyzed,
aiming to detect collisions when they occur or to avoid them before they occur. There
are two main classes of collision avoidance medium access algorithms, consisting of
centralized algorithms and distributed algorithms.

• Centralized algorithms. A global control entity has perfect information of all
the interference constraints and coordinates all the transmissions by prescribing
a certain scheduling to the devices in the network. In short, all the devices
connect to a central server, which is the acting agent for all the communications.

• Distributed algorithms. The devices decide autonomously when to start a
transmission using only local information. Most of these algorithms involve
randomness to avoid simultaneous transmissions and share the medium in the
most efficient way. Thanks to their low implementation complexity, randomized
algorithms have become a popular mechanism for distributed-medium access
control. They are also called random-access algorithms.

The main idea behind random-access algorithms is to associate with each device a
random clock, independently of all the other devices. The clock determines when the
device attempts to access the medium in order to transmit. These algorithms can be
described in a simple way and only require local information. However, their macro-
scopic behavior in large networks tends to be very complex: the network performance
critically depends on the global spatial characteristics and the geometry of the net-
work (see [2], [3]). Indeed, nearby devices are typically prevented from simultaneous
transmission in order to prevent them to interfere and to disturb each other’s signals.

One of the first random-access protocols to study wireless networks was developed
in the 1970’s and is called ALOHA (see [1], [90]). It requires that every device remains
inactive for a random amount of time after every attempt of transmission, so that
devices do not start transmitting at the same time. This back-off mechanism was de-
veloped to avoid simultaneous activity of nearby devices and to reduce the chances of
collisions. The Carrier-Sense Multiple-Access (CSMA) algorithm is a collision avoid-
ance protocol that refines the ALOHA protocol by combining the random back-off
mechanism with interference sensing (see [71]). It is a carrier-sense (CS) protocol,
since the devices first sense the shared medium and only start a packet transmis-
sion if no ongoing transmission activity from interfering devices is detected. They
attempt to transmit after a random back-off time, but if they sense activity of inter-
fering devices, then they freeze their back-off timer until the transmission medium
is sensed idle again. It is a multiple-access (MA) protocol, since several devices can
transmit by accessing the same medium alternately. The CSMA protocol provides
collision avoidance, since it tries to ensure that devices do not start a transmission
at the same time in order to prevent collisions. CSMA algorithms are popular in
distributed random-access networks and various versions are currently implemented
in IEEE 802.11 Wi-Fi networks.

13
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In this thesis we consider different stochastic models for CSMA algorithms in
order to investigate the effects of different network geometries and how the spatial
configuration of the transmitter-receiver pairs affects the network performance.

§1.1.2 Networks as interacting particle systems
Random-access networks with CSMA protocols can be modeled as interacting particle
systems on graphs with hard-core interaction (see [104]). The undirected graph, which
we refer to as the interference graph, describes the conflicting transmissions of the
devices due to interference. Each transmitter-receiver pair is represented by a particle,
which is active when data packets are being transmitted and inactive otherwise. The
interference graph encodes the spatial characteristics and the structure of the network,
since neighboring particles are not allowed to be active simultaneously. Each particle
is equipped with a random clock and the clocks are all independent of each other.
When one of these random clocks ticks, the corresponding particle changes its state.
If the particle is active, then it deactivates, while if the particle is inactive, then it
activates only if all its neighboring particles are inactive. Data packets arrive to each
particle independently and form a queue in the buffer while waiting to be transmitted.

Figure 1.1: The interference graph of a random-access network. Each node represents a
communication link between a transmitter and a receiver (active nodes are in black, while
inactive nodes are in white). Packets arrive to the transmitter and form a queue. The
wireless signals interfere with each other when within a certain interference radius.

Consider the interference graph G = (N,E), where the set of nodes N labels the
transmitter-receiver pairs and the set of edges E indicates which nodes interfere. We
denote by X(t) = (X1(t), . . . , XN (t)) ∈ X the joint activity state at time t, with state
space

X =
{
x ∈ {0, 1}N : xixj = 0 ∀ (i, j) ∈ E

}
, (1.1)

where xi = 0 means that node i is inactive and xi = 1 that it is active.
We assume that nodes activate and deactivate according to i.i.d. Poisson clocks.

Hence (X(t))t≥0 evolves as a Markov process with state space X . We consider scen-
arios in which nodes deactivate at unit rate and become more aggressive over time

14
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when trying to activate, with higher clock rates for activation compared to deactiv-
ation. This is relevant for networks in high-load regimes, where the system tends to
stabilize in configurations with a maximum number of active nodes, to which we refer
as dominant states. In a high-load regime those states become extremely rigid, in the
sense that we expect extremely slow transitions between them, causing starvation for
the currently inactive nodes.

The above-described model has been thoroughly studied in the case where the
activation rate at each node i is fixed at some value ri, i = 1, . . . , N . In that case
the joint activity process (X(t))t≥0 behaves as a reversible time-homogeneous Markov
process for any interference graph G, and has a product-form stationary distribution

lim
t→∞

P{X(t) = x} = Z−1
X (r1, . . . , rN )

N∏
i=1

rxii , x ∈ X , (1.2)

with ZX (r1, . . . , rN ) denoting the normalization constant. This model was introduced
in the 1980’s to analyze the throughput performance of distributed resource sharing
and random-access schemes in packet radio networks, in particular, the CSMA pro-
tocol (see [9], [10], [68], [69], [87], [103]). The model was rediscovered and further
examined twenty years later in the context of IEEE 802.11 WiFi networks (see [46],
[48], [75], [102]). If we restrict to ri ≡ r for all i = 1, . . . , N , then the product-form
distribution in (1.2) simplifies to

lim
t→∞

P{X(t) = x} = Z−1
X (r) r

∑N
i=1 xi , x ∈ X , (1.3)

with ZX (r) ≡ ZX (r, . . . , r). From an interacting-particle-systems perspective, the
distribution in (1.3) may be recognized as the Gibbs measure of a hard-core interaction
model induced by the graph G.

§1.1.3 Metastability in wireless networks
Metastability is a phenomenon where a physical, chemical or biological system, under
the influence of a noisy dynamics, moves between different regions of its state space
on different time scales (see [22]).

A metastable state is a quasi-equilibrium that persists on a short time scale, but
relaxes to an equilibrium on a long time scale, called a stable state. A metastable
state represents a configuration where the energy of the system has a local minimum.
A stable state represents a configuration where the energy of the system has a global
minimum. When the system is subjected to a small noise, we may ask how the
transition time depends on the depths of the energy valley around the metastable
state and the shape of the bottleneck separating the metastable state from the stable
state.

In the past decades there has been intensive study of metastability for interacting
particle systems on lattices (see [4], [5], [24], [26], [27], [32], [35], [36], [53], [58], [60],
[61], [62], [63], [72], [73], [81], [82], [84]). Different approaches have been proposed,
including the path-wise approach (see [33], [34], [49], [50], [77], [83], [86]) and the

15
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Figure 1.2: The evolution of the system from a metastable state A (local minimum), through
an unstable state, to a stable state B (global minimum).

potential-theoretic approach (see [6], [19], [20], [21], [23], [37]). Various asymptotic
regimes have been investigated, including metastability at infinite volume and very low
temperature (see [25], [30], [31], [38], [39], [70], [78], [79]), and with vanishig magnetic
field (see [52], [91]). Recently, attention has turned to the study of metastability
for interacting particle systems on graphs, where the lack of periodicity makes the
analysis much more difficult (see [43], [44], [57], [66]). The cases where the graph is
random are particularly challenging, since the metastable crossover depends on the
specific realization of the graph.

Hard-core interaction models are known to exhibit metastability effects. For cer-
tain graphs it takes an exceedingly long time for the activity process to reach a stable
state when starting from a metastable state. In particular, in a regime where the
activation rates become large, the stationary distribution of the joint activity process
concentrates on states where the maximum number of nodes is active, with extremely
slow transitions between them.

Slow transitions between activity states are not immediately apparent from the
stationary distribution. In fact, even when in stationarity each node is active during
the same fraction of time, it may well be that over finite time intervals certain nodes
are basically barred from activity, while other nodes are transmitting essentially all
the time. In other words, the stationary distribution is not directly informative of
the transition times between activity states that govern the performance in terms of
equitable transmission opportunities for the various users during finite time windows.
While the aggregate throughput may improve as the activation rates become large,
individual nodes may experience prolonged periods of starvation, possibly interspersed
with long sequences of transmissions in rapid succession, resulting in severe build-up
of queues and long delays. Indeed, the latter issues have been empirically observed
in IEEE 802.11 Wi-Fi networks, and have also been investigated through the lens of
the above-described model (see [18], [45], [47], [51], [97], [104]).

Metastability properties are not only of conceptual interest, they are also of great
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practical significance. They provide a powerful mathematical paradigm to analyze
the likelihood for such unfairness and starvation issues to persist over long time peri-
ods. Gaining a deeper understanding of metastability properties and slow transitions
is thus instrumental in analyzing starvation behavior in wireless networks, and ul-
timately of vital importance for designing mechanisms to counter these effects and
improve the overall performance as experienced by users.

In this thesis, we study the metastable behavior of a stochastic system of particles
with hard-core interactions in a high-density regime. We exploit the particle descrip-
tion of the network to investigate the long transition times between dominant activity
states, as well as the temporal starvation and delay issues that these cause.

We consider extreme network topologies as prototypical scenarios, namely, bi-
partite graphs. This assumption provides mathematical tractability and serves as a
stepping stone towards more general network topologies. Consider a bipartite inter-
ference graph G = (N,E) = (U tV,E), where the node set N can be partitioned into
two nonempty sets U and V , while E represent the edges describing the interference:
two nodes interfere only if one belongs to U and the other belongs to V . In the liter-
ature the interference graph is almost always assumed to be static. Our work in this
thesis is among the first to explore also the extension to dynamic settings, in which
the edges appear and disappear over time.

We denote by u ∈ X and v ∈ X the joint activity states where all the nodes in
either U or V are active, respectively. The activation rates are assumed to be much
larger than the deactivation rates, and we also assume a slight imbalance between the
activation rates in the two parts of the graph. Starting from state u in which the weak
part is all active (metastable state), the system takes a long time before it reaches
state v in which the strong part is all active (stable state). This transition represents
a global switch in the network. We are interested in studying the distribution of the
time until state v is reached when the system starts from state u at time t = 0, i.e.,

TG = inf
{
t ≥ 0: X(t) = v, X(0) = u

}
. (1.4)

We refer to the time it takes to go from u to v as transition time.

§1.1.4 Queue-based activation protocols
In order to avoid slowdown via metastability, which hinders the performance of the
network, protocols are designed for activation and deactivation of the nodes that take
into account the current load of the nodes. For instance, to avoid queue overflow,
an inactive node with a long queue may want to attempt activation more vigorously,
whereas an active node with an empty queue, or with overcrowded neighbors, may
want to deactivate and hand over the transmission medium to its neighbors. We
assume that packets arrive at the nodes as independent Poisson processes and have
independent exponentially distributed sizes. When a packet arrives at a node, it joins
the queue at that node and the queue length undergoes an instantaneous jump equal
to the size of the arriving packet. The queue decreases at a constant rate (as long as it
is positive) when the node is active. Large deviation techniques have been developed
for various models in order to control the queue behavior over time (see [76], [95]).
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In this thesis we focus on queue-based random-access protocols where the activ-
ation rates depend on the current queues at the nodes. Specifically, the activation
rate is an increasing function of the queue length of the node itself, and possibly a
decreasing function of the queue lengths of its neighbors, so as to provide greater
transmission opportunities to nodes with longer queues. As a result, these rates vary
over time as queues build up or drain when packets arrive or are transmitted. We
refer to these models as internal models, in the sense that the activation rates are
functions of the queue lengths at the various nodes. We denote by Qi(t) the queue
length at node i at time t and by Q(t) = (Q1(t), . . . , QN (t)) ∈ RN≥0 the joint queue
length vector at time t. In internal models the activation rates are of the form

ri(t) =

{
gU (Qi(t)), i ∈ U,
gV (Qi(t)), i ∈ V, (1.5)

where the functions q 7→ gU (q) and q 7→ gV (q) are non-decreasing and such that
limq→∞ gU (q) =∞, limq→∞ gV (q) =∞ and gU (q) = gV (q) = 0 when q < 0.

Note that (X(t), Q(t))t≥0 evolves as a time-homogeneous Markov process with
state space X × RN≥0, since the transition rates depend on time only via the current
state of the vector. The queue state not only depends on the history of the packet
arrival process (which causes upward jumps in the queue lengths), but also on the past
evolution of the activity process itself (through the gradual reduction of the queue
lengths during activity periods). The state-dependent nature of the activation rates
raises interesting and challenging problems from a methodological perspective, whose
solution requires novel concepts in order to handle the two-way interaction between
activity states and queue states. The stationary distribution of the Markov process
in general does not admit a closed form expression and even the basic throughput
characteristics and stability conditions are not known. Indeed, it is not simple to
describe explicitly the stability condition for general network topologies (see [100])
and only structural representations or asymptotic results are known (see [29], [74]).
In order to study activation rates based on queue lengths, powerful algorithms have
been proposed and it has been shown that these achieve throughput optimality under
mild assumptions (see [64], [65], [88], [94]).

Most of the literature refers to models where the activation rates are fixed para-
meters and the underlying Markov process is time-homogeneous (see [59], [83], [105],
[106]). In this setting it has been shown that the transition time from the metastable
to the stable state is approximately exponential on the scale of its mean. The main
idea is to consider the return times to the metastable state of the discrete-time em-
bedded Markov chain as regeneration times. At each regeneration time a Bernoulli
trial is conducted. The trial is successful if the stable state is reached before a return
to the metastable state occurs, while it is unsuccessful otherwise. In the asymptotic
regime, the success probability of each trial is small and the expected length of a
single trial is negligible compared to the expected transition time. It is known that
the first success time of a large number of trials, each having a small probability of
success, is approximately exponentially distributed (see [49], [67]).

Attention has also been paid to models where the activation rates change with
time. The underlying Markov process is therefore time-inhomogeneous, and it has
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been shown that, under appropriate conditions, the transition time is approximately
exponential with a non-constant rate (see [14]). The above-described approach is still
fruitful, but the success probability and the length of each trial now depend on its
starting time. We call these models external models, in the sense that the activation
rates are deterministic functions of time. In external models, the activation rates are
of the form

ri(t) =

{
hU (t), i ∈ U,
hV (t), i ∈ V, (1.6)

for suitable functions t 7→ hU (t) and t 7→ hV (t). It is interesting to note that the meta-
stable behavior of exit times of simulated annealing in a time-inhomogeneous setting
has some similarities with the one of external models: a trichotomy was observed,
similar to the one we will discuss in this thesis (see [80]).

Recently, various models for random-access networks with queue-based protocols
have been investigated (see [17], [28], [41], [42], [85], [93]). Breakthrough work has
shown that, for suitable activation rate functions, these protocols achieve maximum
stability, i.e., provide stable queues whenever feasible at all (see [55], [64], [88], [94]).
Thus, these policies are capable of matching the optimal throughput performance of
centralized scheduling strategies, while requiring less computation and operating in
a distributed fashion. On the downside, the very activation rate functions required
for ensuring maximum stability tend to result in long queues and poor delay per-
formance (see [18], [54]). This has sparked an interest in understanding, and possibly
improving, the delay performance of queue-based random-access schemes. Analyzing
metastability properties for the joint activity process is a crucial endeavor in this
regard.

In this thesis we specifically examine the transition time of the joint activity
process in an asymptotic regime where the initial queue lengths Qi(0), and hence the
activation rates ri(Q(t)), i = 1, . . . , N , become large in a suitable sense.

§1.1.5 Mathematical model
Consider the bipartite graph G = (U t V,E) and recall that a node in the network
can be either active or inactive.

Definition 1.1.1 (State of a node).
The state of node i at time t is described by a Bernoulli random variableXi(t) ∈ {0, 1},
defined as

Xi(t) =

{
0, if i is inactive at time t,
1, if i is active at time t.

(1.7)

The joint activity state X(t) at time t is an element of the set X : the feasible config-
urations of the network correspond to the collection of independent sets of G. Recall
that u ∈ X (v ∈ X ) represents the joint activity state where all the nodes in U are
active (inactive) and all the nodes in V are inactive (active). The main object of
interest in this thesis is the transition time between u and v. We write Pu and Eu to
denote probability and expectation on path space given that the initial joint activity
state is u.
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Definition 1.1.2 (Transition time).
The transition time T QG of the graph G given initial queue lengths Q is defined as

T QG = inf
{
t ≥ 0: X(t) = v, X(0) = u

}
. (1.8)

In other words, T QG is the time it takes to reach v starting from u. We sometimes write
TG and omit the dependence on Q when this dependence is clear from the context.

An active node i deactivates according to a deactivation Poisson clock with rate 1:
when the clock ticks the node deactivates. Vice versa, an inactive node i attempts
to activate at the ticks of an activation Poisson clock with rate ri(t): an attempt at
time t is successful when no neighbors of i are active at time t−. The activation rate
of i depends on its current queue length Qi(t) and satisfies (1.5).

Definition 1.1.3 (Queue length at a node).
Let t 7→ Q+

i (t) be the input process describing packets arriving according to a Poisson
process t 7→ N(t) with rate λt and having i.i.d. exponential service times of parameter
µ, Yj ' Exp(µ), j ∈ N. Let t 7→ Q−i (t) be the output process representing the
cumulative amount of work that is processed in the time interval [0, t] at rate c, i.e.,
cTi(t) = c

∫ t
0
Xi(s)ds. Define

∆i(t) = Q+
i (t)−Q−i (t) =

Ni(t)∑
j=0

Yij − cTi(t), (1.9)

and let s∗ = s∗(t) be the value where sups∈[0,t][∆i(t) − ∆i(s)] is reached, namely,
[∆i(t)−∆i(s

∗−)]. Let Qi(t) ∈ R≥0 denote the queue length at node i at time t. Then

Qi(t) = max
{
Qi(0) + ∆i(t), ∆i(t)−∆i(s

∗−)
}
, (1.10)

where Qi(0) is the initial queue length. The maximum is achieved by the first term
when Qi(0) ≥ −∆i(s

∗−) (the queue length never sojourns at 0), and by the second
term when Qi(0) < −∆i(s

∗−) (the queue length sojourns at 0 at time s∗−). In order
to ensure that the queue length remains non-negative, a node deactivates when its
queue length hits zero.

The initial queue lengths are assumed to be

Qi(0) =

{
γUr, i ∈ U,
γV r, i ∈ V, (1.11)

where γU ≥ γV > 0, and r is a parameter that tends to infinity. Thus, the initial
queue lengths are of order r, i.e., Qi(0) � r, and the ones at the nodes in U are larger
than the ones at the nodes in V . Note that the transition time tends to infinity with
r, since the larger the initial queue lengths are, the longer it takes for the transition
to occur. We study different models in the limit as the queue lengths become large,
and so we are interested in asymptotic results for the transition time as r →∞.

For each node i, the input process t 7→ Q+
i (t) =

∑Ni(t)
j=0 Yij is a compound Poisson

process. In the time interval [0, t] packets arrive at node i according to a Poisson
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process t 7→ Ni(t) with rate λU or λV , depending on whether the node is in U or V .
Moreover, each packet j brings the information of its service time: the service time
Yij of the j-th packet at node i is exponentially distributed with parameter µ. Hence
the expected value of Q+

i (t) for a node in U is the product of the expected value
E[Ni(t)] = λU t and the expected value E[Yj ] = 1/µ, i.e., E[Q+

i (t)] = (λU/µ)t = ρU t.
Analogously, for a node in V we have E[Q+

i (t)] = ρV t. The quantities ρU and ρV
denote the common traffic intensity of the nodes in U and V , respectively. We assume
that all the service times are i.i.d. random variables, and are independent of the
Poisson process t 7→ Ni(t).

For each node i, the output process is t 7→ Q−i (t) = cTi(t) = c
∫ t

0
Xi(u) du, where

the activity process t 7→ Ti(t) represents the cumulative amount of active time of node
i in the time interval [0, t]. This is not independent of the input process. Intuitively,
the average queue length increases when the node is inactive and decreases when the
node is active, which means that packets are being served at a rate c larger than their
arrival rate, i.e., c > ρU , ρV > 0. Since all nodes in V are initially inactive, for some
time the queue length of these nodes in V is not affected by their output process.
However, as soon as a node in V activates, we have to consider its output process as
well.

The choice of functions gU , gV in (1.5) determines the transition time of the net-
work, since the activation rates of the nodes depend on them.

Definition 1.1.4 (Assumptions on the activation rates).
We assume that the activation functions gU , gV fall in the class

G =
{
g : R→ R≥0 : g non-decreasing and continuous,

g(x) = 0 for x ∈ R≤0, lim
x→∞

g(x) =∞
}
.

(1.12)

Moreover, we assume nodes in V to be more aggressive than nodes in U , i.e.,

lim
x→∞

gV (x)

gU (x)
=∞, (1.13)

so that the transition from u to v can be viewed as the crossover from a metastable
state to a stable state.

§1.1.6 Outline of Part I: Chapters 2–4
The three chapters of Part I of this thesis are based on three papers on queue-based
random-access protocols for wireless networks.

In Chapter 2 we focus on complete bipartite interference graphs, which are useful
for modeling dense networks and which provide a worst-case perspective. While there
is admittedly no specific physical reason for focusing on complete bipartite graphs, this
assumption provides mathematical tractability and serves as a stepping stone towards
more general network topologies. The main goal is to compare the transition time
of the internal model with that of the external model in which the activation rates
depend on the current mean queue length. We define two perturbed models with
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externally driven activation rates that sandwich the queue lengths of the internal
model and its transition time. We show with the help of coupling that with high
probability the mean transition time and its distribution for the internal model are
asymptotically the same as for the external model. The chapter is based on [12].

In Chapter 3 we turn our attention to arbitrary bipartite interference graphs, for
which not necessarily all nodes in U interfere with all nodes in V . In this setting
the problem turns out to be considerably more challenging. In order to achieve the
full transition, the network goes through a succession of subtransitions, in which a
certain succession of complete bipartite subgraphs achieve a metastable crossover and,
in doing so, effectively remove themselves from the network. This succession depends
in a delicate manner on the full structure of the graph. We formulate a greedy
algorithm to analyze the most likely transition paths between dominant states. By
combining the results for complete bipartite graphs with a detailed analysis of the
algorithm, we are able to determine the mean transition time and its distribution
along each transition path. The chapter is based on [13].

In Chapter 4 we study a dynamic version of the random-access protocols to model
wireless networks with user mobility. With an explorative intention, we analyze dy-
namic bipartite interference graphs where the interference between nodes changes over
time: Poisson i.i.d. clocks are attached to the edges, which can appear and disappear
from the graph when their clock ticks. Our approach is based on the intuition that a
node in V can activate either when its neighbors are simultaneously inactive or when
the edges connecting it with its neighbors disappear. Interpolation between these two
situations gives rise to different scenarios and interesting behavior. We identify how
the mean transition time depends on the speed of the dynamics. The chapter is based
on [92].
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§1.2 Introduction to Part II

In the second part of this thesis we study spectral properties of random graphs,
in particular, of inhomogeneous Erdős-Rényi random graphs. Random graphs have
many applications in the modeling of complex physical, biological and social networks.
In order to understand the structure of these networks, we consider the adjacency and
Laplacian matrices associated to the underlying graphs and study their eigenvalues.

In Section 1.2.1 we give a brief overview of random matrices and motivate our
interest in analyzing their spectra. We introduce Wigner matrices, the Wigner semi-
circle law and the universality principle. In Section 1.2.2 we define the adjacency
and Laplacian matrices of a graph together with their empirical spectral distribution.
For random matrices, the eigenvalues are random variables and the empirical spectral
distribution is a random probability measure. In Section 1.2.3 we consider the stand-
ard Erdős-Rényi random graph and discuss the main regimes of behavior depending
on the connection probabilities. We next consider the inhomogeneous Erdős-Rényi
random graph, for which we investigate both the limiting spectral distribution and
the large-deviation behavior of the largest eigenvalue. In order to introduce these two
problems, we discuss known results for standard and inhomogeneous Erdős-Rényi
random graphs. In Section 1.2.4 we give a brief introduction to free probability the-
ory, which can be seen as the analogue of classical probablility for non-commutative
random variables. Its connection to random matrix theory allows us to indentify the
limiting spectral distribution for certain classes of random matrices. In Section 1.2.5
we give a brief intoduction to graphon theory, used to study limits of dense graph
sequences. Graphons also provide crucial tools to study large deviations for dense
random graphs. In Section 1.2.6 we give an outline of Chapters 5–6: in Chapter 5 we
study the empirical spectral distribution and its limiting behavior for the adjacency
and Laplacian matrices in the non-dense non-sparse regime; in Chapter 6 we study
large deviations for the largest eigenvalue of the adjacency matrix in the dense regime
and analyze its rate function in detail.

§1.2.1 Random matrices
The study of random matrices, in particular, the properties of their eigenvalues,
emerged from applications. Random matrices appeared for the first time in 1928,
when Wishart (see [195]) used them in statistics and data analysis. Later, in the
1950s, the natural question regarding their eigenvalue statistics was raised in the pi-
oneering work of Wigner (see [194]). While studying statistical models for nuclear
physics, he noticed from experimental data that gaps in energy levels of large nuclei
tend to follow the same statistics independently the material. We now know from
quantum mechanics that these energy levels correspond to the eigenvalues of a self-
adjoint Hamiltonian operator, but the correct form of this operator was not known
at the time. Wigner’s idea was to model the complex Hamiltonian by a random
matrix with independent entries. He ignored all the physical details of the system
except the symmetry: he modeled systems with time reversal symmetry by real sym-
metric random matrices, and systems without time reversal symmetry by complex
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Hermitian random matrices. Surprisingly, this simplification reproduced the correct
gap statistics, suggesting the existence of a profound universality principle.

Wigner matrices are symmetric Hermitian random matrices whose elements are
i.i.d. random variables with mean 0 and variance 1. Wigner showed that the empirical
spectral distribution converges almost surely to the semicircle law he had initially
discovered for random matrices with Gaussian elements (see [194]). The semicirle
law, now called Wigner semicircle law, has density

ρsc(x) =
1

2π

√
4− x2, x ∈ [−2, 2]. (1.14)

The i.i.d. requirement and the constant variance condition are not essential for proving
the semicircle law. Indeed, also generalized Wigner matrices, where the variances of
the elements can be different and each column of the variance profile is stochastic,
obey the semicircle law under various conditions (see [109], [157], [163]).

Figure 1.3: Wigner semicircle law.

The Wigner-Dyson-Gaudin-Mehta conjecture states that the local spectral statist-
ics of Wigner matrices exhibit universality: they only depend on the symmetry class
of the ensemble and not on the distribution of the matrix elements. In particular,
the local spectral statistics are the same as the ones of matrices with Gaussians ele-
ments, for which there are explicit formulas. In the meantime this conjecture has been
solved for all symmetry classes (see [127], [153], [154], [155], [156], [157], [190]). The
universality phenomenon has been recently established also for other models, such as
generalized Wigner matrices (see [157]), Wigner-type matrices ([107]), and adjacency
matrices of Erdős-Rényi random graphs (see [151], [152], [168], [191]).

Motivated by physical applications, in the 1960s a mathematical theory of the
spectrum of random matrices was developed and links with various branches of math-
ematics, including classical analysis and number theory, were established (see [148],
[149], [162], [181]). Over the years, it has become clear that models related to random
matrices play an important role in several areas of mathematics. Nowadays, ran-
dom matrix theory is a central topic in probability and statistical physics, with many
connections to combinatorics, numerical analysis, statistics and computer science.

In this thesis we study properties of the eigenvalues of random matrices arising
from random graphs. Since a random matrix has random entries, its eigenvalues are
random variables. We aim at understanding of the distribution of the eigenvalues
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from knowledge of the distribution of the entries. Random numbers and random
vectors are known to exhibit universal patterns, such as the law of large numbers and
the central limit theorem. It is of great interest to understand their analogues in the
non-commutative setting and to identify the behavior of eigenvalues of large random
matrices.

§1.2.2 The adjacency and Laplacian matrices
We begin with some basic definitions. Consider a finite simple graph G = (V,E)

on N vertices. The adjacency matrix AN = A(G) associated to G is defined as the
{0, 1}-valued N ×N matrix whose elements indicate whether a given pair of vertices
is adjacent or not in the graph, i.e., is connected by an edge:

AN (i, j) =

{
1, i ∼ j ,
0, else.

(1.15)

The diagonal elements of the matrix are all zero, since edges from a vertex to itself
(loops) are not allowed in simple graphs. Note that AN is symmetric. Hence it has
N real eigenvalues, which can be ordered as

λ1(AN ) ≥ . . . ≥ λN (AN ). (1.16)

The eigenvalues of the adjacency matrix have various applications in graph theory:
they carry information about topological features of the graph, such as connectivity
and subgraph counts (see [139], [142]).

The Laplacian matrix ∆N = ∆N (G) associated to G is the N ×N matrix defined
as

∆N (i, j) =

{
−
∑N
k=1AN (i, k), i = j ,

AN (i, j), i 6= j .
(1.17)

Note that also ∆N is symmetric. Hence it also has N real eigenvalues, which can be
ordered as

λ1(∆N ) ≥ . . . ≥ λN (∆N ). (1.18)

The eigenvalues of the Laplacian matrix carry information about random walks on
the graph and allow us to analyze approximation algorithms (see [139]).

For x ∈ R, let δx denote the Dirac measure at x. The empirical spectral distribution
(ESD) of an N × N symmetric matrix M is the probability distribution that puts
mass 1/N at each of the N eigenvalues of M , i.e.,

ESD(M) =
1

N

N∑
i=1

δλi(M). (1.19)

Hence, the empirical spectral distributions of the adjacency matrix AN and the Lapla-
cian matrix ∆N associated to the graph G are defined as

ESD(AN ) =
1

N

N∑
i=1

δλi(AN ) ESD(∆N ) =
1

N

N∑
i=1

δλi(∆N ). (1.20)
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The empirical spectral distribution is a graph invariant and encodes important in-
formation about G. It is therefore one of the main objects of interest in spectral
graph theory (see [139]). From perturbation theory for matrices, it is known that
the eigenvalues are continuous functions of the elements of the matrix. The empir-
ical spectral distributions of the adjacency and Laplacian matrices are both random
probability distributions on R.

§1.2.3 Spectra of Erdős-Rényi random graphs
Spectral graph theory studies the properties of eigenvalues and eigenvectors of the
associated adjacency and Laplacian matrices. In the past 20 years many results have
been derived about spectra of random matrices associated with random graphs (see
[115], [119], [122], [144], [146], [150], [159], [170], [171], [172], [175], [191], [196]).

The standard Erdős-Rényi random graph model G(N, p), first introduced by Erdős
and Rényi (see [158]), is the most basic random graph model. It consists in a graph
on N vertices formed by connecting each pair of vertices i and j with probability
p = p(N), independently of each other. Note that, up to symmetry, the adjacency
matrix of G(N, p) consists of i.i.d. Bernoulli random variables. Each element of the
matrix is 1 with probability p and 0 with probability 1−p, independently of the other
elements.

Depending on the asymptotic behavior of the connection probability p(N) as N →
∞, we distinguish between the following regimes.

(I) Dense regime, p(N) ≡ p ∈ (0, 1). The average degree diverges linearly.

(II) Non-dense non-sparse regime, p(N) → 0 and Np(N) → ∞. The average
degree diverges slower than linearly.

(III) Sparse regime, p(N) → 0 and Np(N) → a ∈ (0, 1). The degree distribution
is asymptotically Poisson with parameter a.

(IV) Sub-sparse regime, p(N)→ 0, Np(N)→ 0 and N2p(N)→∞. Most vertices
have degree 0, but the total number of edges diverges.

(V) Ultra-sparse regime, p(N)→ 0 and N2p(N)→ b ∈ (0, 1). The total number
of edges is asymptotically Poisson with parameter 1

2b.

The regimes (I) and (II) are often denoted in the literature as dilute regime or non-
sparse regime. Note that the regime where N2p(N) → 0 is not interesting because
all the edges will be missing with high probability.

In this thesis we focus on a generalization of standard Erdős-Rényi random graphs.
Namely, we consider inhomogeneous Erdős-Rényi random graphs, where each pair of
vertices i and j is connected with probability pij = pij(N), independently of each
other. Many popular graph models arise as special cases of inhomogeneous Erdős-
Rényi random graphs, such as random graphs with given expected degrees (see [141]),
stochastic block models (see [166]) and W -random graphs (see [123], [177]).
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We address two different problems. We first study the limiting spectral distribu-
tions of the adjacency and Laplacian matrices in the non-dense non-sparse regime (II).
We next study the large deviation principle for the largest eigenvalue of the adjacency
matrix in the dense regime (I).

Limiting spectral distribution

One of the challenges in the study of spectra of random graphs is to investigate the
convergence of the empirical spectral distributions to a limiting spectral distribution
for the adjacency and Laplacian matrices as the size of the graph becomes large.

Various results have been proved for standard Erdős-Rényi random graphs. In
the non-sparse regime, the adjacency matrix falls into the Wigner class and its em-
pirical spectral distribution converges (after appropriate scaling and centering) to a
semicircle law (see [128], [146], [191]). In the sparse regime, the adjacency matrix
can be viewed as a singular Wigner ensemble, since the distribution of its elements is
highly concentrated around 0. Its analysis is more challenging than in the non-sparse
regime. The empirical spectral distribution of the Laplacian matrix converges (again
after appropriate scaling) to a free additive convolution of a Gaussian and a semicircle
law (see [128], [146], [170]). Both spectra are well understood.

Our goal is to extend these results to inhomogeneous Erdős-Rényi random graphs.
Recently, some properties of the empirical spectral distribution of adjacency matrices
have been derived via the theory of graphons (see [196]).

Largest eigenvalue

Another interesting challenge in the study of spectra of random graphs is to analyze
the behavior of the largest eigenvalue of the adjacency matrix.

For standard Erdős-Rényi random graphs it has been shown that, in the dense
regime, the largest eigenvalue asymptotically has a normal distribution (see [160])
and satisfies a weak law of large numbers (see [173]). Moreover, it is asymptotically
equivalent to the maximum of the maximal mean degree d and the square root of the
largest degree (see [173]). In the sparse regime, the behavior of the largest eigenvalue
of inhomogeneous Erdős-Rényi random graphs exhibits a crossover at d � logN

(which corresponds to the crossover from disconnected to connected graphs). When
d � logN there is a sharp increase in the density of eigenvalues towards the centre
of the spectrum, while when d� logN the extreme eigenvalues converge to the edge
of the support of the asymptotic eigenvalue distribution (see [116], [117]).

Large deviations for the largest eigenvalue have also been intensely studied. Large
deviation theory for random matrices started with the study of large deviations for the
empirical spectral distribution of β-ensembles with a quadratic potential (see [111]).
The rate was shown to be the square of the number of vertices, and the rate function
was shown to be given by a non-commutative notion of entropy. The largest eigenvalue
for such ensembles was also studied (see [110]). More recently, large deviations for
the empirical spectral distribution of random matrices with non-Gaussian tails were
derived (see [121]), and the largest eigenvalue was studied (see [112], [113]). The
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adjacency matrix of an Erdős-Rényi random graph does not fall in this regime, and
hence different techniques are needed.

For dense Erdős-Rényi random graphs, the breakthrough work of Chatterjee and
Varadan (see [138]) introduced a general framework for large deviation principles via
Szemerédi’s regularity lemma (see [188]) and the theory of graphons (see [125], [177],
[178]). It expresses the structure of the random graph conditional on a large deviation
in terms of a variational problem involving graphons. The framework was initially
set up for subgraph densities, but the results extend to so-called graph parameters,
including the operator norm of graphons, which is the extension of the spectral norm
(largest eigenvalue) to the space of graphons. Consequently, the large deviation rate
function for the upper and lower tails of the largest eigenvalue, and the behavior of
the graph conditional on large deviations, can be described in detail (see [137]). The
original question from Chatterjee and Varadan was the following. “Fix 0 < p < r < 1

and take G ∼ G(N, p) conditioned to have at least as many triangles as is typical
for G(N, r). Is G close in cut-distance to a typical G(N, r)?". The region of (p, r)

where the answer is positive is called replica symmetric phase and has recently been
identified. Analagous results have been derived also in the setting where the largest
eigenvalue of G ∼ G(N, p) is conditioned to exceed the typical value of the largest
eigenvalue of G(N, r) (see [179]).

Recently, a large deviation principle for uniform dense random graphs with a
given degree sequence has been established via the above-described framework (see
[145]). Dense inhomogeneous Erdős-Rényi random graphs fall in this class. Hence, a
large deviation principle holds and general results on large deviations for the largest
eigenvalue follow. Our goal is to study the large deviation principle for the largest
eigenvalue and to analyze the associated rate function in detail.

§1.2.4 Free probability
In 1983 Voiculescu introduced free probability theory in the context of operator algeb-
ras in order to address the isomorphism problem of free group factors (see [192]). The
theory reached a new level when he discovered connections to random matrix theory
(see [193]). The tools developed in operator algebras and free probability theory can
now be applied to many classes of random matrices, in particular, to indentify the
limiting spectral distribution (see [182]). Since random matrices are also widely used
in applied fields, such as wireless communications or statistics, free probability has
become quite common. Moreover, it has close connections to combinatorics, repres-
entations of symmetric groups, large deviations and quantum information theory.

Definition 1.2.1 (Non-commutative probability space).
We say that the pair (A, φ) is a non-commutative probability space if A is a unital
algebra and φ is a linear functional φ : A → C with φ(1) = 1.

Let I be an index set. We call (non-commutative) random variables the elements
of A, we call moments of a random variable a ∈ A the numbers φ(an), n ∈ N, and
we call joint distribution of the random variables a1, . . . , ak ∈ A the collection of all
mixed moments φ(ai(1) · · · ai(l)), where l ∈ N, i(1), . . . , i(l) ∈ {1, . . . , k}.
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Definition 1.2.2 (Free independence).
For each i ∈ I, let Ai ⊂ A be unital subalgebras of A. The subalgebras (Ai)i∈I are
said to be free or freely independent if φ(a1 · · · ak) = 0 whenever:

(i) aj ∈ Ai(j), i(j) ∈ I and φ(aj) = 0, for all j = 1, . . . , k, with k ∈ N;

(ii) i(1) 6= i(2), i(2) 6= i(3), . . . , i(k − 1) 6= i(k), i.e., neighboring elements belong to
different subalgebras.

For i ∈ I, let xi ∈ A. The random variables (xi)i∈I are said to be free or freely
independent if their generated unital subalgebras (Ai)i∈I are free, where Ai is the
unital subalgebra of A generated by xi.

Note that freeness between two random variables x and y is a rule for calculating the
mixed moments in x and y from the moments of x and the moments of y. Freeness
can be seen as a non-commutative analogue of the classical probabilistic concept of
independence for random variables, which is why it is called free independence.

§1.2.5 Graphons
The analysis of large networks is one of the main challenges in modern graph theory.
It is important to have proper definitions of convergence for graph sequences in order
to identify limiting objects. A solution to this problem is provided by graphon the-
ory, introduced in 2006 by Lovász and Szegedy, which defines graphons as limits of
dense graph sequences (see [177]). Graphons characterize the convergence of graph
sequences with the help of graph homomorphism densities (see [125], [126]).

Definition 1.2.3 (Graphon).
A graphon is a symmetric Lebesgue-measurable function from the unit square to the
unit interval. More precisely, the set of graphons W is defined as

W =
{
h : [0, 1]2 → [0, 1] : h(x, y) = h(y, x) ∀ (x, y) ∈ [0, 1]2

}
. (1.21)

On the set of graphons it is possible to define a metric in the following way.

Definition 1.2.4 (Cut-metric).
Let M be the set of Lebesgue measure-preserving bijective maps φ : [0, 1] 7→ [0, 1].
The cut-distance between two graphons h1, h2 ∈ W is defined by

d�(h1, h2) = sup
S,T⊆[0,1]

∣∣∣∣ ∫
S×T

(h1(x, y)− h2(x, y)) dx dy

∣∣∣∣, (1.22)

where S, T run over all measurable subsets of [0, 1]. The cut-metric δ� is defined by

δ�(h1, h2) = inf
φ∈M

d�(h1, h
φ
2 ), (1.23)

where hφ2 (x, y) = h2(φ(x), φ(y)).
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The cut-metric defines an equivalence relation ∼ on the space of graphons W by
declaring h1 ∼ h2 if and only if δ�(h1, h2) = 0, and leads to the quotient space
W̃ = W/∼. For h ∈ W we write h̃ to denote the equivalence class of h in W̃. The
pair (W̃, δ�) is a compact metric space (see [176]).

There is a natural way to embed a simple graph in the space of graphons. Consider
a graph G on N vertices and contruct the associated graphon hG in the following way.
Divide the unit square [0, 1]2 into N2 equal boxes of equal size and assign to each box
the value of the corresponding element of the adjacency matrix. More precisely,

hG(x, y) =

{
1, if there is an edge between vertex dNxe and vertex dNye,
0, else,

(1.24)

where dxe denotes the smallest integer larger than or equal to x.

Figure 1.4: Graphon representation of a graph.

Graphon theory is not only connected to graph theory, but also to measure the-
ory, probability theory and functional analysis. Recently, graphon theory has been
generalized to include sparse graph sequences (see [123], [124], [161], [174]).

§1.2.6 Outline of Part II: Chapters 5–6
The two chapters of Part II of this thesis are based on two papers on spectral properties
of inhomogeneous Erdős-Rényi random graphs.

In Chapter 5 we consider inhomogeneous Erdős-Rényi random graphs in the non-
dense non-sparse regime, where the degrees of the vertices diverge sublinearly with
the size of the graph. We are interested in the limiting behavior of the empirical
spectral distributions of the adjacency and Laplacian matrices. We identify their
scaling limit. When the connection probabilities have a multiplicative structure, we
are able to give an explicit description of the scaling limits using tools from free
probability theory. Inhomogeneous Erdős-Rényi random graphs with a multiplicative
structure for the connection probabilities arise naturally in different contexts. For
instance, they have been shown to play a crucial role in the identification of the
limiting spectral distribution of the adjacency matrix of the configuration model (see
[144]). The chapter is based on [132].

In Chapter 6 we focus on the behavior of the largest eigenvalue of the adjacency
matrix in the dense regime, where the degrees of the vertices are proportional to the
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size of the graph. Using the framework of Chatterjee and Varadan and the theory of
graphons, we prove a large deviation principle for dense inhomogeneous Erdős-Rényi
random graphs. We derive a large deviation principle for the largest eigenvalue and
analyze the associated rate function in detail. When the connection probabilities have
a multiplicative structure, we are able to identify its scaling properties. The chapter
is based on [133].
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CHAPTER 2
Complete bipartite interference

graphs

This chapter is based on:
S.C. Borst, F. den Hollander, F.R. Nardi, M. Sfragara. Transition time asymptotics
of queue-based activation protocols for random-access neworks. Stochastic Processes
and Their Applications, 2020.

Abstract

We consider networks where each node represents a server with a queue. An active
node deactivates at unit rate. An inactive node activates at a rate that depends on
its queue length, provided none of its neighbors is active. For complete bipartite
networks, in the limit as the queues become large, we compute the mean transition
time between the two states where one half of the network is active and the other half
is inactive. We show that the law of the transition time divided by its mean exhibits
a trichotomy, depending on the activation rate functions.
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§2.1 Introduction and main results

In Section 2.1.1 we describe the setting and the mathematical model of interest in
this chapter. In Section 2.1.2 we state our main results. In Section 2.1.3 we offer a
brief discussion of these results and give an outline of the remainder of the chapter.

§2.1.1 Setting
We refer to Section 1.1.5 for a general introduction to the mathematical model. In
this section we refine it with some extra notions we will need in the chapter.

Consider a complete bipartite graph G: the node set can be partitioned into two
nonempty sets U and V such that the bond set is the product of U and V , i.e.,
two nodes interfere if and only if one belongs to U and the other belongs to V (see
Figure 2.1 for an example). Thus, the collection of all independent sets of G consists
of all the subsets of U and all the subsets of V .

Figure 2.1: A complete bipartite graph with |U | = 3 and |V | = 4. At time t = 0, square-
shaped nodes are active and circle-shaped nodes are inactive.

We assume the activation rates to satisfy Definition 1.1.4. Moreover, we focus on
the following.

Definition 2.1.1 (Assumption on the activation rates).
We assume polynomial activation functions for nodes in U of the form

gU (x) ∼ Bxβ , x→∞, (2.1)

with B, β ∈ (0,∞). We will discuss more general functions gU in Remark 2.4.1. We
do not require any further assumption on the functions gV : it turns out that the
asymptotic distribution of the transition time is independent of gV .

Next, we define our two main objects of interest.

Definition 2.1.2 (Pre-transition and transition time).
The pre-transition time τG is defined as the first time a node in V activates starting
from u, i.e.,

τG = inf{t > 0: Xi(t) = 1 ∃ i ∈ V, X(0) = u}. (2.2)
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The transition time TG is defined as the first time v is reached starting from u, i.e.,

TG = inf
{
t ≥ 0: Xi(t) = 0 ∀ i ∈ U, Xi(t) = 1 ∀ i ∈ V,X(0) = u

}
. (2.3)

The pre-transition time plays an important role in our analysis of the transition time,
because the evolution of the network is simpler on the interval [0, τG] than on the
interval [τG, TG]. However, we will see that TG − τG � τG when the initial queue
lengths are large, so that both times have the same asymptotic scaling behavior. See
Figure 2.2 for a representation of the pre-transition state.

Figure 2.2: Left: initial state u. Center: pre-transition state. Right: final state v.

We study the transition starting from u and we set the initial queue sizes Qi(0)

to be large for all i ∈ U t V . Hence, initially all the nodes in U are active virtually
all the time, preventing any of the nodes in V to activate. Consequently, the queue
sizes of the nodes in U will tend to decrease at rate c− ρU > 0, while the queue sizes
of the nodes in V will tend to increase at rate ρV > 0. While the packet arrivals and
activity periods are governed by random processes, the trajectories of the queue sizes
will be roughly linear when viewed on the long time scales of interest.

As mentioned in Section 1.1.4, we focus on queue-based random-access protocols
where the activation rates are functions of the queue lengths at the various nodes.
We call these protocols internal models and in particular we study the internal model
with activation rates as described in (1.5). Since we assume identical initial queue
sizes within the sets U and V , the asymptotic distribution of the transition time in
the internal model should be close to that in the external model described in (1.6)
when we choose

hU (t) = gU
(
QU (0)− (c− ρU )t

)
, hV (t) = gV

(
QV (0) + ρV t

)
, (2.4)

with QU (0) = γUr and QV (0) = γV r. Next, we formalize our four main models of
interest.
Definition 2.1.3 (Models).
Let δ > 0.

• In the internal model the deactivation Poisson clocks tick at rate 1, while the
activation Poisson clocks tick at rate

rint
i (t) =

{
gU (Qi(t)), i ∈ U,
gV (Qi(t)), i ∈ V, t ≥ 0. (2.5)
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• In the external model the deactivation Poisson clocks tick at rate 1, while the
activation Poisson clocks tick at rate

rext
i (t) =

{
gU (γUr − (c− ρU )t), i ∈ U,
gV (γV r + ρV t), i ∈ V, t ≥ 0. (2.6)

• In the lower external model the deactivation Poisson clocks tick at rate 1, while
the activation Poisson clocks tick at rate

rlowi (t) =

{
gU (γUr − (c− ρU )t− δr), i ∈ U,
gV (γV r + ρV t+ δr), i ∈ V, t ≥ 0. (2.7)

• In the upper external model the deactivation Poisson clocks tick at rate 1, while
the activation Poisson clocks tick at rate

rupp
i (t) =

{
gU (γUr − (c− ρU )t+ 2δr), i ∈ U,
gV (γV r + ρV t− δr), i ∈ V, t ≥ 0. (2.8)

Note that in the three external models the activation rates depend on time via certain
fixed parameters, while in the internal model they depend on time via the actual
queue lengths at the nodes. In the lower external model the activation rates in U

tend to be less aggressive than in the internal model (i.e., the activation clocks tick
less frequently), while the activation rates in V tend to be more aggressive. In the
upper external model the reverse is true: the activation rates in U are more aggressive
and the activation rates in V are less aggressive. For simplicity, when considering the
external model we sometimes write rU (t) and rV (t) for the activation rates at time t
of nodes in U and nodes in V , respectively. We will see that the upper external model
is actually defined only for t ∈ [0, TU ] with TU = γU

c−ρU r (see Section 2.2 for details).
However, with high probability as r →∞, the transition occurs before time TU .

§2.1.2 Main theorems
The main goal of the chapter is to compare the transition time of the internal model
with that of the external model. Through a large deviation analysis of the queue
length process at each of the nodes, we define a notion of good behavior that allows us
to define perturbed models with externally driven activation rates that sandwich the
queue lengths of the internal model and its transition time. We show with the help of
coupling that, with high probability as r →∞, the asymptotic behavior of the mean
transition time for the internal model is the same as for the external model.

The metastable behavior and the transition time TG of a network in which the
activation rates are time-dependent in a deterministic way was characterized in [14],
with the help of the metastability analysis for hard-core interaction models developed
in [59]. For s ≥ 0, let

ν(s) =
1

Eu[TG](s)
(2.9)

be the inverse mean transition time of the time-homogeneous model where we freeze
the the activation rates rU and rV at time s, i.e., we consider the model with constant
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activation rates
rext
i (t) =

{
rU (s), i ∈ U,
rV (s), i ∈ V, t ≥ 0. (2.10)

Then, for any time scale M = M(r) and any threshold x ∈ [0,∞),

lim
r→∞

Pu
(
TG
M

> x

)
=


0, if Mν(Mx) � 1,

e−
∫ x
0
Mν(Ms)ds, if Mν(Mx) � 1,

1, if Mν(Mx) ≺ 1.
(2.11)

(Here, as r → ∞, a � b means b = o(a), a ≺ b means a = o(b), while a � b means
a = Θ(b).) If we let Mc be the unique solution of the equation

Mν(M) = 1, (2.12)

then the transition occurs on the time scale Mc, in the sense that Pu(TG > t) ≈ 1 for
t ≺Mc and Pu(TG > t) ≈ 0 for t �Mc. On the critical time scale Mc, the transition
time follows an exponential distribution with time-varying rate. It was proven in [59]
that, for a complete bipartite graph and s ∈ [0,∞),

Eu[TG](s) =
1

|U |
rU (s)|U |−1 [1 + o(1)], r →∞. (2.13)

The following two theorems will be proven in Sections 2.4.1–2.4.2 with the help of
(2.9)–(2.13).
Theorem 2.1.4 (Critical time scale in the external model).
The time scale on which the transition occurs is given by

Mc = Fc r
1∧β(|U |−1) [1 + o(1)], r →∞, (2.14)

with

Fc =


γ
β(|U|−1)
U

|U |B−(|U|−1) , if β ∈ (0, 1
|U |−1 ),

γU
|U |B−(|U|−1)+(c−ρU )

, if β = 1
|U |−1 ,

γU
c−ρU , if β = ( 1

|U |−1 ,∞).

(2.15)

Theorem 2.1.5 (Transition time in the external model).
The transition time in the external model satisfies

Eu[T ext
G ] = Fc r

1∧β(|U |−1) [1 + o(1)], r →∞. (2.16)

with Fc as in (2.15), and

lim
r→∞

Pu
(
T ext
G

Eu[T ext
G ]

> x

)
= P(x), x ∈ [0,∞), (2.17)

with

P(x) =



e−x, if β ∈ (0, 1
|U |−1 ), x ∈ [0,∞),

(1− Cx)
1−C
C , if β = 1

|U |−1 , x ∈ [0, 1
C ),

0, if β = 1
|U |−1 , x ∈ [ 1

C ,∞),

1, if β ∈ ( 1
|U |−1 ,∞), x ∈ [0, 1),

0, if β ∈ ( 1
|U |−1 ,∞), x ∈ [1,∞),

(2.18)
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and C = Fc(c−ρU )
γU

∈ (0, 1).

In other words, the mean transition time scales like Mc, while the law of the trans-
ition time divided by its mean is exponential, truncated polynomial or deterministic
(see Figure 2.3). We distinguish between these three regimes of behavior and refer
to them as subcritical regime, critical regime and supercritical regime, respectively.
The deterministic behavior observed in the supercritical regime is also known in the
literature as cut-off.

x

Psub(x)

x

Pcr(x)

1
C

r x

Psup(x)

1

r
Figure 2.3: Trichotomy for x 7→ P(x): β ∈ (0, 1

|U|−1
], subcritical regime (left); β = 1

|U|−1
,

critical regime (middle); β ∈ ( 1
|U|−1

,∞), supercritical regime (right). The curve in the
middle is convex when C ∈ (0, 1/2) and concave when C ∈ (1/2, 1). The curve on the right
is the limit of the curve in the middle as C → 1.

As shown in Remark 2.4.1, we can even include the case β = 0, and get that if
gU (x) = L̂(x) with limx→∞ L̂(x) =∞, then

Eu[T ext
G ] = Mc [1 + o(1)], Mc =

1

|U |
L̂(γUr)

|U |−1 [1 + o(1)], r →∞, (2.19)

and P(x) = e−x, x ∈ [0,∞). Similar properties hold for the lower and the upper
external model, with perturbed F low

c,δ and F upp
c,δ satisfying

lim
δ→0

F low
c,δ = lim

δ→0
F upp
c,δ = Fc. (2.20)

The main result of the chapter is the following sandwich of T int
G between T low

G and
T upp
G , for which we already know the asymptotic behavior. Because of this sandwich

we can deduce the asymptotics of the transition time in the internal model.

Theorem 2.1.6 (Transition time in the internal model).
For δ > 0 small enough, there exists a coupling such that

lim
r→∞

P̂u
(
T low
G ≤ T int

G ≤ T upp
G

)
= 1, (2.21)

where P̂u is the joint law induced by the coupling, with all three models starting from
u. Consequently, the transition time in the internal model satisfies

Eu[T int
G ] = Fc r

1∧β(|U |−1) [1 + o(1)], r →∞, (2.22)
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with Fc as in (2.15), and

lim
r→∞

Pu
(
T int
G

Eu[T int
G ]

> x

)
= P(x), x ∈ [0,∞). (2.23)

with P(x) as in (2.18).

§2.1.3 Discussion and outline
Theorems. Theorem 2.1.5 gives the leading-order asymptotics of the transition
time in the external model, including the lower and the upper external model. The-
orem 2.1.6 is the main result of the chapter and provides the leading-order asymptotics
of the transition time in the internal model, via the coupling in (2.21) and the continu-
ity property in (2.20). Equations (2.15)–(2.16) identify the scaling of the transition
time in terms of the model parameters. The trichotomy between β ∈ (0, 1

|U |−1 ),
β = 1

|U |−1 and β ∈ ( 1
|U |−1 ,∞) is particularly interesting, and leads to different limit

laws for the transition time on the scale of its mean.

Interpretation of the trichotomy. In order to interpret the above trichotomy,
observe first of all that the activation rates of each of the nodes in U remain of order rβ

almost all the way up TU . Specifically, in the absence of the nodes in V , by time yTU ,
y ∈ [0, 1), the queue lengths of the nodes in U have decreased by roughly a fraction y,
and their activation rates are approximately B(1− y)βrβ . Hence the fraction of joint
inactivity time of the nodes in U is of order (1/rβ)|U | = r−β|U |. Since the tike it takes
to leave the joint inactivity state is of order r−β , all nodes in U become simultaneously
inactive for the first time after a period of order r−β/r−β|U | = rβ(|U |−1), which is o(r)
in the subcritical regime when β < 1

|U |−1 . When the nodes in V are actually present,
with high probability as r → ∞, they all activate quickly and the transition occurs
almost immediately (see Section 2.4.3). Note that the queue lengths of the nodes in
U have only decreased by an amount of order rβ(|U |−1) = o(r), and hence are still of
order r. In contrast, in the critical regime when β = 1

|U |−1 , the probability that all
nodes in U become simultaneously inactive before time yTU is approximately π(y)

with π(y) = 1 − (1 − y)(1−C)/C , y ∈ [0, 1) (see (2.18)). Again, with high probability
as r → ∞, all the nodes in V activate quickly and the transition occurs almost
immediately. Note that the queue lengths in the nodes in U have then dropped by
a non-negligible fraction, but are still of order r. A potential scenario is that the
nodes in U do not all become simultaneously inactive until their activation rates have
become of a smaller order than rβ , due to the queue lengths no longer being of order
r just before time TU . However, the fact that π(y) → 1 as y → 1 implies that this
scenario has negligible probability in the limit. In contrast, this scenario does occur
in the supercritical regime when β > 1

|U |−1 , implying that the crossover occurs in a
narrow window around TU (see Sections 2.4.1–2.4.2 for details). We will see that this
window has size O(r1/β(|U |−1)) = o(r). In particular, the window gets narrower as
the activation rates of nodes in U increase.

Proofs. We look at a single-node queue length process t 7→ Q(t) and prove that with
high probability it follows a path that lies in a narrow tube around its mean path (see
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Figure 2.4). We study separately the input process t 7→ Q+(t) and the output process
t 7→ Q−(t): we use Mogulskii’s theorem (a pathwise large deviation principle) for the
first, and Cramér’s theorem (a pointwise large deviation principle) for the second. We
derive upper and lower bounds for the queue length process and we use these bounds
to construct two couplings that allow us to compare the different models.

t

Qi(t)

LB

UBγUr δr

slope = c− ρU

TU t

Qj(t)

UB

LB slope = ρVγV r

δr

Figure 2.4: Sketches of the tubes around the mean of the queue length processes, respectively,
for a node i ∈ U and a node j ∈ V .

Dependent packet arrivals. Our large deviation estimates are so sharp that we
can actually allow the Poisson processes of packet arrivals at the different nodes to be
dependent. Indeed, as long at the marginal processes are Poisson, our large deviation
estimates are valid at every single node, and since the network is finite a simple union
bound shows that they are also valid for all nodes simultaneously, at the expense of a
negligible factor that is proportional to the number of nodes. For modeling purposes
independent arrivals are natural, but it is interesting to allow for dependent arrivals
when we want to study activation protocols that are more involved.

Open problems. If we want to understand how small the term o(1) in (2.22) actually
is, then we need to derive sharper estimates in the coupling. One possibility would be
to study moderate deviations for the queue length processes and to look at shrinking
tubes. We do not pursue such refinements here. Our main focus for the future will
be to extend the model to more complicated settings, where the activation rate at
node i depends also on the queue length at the neighboring nodes of i. We want
to be able to compare models with (externally driven) time-dependent activation
rates and models with (internally driven) queue-dependent activation rates, and show
again that their metastable behavior is similar. We also want to move away from the
complete bipartite interference graph and consider more general graphs that capture
more realistic wireless networks.

Other models. There are other ways to define an internal model. We mention a
few examples.

(i) A simple variant of our model is obtained by fixing the activation rates, but
letting the rate at time t of the Poisson deactivation clock of node i depend on
the reciprocal of the queue length at time t, i.e., 1/gi(Qi(t)) for some gi ∈ G.
This can be equivalently seen as a unit-rate Poisson deactivation clock, where
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node i either deactivates with a probability reciprocal to gi(Qi(t)), or starts
a second activity period. Nodes with a large queue length are more likely to
remain active for a long time before deactivating, while nodes with a short queue
length have extremely short activity periods. If at time t the activation clock
of an inactive node with Qi(t) = 0 ticks, then the node does not activate. On
the other hand, if during an activity period the queue length of an active node
hits zero, then the node deactivates independently of its deactivation rate. For
fixed activation and deactivation rates, this model and our internal model with
rint
i (t) = gi(Qi(t)) for each node i are equivalent up to a time scaling factor. In
particular, they have similar stationary distributions.

(ii) An alternative approach is to use a discrete notion of queue length, namely,
Qi(t) = Ni(t) − Si(t), where Ni(t) is a Poisson process with rate λ, denoting
the number of packets arriving at node i during [0, t], while Si(t) indicates the
total number of times node i activates (or deactivates) during [0, t] (we may use
λU and λV to represent different arrival rates for the two sets U and V ). The
processes t 7→ Si(t) and t 7→ Ni(t) are assumed to be independent. We can
define a model where each time a node activates it serves exactly one packet
and then deactivates again. The activation clocks still have rates gi(Qi(t)) with
gi ∈ G. We can establish results similar to our internal model by adapting the
arguments to the discrete setting.

Outline of the chapter. The remainder of this chapter is organized as follows. In
Section 2.2 we state large deviation bounds for the input and the output process,
which allow us to show that the queue length process at every node has specific lower
and upper bounds that hold with very high probability. The proofs of these bounds
are deferred to Appendices A–B. In Section 2.3 we use the bounds to couple the lower
and the upper external model (with activation rates (2.7) and (2.8), respectively)
to the internal model (with activation rates (2.5)). In Section 2.4 we derive the
scaling results for the external model, and combine these with the coupling to derive
Theorem 2.1.6 (as stated in Section 2.1.2).

§2.2 Bounds for the input and output processes

In this section we state the main results of our analysis of the input process and the
output process at a fixed node (recall Definition 1.1.3). With the help of path large
deviation techniques, we show that, with high probability as r →∞, the input process
lies in a narrow tube around the deterministic path t 7→ (λ/µ)t (Proposition 2.2.1).
For simplicity, we suppress the index for the arrival rates λU and λV , and consider a
general rate λ. The same holds for ρ = λ/µ. We study the output process only for
nodes in U , and we give lower and upper bounds in (2.27) and Proposition 2.2.4. We
look at a single node and suppress its index, since the queues are independent of each
other as long as the nodes remain active or inactive. The proofs of the propositions
below for the input process and the output process are given in Appendices A–B,
respectively.
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Proposition 2.2.1 (Tube for the input process).
For δ > 0 small enough and time horizon S > 0, let

ΓS,δS =

{
γ ∈ L∞([0, S]) :

λ

µ
s− δS < γ(s) <

λ

µ
s+ δS ∀ s ∈ [0, S]

}
. (2.24)

With high probability as r →∞, the input process lies inside ΓS,δS as S →∞, namely,

P
(
Q+([0, S]) /∈ ΓS,δS

)
= e−KδS [1+o(1)], S →∞. (2.25)

Kδ = (λ+ δµ) + λ− 2
√
λ(λ+ δµ) ∈ (0,∞). (2.26)

(Note that ΓS,δS contains negative values. This is of no concern because the path is
always non-negative.)

We want to derive lower and upper bounds for the output process for a node in
U . An upper bound is trivial by definition, namely,

Q−(t) ≤ ct, t ≥ 0. (2.27)

It is more delicate to compute a lower bound, for which we need some preparatory
definitions. We first introduce an auxiliary time that will be useful in our analysis.

Definition 2.2.2 (Auxiliary time).
Consider the internal model and recall that the initial queue lengths at nodes in U

are γUr. Define TU to be the expected time at which the queue length at a node in
U hits zero if the transition has not occurred yet. We can write

TU = TU (r) ∼ αr, r →∞, (2.28)

with
α =

γU
c− ρU

. (2.29)

Note that the quantity αr is the expected time at which the queue length at a node in
U hits zero when the node is always active. Since the total inactivity time of a node
in U before time TU will turn out to be negligible compared to αr, we have TU ∼ αr
as r →∞.

Next, we introduce the isolated model, an auxiliary model that will help us to
derive a lower bound for the output process. We will see later that the internal model
behaves in exactly the same way as the isolated model up to the pre-transition time,
in particular, the pre-transition times in the internal and the isolated model coincide
in distribution.

Definition 2.2.3 (Isolated model).
In the isolated model the activation of nodes in U is not affected by the activity states
of nodes in V , i.e., they behave as if they were in isolation. On the other hand, nodes
in V are still affected by nodes in U , i.e., they cannot activate until every node in U
deactivates. Nodes in V have zero output process.
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We study the output process for the isolated model up to time TU . We will see later
in Corollary 2.4.3 that, with high probability as r →∞, the transition in the internal
model occurs before TU , so it is enough to look at the time interval [0, TU ]. In the
rare case when the transition does not occur before TU , we expect it to occur in a
very short time after TU . We are now ready to give the lower bound for the output
process.

Proposition 2.2.4 (The output process in the isolated model).
Consider a node in U . For δ, ε, ε1, ε2 > 0 small enough, the output process satisfies

Pu
(
Q−(t) < ct− εr ∀t ∈ [0, TU ]

)
≤ e−Kδαr [1+o(1)] + e−K1r [1+o(1)]

+ e
−
(
K2r+K3

r
gU (r)

+K4r log gU (r)
)

[1+o(1)]
, r →∞,

(2.30)
with

K1 =

(
γU −

2δα

c− ρU

)
ε1 − log(1 + ε1)

1 + ε1
,

K2 =

(
γU −

2δα

c− ρU

)
(1 + ε1)

(
− 1− log

(
ε2(

γU − 2δα
c−ρU

)
(1 + ε1)

))
,

K3 = ε2,

K4 =

(
γU −

2δα

c− ρU

)
(1 + ε1),

(2.31)

satisfying K1,K2,K3,K4 ∈ (0,∞).

By combining the bounds for the input process and the output process, and picking
δ = ε and S = r, we obtain lower and upper bounds for the queue length process Q(t)

of a node in U .
Corollary 2.2.5 (The queue length process in the isolated model).
For δ > 0 small enough, with high probability as r → ∞, the following bounds hold
for a node in U :

(LB)U : Q(t) ≥ QLB
U (t) = γUr − (c− ρU )t− δr, t ≥ 0,

(UB)U : Q(t) ≤ QUB
U (t) = γUr − (c− ρU )t+ 2δr, t ∈ [0, TU ].

(2.32)

Similarly, with high probability as r →∞, the following bounds hold for a node in V :

(LB)V : Q(t) ≥ QLB
V (t) = γV r + ρV t− δr, t ≥ 0,

(UB)V : Q(t) ≤ QUB
V (t) = γV r + ρV t+ δr, t ≥ 0.

(2.33)

Proof. The claim follows from Propositions 2.2.1 and 2.2.4 in combination with the
bound in (2.27). �

§2.3 Coupling the internal and the external model

In Sections 2.3.1–2.3.2 we use the bounds defined in Section 2.2 to construct two coup-
lings that allow us to compare the internal and the external model (Proposition 2.3.5,
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respectively, Proposition 2.3.8 and Corollary 2.3.9). Throughout the sequel we as-
sume that the deactivation rates are fixed, i.e., the deactivation Poisson clocks ring at
rate 1. A node can activate only if all its neighbors are inactive. If a node is inactive,
then the activation Poisson clocks ring at rates that vary over time in a deterministic
way, or as functions of the queue lengths.

We are interested in coupling the models in the time interval [0, TU ] and on the
following event.

Definition 2.3.1 (Good behavior).
Let Eδ be the event that the queue length processes in the internal model all have
good behavior in the interval [0, TU ], in the sense that

Eδ =
{
QLB
U (t) ≤ Qi(t) ≤ QUB

U (t) ∀ t ∈ [0, TU ] ∀ i ∈ U
}

∪
{
QLB
V (t) ≤ Qi(t) ≤ QUB

V (t) ∀ t ∈ [0, TU ] ∀ i ∈ V
}
,

(2.34)

i.e., the paths lie between their respectively lower and upper bounds for nodes in U
and V . This event depends on the perturbation parameter δ.

Lemma 2.3.2 (Probability of good behavior).
For δ > 0 small enough,

lim
r→∞

Pu(Eδ) = 1. (2.35)

Proof. The claim follows from Corollary 2.2.5. �

In what follows we couple on the event Eδ only. The coupling can be extended
in an arbitrary way off the event Eδ. The way this is done is irrelevant because of
Lemma 2.3.2.

§2.3.1 Coupling the internal and the lower external
model

The lower external model defined in (2.7) can also be described in the following way.
At time t ≥ 0 the activation rates are

rlowi (t) =

{
gU (QLB

U (t)), i ∈ U,

gV (QUB
V (t)), i ∈ V.

(2.36)

Note that when the lower bound QLB
U (t) becomes negative the activation function gU

is zero by definition. In this way we are able extend the coupling to any time t ≥ 0,
even though we consider only the interval [0, TU ].

Lemma 2.3.3 (Upper bound in the lower external model).
With high probability as r →∞, the transition time T low

G in the lower external model
is smaller than TU , i.e.,

lim
r→∞

Pu(T low
G ≤ TU ) = 1. (2.37)
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Proof. As we will see in Section 2.4.2, with high probability as r →∞, the transition
time in the external model is smaller than TU . Since the lower external model is
defined for an arbitrarily small perturbation δ > 0, we conclude by using the continuity
of gU , gV . �

We introduce a system that allows us to couple the internal model with the lower
external model.

Definition 2.3.4 (Coupling system for the lower external model).
Suppose that hi(t) ≥ max{QUB

U (t), QUB
V (t)} for all i ∈ U t V and all t ∈ [0, TU ].

Consider a system Hlow where clocks are associated with each node in the following
way.

• A Poisson deactivation clock ticks at rate 1. Both the nodes in the lower external
model and in the internal model are governed by this clock:

– if both nodes are active, then they deactivate together;

– if only one node is active, then it deactivates;

– if both nodes are inactive, then nothing happens.

• A Poisson activation clock ticks at rate gU (hi(t)) at time t for a node i ∈ U . Both
the nodes in the lower external model and in the internal model are governed
by this clock:

– if both nodes are active, or both are inactive but have active neighbors,
then nothing happens;

– if the node in the internal model is active and the node in the lower external
model is not, then the latter node activates (if it can) with probability

rlowi (t)

gU (hi(t))
; (2.38)

– if both nodes are inactive but can be activated, then this happens with
probabilities

rlowi (t)

gU (hi(t))
for the lower external model,

rint
i (t)

gU (hi(t))
for the internal model,

(2.39)

where
rlowi (t)

gU (hi(t))
≤ rint

i (t)

gU (hi(t))
, (2.40)

in such a way that if the node in the lower external model activates, then
it also activates in the internal model.

47



2. Complete bipartite interference graphs

C
h
a
pt

er
2

• A Poisson activation clock ticks at rate gV (hi(t)) at time t for a node i ∈ V .
The same happens as for the nodes in U , but the activation probabilities are

rlowi (t)

gV (hi(t))
for the lower external model,

rint
i (t)

gV (hi(t))
for the internal model,

(2.41)

where
rlowi (t)

gU (hi(t))
≥ rint

i (t)

gU (hi(t))
, (2.42)

in such a way that if the node in the internal model activates, then it also
activates in the lower external model.

With the constructions above, we are now able to compare the transition times of the
two models.
Proposition 2.3.5 (Coupling the internal and the lower external model).
The following statements hold.

(i) Under the coupling Hlow, the joint activity processes in the internal and in the
lower external model are ordered for all t ∈ [0, TU ], i.e.,

X low
i (t) ≤ X int

i (t), i ∈ U,
X int
i (t) ≤ X low

i (t), i ∈ V.
(2.43)

(ii) With high probability as r → ∞, the transition time T int
G in the internal model

is at least as large as the transition time T low
G in the lower external model, i.e.,

lim
r→∞

P̂u(T low
G ≤ T int

G ) = 1, (2.44)

where P̂u is the joint law induced by the coupling with starting u.

Proof. We prove the two statements separately.

(i) For each node i ∈ U and for all t ∈ [0, TU ], we have that QLB
i (t) ≤ Qi(t) and

gU (QLB
i (t)) ≤ gU (Qi(t)) by the monotonicity of the function gU . On the other

hand, for each node i ∈ V , Qi(t) ≤ QUB
i (t) and gV (Qi(t)) ≤ gV (QUB

i (t)) by the
monotonicity of the function gV . Under the system Hlow, at any moment the
random variable describing the state of a node i ∈ U in the lower external model
is dominated by the one in the internal model, i.e., by (2.40) for all t ∈ [0, TU ],

X low
i (t) ≤ X int

i (t). (2.45)

On the other hand, the random variable describing the state of a node j ∈ V
in the lower external model dominates the one in the internal model, i.e., by
(2.42) for all t ∈ [0, TU ],

X int
i (t) ≤ X low

i (t). (2.46)

Hence the joint activity processes in the two models are ordered.
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(ii) Using the coupling construction and the ordering above, we can show that, on
the event Eδ, the nodes in U in the lower external model deactivate earlier than
in the internal model, and the nodes in V activate earlier in the lower external
model. Hence the transition occurs earlier in the lower external model.

Note that we are able to compare the transition times only when T low
G ≤ TU ,

so we look at the coupling also on the event {T low
G ≤ TU}, which has high

probability as r → ∞ (Lemma 2.3.3). On this event we have T low
G ≤ T int

G .
Therefore

1 = lim
r→∞

P̂u(Eδ, T low
G ≤ TU , T low

G ≤ T int
G ) = lim

r→∞
P̂u(T low

G ≤ T int
G ). (2.47)

�

§2.3.2 Coupling the isolated and the upper external
model

The upper external model defined in (2.8) can also be described in the following way.
At time t ∈ [0, TU ] the activation rates are

rupp
i (t) =

{
gU (QUB

U (t)), i ∈ U,

gV (QLB
V (t)), i ∈ V.

(2.48)

Lemma 2.3.6 (Upper bound in the upper external model).
With high probability as r →∞, the transition time T upp

G in the upper external model
is smaller than TU , i.e.,

lim
r→∞

Pu(T upp
G ≤ TU ) = 1. (2.49)

This statement is to be read as follows. Let δ be the perturbation parameter in the
upper external model appearing in (2.8). Then for every δ > 0 there exists a δ′(δ) > 0,
satisfying limδ→0 δ

′(δ) = 0, such that limr→∞ Pu(T upp
G ≤ [1 + δ′(δ)]TU ) = 1.

Proof. Analogous to the proof of Lemma 2.3.3. �

We introduce a system that allows us to couple the isolated model with the upper
external model up to time τ iso

G .

Definition 2.3.7 (Coupling system for the upper external model).
Suppose that hi(t) ≥ max{QUB

U (t), QUB
V (t)} for all i ∈ U t V and all t ∈ [0, τ iso

G ].
Couple the processes in the same way as in Definition 2.3.4 forHlow, but with different
activation probabilities. The probabilities for the isolated model and for the upper
external model are such that

risoi (t)

gU (hi(t))
≤ rupp

i (t)

gU (hi(t))
, i ∈ U,

rupp
i (t)

gV (hi(t))
≤ risoi (t)

gV (hi(t))
, i ∈ V,

(2.50)
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where for t ∈ [0, τ iso
G ]

risoi (t) =

{
gU (Qi(t)), i ∈ U,

gV (Qi(t)), i ∈ V.
(2.51)

Note that when τ iso
G ≤ TU , the isolated model behaves exactly as the internal

model in the interval [0, τ iso
G ], as shown in Appendix B.2. Moreover, the coupling

is defined only when τ iso
G ≤ TU . We look then at the coupling also on the event

{T upp
G ≤ TU}, which has high probability as r →∞ (Lemma 2.3.6). In the following

proposition we see how this ensures that the coupling is well defined, and we compare
the pre-transition times of the two models.

Proposition 2.3.8 (Coupling the isolated and the upper external model).
The following statements hold.

(i) Under the coupling Hupp, the joint activity processes in the isolated model and
in the upper external model are ordered up to time τ iso

G , i.e., for all t ∈ [0, τ iso
G ],

X iso
i (t) ≤ Xupp

i (t), i ∈ U,
Xupp
i (t) ≤ X iso

i (t), i ∈ V.
(2.52)

(ii) With high probability as r → ∞, the pre-transition time τupp
G in the upper ex-

ternal model is at least as large as the pre-transition time τ iso
G in the isolated

model, i.e.,
lim
r→∞

P̂u(τ iso
G ≤ τupp

G ) = 1, (2.53)

where P̂u is the joint law induced by the coupling with starting u.

Proof. We prove the two statements separately.

(i) The proof is analogous to that of Proposition 2.3.5, but this time we use the
system Hupp up to time τ iso

G and all the inequalities are reversed.

(ii) Using the coupling construction and the ordering above, we can show that, on
the event Eδ ∩ {T upp

G ≤ TU}, the nodes in U in the isolated model deactivate
earlier than in the upper external model, and the first activating node in V

activates earlier in the isolated model. Hence the pre-transition occurs earlier
in the isolated model, and we have τ iso

G ≤ τupp
G ≤ T upp

G ≤ TU . Therefore the
coupling is well defined and

1 = lim
r→∞

P̂u(Eδ,TU , T
upp
G ≤ TU , τ iso

G ≤ τupp
G ) = lim

r→∞
P̂u(τ iso

G ≤ τupp
G ). (2.54)

�

Corollary 2.3.9 (Comparing times between models).
With high probability as r →∞, the transition time T upp

G in the upper external model
is at least as large as the pre-transition time τ int

G in the internal model, i.e.,

lim
r→∞

P̂u(τ int
G ≤ T upp

G ) = 1. (2.55)
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Proof. Since limr→∞ P(τ iso
G ≤ TU ) = 1, we have, as shown in Proposition B.6 in

Appendix B.2, that the pre-transition times in the isolated model and in the internal
model coincide. Hence

1 = lim
r→∞

P̂u(τ iso
G ≤ τupp

G ) = lim
r→∞

P̂u(τ int
G ≤ τupp

G ) ≤ lim
r→∞

P̂u(τ int
G ≤ T upp

G ), (2.56)

which completes the proof. �

§2.4 Proofs of the main results

The goal of this section is to identify the asymptotic behavior of the transition time
in the internal model. In Sections 2.4.1–2.4.2 we look at the external model and
prove Theorems 2.1.4–2.1.5, respectively. In Section 2.4.3 we show that the difference
between the transition time and the pre-transition time is negligible for all the models
considered. In Section 2.4.4 we put these results together to prove Theorem 2.1.6.

§2.4.1 Proof: critical time scale in the external model
In this section we prove Theorem 2.1.4. From now on we write a(r) ∼ b(r) to
indicate that limr→∞ a(r)/b(r) = 1, while we write a(r) � b(r) to indicate that
0 < lim infr→∞ a(r)/b(r) ≤ lim supr→∞ a(r)/b(r) <∞.

Proof of Theorem 2.1.4. In order to compute the critical time scaleMc, we must solve
the equation Mν(M) = 1 in (2.12). We know from (2.9) and (2.13) that

ν(s) ∼ |U |rU (s)1−|U |, r →∞. (2.57)

We want to identify how the transition time is related to the choice of gU in Defini-
tion 2.1.1. Consider the time scale Mc = Fcr

γ , where γ ∈ (0, 1] and Fc ∈ (0,∞). As
r →∞, we have

1 = r0 = Mcν(Mc) = Fcr
γ ν(Fcr

γ) ∼ Fcrγ |U |rU (Fcr
γ)−(|U |−1)

= Fcr
γ |U |gU

(
γUr − (c− ρU )Fcr

γ
)−(|U |−1)

∼ Fcrγ |U |B−(|U |−1)
(
γUr − (c− ρU )Fcr

γ
)−β(|U |−1)

.

(2.58)

Recall from (2.29) that α = γU
c−ρU . We distinguish between three cases.

(I) Case γ ∈ (0, 1) and Fc ∈ (0,∞). As r →∞, the criterion in (2.58) reads

1 = r0 ∼ Fcrγ |U |B−(|U |−1)(γUr)
−β(|U |−1). (2.59)

In order for the exponents of r to match, we need

β =
γ

|U | − 1
. (2.60)

Inserting (2.60) into (2.59), we get

Fc|U |B−(|U |−1)γ
−β(|U |−1)
U = 1, (2.61)
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which gives

Fc =
γ
β(|U |−1)
U B(|U |−1)

|U |
. (2.62)

Hence

Mc =
(BγβU )|U |−1

|U |
rβ(|U |−1), r →∞. (2.63)

(II) Case γ = 1 and Fc ∈ (0, α). As r →∞, the criterion in (2.58) reads

1 = r0 ∼ Fc|U |B−(|U |−1)(γU − (c− ρU )Fc)
−β(|U |−1)r1−β(|U |−1). (2.64)

In order for the exponents of r to match, we need

β =
1

|U | − 1
. (2.65)

Inserting (2.65) into (2.64), we get

Fc|U |B−(|U |−1)

γU − (c− ρU )Fc
= 1, (2.66)

which gives
Fc =

γU
|U |B−(|U |−1) + (c− ρU )

. (2.67)

Hence
Mc =

γU
|U |B−(|U |−1) + (c− ρU )

r, r →∞. (2.68)

Recall from (2.28) that TU ∼ αr is the expected time at which the queue length
at a node in U hits zero. We will see in Section 2.4.2 that the transition in the
external model typically occurs before the queues are empty.

(III) Case γ = 1 and Fc = α −Dr−δ, δ ∈ (0, 1). As r → ∞, the criterion in (2.58)
reads

1 = r0 ∼ αr|U |B−(|U |−1)
(
(c− ρU )Dr1−δ)−β(|U |−1)

. (2.69)

In order for the exponents of r to match, we need

β =
1

(1− δ)(|U | − 1)
. (2.70)

Inserting (2.70) into (2.69), we get

α|U |B−(|U |−1)((c− ρU )D)−β(|U |−1) = 1, (2.71)

which gives

D =
(α|U |B−(|U |−1))1/β(|U |−1)

c− ρU
. (2.72)

Hence

Mc = αr − (α|U |B−(|U |−1))1/β(|U |−1)

c− ρU
r1/β(|U |−1) = αr, r →∞, (2.73)
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and so the crossover takes place in a window of size O(r1/β(|U |−1)) = o(r) around
αr. Note that this window gets narrower as β increases, i.e., as the activation
rates of nodes in U increase.

�

In the following remark we discuss more general activation functions gU .

Remark 2.4.1 (Modulation with slowly varying functions).
Consider activation functions of the form gU (x) = xβL̂(x) with β ∈ (0,∞) and L̂(x) a
slowly varying function (i.e., limx→∞ L̂(ax)/L̂(x) = 1 for all a > 0). LetMc = rγL(r)

with γ ∈ (0, 1) and L(r) a slowly varying function. As r →∞, we have

1 = r0 ∼ rγL(r)|U |
(
γUr − (c− ρU )rγL(r)

)−β(|U |−1)L̂(γUr − (c− ρU )rγL(r))−(|U |−1)

∼ rγL(r)|U |(γUr)−β(|U |−1)L̂(γUr)
−(|U |−1).

(2.74)

In order for the exponents of r to match, we again need

β =
γ

|U | − 1
. (2.75)

We get

L(r) =
γ
β(|U |−1)
U

|U |
L̂(γUr)

|U |−1, r →∞. (2.76)

Hence

Mc =
γ
β(|U |−1)
U

|U |
rβ(|U |−1)L̂(γUr)

|U |−1, r →∞. (2.77)

We can even include the case β = 0, in which we obtain that if gU (x) = L̂(x) with
limx→∞ L̂(x) =∞, then

Mc =
1

|U |
L̂(γUr)

|U |−1, r →∞. (2.78)

§2.4.2 Proof: transition time in the external model
In this section we prove Theorem 2.1.5. We already know that the transition occurs
on the critical time scale Mc computed in Section 2.4.2.

Proof of Theorem 2.1.5. Knowing the critical time scale Mc, we can compute the
mean transition time from (2.11). As r →∞, we have

Eu[T ext
G ] =

∫ ∞
0

Pu(T ext
G > x) dx = Mc

∫ ∞
0

Pu
(
T ext
G

Mc
> x

)
dx

∼Mc

∫ ∞
0

e−
∫ x
0
Mcν(Mcs) ds dx = Mc

∫ ∞
0

e−
∫ x
0
Mcν(Mcs)
Mcν(Mc)

ds dx

=Mc

∫ ∞
0

e
−

∫ x
0

(
γUr−(c−ρU )Mcs

γUr−(c−ρU )Mc

)−β(|U|−1)
ds
dx,

(2.79)

where the choice of β is important. We distinguish between the three cases.

53



2. Complete bipartite interference graphs

C
h
a
pt

er
2

(I) Case β ∈ (0, 1
|U |−1 ), Mc = Fcr

γ , γ ∈ (0, 1). We have

lim
r→∞

(
γUr − (c− ρU )Mcs

γUr − (c− ρU )Mc

)−β(|U |−1)

= 1. (2.80)

Hence, as r →∞,

Eu[T ext
G ] ∼Mc

∫ ∞
0

e−
∫ x
0
ds dx = Mc

∫ ∞
0

e−x dx = Mc. (2.81)

The law of T ext
G is exponential, i.e.,

lim
r→∞

Pu
(
T ext
G

Eu[T ext
G ]

> x

)
= e−x, x ∈ [0,∞). (2.82)

(II) Case β = 1
|U |−1 , Mc = Fcr, Fc ∈ (0, α). We have

lim
r→∞

(
γUr − (c− ρU )Fcrs

γUr − (c− ρU )Fcr

)−β(|U |−1)

=
γU − (c− ρU )Fc
γU − (c− ρU )Fcs

=
1− c−ρU

γU
Fc

1− c−ρU
γU

Fcs

=
1− Fc

α

1− Fc
α s

=
1− C
1− Cs

,

(2.83)

with C = Fc/α. Hence, as r →∞,

Eu[T ext
G ] ∼Mc

∫ 1
C

0

e−
∫ x
0

1−C
1−Csds dx = Mc

∫ 1
C

0

e− log(1−Cx)−
1−C
C dx

= Mc

∫ 1
C

0

(1− Cx)
1−C
C dx = Mc

[
(1− Cx)1+ 1−C

C
1

(1 + 1−C
C )(−C)

] 1
C

0

= Mc

[
− (1− Cx)

1
C

] 1
C

0

= Mc.

(2.84)
Here, the integral must be truncated at x = 1/C because for larger x the
integrand becomes negative. Indeed, note that when x = 1/C = α/Fc, which
corresponds to time TU = αr, we have

lim
r→∞

Pu
(
T ext
G > TU

)
= lim
r→∞

Pu
(
T ext
G >

α

Fc
Fcr

)
= lim
r→∞

Pu
(
T ext
G

Mc
>

α

Fc

)
=

(
1− C α

Fc

) 1−C
C

= 0,

(2.85)

because C = Fc/α. This means that, with high probability as r → ∞, the
transition occurs before time TU . The law of T ext

G is truncated polynomial:

lim
r→∞

Pu
(
T ext
G

Eu[T ext
G ]

> x

)
=

{
(1− Cx)

1−C
C , x ∈ [0, 1

C ),

0, x ∈ [ 1
C ,∞).

(2.86)
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(III) Case β ∈ ( 1
|U |−1 ,∞), Mc = αr. This case corresponds to the limit C → 1 of

the previous case. In this limit, (2.86) becomes

lim
r→∞

Pu
(
T ext
G

Eu[T ext
G ]

> x

)
=

{
1, x ∈ [0, 1),

0, x ∈ [1,∞).
(2.87)

�

Note that the three cases above corresponds to the three regimes of behavior: re-
spectively, the subcritical regime, the critical regime and the supercritical regime.

§2.4.3 Negligible gap in the internal model
In this section we focus on the internal model and estimate the length of the interval
[τ int
G , T int

G ], which, with high probability as r → ∞, turns out to be very small with
respect to τ int

G . This implies that the transition time has the same asymptotic behavior
as the pre-transition time.

We know that the queue at a node i ∈ V is of order r at time τ int
G , i.e., Qi(τ int

G ) � r,
since it starts at γV r, with γV > 0, and only the input process is present until this
time. Hence all the activation Poisson clocks at nodes in V tick at a very aggressive
rate. The idea is that within the activation period (which has an exponential distri-
bution with mean 1) of the first node activating in V , all the other nodes in V activate
because they are not “blocked" by any node in U . Consequently, the network quickly
reaches v.
Theorem 2.4.2 (Negligible gap).
In the internal model

lim
r→∞

Pu
(
T int
G − τ int

G = o

(
1

gV (r)

))
= 1. (2.88)

Proof. Starting from τ int
G , a node x ∈ V remains inactive for an exponential period

with mean 1/rint
x (τG) = 1/gV (Q(τG)) � 1/gV (r). Denote by Wx the length of an

inactivity period for a node x ∈ V . Let x1 be the first node activating in V . We then
have i.i.d. inactivity periods Wx ' Exp(gV (Q(τG))) for all x ∈ V \{x1}. We label the
remaining nodes x2, . . . , x|V | in an arbitrary way. We also have i.i.d. activity periods
Zx ' Exp(1) for all x ∈ V .

Consider a time t1 = o(1/gV (r)). With high probability as r →∞, all the nodes
in V activate before time t1, i.e.,

lim
r→∞

Pu
(
Wxi < t1, ∀ i = 2, . . . , |V |

)
= lim
r→∞

Pu
(
Wx2 < t1

)|V |−1

= lim
r→∞

(
1− e−gV (Q(τG))t1

)|V |−1
= 1.

(2.89)

Moreover, with high probability as r → ∞, once they activated, all nodes in V stay
active for a period of length at least t2 � 1/gV (r) > t1, i.e.,

lim
r→∞

Pu
(
Zxi > t2 ∀ i = 1, . . . , |V |

)
= lim
r→∞

Pu
(
Zx1 > t2

)|V |
= lim
r→∞

(e−t2)|V | = 1.
(2.90)
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In conclusion, with high probability as r →∞, every node in V activates before time
t1 and remains active for at least a time t2 > t1. This ensures that the transition
occurs before time t2. In particular, it occurs when the last node in V activates (which
occurs even before time t1), so that T int

G − τ int
G = o(1/gV (r)). �

Note that this argument extends to any “external” model with activation rates that
tend to infinity with r, in particular, to all the models considered in the chapter. The
transition always happens quickly after the pre-transition, due to the high level of
aggressiveness of nodes in V .

Corollary 2.4.3 (Upper bound on the transition time).
With high probability as r → ∞, the transition time in the internal model is smaller
than TU , i.e.,

lim
r→∞

Pu(T int
G ≤ TU ) = 1. (2.91)

Proof. The claim follows from Lemma 2.3.6, Corollary 2.3.9 and Theorem 2.4.2. �

§2.4.4 Proof: transition time in the internal model
In this section we prove Theorem 2.1.6. First we derive the sandwich of the transition
times in the lower external, the internal and the upper external model. After that
we identify the asymptotics of the transition time for the internal model by using the
results for the external models.

Proof of Theorem 2.1.6. Using Proposition 2.3.5, Corollary 2.3.9 and Theorem 2.4.2,
we have that there exists a coupling such that

1 = lim
r→∞

P̂u
(
T low
G ≤ T int

G , T int
G = τ int

G + o

(
1

gV (r)

)
, τ int
G ≤ T upp

G

)
= lim

r→∞
P̂u
(
T low
G ≤ T int

G ≤ T upp
G + o

(
1

gV (r)

))
= lim

r→∞
P̂u
(
T low
G ≤ T int

G ≤ T upp
G

)
,

(2.92)

where P̂u is the joint law of the three models on the same probability space all three
starting from u.

By Theorem 2.1.5, we know the law of the transition time in the external model.
By construction, we have Eu[T low

G ] ≤ Eu[T ext
G ] ≤ Eu[T upp

G ]. When considering the
lower and the upper external model, the transition time asymptotics are controlled
by the prefactors F low

c,δ and F upp
c,δ , respectively, which are perturbations of the prefactor

Fc due to the perturbations of the activation rates. In particular, we know from (2.20)
that limδ→0 F

low
c,δ = limδ→0 F

upp
c,δ = Fc. Hence, for all ε > 0,

Eu[T int
G ] = (Fc ± ε)rβ(|U |−1) [1 + o(1)], r →∞, (2.93)

and since ε can be taken arbitrarily small, it may be absorbed into the o(1)-term, as

Eu[T int
G ] = Fcr

β(|U |−1) [1 + o(1)], r →∞. (2.94)
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The same kind of argument applies to the law of the transition time, since for any
x ∈ [0,∞),

lim
r→∞

Pu(T low
G > x) ≤ lim

r→∞
Pu(T int

G > x) ≤ lim
r→∞

Pu(T upp
G > x). (2.95)

This completes the proof. �

§A Appendix: the input process

The main target of this appendix is to prove Proposition 2.2.1 in Section 2.2. We use
path large deviation techniques. For simplicity, we suppress the index for the arrival
rates λU and λV , and consider a general rate λ. We show that, with high probability
as r → ∞, the input process lies in a narrow tube around the deterministic path
t 7→ (λ/µ)t.

Consider a single queue, and for simplicity suppress its index. For T > 0, define
the scaled process

Q+
n (t) =

1

n
Q+(nt) =

1

n

N(nt)∑
j=1

Yj , t ∈ [0, T ], (2.96)

with Q+
n (0) = 0. We have

E[Q+
n (t)] =

1

n

λnt

µ
=
λ

µ
t, (2.97)

and, by the strong law of large numbers, Q+
n (t)→ (λ/µ)t almost surely for every t as

n→∞.
When studying the process t 7→ Q+

n (t), we need to take into account that this is
a combination of the Poisson arrival process t 7→ N(nt) and the exponential service
times Yj , j ∈ N. Two different types of fluctuations can occur: packets arrive at a
slower or faster rate than λ, respectively, service times for each packet are shorter or
longer than their mean 1/µ. Both need to be considered for a proper large deviation
analysis.

§A.1 Large deviation principle for the two compon-
ents

Definition A.1 (Space of paths).
Consider the space L∞([0, T ]) of essentially bounded functions in [0, T ], with the norm
‖f ||∞ = ess supx∈[0,T ] |f(x)| called the essential norm. A function f is essentially
bounded, i.e., f ∈ L∞([0, T ]), when there is a measurable function g on [0, T ] such
that f = g except on a set of measure zero and g is bounded. Let ACT ⊂ L∞([0, T ])

denote the space of absolutely continuous functions f : [0, T ]→ R such that f(0) = 0.
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Given the Poisson arrival process t 7→ N(nt) with rate λ, define the scaled process
t 7→ Zn(t) by

Zn(t) =
1

n
N(nt) =

1

n

nt∑
i=1

Xi =
1

n

bntc∑
i=1

Xi, t ∈ [0, T ], (2.98)

whereXi ' Poisson(λ) are i.i.d. random variables and bxc denotes the greatest integer
smaller than or equal to x. Note that N(nt) ' Poisson(λnt). Let νn be the law of
(Zn(t))t∈[0,T ] on L∞([0, T ]). Note that Zn(t) is asymptotically equivalent to N(t)

with mean E[Zn(t)] = λt, and (Zn(t))t∈[0,T ] tends to (λt)t∈[0,T ] as n→∞.
We recall the definition of large deviation principle.

Definition A.2 (Large deviation principle (LDP)).
A family of probability measures (Pn)n∈N on a Polish space X is said to satisfy the
large deviation principle (LDP) with rate n and with good rate function I : X → [0,∞]

if

lim sup
n→∞

1

n
logPt(C) ≤ −I(C) ∀C ⊂ X closed,

lim inf
n→∞

1

n
logPt(O) ≥ −I(O) ∀O ⊂ X open,

(2.99)

where I(S) = infx∈S I(x), S ⊂ X . A good rate function satisfies: (1) I 6≡ ∞, (2) I is
lower semi-continuous, (3) I has compact level sets.

We begin by stating the LDP for the arrival process (Zn(t))t∈[0,T ].

Lemma A.3 (LDP for the arrival process).
The family of probability measures (νn)n∈N satisfies the LDP on L∞([0, T ]) with rate
n and with good rate function IN given by

IN (η) =

{ ∫ T
0

Λ∗N (η̇(t)) dt, η ∈ ACT ,
∞, otherwise,

(2.100)

where Λ∗N (x) = x log(x/λ)− x+ λ, x ∈ (0,∞).

Proof. Apply Mogulskii’s theorem (see [40, Theorem 5.1.2]). Use the fact that Λ∗N
is the Fenchel-Legendre transform of the cumulant generating function Λ defined by
Λ(θ) = logE(eθX1), θ ∈ R. �

For Γ ⊂ L∞([0, T ]), define IN (Γ) = infη∈Γ IN (η). Consequently, the LDP implies
that, if Γ ⊂ L∞([0, T ]) is an IN -continuous set, i.e., IN (Γ) = IN (int(Γ)) = IN (cl(Γ)),
then

lim
n→∞

1

n
logP

(
Zn([0, T ]) ∈ Γ

)
= −IN (Γ). (2.101)

Informally, the LDP reads as the approximate statement

P
(
Zn([0, T ]) ≈ η([0, T ]

)
= e−nIN (η)[1+o(1)], n→∞, (2.102)
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where ≈ stands for close in the essential norm. Informally, on this event we may
approximate

Q+
n (t) =

1

n

N(nt)∑
j=1

Yj =
1

n

nZn(t)∑
j=1

Yj ≈
1

n

nη(t)∑
j=1

Yj =
1

n

bnη(t)c∑
j=1

Yj , t ∈ [0, T ], (2.103)

where ≈ now stands for close in the Euclidean norm. Given η ∈ L∞([0, T ]), let µηn
denote the law of the last sum in (2.103). Below we state the LDP for the input
process subject to the arrival process.
Lemma A.4 (LDP for the input process subject to the arrival process).
Given η ∈ L∞([0, T ]), the family of probability measures (µηn)n∈N satisfies the LDP
on L∞([0, T ]) with rate n and with good rate function IηQ given by

IηQ(φ) =

{ ∫ T
0

Λ∗Q

(
dφ(t)
dη(t)

)
dη(t), φ ∈ ACT ,

∞, otherwise,
(2.104)

where Λ∗Q(x) = xµ− 1− log(xµ), x ∈ (0,∞).

Proof. Again apply Mogulskii’s theorem, this time with η(t) as the time index. Use
that Λ∗ is the Fenchel-Legendre transform of the cumulant generating function Λ

defined by Λ(θ) = logE(eθY1), θ ∈ R. �

§A.2 Measures in product spaces
The rate function IηQ describes the large deviations for the sequence of processes
(Q+

n (t))t∈[0,T ] given the path η. To derive the LDP averaged over η, we need a small
digression into measures in product spaces.
Definition A.5 (Product measures).
Define the family of probability measures (ρn)n∈N such that ρn = νnµ

η
n. These meas-

ures are defined on the product space L∞([0, T ])×L∞([0, T ]) given by the Cartesian
product of the space L∞([0, T ]) with itself, equipped with the product topology.

The open sets in the product topology are unions of sets of the form U1 × U2 with
U1, U2 open in L∞([0, T ]). Moreover, the product of base elements of L∞([0, T ])

gives a basis for the product space L∞([0, T ]) × L∞([0, T ]). Define the projections
Pri : L∞([0, T ]) × L∞([0, T ]) → L∞([0, T ]), i = 1, 2, onto the first and the second
coordinates, respectively. The product topology on L∞([0, T ]) × L∞([0, T ]) is the
topology generated by sets of the form Pr−1

i (Ui), i = 1, 2, where and U1, U2 are open
subsets of L∞([0, T ]).

Lemma A.6 (Product LDP).
The family of probability measures (ρn)n∈N satisfies the LDP on L∞([0, T ])×L∞([0, T ])

with rate n and with good rate function I given by

I(φ, η) =

{ ∫ T
0

Λ∗Q

(
dφ(t)
dη(t)

)
dη(t) +

∫ T
0

Λ∗N (η̇(t)) dt, φ, η ∈ ACT ,
∞, otherwise.

(2.105)

Proof. The claim follows from standard large deviation theory (see [40]). �
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§A.3 Large deviation principle for the input process
The contraction principle allows us to derive the LDP averaged over η. Indeed, let
X = L∞([0, T ])×L∞([0, T ]) and Y = L∞([0, T ]), let (ρn)n∈N be a sequence of product
measures on X , and consider the projection Pr1 onto Y, which is a continuous map.
Then the sequence of induced measures (µn)n∈N given by µn = ρn Pr−1

1 satisfies the
LDP on L∞([0, T ]) with good rate function

ĨQ(φ) = inf
(φ,η)∈Pr−1

1 ({φ})
I(φ, η) = inf

η∈L∞([0,T ])
I(φ, η). (2.106)

We can now state the LDP for the input process (Q+
n (t))t∈[0,T ].

Proposition A.7 (LDP for the input process).
The family of probability measures (µn)n∈N satisfies the LDP on L∞[0, T ] with rate n
and with good rate function Î given by

ÎQ(Γ) = inf
φ∈Γ

ĨQ(φ). (2.107)

In particular, if Γ is ÎQ-continuous, i.e., ÎQ(Γ) = ÎQ(int(Γ)) = ÎQ(cl(Γ)), then

lim
n→∞

1

n
logP

(
Q+
n ([0, T ]) ∈ Γ

)
= −ÎQ(Γ). (2.108)

Proof. The claim follows from the contraction principle (see [40]). �

It is interesting to look at a specific subset of L∞([0, T ]) that gives good bounds
for the input process. We are now in a position to prove Proposition 2.2.1.

Proof. If we compute the Fenchel-Legendre transforms Λ∗Q and Λ∗N , and we pick
η(t) = λt and φ(t) = (1/µ)η(t) = (1/µ)λt, we can easily check that the rate function
attains its minimal value zero. Hence, with high probability as r → ∞, the input
process is close to this deterministic path.

We can now estimate the probability of the scaled input process to go outside
ΓT,δ, which represents a tube of width 2δ around the mean path in the interval [0, T ].
More precisely,

ΓT,δ =

{
γ ∈ L∞([0, T ]) :

λ

µ
t− δ < γ(t) <

λ

µ
t+ δ ∀ t ∈ [0, T ]

}
. (2.109)

We may set T = 1 for simplicity and look at the scaled input process in the time
interval [0, 1]. We have

ÎQ((Γ1,δ)
c) = ÎQ(int((Γ1,δ))

c) = ÎQ(cl((Γ1,δ))
c). (2.110)

Hence (Γ1,δ)
c is ÎQ-continuous, and so according to (2.108),

lim
n→∞

1

n
logP

(
Q+
n ([0, 1]) /∈ Γ1,δ

)
= −ÎQ((Γ1,δ)

c). (2.111)
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Since

lim
n→∞

1

n
logP

(
Q+
n ([0, 1]) /∈ Γ1,δ

)
= lim
n→∞

1

n
logP

({
λ

µ
t− δ < Q+

n (t) <
λ

µ
t+ δ ∀ t ∈ [0, 1]

}c)
= lim
S→∞

1

S
logP

({
λ

µ
s− δS < Q+(s) <

λ

µ
s+ δS ∀ s ∈ [0, S]

}c)
,

(2.112)

where we put s = nt and S = n, we conclude that the probability to go out of ΓS,δS
is

P
({

λ

µ
s−δS < Q+(s) <

λ

µ
s+δS ∀ s ∈ [0, S]

}c)
= e−S ÎQ((Γ1,δ)

c) [1+o(1)], S →∞.

(2.113)
Because IQ is convex, to compute ÎQ((Γ1,δ)

c) it suffices to minimise over the linear
paths. The minimizer turns out to be one of the two linear paths that go from the
origin (0, 0) to (1, λ/µ ± δ), i.e., γ∗(t) = kt with k = (λ ± δµ)/µ. By construction,
ÎQ((Γ1,δ)

c) = ĨQ(γ∗) = infη∈L∞([0,1]) I(γ∗, η), where

I(γ∗, η) =

∫ 1

0

Λ∗Q

(
dγ∗(t)

dη(t)

)
dη(t) +

∫ 1

0

Λ∗N (η̇(t)) dt. (2.114)

We want to minimize the sum over all paths η such that η(0) = 0. Both integrals
are convex as a function of γ∗ and η, hence they are minimized by linear paths. Our
choice of γ∗(t) = kt is linear, so we set η(t) = ct with some constant c > 0. We can
then write

I(γ∗, η) =

∫ η(1)

0

Λ∗Q

(
dγ∗(t)

cdt

)
cdt+

∫ 1

0

Λ∗N (η̇(t)) dt

=

∫ c

0

Λ∗Q

(
k

c

)
cdt+

∫ 1

0

Λ∗N (c) dt

= c

[
k

c
µ− 1− log

(
kµ

c

)]
+ c log

( c
λ

)
− c+ λ.

(2.115)

The value of c that minimizes the right-hand side is c =
√
λkµ. Substituting this into

the formula above, we get

Kδ = ĨQ(γ∗) = kµ+ λ− 2
√
λkµ = (λ+ δµ) + λ− 2

√
λ(λ+ δµ). (2.116)

Note that Kδ > 0 for all δ > 0 and limδ→0Kδ = 0. This completes the proof. �

§B Appendix: the output process

The main goal of this appendix is to prove Proposition 2.2.4 in Section 2.2. In
Section B.1 we show a lower bound for the output process for the nodes in U , in a
setting where the nodes in U are not influenced by the nodes in V . We study the
network evolution up to time TU . In Section B.2 we show that, until the pre-transition
time, the network in the internal model behaves actually as we described.
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§B.1 The output process in the isolated model
Recall that in the isolated model a node in U keeps activating and deactivating in-
dependently of the nodes in V , until its queue length hits zero. We again consider a
single queue for a node in U and for simplicity suppress its index. In order to show
that, with high probability as r → ∞, the output process t 7→ Q−(t) = cT (t) when
properly rescaled is close to a deterministic path, we will provide a lower bound for
the output process. The upper bound Q−(t) ≤ ct is trivial and holds for any t ≥ 0,
by the definition of output process.

Lemma B.1 (Auxiliary output process).
For all δ > 0 and T large, the following statements hold.

(i) With high probability as r →∞, the process

QLB,T (t) = γUr + ρU t− δT − ct, t ∈ [0, T ], (2.117)

is a lower bound for the actual queue length process (Q(t))t∈[0,T ].

(ii) The probability of the lower bound in (i) failing is

1

2
e−KδT [1+o(1)], T →∞, (2.118)

with Kδ = (λ+ δµ) + λ− 2
√
λ(λ+ δµ).

Proof. We prove the two statements separately.

(i) By Proposition 2.2.1, with high probability as r →∞, we have Q+(t) ≥ ρU t−δT
for any δ > 0. Trivially, Q−(t) ≤ ct. It is therefore immediate that, with high
probability as r →∞, QLB,T (t) ≤ Q(t).

(ii) The exponentially small probability of Q+(t) going below the lower bound is
half of the probability given by Proposition 2.2.1, i.e.,

1

2
e−KδT [1+o(1)], T →∞, (2.119)

with Kδ = (λ+ δµ) + λ− 2
√
λ(λ+ δµ).

�

We study the network evolution up to time TU defined in Definition 2.2.2, the
expected time a single node queue takes to hit zero. We will prove in Appendix B.2
that, with high probability as r → ∞, the pre-transition time in the internal model
coincides in distribution with the pre-transition time in the isolated model, which
occurs before TU . Hence it is enough to study the isolated model up to TU .

Definition B.2 (Auxiliary times).
We next define two times that will be useful in our analysis.
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(T ∗U ) Consider the auxiliary output process QLB,TU (t) up to time TU . We define T ∗U
as the time needed for the process to hit zero, i.e.,

T ∗U = T ∗U (r) =
γur − δTU
c− ρU

=
γu − δα
c− ρU

r = α′r, (2.120)

with α′ = γu−δα
c−ρU . The difference TU − T ∗U = δα

c−ρU r is of order r. The queue
length at time T ∗U is not zero, but still of order r.

(T ∗∗U ) We define a smaller time T ∗∗U in such a way that, not only Q(T ∗∗U ) � r, but also
QLB,TU (T ∗∗U ) � r, i.e.,

T ∗∗U = T ∗∗U (r) = TU − 2(TU − T ∗U ) =

(
γU − 2δα

c− ρU

)
r = α′′r, (2.121)

with α′′ = γU−2δα
c−ρU .

Definition B.3 (Inactivity process).
Define the inactivity process by setting

W (t) = t− T (t), (2.122)

which equals the total amount of inactivity time until time t.

Recall that the service process t 7→ Q−(t) with Q−(0) = 0 is an alternating
sequence of activity periods and inactivity periods. The activity periods Zi, i ∈ N, are
i.i.d. exponential random variables with mean 1. The inactivity periods Wm, m ∈ N,
are exponential random variables with a mean that depends on the actual queue
length at the time when each of these periods starts, namely, if Wm =

[
t
(i)
m , t

(f)
m

]
,

then Wm ' Exp(gU (Q(t
(i)
m )) + O(1/r)). The queue length during this inactivity

intervals is actually increasing, but we are considering very small intervals, whose
lengths are of order 1/r, so that the queue length does not change much and the error
is then O(1/r).

To state our lower bound on the output process, we need the following two lemmas.

Lemma B.4 (Upper bound on number of activity periods).
LetM(t) be the number of activity periods that end before time t. Then, for all ε1 > 0,
the following statements hold.

(i) With high probability as r →∞,

M(T ∗∗U ) ≤ (1 + ε1)T ∗∗U . (2.123)

(ii) The probability of the upper bound in (i) failing is

Pu(M(T ∗∗U ) > (1 + ε1)T ∗∗U ) ≤ e−K1r [1+o(1)] +
1

2
e−Kδαr [1+o(1)], r →∞,

(2.124)
with K1 = α′′ ε1−log(1+ε1)

1+ε1
, Kδ as in Lemma B.1
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Proof. We prove the two statements separately.

(i) Note thatM(T ∗∗U ) counts the number of activity periods before time T ∗∗U , each of
which has an average duration 1. Since activity periods alternate with inactivity
periods, we expect M(T ∗∗U ) to be less than T ∗∗U . Assume now, for small ε1 > 0,
that M(T ∗∗U ) > (1 + ε1)T ∗∗U , which means that the number of activity periods
before T ∗∗U is greater than the length of the interval [0, T ∗∗U ]. This implies that
the average length of each activity period before time T ∗∗U is strictly less than
1, namely, that 1

T∗∗U

∑T∗∗U
i=1 Zi ≤ 1/(1 + ε1). According to Cramér’s theorem, we

can compute the probability of this last event as

Pu

T∗∗U∑
i=1

Zi ≤
(

1

1 + ε1

)
T ∗∗U

 = e−T
∗∗
U I
(

1
1+ε1

)
[1+o(1)], r →∞, (2.125)

with rate function I(x) = x log(x) − x + 1. Therefore, it occurs with exponen-
tially small probability. Hence M(T ∗∗U ) > (1 + ε1)T ∗∗U must also occur with a
probability which is also exponentially small. With high probability as r →∞,
we then have that

M(T ∗∗U ) ≤ (1 + ε1)T ∗∗U . (2.126)

Recall that T ∗∗U = α′′r. The counting of alternating activity and inactivity
periods gets affected when the queue length hits zero, since then the node de-
activates and the lengths of the activity periods are not regular anymore. At
time T ∗∗U , with high probability as r → ∞, the queue length is still of order
r. Hence, the probability that it hits zero at any time in the interval [0, T ∗∗U ]

is very small, since this event would imply the node to have a queue length
that is below the lower bound, Q(T ∗∗U ) ≤ QLB,TU (T ∗∗U ), which happens with an
exponentially small probability by Lemma B.1.

(ii) We can write

Pu(M(T ∗∗U ) > (1 + ε1)T ∗∗U ) ≤ e−T
∗∗
U I
(

1
1+ε1

)
[1+o(1)] +

1

2
e−KδTU [1+o(1)]

= e−K1r [1+o(1)] +
1

2
e−Kδαr [1+o(1)], r →∞,

(2.127)

with K1 = α′′I
(

1
1+ε1

)
= α′′ ε1−log(1+ε1)

1+ε1
, Kδ as in Lemma B.1.

�

Lemma B.5 (Upper bound on inactivity process).
For all δ, ε1, ε2 > 0 small, the following statements hold.

(i) With high probability as r →∞,

W (T ∗∗U ) ≤ ε2r. (2.128)
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(ii) The probability of the upper bound in (i) failing is

Pu
(
W (T ∗∗U ) > ε2r

)
≤ e−Kδαr [1+o(1)] + e−K1r [1+o(1)]

+ e
−
(
K2r+K3

r
gU (r)

+K4r log gU (r)
)

[1+o(1)]
, r →∞,

(2.129)

with K2 = α′′(1 + ε1)
(
− 1− log

(
ε2

α′′(1+ε1)

))
,K3 = ε2,K4 = α′′(1 + ε1).

Proof. We prove the two statements separately.

(i) Since M(t) counts the number of activity periods, and we start with an active
node (initially all nodes in U are active), we have

W (T ∗∗U ) ≤
M(T∗∗U )∑
m=1

Wm ≤
M(T∗∗U )∑
m=1

Ŵm, (2.130)

where Ŵm are i.i.d. exponential random variables with rate gU (QLB,TU (T ∗∗∗U )),
and T ∗∗∗U is the starting point of the last inactivity period before time T ∗∗U .
By the construction of T ∗∗U , we know that QLB,TU (T ∗∗∗U ) is of order r. The
last inactivity period is expected to be longer than the previous ones, since the
activation rates depend on the actual queue length, which is decreasing over
time. To make the inactivity periods Ŵm longer, we consider the lower bound
QLB,TU (t) for the actual queue length given in Lemma B.1.

By Lemma B.4, with high probability as r →∞, M(T ∗∗U ) ≤ (1 + ε1)T ∗∗U , and so

W (T ∗∗U ) ≤
M(T∗∗U )∑
m=1

Ŵm ≤
(1+ε1)T∗∗U∑
m=1

Ŵm. (2.131)

Define n = [(1 + ε1)T ∗∗U ]. By Cramér’s theorem, for small ε3 > 0,

Pu

(1+ε1)T∗∗U∑
m=1

Ŵm ≥ ε3T ∗∗U

 ≤ Pu

(
n∑

m=1

Ŵm ≥
ε3

1 + ε1
n

)

= e−nI
(

ε3
1+ε1

)
[1+o(1)]

= e−T
∗∗
U (1+ε1)I

(
ε3

1+ε1

)
[1+o(1)], n→∞,

(2.132)

where I is the rate function given by

I(x) =
x

gU
(
QLB,TU (T ∗∗∗U )

) − 1− log x+ log gU
(
QLB,TU (T ∗∗∗U )

)
. (2.133)

We take ε3 > (1 + ε1)/gU
(
QLB,TU (T ∗∗∗U )

)
� 1/gU (r) arbitrarily small, so that

we can apply Cramér’s theorem. Combining (2.131)–(2.132), we obtain that,
with high probability as r →∞,

W (T ∗∗U ) ≤ ε3T ∗∗U = ε3α
′′r = ε2r, (2.134)

where ε2 = ε3α
′′ can be taken arbitrarily small.
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(ii) We can write

Pu

(1+ε1)T∗∗U∑
m=1

Ŵm > ε3T
∗∗
U


≤ e−T

∗∗
U (1+ε1)I

(
ε3

1+ε1

)
[1+o(1)]

= e
−α′′r(1+ε1)

(
ε3

(1+ε1)gU (r)
−1−log

(
ε3

1+ε1

)
+log gU (r)

)
[1+o(1)]

= e
−
[
α′′(1+ε1)

(
−1−log

(
ε3

1+ε1

))
r+ε3α

′′ r
gU (r)

+α′′(1+ε1)r log(gU (r))
]

[1+o(1)]

= e
−
(
K2r+K3

r
gU (r)

+K4r log gU (r)
)

[1+o(1)]
, r →∞,

(2.135)

where the constants K2 = α′′(1 + ε1)
(
− 1 − log

(
ε2

α′′(1+ε1)

))
,K3 = ε3α

′′ = ε2
and K4 = α′′(1 + ε1). We also have to consider the probabilities computed in
(2.118) and (2.124), and the claim in (2.129) is settled.

�

We are now in a position to prove Proposition 2.2.4.

Proof. The equation Q−(t) ≥ ct−εr can be read as T (t) ≥ t−εr/c. This is equivalent
to saying thatW (t) ≤ εr/c for all t ∈ [0, TU ]. By taking ε2 = ε/(3c) in Lemma B.5, we
know that, for all t ∈ [0, T ∗∗U ], W (t) ≤ W (T ∗∗U ) ≤ εr/(3c). Moreover, in the interval
[T ∗∗U , TU ], the cumulative amount of inactivity time is trivially bounded from above
by the length of the interval, which is 2δr

c−ρU ≤ 2εr/(3c), and ε can be taken arbitrarily
small, since δ can be taken arbitrarily small. Putting the two bounds together, we
find that, with high probability as r →∞,

W (t) ≤ ε2r +
2δr

c− ρU
≤ 1

3

εr

c
+

2

3

εr

c
=
εr

c
, t ∈ [0, TU ], (2.136)

and the probability of this not happening is given by (2.129). �

The above lower bound Q−(t) ≥ ct − εr and the trivial upper bound Q−(t) ≤ ct

imply that, with high probability as r →∞, the output process Q−(t) stays close to
the path c 7→ ct by sending ε to zero. In other words, the node stays almost always
active all the time before TU .

§B.2 The output process in the internal model
In this section we want to couple the isolated model and the internal model and show
that they have identical behavior in the time interval [0, τ int

G ]. Hence it follows that
the output process in the internal model for nodes in U actually behaves as in the
isolated model described in Section B.1, until the pre-transition time.

Proposition B.6 (Coupling the internal and the isolated model).
Let X int

i (t) and X iso
i (t) denote the activity state of a node i at time t in the internal

and the isolated model, respectively. Then

lim
r→∞

Pu
(
X int
i (t) = X iso

i (t) ∀ i ∈ U t V ∀ t ∈ [0, τ int
G ]
)

= 1. (2.137)
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Consequently, with high probability as r →∞, the pre-transition times in the internal
and the isolated model coincide, i.e.,

lim
r→∞

Pu(τ int
G = τ iso

G ) = 1. (2.138)

Proof. In Section B.1 we determined upper and lower bounds for the output process
for nodes in U in the isolated model up to time TU . Assume now that τ int

G ≤ TU .
When considering the internal model and the set of nodes in V , note that these bounds
are not true for the whole interval [0, TU ], since at time τ int

G some nodes in V already
start to activate and influence the behavior of nodes in U .

If we look at the interval [0, τ int
G ], then we note that the queue length process for

a node i ∈ U is not affected by nodes in V , and so it behaves in exactly the same
way as if the node were isolated. The activation and deactivation Poisson clocks at
node i are synchronized, and are ticking at the same time in the isolated model and
in the internal model, so that X int

i (t) = X iso
i (t). Moreover, the activity states of

nodes in V are always equal to 0 in both models. Hence we conclude that the activity
states of every node coincide up to the pre-transition time τ int

G . Consequently, the
pre-transition times in the internal and the isolated model coincide on the event
{τ int
G ≤ TU}, which can then be written as the event {τ iso

G ≤ TU}. For the latter
we know that it has a high probability as r → ∞ (see proof of Proposition 2.3.8 in
Section 2.3.2). �
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CHAPTER 3
Arbitrary bipartite interference

graphs

This chapter is based on:
S.C. Borst, F. den Hollander, F.R. Nardi, M. Sfragara. Wireless random-access net-
works with bipartite interference graphs. [arXiv:2001.02841], 2020.

Abstract

We consider random-access networks where each node represents a server with a
queue. Each node can be either active or inactive. A node deactivates at unit rate,
and activates a rate that depends on its queue length, provided none of its neighbors
is active. We consider arbitrary bipartite graphs in the limit as the queues become
large, and we identify the transition time between the two states where one half of
the network is active and the other half is inactive. We decompose the transition into
a succession of transitions on complete bipartite subgraphs, and formulate a greedy
algorithm that takes the graph as input and gives as output the set of transition paths
the system is most likely to follow. Along each path we determine the mean transition
time and its law on the scale of its mean. Depending on the activation rate functions,
we identify three regimes of behavior.
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§3.1 Introduction

This chapter is a continuation of Chapter 2. We turn our attention to general bipartite
interference graphs: the node set can be partitioned into two nonempty sets U and
V , but not necessarily all nodes in U interfere with all nodes in V .

In Section 3.1.1 we describe the setting and the mathematical model of interest in
this chapter. In Section 3.1.2 we introduce the key idea behind our main results and
give an outline of the remainder of the chapter.

§3.1.1 Setting
We refer to Sections 1.1.5 and 2.1.1 for a general introduction to the mathematical
model. In this section we refine it with some extra notions we will need in the chapter.

Consider the bipartite graph G = ((U, V ), E), where U tV is the set of nodes and
E is the set of (undirected) edges that connect a node in U to a node in V , and vice
versa (see Figure 3.1 for examples). Through the chapter we assume |V | = N .

Figure 3.1: Examples of bipartite graphs: cyclic ladder (left), hypercube (center), even torus
(right).

We study the internal model with activation rates depending on the queue lengths
as in (1.5). We assume the activation rates to satisfy Definition 1.1.4 and we focus
on the following.

Definition 3.1.1 (Assumptions on the activation rates).
We assume polynomial activation functions of the form

gU (x) ∼ Bxβ , x→∞,
gV (x) ∼ B′xβ′ , x→∞, (3.1)

with B,B′, β, β′ ∈ (0,∞). We assume that nodes in V are much more aggressive than
nodes in U , namely,

β′ > β + 1. (3.2)

As we will see later, this ensures that the transition from u to v can be decomposed
into a succession of transitions on complete bipartite subgraphs.
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We begin by recalling the results for complete bipartite graphs from Chapter 2
(Theorem 2.1.6). Note that they are strongly related to the initial queue lengths at
the nodes in U , which are assumed in (1.11) to be QU (0) = γUr.

Theorem (Theorem 2.1.6).
Let G be a complete bipartite graph.

(I) β ∈ (0, 1
|U |−1 ): subcritical regime. The transition time satisfies

Eu[TG] = FsubQU (0)β(|U |−1) [1 + o(1)], r →∞, (3.3)

with Fsub = 1
|U |B−(|U|−1) , and

lim
r→∞

Pu
(
TG

Eu[TG]
> x

)
=

∫ ∞
x

Psub(y) dy = e−x, x ∈ [0,∞) (3.4)

with
Psub(z) = e−z, z ∈ [0,∞). (3.5)

(II) β = 1
|U |−1 : critical regime. The transition time satisfies

Eu[TG] = FcrQU (0) [1 + o(1)], r →∞, (3.6)

with Fcr = 1
|U |B−(|U|−1)+(c−ρU )

, and

lim
r→∞

Pu
(
TG

Eu[TG]
> x

)
=

∫ ∞
x

Pcr(y) dy

=

{
(1− Cx)

1−C
C , if x ∈ [0, 1

C ),

0, if x ∈ [ 1
C ,∞),

(3.7)

with

Pcr(z) =

{
(1− C)(1− Cz) 1

C−2, if z ∈ [0, 1
C ),

0, if z ∈ [ 1
C ,∞),

(3.8)

and C = Fcr (c− ρU ) ∈ (0, 1).

(III) β ∈ ( 1
|U |−1 ,∞): supercritical regime. The transition time satisfies

Eu[TG] = FsupQU (0) [1 + o(1)], r →∞, (3.9)

with Fsup = 1
c−ρU , and

lim
r→∞

Pu
(

τ1V
Eu[TG]

> x

)
=

∫ ∞
x

Psup(y) dy =

{
1, if x ∈ [0, 1),

0, if x ∈ [1,∞),
(3.10)

with
Psup(z) = δ1(z), z ∈ [0,∞), (3.11)

where δ1(z) is the Dirac function at 1.
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Theorem 2.1.6 shows that there is a trichotomy: depending on the value of β the
transition exhibits a subcritical regime, a critical regime or a supercritical regime.
Our goal is to extend Theorem 2.1.6 to arbitrary bipartite graphs. Note how the
mean transition time depends on the actual value of the initial queue lengths at nodes
in U : for complete bipartite graphs, those are fixed and equal to γUr; for arbitrary
bipartite graphs, we will see how the mean transition time depends on the way the
queue lengths are changing when nodes in V activate.

Next, we define some key notions that we will need in the chapter.

Definition 3.1.2 (Fork).
For a node v ∈ V , we define the set of neighbors of v as N(v) = {u ∈ U : uv ∈ E}
and the degree of v as d(v) = |N(v)|. Given a node v ∈ V , we refer to fork of v as
the complete bipartite subgraph of G containing only node v, its neighbors N(v) ⊆ U
and the edges between them. We talk about a d-fork when d(v) = d with d ∈ N.

Definition 3.1.3 (Updated queue lengths).
Let QU = {QU,i}|U |i=1 be the sequence of queues associated with the nodes in U ,
and QV = {QV,j}|V |j=1 the sequence of queues associated with the nodes in V . Put
Q = (QU , QV ), and let Qk = (QkU , Q

k
V ) be the pair of sequences representing the

updated queue lengths after k nodes in V activated (see Definition 3.2.9 later for more
details).

We denote by T QG the transition time of the graph G when the initial queue lengths
are Q = (QU , QV ). It represents the time it takes to reach v starting from u. Below,
we define the nucleation time in order to distinguish between the full transition of
G and the successive transitions (nucleations) of the subgraphs of G related to each
node activating in V .

Definition 3.1.4 (Nucleation time).
We call nucleation time of the fork of v the time it takes for the nodes N(v) to
deactivate and for v to activate. We denote this time by T Qv = T QN(v),v, where v
represents the activating node and Q represents the initial queue lengths. It can be
seen as the transition time of the complete bipartite subgraph of G represented by
the fork of v. Note that, for v, w ∈ V , T Qv and T Qw are dependent random variables
when N(v) ∩N(w) 6= ∅.

§3.1.2 Key idea and outline
The key idea behind this chapter is to define an algorithm that allows us to identify
the set of paths A the network is mostly likely to follow while nodes in U deactivate
and nodes in V activate. We label the nodes in V based on their first activation and
we denote by a∗ the path that the network follows. More precisely, a∗ = (v∗1 , . . . , v

∗
N )

with v∗1 , . . . , v∗N all distinct, where v∗1 is the first node that activates and v∗N the last
one. Let E(a∗) denote the event that any of the paths in A occurs. We will prove
that

lim
r→∞

Pu(E(a∗)) = 1. (3.12)
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In particular, we will show that if we condition on the event

Aa = {the network follows path a ∈ A}, (3.13)

then we are able to identify how the mean transition time Eu[T QG |Aa] depends on
the sequence of nucleation times of the forks of the nodes in V , ordered as in the
path a (Theorem 3.3.2). We derive the asymptotics of the mean transition time as
r → ∞ (Theorem 3.3.3) and identify the law of the transition time divided by its
mean (Theorem 3.3.5). To do so, we determine how the queue lengths change along
the given path (Theorem 3.4.8). Similarly as for the complete bipartite graph in
Theorem 2.1.6, we distinguish between three regimes for the value of β (subcritical,
critical and supercritical), in which the queues behave differently and, consequently,
so does the transition time.

Outline of the chapter. The remainder of this chapter is organized as follows. In
Section 3.2 we introduce the algorithm, show that it has two important properties,
greediness and consistency, and give an example of how it works. In Section 3.3 we
state our main theorems. In particular, we show how both the mean transition time
and its law on the scale of its mean can be determined according to the path that
the algorithm chooses. In Section 3.4 we show how the nucleation times depend on
the graph structure and we analyze how the queue lengths at the nodes change along
each path that the algorithm chooses. In Section 3.5 we provide the proof of the two
algorithm properties mentioned above and we discuss the algorithm complexity. In
Section 3.6 we prove our main theorems. In Appendix C, we show some technical
computations for the mean nucleation time in the special setting of disjoint forks
competing for activation.

§3.2 The algorithm

In this section we introduce the algorithm that describes, step by step, how the net-
work behaves while nodes in U deactivate and nodes in V activate. The presentation
is organised into a series of definitions and lemmas. In Section 3.2.1 we define how the
algorithm works iteratively. In Section 3.2.2 we show that the algorithm is greedy and
consistent (Propositions 3.2.6–3.2.7). In Section 3.2.3 we explain how the algorithm
is used to capture the nucleation of the forks. An example of a bipartite graph and
how the algorithm acts on it are given in Section 3.2.4.

§3.2.1 Definition of the algorithm
Let N = |V | be the number of nodes in V . The algorithm takes as input the bipartite
graph G = ((U, V ), E) and gives as output a sequence of triples that is needed to
characterise the transition time, namely,

G→ (Yk, d̄k, nk)Nk=1, (3.14)

where Yk is a random variable with values in {1, . . . , N} describing the index of the
node selected at step k, d̄k ∈ N is the degree of the selected node and nk ∈ N is
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a parameter that counts how many possibilities there are at step k to choose the
next node in V (uniformly at random) from the remaining nodes with least degree.
Sometimes we will write v∗k instead of vYk to emphasise that the network is following
a specific order of activation for the nodes in V .

Definition 3.2.1 (Algorithm).
Set G = G1 = ((U1, V1), E1). Given the graph Gk = ((Uk, Vk), Ek), find the graph
Gk+1 = ((Uk+1, Vk+1), Ek+1) by iterating the following procedure until Vk+1 is empty.

• Start from the graph Gk.

• Look at the nodes in Vk and at the minimum degree d̄k in Gk.

• Pick a node uniformly at random from the ones with minimum degree in Gk.

• Denote the chosen node by v∗k and the number of choices by nk.

• Eliminate the node v∗k and all its neighbors in Uk, together with all their adjacent
edges. Denote the resulting bipartite graph by Gk+1.

The idea of eliminating step by step the nodes in U that deactivated comes from
the fact that when a node in V activates, it “blocks” all its neighbors in U , which,
with high probability as r → ∞, will remain inactive for the rest of the time. This
is due to the aggressiveness of the nodes in V compared to the nodes in U (recall
Definition 3.1.1). The following lemma will be proved in Section 3.6.2.

Lemma 3.2.2 (Activation sticks).
Consider a node u ∈ U and let N(u) ⊆ V be the set of neighbors of u. Denote by tu
the first time a node v ∈ N(u) activates. Then, with high probability as r → ∞, u
remains inactive after tu, i.e., Xu(t) = 0 for all t ≥ tu.

Definition 3.2.3 (Mean nucleation time for the algorithm).
The algorithm generates a sequence v∗1 , . . . , v∗N of successively activating nodes in V .
Associated with step k of the algorithm is the nucleation time of the fork of node v∗k
(see Definition 3.1.2), which according to Theorem 2.1.6 satisfies

Eu[T Q
k−1

v∗k
] = F k (Eu[Qk−1

U ])1∧β(d̄k−1) [1 + o(1)], r →∞. (3.15)

Here F k is a pre-factor that depends on the degree d̄k, which plays the role of |U | in
Theorem 2.1.6, and on its relation with β. The term Eu[Qk−1

U ] represents the mean
updated queue lengths at the nodes in Uk in the subgraph Gk−1 (see Definition 3.1.3),
and plays the role of the initial queue lengths in Theorem 2.1.6. Note that Q0

U is fixed,
while Q1

U , Q
2
U , . . . , Q

N−1
U are random.

Intuitively, the sum of the mean nucleation times associated with the path gener-
ated by the algorithm gives the mean transition time along that path. We will see in
Section 3.4.2 that the pre-factors F k actually need to be adjusted by certain weights
that depend on the graph structure.
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§3.2.2 Properties of the algorithm
Definition 3.2.4 (Maximum least degree).
Given the sequence (d̄k)Nk=1 generated by the algorithm, let

d∗ = max
1≤k≤N

d̄k (3.16)

be the maximum least degree of the path associated with (d̄k)Nk=1.

Each time we run the algorithm, it may generate a different sequence, since it decides
uniformly at random which node in V with minimum degree to pick next. We know
that the set of paths A generated by the algorithm is the set of most likely paths
the network follows. The order of the nodes in a path is given by their successive
activation in V .

The following lemma and two propositions will be proved in Section 3.5.2.

Lemma 3.2.5 (Comparing maximum least degrees of different paths).
Consider two different paths a, b such that a ∈ A is generated by the algorithm. For
k = 1, . . . , N , denote by d̄k,a and d̄k,b the minimum degrees at step k in paths a and
b. Let d∗a = max1≤k≤N d̄k,a and d∗b = max1≤k≤N d̄k,b. Then d∗a ≤ d∗b .

In other words, given any path b, its maximum least degree cannot be smaller than
the maximum least degree of a path a generated by the algorithm. We will see
how the maximum least degree d∗ determines the order of the mean transition time.
Depending on how β is related to d∗, we distinguish between the following three
different regimes.

(I) Sucritical regime, if β ∈ (0, 1
d∗−1 ).

(II) Critical regime, if β = 1
d∗−1 .

(III) Supercritical regime, if β ∈ ( 1
d∗−1 ,∞).

The algorithm is greedy, in the sense that it always chooses the node that adds
the least to the total transition time along the path, simply because this node is likely
to be the first to activate. The greedy way in which the algorithm picks the nodes
ensures that the transition time along the chosen path is the shortest possible.

Proposition 3.2.6 (Greediness).
The mean transition time along a path generated by the algorithm is the shortest
possible.

The algorithm is consistent, in the sense that d∗ is unique. Different paths generated
by the algorithm lead to the same order of the mean transition time.

Proposition 3.2.7 (Consistency).
All the paths generated by the algorithm lead to the same order of the mean transition
time.
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§3.2.3 Structure of the algorithm
A node in V activates because it is the one whose complete bipartite fork has the
fastest nucleation, and occurs because of the randomness in the activation and deac-
tivation Poisson clocks and the randomness of the queue length processes that appear
as the arguments of the activation rates.

Definition 3.2.8 (Next nucleation time).
Given that k − 1 nodes in V already activated, we define by next nucleation time τ̄k
the time it subsequently takes for the k-th node in V to activate, i.e.,

τ̄k = minv∈VkT Q
k−1

v . (3.17)

By keeping track of which nodes have been picked, we can compute the updated
queue lengths for the successive mean nucleation times.

Definition 3.2.9 (Updated queue lengths).
For k = 1, . . . , N , define the updated queue lengths Qk−1 by

Qk−1 = (Qk−1
U , Qk−1

V ) =

(
QU

( k−1∑
l=1

τ̄l

)
, QV

( k−1∑
l=1

τ̄l

))
. (3.18)

When a node in V activates, its fork can be of three different types depending on how
its degree is related to β.

Definition 3.2.10 (Subcritical, critical and supercritical nodes).
Given that k− 1 nodes in V already activated, consider the k-th activating node and
its fork of degree d̄k. If β ∈ (0, 1

d̄k−1
), then the node (or its fork) is subcritical. If

β = 1
d̄k−1

, then it is critical. If β ∈ ( 1
d̄k−1

,∞), then it is supercritical.

In the subcritical and critical regimes, with high probability as r → ∞, the next
nucleation time τ̄k is given by the minimum over the nodes with least degree in Vk.
Indeed, with high probability as r → ∞, nodes with least degree activate first. The
following lemma will be proved in Section 3.6.2.

Lemma 3.2.11 (Activation selects low degree).
For k = 1, . . . , N , consider two nodes v, w ∈ Vk such that dk(w) > dk(v) = d̄k.
Suppose that β ∈ (0, 1

d̄k−1
]. Then the probability of w activating before v satisfies

lim
r→∞

Pu
(
T Q

k−1

w < T Q
k−1

v

)
= 0. (3.19)

In the supercritical regime the situation is more delicate. If at step k the least
degree fork has degree d̄k such that β ∈ ( 1

d̄k−1
,∞), then the mean nucleation time

of the next activating fork is the same for all the remaining forks in the graph. The
network does not distinguish between the nodes according to their degree anymore,
since all possibilities contribute equally to the total mean transition time. Indeed,
the mean nucleation time is given by the expected time it takes for the queue lengths
at nodes in U to hit zero. Hence, after the nucleation of the first supercritical fork,
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all the queues in U are o(r) and the transition occurs very fast (see Section 3.4.3 for
more details).

In Section 3.3 we will see how the transition time can be computed given the set
of possible paths generated by the algorithm. Moreover, for each fixed path we will
identify the mean transition time and its law on the scale of its mean. Given a path,
we know in which order the nodes activate. In Section 3.6 we will see how we can
identify the nucleation time of a node given in Definition 3.2.8 with the nucleation
time of the complete bipartite fork of the activating node, as written in (3.15). The
sum of all the nucleation times gives us the transition time of the graph. Not all the
terms in the sum contribute significantly as r → ∞. We will need to identify which
are the leading order terms. The answer depends on the sequence of degrees (d̄k)Nk=1

generated by the algorithm and on how the queue lengths change along the path.

§3.2.4 Example
Consider the bipartite graph G = ((U, V ), E) with |U | = 6 and |V | = 4 in Figure 3.2.
This graph serves as a simple example of how the algorithm works.

u6

u5

u4

u3

u2

u1

v4

v3

v2

v1

Figure 3.2: The initial bipartite graph G = G1 = ((U1, V1), E1).

Step k = 1. We start with G = G1 = ((U1, V1), E1). There are two nodes v2, v4 with
minimum degree d̄1 = 2, so n1 = 2. Pick uniformly at random one of them (with
probability 1

n1
= 1

2 ), say Y1 = 2. Eliminate node v2, all its neighbors u2, u3, and
all their edges u2v1, u2v2, u2v3, u3v1, u3v2, u3v3. Denote the new bipartite graph by
G2 = ((U2, V2), E2). The nucleation time associated with this node satisfies

Eu[T Q
0

vY1
] = Eu[T Q

0

v2
] = F 1 (Q0

U )1∧β [1 + o(1)], r →∞. (3.20)

Step k = 2. Node v1 has the minimum degree d̄2 = 1, so Y2 = 1. Eliminate node v1,
all its neighbors, and all their edges. Denote the new graph by G3 = ((U3, V3), E3).
The nucleation time associated with this node satisfies

Eu[T Q
0

vY2
] = Eu[T Q

1

v1
] = F 2 (Eu[Q1

U ])0 [1 + o(1)] = o(1), r →∞. (3.21)

Step k = 3. Node v4 has the minimum degree d̄3 = 2, so Y3 = 4. Eliminate node v4,
all its neighbors, and all their edges. Denote the new graph by G4 = ((U4, V4), E4).
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The nucleation time associated with this node satisfies

Eu[T Q
0

vY3
] = Eu[T Q

2

v4
] = F 3 (Eu[Q2

U ])1∧β [1 + o(1)], r →∞. (3.22)

Step k = 4. Node v3 is the only node left, with degree d̄4 = 1, so Y4 = 3. Eliminate
node v3, all its neighbors, and all their edges, after which the empty graph is left.
The nucleation time associated with this node satisfies

Eu[T Q
0

vY4
] = Eu[T Q

3

v3
] = F 4 (Eu[Q3

U ])0 [1 + o(1)] = o(1), r →∞. (3.23)

The above scenario forms a path that is described by nodes in V activating in the
order v2, v1, v4, v3 (see Figure 3.3).

×
×

×

u6

u5

u4

u1

v4

v3

v1

×
×
×

×

×

u6

u5

u4

v4

v3

×
×

×
×
×

×

×

×

u4 v3

Figure 3.3: The sequence of bipartite graphs G2 = ((U2, V2), E2), G3 = ((U3, V3), E3) and
G4 = ((U4, V4), E4) generated by the algorithm.

Note that the algorithm may pick node v4 at the first step by setting Y1 = 4,
since the choice of the node with minimum degree is uniformly at random. If so,
then the algorithm would follow a different path. At the first step we would get
Y1 = 4 and Eu[T Q0

v4
] = F 1 (Q0

U )1∧β [1 + o(1)]. At the second step, Y2 = 2 and
Eu[T Q1

v2
] = F 2 (Eu[Q1

U ])1∧β [1 + o(1)]. At the third step, Y3 = 1 and Eu[T Q2

v1
] = o(r).

At the fourth step, Y4 = 3 and Eu[T Q3

v3
] = o(r). This choice leads to a different path,

where the nodes in V activate in the order v4, v2, v1, v3.
Each possible scenario is identified with a path in the algorithm, described by the

nodes in V according to the order of their first activation. The total mean transition
time along a path can be thought as a sum of the mean nucleation times associated
with each activating node in the path (see Theorem 3.3.2). We will prove in Sec-
tion 3.5.2 that all the paths generated by the algorithm lead to the same order of the
mean transition time.

§3.3 Main results

In this section we present our main theorems regarding the transition time. In Sec-
tion 3.3.1 we show that E , the event that the network follows the algorithm, occurs
with high probability as r → ∞ (Theorem 3.3.2(i)). We analyze the contributions
along a given path, noting that not all the nucleation times are significant for the total
mean transition time (Theorem 3.3.2(ii)). In Section 3.3.2 we compute the asymptot-
ics of the mean transition time, including the pre-factor, focusing on the significant
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terms only (Theorem 3.3.3). In Section 3.3.3 we identify the law of the transition
time divided by its mean, which turns out to be a convolution of the laws found for
the complete bipartite graph in Theorem 2.1.6 (Theorem 3.3.5). There is again a
trichotomy, depending on the value of β. Proofs will be given in Section 3.6.

§3.3.1 Most likely paths

Let Ω be the set of all possible orderings (permutations) of nodes in V . Denote by
A ⊆ Ω the subset of orderings generated by the algorithm, and denote by Asc the
subset of orderings generated by the algorithm truncated at the first supercritical
node (if there is any). Recall that, according to Definition 3.2.10, a supercritical node
is a node that activates through a supercritical fork. If a = (v1, . . . , vN ) is an element
of A, then asc = (v1, . . . , vsc) is an element of Asc, where vsc denotes the last node of
each truncated ordering. We allow this node to be any of the remaining supercritical
nodes not already present in the sequence.

Definition 3.3.1 (The network follows the algorithm).
Denote by a∗ = (v∗1 , . . . , v

∗
N ) the ordering of the nodes in V along the path a∗ followed

by the network. For fixed a∗, let

E(a∗) = {∃ a ∈ A : a = a∗} ∪
{
∃ asc = (v1, . . . , vsc) ∈ Asc : v1 = v∗1 , . . . , vsc = v∗sc

}
(3.24)

be the event that the network follows any of the paths generated by the algorithm up
to the first supercritical node (if there is any).

Our first main theorem shows how the algorithm helps us to find the mean trans-
ition time. The first statement holds for all three regimes. The second and third
statements hold in the subcritical and critical regimes only (for which the network
follows the algorithm until the last activating node). The idea is that the mean trans-
ition time can be seen as a weighted sum of the mean nucleation times associated
with each activation and of negligible terms representing the time it takes after each
activation to bring the network back in the state with all the remaining nodes in U
active. In the supercritical regime we do not need any statement, because the mean
transition time is known to be the expected time it takes for the queue lengths to hit
zero.

Theorem 3.3.2 (Most likely paths).
Consider the bipartite graph G with initial queue lenghts Q0.

(i) With high probability as r →∞, the network follows the algorithm, i.e.,

lim
r→∞

Pu(E(a∗)) = 1. (3.25)

Consider β ∈ (0, 1
d∗−1 ]: subcritical or critical regime.
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(ii) With high probability as r →∞, the transition time satisfies

Eu[T Q
0

G 1E(a∗)] =

N∑
k=1

∑
i1,...,ik :

(vi1 ,...,vik )∈V1×···×Vk

( k∏
l=1

1

nl

)
fk Eu[T Q

k−1

vik
1E(a∗)] [1 + o(1)],

r →∞,
(3.26)

where nk ∈ N is the number of possible nodes that the algorithm can pick at step
k, while the factor fk ∈ (0, 1) (to be identified in Theorem 3.3.3) comes from
the fact that the node activating at step k is the one that activates first among
the nk nodes with the same least degree. Both nk and fk depend on the sequence
of nodes that activated before step k.

(iii) Conditional on the path a = (v1, . . . , vN ) ∈ A and the event

Aa = {a∗ = a} = {v1 = v∗1 , . . . , vN = v∗N}, (3.27)

with high probability as r →∞, the transition time satisfies

Eu[T Q
0

G |Aa] =

N∑
k=1

fk Eu[T Q
k−1

vk
] [1 + o(1)], r →∞. (3.28)

Theorem 3.3.2 will be proved in Section 3.6.3. Note that the mean transition time
can be split as

Eu[T Q
0

G ] = Eu[T Q
0

G 1E(a∗)] + Eu[T Q
0

G 1E(a∗)C ]. (3.29)

The second term in the right-hand side represents the mean transition time when the
network does not follow the algorithm, and equals

Eu[T Q
0

G 1E(a∗)C ] = Eu[T Q
0

G |E(a∗)C ]Pu(E(a∗)C). (3.30)

Even though we know from Theorem 3.3.2(i) that Pu[E(a∗)C ] tends to zero as r →∞,
a priori this term may still affect the total mean transition time, since the conditional
expectation may be substantial. In what follows we focus on the first term in the
right-hand side, since this captures the typical behavior of the network.

We will see in Theorem 3.3.3 below that, in the supercritical regime, the mean
transition time is the expected time it takes for the queues in U to hit zero, independ-
ently of which path the network took before the activation of the first supercritical
node. Theorem 3.3.2(ii) gives us a way, in the subcritical and critical regimes, to
split the total mean transition time into a sum of mean nucleation times of successive
forks, by taking into account all possible paths that the algorithm may follow, each
with its own probability. Theorem 3.3.2(iii) shows that we can also think of the total
mean transition time as a sum over all possible paths, each with its own probability
and mean transition time, namely,

Eu[T Q
0

G 1E(a∗)] =
∑
a∈A

Eu[T Q
0

G 1Aa ] =
∑
a∈A

Eu[T Q
0

G |Aa]Pu(Aa). (3.31)
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The above expression allows us to compute the mean transition time along a single
path. For every a ∈ A,

Pu(Aa) =

N∏
k=1

1

nk
. (3.32)

We already saw in Proposition 3.2.7 that the order of the mean transition time does
not depend on which path the algorithm generates.

§3.3.2 Mean of the transition time
Consider a path a ∈ A generated by the algorithm and the event Aa that the network
follows this path. Recall that d∗ = max1≤k≤N d̄k is the maximum degree among the
sequence of minimum degrees (d̄k)Nk=1. Let v

∗
k be the k-th activating node in path a.

According to Definition 3.2.3, the mean nucleation time Eu[T Q
k−1

v∗k
] is given by

Eu[T Q
k−1

v∗k
] =


F ksub (Eu[Qk−1

U ])β(d̄k−1) [1 + o(1)], if β ∈ (0, 1
d̄k−1

),

F kcr Eu[Qk−1
U ] [1 + o(1)], if β = 1

d̄k−1
,

F ksup Eu[Qk−1
U ] [1 + o(1)], if β = ( 1

d̄k−1
,∞),

r →∞,

(3.33)
with

F ksub =
1

d̄kB−(d̄k−1)
, F kcr =

1

d̄kB−(d̄k−1) + (c− ρU )
, F ksup =

1

c− ρU
, (3.34)

are constants depending on d̄k, B, c, ρU . Note that F ksub really depends on k, while
F kcr = 1

d̄kB
−(d̄k−1)+(c−ρU )

is the same for every critical node, and F ksup = Fsup is
independent of k. Moreover, note that the first mean nucleation time depends on the
initial queue lengths Q0

U at the nodes in U , but in general the mean nucleation time
associated with a fork depends on the mean queue lengths at the nodes in U at the
moment the fork starts the nucleation.

Our second main theorem identifies the mean transition time along a given path.

Theorem 3.3.3 (Mean transition time).
Consider the bipartite graph G with initial queue lengths Q0.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. The transition time satisfies

Eu[T Q
0

G |Aa] =
∑

1≤k≤N
k: d̄k=d∗

fk
γ
β(d∗−1)
U

d∗B−(d∗−1)
rβ(d∗−1) [1 + o(1)], r →∞, (3.35)

with

fk =
1

nk
. (3.36)
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(II) β = 1
d∗−1 : critical regime. Denote by hk ∈ N0 the number of nodes in V at step

k that already activated through a fork of degree d∗. Then the transition time
satisfies

Eu[T Q
0

G |Aa] =
∑

1≤k≤N
k: d̄k=d∗

fk
γ

(hk)
U

d∗B−(d∗−1) + (c− ρU )
r [1 + o(1)], r →∞,

(3.37)
with

fk =
d̄kB

−(d̄k−1) + (c− ρU )

nkd̄kB−(d̄k−1) + (c− ρU )
(3.38)

and
γ

(hk)
U = γU − (c− ρU )

∑
1≤i≤k
i: d̄i=d

∗

f ′i , (3.39)

where for a critical node vi the coefficient f ′i is defined in a recursive way as

f ′i =
1

nid̄iB−(d̄i−1) + (c− ρU )

(
γU − (c− ρU )

∑
1≤j≤i−1
j: d̄j=d

∗

f ′j

)
> 0. (3.40)

(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. The transition time satisfies

Eu[T Q
0

G ] =
γU

c− ρU
r [1 + o(1)], r →∞. (3.41)

Theorem 3.3.3 will be proved in Section 3.6.4. Both in the subcritical and su-
percritical regimes, Theorem 3.3.3 provides explicit formulas for the mean transition
time in terms of the parameters c, γU , ρU and B, β in our model and the sequence of
numbers (d̄k, nk)Nk=1 that are produced by the algorithm, with d∗ = max1≤k≤N d̄k. In
the critical regime, however, the formula is more delicate, since the pre-factor depends
on how long the critical nucleations take. Indeed, γ(hk)

U in (3.39) represent the mean
updated queue lengths at step k after hk nodes in V activate through critical forks
(see Section 3.4.3 for more details). Recall from Chapter 2 that the queue lengths all
have a good behavior, in the sense that, with high probability as r → ∞, they are
always close to their mean (see Remark 3.4.7). Note that the mean transition time
in the subcritical and critical regimes depends on the path, while in the supercritical
regime it does not.

§3.3.3 Law of the transition time
Theorem 3.3.2 shows how the mean transition time along a path is a sum of terms
related to the successive mean nucleation times of complete bipartite subgraphs of
G. Theorem 3.3.3 tells us that, depending on the value of β, this sum reduces to
a smaller sum of only a few significant terms. It also tells us how to compute the
pre-factors of these terms.
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Definition 3.3.4 (Multiplicity of d∗).
Consider a path a ∈ A generated by the algorithm and its associated degree sequence
(d̄k)Nk=1. Write ma

sub and ma
cr to denote the multiplicity of d∗ in the path a in the

subcritical and critical regimes, i.e.,

ma
sub = |{k : d̄k = d∗ < β−1 + 1}|, (3.42)
ma

cr = |{k : d̄k = d∗ = β−1 + 1}|. (3.43)

Our third main theorem identifies the law of T Q
0

G /Eu[T Q
0

G ]. Recall the laws
Psub,Pcr,Psup arising from Theorem 2.1.6. Write ~ to denote convolution.

Theorem 3.3.5 (Law of the transition time).
Consider the bipartite graph G with initial queue lengths Q0.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. With fk as in (3.36) and ma

sub as in (3.42),
the transition time satisfies

lim
r→∞

Pu
(

T Q
0

G

Eu[T Q0

G |Aa]
> x | Aa

)
=

∫ ∞
x

(
~m

a
sub

k=1 P
fk,Sma

sub

sub

)
(y) dy, x ∈ [0,∞),

(3.44)
with

P
fk,Sma

sub

sub (z) =
Smasub

fk
exp

(
−
Smasub

fk
z

)
, z ∈ [0,∞), (3.45)

and with Smasub
=
∑
i : d̄i=d∗

fi.

(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. The transition time satisfies

lim
r→∞

Pu
(
T Q

0

G

Eu[T Q0

G ]
> x

)
=

∫ ∞
x

Psup(y) dy =

{
1, if x ∈ [0, 1),

0, if x ∈ [1,∞),
(3.46)

with
Psup(z) = δ1(z), z ∈ [0,∞), (3.47)

where δ1(z) is the Dirac function at 1.

Theorem 3.3.5 will be proved in Section 3.6.5. There we will also see why there is
no statement for the critical regime (II).

§3.3.4 Discussion
Intuition. Analyzing the transition time for arbitrary bipartite graphs is much harder
than for complete bipartite graphs. The key idea is to view the transition time as a
sum of subsequent nucleation times for complete bipartite subgraphs. The order in
which nodes activate in V is random, because it depends on the fluctuations of the
activation rates via the queue lengths. However, with high probability as r → ∞,
the nodes with the least number of active neighbors in U activate first. After each
activation, the underlying bipartite graph changes according to which node activates
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and which nodes deactivate. Hence the subsequent activations in V depend on how
the graph changes, as well as on the evolution of the network, since the queue lengths
(and hence the activation rates) change over time as well. Recall that the queue
lengths all have a good behavior (see Remark 3.4.7).

Theorems. To keep track of this evolution, we defined a greedy algorithm in Sec-
tion 3.2. If we run the algorithm once, then it generates a specific path of activating
nodes in V . This is enough to determine the leading order of the transition time as
r → ∞, since it only depends on the maximum least degree d∗, which is the same
for all the paths that can be generated. Moreover, given d∗, we can immediately
determine whether we are in the subcritical, critical or supercritical regime. If we
are interested in the pre-factor of the mean transition time and in its law, then we
need to generate all possible paths. Theorem 3.3.2 shows that we can split the mean
transition time into a weighted sum over all possible paths of the mean nucleation
times associated with each activation in the path. Theorem 3.3.3 gives the mean
transition time conditional on the path and shows that the outcome is non-trivial
both in the subcritical and critical regimes. Theorem 3.3.5 gives the law conditional
on the path, but fails to capture the critical regime. The reason is that there are
intricate dependencies between the subsequent nucleation times along the path.

§3.4 Nucleation times and queue lengths

In Section 3.4.1 we introduce the concept of asymptotic independence of forks and
we show that in the subcritical and critical regimes competing forks can be treated
as if they were disjoint, in the limit as r → ∞ (Proposition 3.4.1). In Section 3.4.2
we study the mean and the law of the next nucleation time by using techniques
from metastability and results from Section 3.4.1 (Propositions 3.4.3 and 3.4.6). In
Section 3.4.3 we show how the mean queue lengths change according to which node
activates in V (Theorem 3.4.8).

§3.4.1 Asymptotic independence of forks
In this section we show that, as r →∞, forks can be treated as being independent of
each other even when they share some nodes. We introduce the concept of asymptotic
independence of forks, which holds only as r → ∞ and which allows us to treat
overlapping forks as if they were disjoint. We show that the nucleation time of a fork
is not influenced by the behavior of other forks sharing nodes with it.

In Chapter 2 it is shown that, as soon as all the nodes in U of a complete bipartite
graph become simultaneously inactive, the first node in V (and subsequently all the
others nodes) activates in a very short time interval, negligible compared to the time
it takes for all the nodes in U to deactivate. Hence, the time it takes for the nodes
in U to become all simultaneously inactive is the same as the time it takes for the
first node in V to activate, up to an error term that is negligible as r → ∞. In our
setting, to study the nucleation times of forks it is enough to study the time it takes
for all their respective nodes in U to deactivate, without considering the set V .
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Proposition 3.4.1 (Asymptotic independence).
Consider the graph Gk and the d̄k-fork W , where d̄k is the minimum degree of the
nodes in Vk. Denote by TW the time it takes for fork W to nucleate for the first time.
Consider the event

E =

{
∃ {s1, . . . , sα} ⊂ {u1, . . . , ud̄k} = W ∩ Uk : ∃ 0 ≤ t < τ̄k s.t.

Xsi

( k−1∑
j=1

τ̄j + t

)
= 0 ∀ i = 1, . . . , α

}
(3.48)

of having a subset of α nodes in Uk belonging to fork W that are simultaneously
inactive at a time t after the last nucleation. The following statements hold.

(i) The mean nucleation time of W satisfies

Eu[TW | E ] = Eu[TW ] [1 + o(1)], r →∞. (3.49)

(ii) The law of the nucleation time of W satisfies

lim
r→∞

Pu(TW > x | E) = lim
r→∞

Pu(TW > x), x ∈ [0,∞). (3.50)

Proof. We prove the two statements separately.

(i) We denote by S the event that after time t all the nodes ofW that are still active
become simultaneously inactive before any of the inactive nodes in {s1, . . . , sα}
activates again. We know that the time it takes for d̄k − α nodes to become
simultaneously inactive is an exponential random variable TS with mean of
order rβ(d̄k−α−1), while the time it takes for one of the α inactive nodes to
activate is an exponential random variable with mean of order 1/rβ . Hence the
probability of S is of order r−β(d̄k−α) = o(1). If S occurs, then W nucleates in
time TW = t+ TS . Note that t must be of order rβ(α−1), hence

Eu[TW | E ∩ S] = O
(
rβ(α−1)

)
+O

(
rβ(d̄k−α−1)

)
= o
(
rβ(d̄k−1)

)
, r →∞.

(3.51)
On the other hand, if the complementary event SC occurs, then, with high
probability as r → ∞, in a negligible time o(1) the network reaches the state
with all the nodes u1, . . . , ud̄k active, and from there it takes time Eu[TW ] for
W to nucleate. Hence

Eu[TW | E ∩ SC ] = o(1) + Eu[TW ], r →∞. (3.52)

Putting the two complementary events together, we obtain that

Eu[TW | E ] = Eu
[
TW | E ∩ S

]
Pu(S) + Eu

[
TW | E ∩ SC

]
Pu(SC)

= o
(
rβ(d̄k−1)

)
o(1) +

(
o(1) + Eu[TW ]

)
(1− o(1))

= Eu[TW ] [1 + o(1)], r →∞.
(3.53)
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(ii) Using the complementary events S and SC , we can write for all x ≥ 0

lim
r→∞

Pu(TW > x | E) = lim
r→∞

Pu({TW > x} ∩ S | E)Pu(S)

+ lim
r→∞

Pu({TW > x} ∩ SC | E)Pu(SC)

= lim
r→∞

Pu(TW > x),

(3.54)

since limr→∞ Pu(S) = 0 and, when conditioning on SC , with high probability
as r →∞, the network reaches the initial state in a negligible time after t, hence
it behaves as if at time t all nodes in U were active.

�

The above proposition shows that, as r → ∞, the mean nucleation time of a
fork and its law are not influenced by the fact that some of its nodes might be
simultaneously inactive at some time. The intuition is that, as r →∞, the nucleation
of a fork is so hard to achieve and takes so long that sharing some nodes with other
forks does not help to make the nucleation happen appreciably faster. The network
tends to quickly reach the initial state with all the remaining nodes in U active, and
hence the nucleation time of a fork can be seen as the time it takes for its nodes
in U to deactivate starting from all of them being active. In particular, in case of
overlapping forks, the nucleation time of a fork is not influenced by the behavior of
other forks sharing nodes with it.

§3.4.2 Next nucleation time
Given the graph Gk, consider the next nucleation time τ̄k from Definition 3.2.8. The
next node that activates is the one that completes the fastest nucleation among the
nk nodes with least degree. We want to find an expression for Eu[τ̄k].

In Appendix A we show the computations for the mean next nucleation time
in the case when the competing forks are disjoint, hence described by i.i.d. random
variables. Recall that in the subcritical regime we are considering a minimum of
nucleation times that are exponential random variables, while in the critical regime
we are considering a minimum of nucleation times that follow a truncated polynomial
law (see Theorem 2.1.6). By using Proposition 3.4.1, we are also able to give explicit
asymptotics for the mean next nucleation time without assuming the forks being
independent.

Each nucleation of a fork can be seen as a successful escape from a metastable
state, which is represented by the initial state where the nodes in Uk in the fork are
active and the node in Vk in the fork is inactive. When considering multiple forks, we
can view the network as an ergodic Markov process on a state space Ω representing
the collection of all the feasible joint activity states of Gk. The first nucleation can
be described by a regenerative process where the Markov process leaves a metastable
state x0 (with all the nodes in Uk active) and reaches a stable set S, which represents
the set of states where at least one of the forks of minimum degree has all its nodes
in Uk simultaneously inactive. The set S is rare for the Markov process, in the sense
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that the probability of reaching S starting from x0 is small. We denote by T kx0→S = τ̄k
the time it takes to go from x0 to S.
Lemma 3.4.2 (Mean return time to metastable state).
For k = 1, . . . , N , suppose that k − 1 nodes in V already activated. Then, with high
probability as r →∞, the time RxUk it takes for the network Gk to reach the state with
all the nodes in Uk active (the metastable state x0) starting from any other state x is
negligible, i.e.,

Eu[RxUk ] = o(1), r →∞. (3.55)

In particular, let Rk−1
Uk

be the time it takes for the network Gk to reach the state with
all the nodes in Uk active starting from the moment the (k−1)-th node in V activated.
Then, with high probability as r →∞,

Eu[Rk−1
Uk

] = o(1), r →∞. (3.56)

Proof. At any time t, the activation and deactivation of a node u ∈ Uk are described
by i.i.d. exponential random variables with rates gU (Qu(t)) and 1, respectively. Hence,
an active node takes on average one unit of time to deactivate, while an inactive node
u takes on average 1/gU (Qu(t)) time to activate. Since in the subcritical and critical
regimes the queue lengths at any node at any moment are of order r (see Section 3.4.3
for more details), we can say that 1/gU (Qu(t)) = o(1) for each u ∈ Uk. Suppose that,
at some time t, node u1 ∈ Uk is inactive and node u2 ∈ Uk is active, i.e., Xu1(t) = 0

and Xu2(t) = 1. Since

lim
r→∞

Pu(u1 activates < u2 deactivates) = 1, (3.57)

and there is a finite number of nodes in Uk, with high probability as r →∞, starting
from any state x all the nodes in Uk will be active on average in time o(1). Hence, as
r →∞, Eu[RxUk ] = o(1), and in particular Eu[Rk−1

Uk
] = o(1). �

We are now ready to state a result for the mean next nucleation time in the
subcritical and critical regimes.
Proposition 3.4.3 (Mean next nucleation time).
Consider the graph Gk. Recall that d̄k is the minimum degree of a node in Vk, nk is
the number of forks of degree d̄k in Gk, and hk is as in (3.74).

(I) β ∈ (0, 1
d̄k−1

): subcritical regime. The mean next nucleation time sastisfies

Eu[τ̄k] = fk Eu[T Q
k−1

v∗k
] = fk F

k
sub Eu[Qk−1

U ]β(d̄k−1) [1+o(1)], r →∞, (3.58)

with
fk =

1

nk
. (3.59)

(II) β = 1
d̄k−1

: critical regime. The mean next nucleation time sastisfies

Eu[τ̄k] = fk Eu[T Q
k−1

v∗k
] = fk F

k
cr Eu[T Q

k−1

v∗k
] [1 + o(1)], r →∞, (3.60)

with

fk =
d̄kB

−(d̄k−1) + (c− ρU )

nkd̄kB−(d̄k−1) + (c− ρU )
. (3.61)
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Proof. By Proposition 3.4.1, as r →∞ we may consider arbitrarily overlapping forks
as if they were disjoint. Therefore the computations for the mean next nucleation
time carried out in Appendix C for the case of disjoint forks can be used for the case
of overlapping forks as well. For completeness, in the subcritical regime (I) we offer a
proof that uses a different argument, which cannot be used in the critical regime (II)
because the queues are changing on scale r over time.

Consider the stationary distribution π of the Markov process mentioned above.
The probability of the set S is given by

π(S) =

nk∑
j=1

π(Sj) [1 + o(1)] = nk

(
1

B (Qk−1
U )β

)d̄k
[1 + o(1)], r →∞, (3.62)

where Sj is the event that the j-th fork has all its nodes simultaneously inactive.
The terms representing multiple forks with all their nodes simultaneously inactive
contribute in a negligible way to π(S). Moreover, we know that, for j = 1, . . . , nk,

π(Sj) =
Eu[time spent in Sj ]

Eu[time spent in Sj ] + Eu[T kx0→Sj ]

=

1
d̄k

1

B (Qk−1
U )β

1
d̄k

1

B (Qk−1
U )β

+ F ksub (Qk−1
U )β(d̄k−1)

[1 + o(1)]

=

1
d̄k

1

B (Qk−1
U )β

F ksub (Qk−1
U )β(d̄k−1)

[1 + o(1)] =

(
1

B (Qk−1
U )β

)d̄k
[1 + o(1)], r →∞.

(3.63)

This proves (3.62).
Using the same type of argument, we can compute Eu[Tx0→S ]. Indeed,

π(S) =
Eu[time spent in S]

Eu[time spent in S] + Eu[T kx0→S ]

=

1
d̄k

1

B (Qk−1
U )β

1
d̄k

1

B (Qk−1
U )β

+ Eu[T kx0→S ]
[1 + o(1)] =

1
d̄k

1

B (Qk−1
U )β

Eu[T kx0→S ]
[1 + o(1)], r →∞.

(3.64)
After inverting, we get

Eu[τ̄k] = Eu[T kx0→S ] =

1
d̄k

1

B (Qk−1
U )β

π(S)
[1 + o(1)] =

1
d̄k

1

B (Qk−1
U )β

nk
(

1

B (Qk−1
U )β

)d̄k [1 + o(1)]

= fk F
k
sub (Qk−1

U )β(d̄k−1) [1 + o(1)], r →∞,

(3.65)

with
fk =

1

nk
. (3.66)

This completes the proof. �

88



§3.4. Nucleation times and queue lengths

C
h
a
pter

3

Corollary 3.4.4 (Pre-factor adjustment).
Given the graph Gk, conditional on the next activating node of degree d̄k,

Eu[τ̄k|Yk = ik] = Eu
[
minv∈VkT Q

k−1

v

∣∣∣ Yk = ik

]
= fk Eu[T Q

k−1

vik
], r →∞, (3.67)

where fk is as in (3.59) or (3.61) when a subcritical node or a critical node activates,
respectively.

Proof. The claim follows from Proposition 3.4.3. �

In the subcritical regime (I), the queue lengths do not change on scale r and
therefore the renewal theory developed in [49] applies, which is tailored to exponential
behavior in metastable regimes. In the critical regime (II), however, the queue lengths
do change on scale r and [49] does not apply. For details, see Section 3.4.3. Recall
that Ω is the state space of the Markov process and that, in our notation, τ̄k = Tx0→S .

Definition 3.4.5 (Recurrence property).
Let H > 0 and h ∈ (0, 1). We say that the pair (x0, S) satisfies the property Rec(H,h)

if
sup
x∈Ω

P
(
Tx→{x0,S} > H

)
≤ h. (3.68)

The following result is the equivalent of [49, Theorem 2.3].

Proposition 3.4.6 (Law of the next nucleation time).
Consider the pair (x0, S) such that the property Rec(H,h) holds for 0 < H < Eu[τ̄k],
with ε = H/Eu[τ̄k] and h sufficiently small. Then there exist functions C(ε, h) and
λ(ε, h), satisfying C(ε, h), λ(ε, h)→ 0 as ε, h→ 0, such that, for any t > 0,∣∣∣∣P( τ̄k

Eu[τ̄k]
> t

)
− e−t

∣∣∣∣ ≤ Ce−(1−λ)t. (3.69)

Proof. We choose H to be a constant, and without loss of generality set H = 1. We
claim that the pair (x0, S) satisfies the property Rec(H,h) with h sufficiently small.
Indeed, starting from any state x ∈ Ω, the network reaches the set {x0, S} in a small
time o(1).

If the starting state x is one of the states Sj , j = 1, . . . , nk, corresponding to the
set S, then we are done. Otherwise, by Lemma 3.4.2, the metastable state x0 attracts
in time o(1) every state x for which some forks have some nodes in U inactive. It is
therefore immediate that, with high probability as r →∞, Tx→{x0,S} is smaller than
H, which is what we need in order to claim that (3.68) holds when h is sufficiently
small. Note that we can let h→ 0 as r →∞.

We recover from Proposition 3.4.3 that the ratio between H and the mean next
nucleation time is sufficiently small. Indeed, ε = H/Eu[τ̄k] → 0 as r → ∞. Hence a
straightforward application of [49, Theorem 2.3] allows us to conclude that the next
nucleation time divided by its mean follows an exponential law with unit rate. �
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§3.4.3 Updated queue lengths
In this section we analyze in more detail how the mean queue lengths change over
time and how they affect the mean nucleation times associated with each step of the
algorithm.
Remark 3.4.7 (Good behavior).
Recall from Definition 2.3.1 and Lemma 2.3.2 in Chapter 2 that, with high probability
as r →∞, the queue lengths all have a good behavior in the interval [0, TU (r)] with
TU (r) = γU

c−ρU r [1 + o(1)] as r → ∞, representing the expected time it takes for
the queue lengths to hit zero. More precisely, for δ > 0 small enough and for all
t ∈ [0, TU (r)],

lim
r→∞

Pu
(
Eu[QU (t)]− δr ≤ QU (t) ≤ Eu[QU (t)] + δr

)
= 1, (3.70)

which means that the queue lengths are always close to their mean for all times smaller
than TU (r).

Recall that we start with initial queue lengths Q0 = (Q0
U , Q

0
V ) = (γUr, γV r). We

are interested in studying how the queue lengths change along a fixed path, depending
on which types of forks we encounter at each activation. Fix a path and consider the
sequence of nodes activating in V .

Similarly to (3.33), the next nucleation time τ̄k = minv∈Vk T Q
k−1

v (recall Defini-
tion 3.2.8) satisfies

Eu[τ̄k] = f ′k r
1∧β(d̄k−1) [1 + o(1)], r →∞, (3.71)

where f ′k depends on fk, on the constants F ksub, F
k
cr, F

k
sup (for the three regimes, re-

spectively), and on the mean updated queue lengths. The following theorem shows
how the mean queue lengths change according to which type of node activates in V .
Theorem 3.4.8 (Mean updated queue lengths).
Let (d̄k)Nk=1 be the sequence of degrees in a fixed path and d∗ = max1≤k≤N d̄k.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. After step k, the mean queue length at a node

in U is
Eu[QkU ] = γUr [1 + o(1)], r →∞. (3.72)

(II) β = 1
d∗−1 : critical regime. After step k, the mean queue length at a node in U ,

after hk critical nodes in V activated, is

Eu[QkU ] = γ
(hk)
U r [1 + o(1)], r →∞, (3.73)

with
γ

(hk)
U = γU − (c− ρU )

∑
1≤i≤k
i: d̄i=d

∗

f ′i > 0, (3.74)

where for a critical node vi the coefficient f ′i is defined in a recursive way as

f ′i =
1

nid̄iB−(d̄i−1) + (c− ρU )

(
γU − (c− ρU )

∑
1≤j≤i−1
j: d̄j=d

∗

f ′j

)
> 0. (3.75)
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(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. After step k, the mean queue length at a

node in U , if any supercritical node in V activated, is

Eu[QkU ] = o(r), r →∞. (3.76)

Proof. We treat the three regimes separately.

(I) β ∈ (0, 1
d∗−1 ). All the nodes in V are subcritical, in particular the first node

v1 ∈ V . Then Eu[τ̄1] = o(r) as r →∞. The mean queue lengths at nodes in U
after node v1 activates are

Eu[QU (τ̄1)] = Eu[γUr − (c− ρU )τ̄1] = γUr − (c− ρU )Eu[τ̄1]

= γUr [1 + o(1)], r →∞,
(3.77)

which means that after the first activation the mean queue lengths are the same
as before, up to an error term o(1). Iterating this reasoning, we conclude that
the mean queue lengths remain approximately the same as long as subcritical
nodes in V activate.

(II) β = 1
d∗−1 . If the first node v1 ∈ V is subcritical, then the time it takes to

nucleate its fork does not influence the mean queue lengths by much, as seen
in (I). Without loss of generality, we may therefore assume that v1 is critical.
Then Eu[τ̄1] = f ′1r is of order r. The mean queue lengths at nodes in U after
node v1 activates are

Eu[QU (τ̄1)] = Eu[γUr − (c− ρU )τ̄1] = γUr − (c− ρU )Eu[τ̄1]

= (γU − (c− ρU )f ′1)r [1 + o(1)] = γ
(1)
U r [1 + o(1)], r →∞,

(3.78)

where γ(1)
U = γU − (c− ρU )f ′1 > 0.

If the second node v2 ∈ V is subcritical, then again the time it takes to nucleate
its fork does not influence the mean queue lengths by much. Assume therefore
that v2 is critical. Then the fork requires a nucleation time of order r, namely,
Eu[τ̄2] = f ′2r. The mean queue lengths at nodes in U after node v2 ∈ V activates
are

Eu[QU (τ̄1 + τ̄2)] = Eu[γUr − (c− ρU )(τ̄1 + τ̄2)]

= γUr − (c− ρU )(Eu[τ̄1] + Eu[τ̄2])

= (γU − (c− ρU )(f ′1 + f ′2))r [1 + o(1)]

= γ
(2)
U r [1 + o(1)], r →∞,

(3.79)

where γ(2)
U = γU − (c− ρU )(f ′1 + f ′2) > 0.

More generally, assume that hk critical nodes activated in the first k steps. Then

Eu[QkU ] = γ
(hk)
U r [1 + o(1)], r →∞, (3.80)
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with
γ

(hk)
U = γU − (c− ρU )

∑
1≤i≤k
i: d̄i=d

∗

f ′i > 0, (3.81)

where the last sum is over all the hk critical nodes. Each of them contributes
with a positive coefficient f ′i which is given by the recursive relation

f ′i = fi F
i
cr γ

(hi−1)
U

=
d̄iB

−(d̄i−1) + (c− ρU )

nid̄iB−(d̄i−1) + (c− ρU )

1

d̄iB−(d̄i−1) + (c− ρU )
γ

(hi−1)
U

=
1

nid̄iB−(d̄i−1) + (c− ρU )

(
γU − (c− ρU )

∑
1≤j≤i−1
j: d̄j=d

∗

f ′j

)
.

(3.82)

Note that the coefficients f ′k introduced in (3.71) are well defined for every
k = 1, . . . , N , but in the above computations we are only interested in the ones
associated with the critical nodes. For example,

f ′1 =

{ 1
n1

1
d̄1B−(d̄1−1) γU , if d̄1 < d∗,

1
n1d̄1B−(d̄1−1)+(c−ρU )

γU , if d̄1 = d∗.
(3.83)

(III) β ∈ [ 1
d∗−1 ,∞). If the first node v1 ∈ V is subcritical, then its nucleation time

does not influence the mean queue lengths by much, as seen in (I). If v1 is critical,
then the mean queue lengths decrease but remain of order r, as seen in (II).
We therefore assume that v1 is supercritical. Then Eu[τ̄1] = γU

c−ρU r [1 + o(1)], as
r →∞. Indeed, from Theorem 2.1.6 we know that the mean nucleation time of
a supercritical fork is given by the expected time it takes for the queue length
to hit zero. This holds for every supercritical node in V and therefore it is true
also for Eu[τ̄1]. Hence, the mean queue lengths at nodes in U after node v1 ∈ V
activates are

Eu[QU (τ̄1)] = Eu[γUr− (c− ρU )τ̄1] = γUr− (c− ρU )Eu[τ̄1] = o(r), r →∞.
(3.84)

More generally, the mean queue lengths become o(r) as soon as the first super-
critical node activates, independently of which nodes activated before. Thus,
after any step k the mean queue length at a node in U , if any supercritical node
activated, is

Eu[QkU ] = o(r), r →∞. (3.85)

�

In summary, we have shown that if a subcritical node activates, then we do not
change the mean queue lengths at nodes in U by much: they only decrease by a factor
o(1). On the other hand, if a critical node activates, then the mean queue lengths
drop significantly, but still remain of order r. Finally, if a supercritical node activates,
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then the mean queue lengths become o(r), and remain so during all the successive
nucleations. With the help of (3.71) we know how to relate the mean next nucleation
times of the forks to the mean updated queue lengths after each activation. Hence
we know that, once a node that contributes order r to the total mean transition time
activates, we can ignore the contribution of all the previous and all the subsequent
subcritical nodes. Once a supercritical node activates, we can ignore the contribution
of all the subsequent nodes, since their queue lengths are o(r).

§3.5 Analysis of the algorithm

In Section 3.5.1 we describe how the algorithm acts on an arbitrary bipartite graph.
(In Section 3.2.4 we already illustrated this via an example.) In Section 3.5.2 we prove
the greediness and the consistency of the algorithm.

§3.5.1 Recursion
Consider the graph G = G1 = ((U1, V1), E1). The first node activating in V1 is
the one with the least degree, since this requires the least number of nodes in U1 to
become simultaneously inactive. Since the expected time form nodes in U1 to become
simultaneously inactive is of order r1∧β(m−1), with high probability as r → ∞, the
first node that activates in V1 is vY1 such that d(vY1) = d̄1 = minv∈V1 d(v), where d(v)

denotes the degree of node v in the graph G1. We make the algorithm pick as first
node a node vY1 with least degree in V1. If there are multiple nodes with the same
least degree, then the algorithm chooses one of them uniformly at random. If the least
degree d̄1 is such that β(d̄1 − 1) > 1, then the algorithm chooses a node uniformly at
random among all nodes in V1. Let G′1(U ′1, V

′
1) be the complete bipartite subgraph

of G1 with U ′1 = {u ∈ U1 : uvY1 is an edge of G1} and V ′1 = {vY1}. According to
Theorem 2.1.6, the associated nucleation time T Q0

vY1
satisfies

Eu[T Q
0

vY1
] = F 1 (Q0

U )1∧β(d̄1−1) [1 + o(1)], r →∞. (3.86)

Reasoning as above, we see that the algorithm picks as second node a node vY2

with the least number of active neighbors left in G. Consider the bipartite graph
G2(U2, V2) with U2 = U1 \U ′1 and V2 = V1 \V ′1 = V1 \{vY1}. If we denote by d2(v) the
degree of a node v ∈ V2 in G2, then vY2 is such that d2(vY2) = d̄2 = minv∈V2 d2(v). If
there are multiple nodes with the same least degree, then the algorithm again chooses
one uniformly at random. If the least degree d̄2 is such that β(d̄2 − 1) > 1, then we
choose a node uniformly at random among all nodes in V2. Let G′2(U ′2, V

′
2) be the

complete bipartite subgraph of G with U ′2 = {u ∈ U2 : uvY2 is an edge of G2} and
V ′2 = {vY2}. The associated nucleation time T Q1

vY2
satisfies

Eu[T Q
1

vY2
] = F 2 (Q1

U )1∧β(d̄2−1) [1 + o(1)], r →∞, (3.87)

Iterating this procedure until all the nodes in V1 are active, we find one of the
paths that the algorithm follows in terms of successive activation of the nodes in V1.
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Note that, depending on the choice the algorithm makes at each step, there may be
different paths for the activation.

§3.5.2 Greediness and consistency
We first prove Lemma 3.2.5. After that we prove Propositions 3.2.6–3.2.7.

Proof of Lemma 3.2.5. The proof is by contradiction. Suppose that d∗a > d∗b . Denote
by dk,a(v) and dk,b(v) the degrees of node v ∈ Vk at step k = 1, . . . , N in paths a and
b, respectively.

We start by considering node w1 ∈ V such that, at some step ka1 in path a,
dka1 ,a(w1) = d̄ka1 ,a = d∗a. Then d(w1) ≥ d∗a in G. On the other hand, in path b, when
w1 activates at some step kb1, it has degree dkb1,b(w1) ≤ d∗b . This implies that some of
the edges of w1 (at least d∗a−d∗b edges) have already been processed via previous forks
in path b. At least one of these forks must have nucleated before the fork of w1, in
path b but not in path a, say, the fork of w2. Hence there exists a node w2 ∈ V such
that, at some step kb2 < kb1 in path b, dkb2,b(w2) ≤ d∗b . This node has not yet activated
by step ka1 in path a, so it must be that dka1 ,a(w2) ≥ d∗a, otherwise the algorithm
would choose node w2 before node w1. Say that node w2 will activate at step ka2 > ka1
in path a. Then, d(w2) ≥ d∗a in G. As before, this implies that some of its edges have
already been processed with previous forks in path b. Again, at least one of these
forks must have nucleated before the fork of w2, in path b but not in path a, say, the
fork of w3. Hence there exists a node w3 ∈ V such that, at some step kb3 < kb2 in
path b, dkb3,b(w3) ≤ d∗b . This node has not yet activated by step ka2 in path a, nor by
step ka1 , so dka1 ,a(w3) ≥ dka1 ,a(w1) ≥ d∗a, otherwise the algorithm would choose node
w3 before node w1. Hence d(w3) ≥ d∗a in G.

We can iterate this argument. Since there are only N nodes in V , we get a
contradiction after we have considered all the nodes. �

We are now able to prove the greediness and the consistency of the algorithm.

Proof of Proposition 3.2.6. By Lemma 3.2.5, we know that the maximum least degree
of a path generated by the algorithm is the smallest possible. We know that the order
of the mean transition time along a path is related to d∗ and depends on the value of
β. Hence, Lemma 3.2.5 implies that the mean transition time along a path generated
by the algorithm is the shortest possible, in the sense that it has the smallest order
of r possible. �

Proof of Proposition 3.2.7. Lemma 3.2.5 proves equality for any two paths generated
by the algorithm. This leads to the same order of the mean transition time. �

Despite the fact that d∗ does not depend on which path the algorithm generates, its
multiplicity does. Figure 3.4 shows a graph on which the algorithm can generate two
different paths with the same maximum least degree but with different multiplicity.
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u7
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u5

u4
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u2

u1

v3

v2

v1

Figure 3.4: The algorithm may generate the path v1, v2, v3 or the path v3, v1, v2 with different
multiplicity of d∗.

§3.5.3 Algorithm complexity

The algorithm we constructed can be implemented in different ways according to what
we want to compute.

• In order to know the leading order of the mean transition time, it is enough
to recover the maximum least degree d∗ from the graph. By Proposition 3.2.7
we know that d∗ is the same for all paths the algorithm can generate. Hence
it is enough to run it once and comparing the value of d∗ with the value of
β we can immediately determine whether we are in the subcritical, critical or
supercritical regime.

In this case the computational complexity of the algorithm is polynomial in
the number of nodes in V , and so the leading order of the mean transition
time is quickly determined. More precisely, the algorithm has a complexity of
O(|U ||V |2).

• If we are interested in the precise asymptotics of the mean transition time and
in its law as r →∞, then we need to compute the pre-factor of the leading order
term. To do so, we need to run the algorithm multiple times, until all possible
paths are generated, in order to recover all the possible sequences (d̄k)Nk=1 and
(nk). A proper approach is to let a (deterministic) depth-first search algorithm
run through all possible paths and enumerate them. Theorem 3.3.2 shows that
if we know the total mean transition time along each path, then we can recover
the mean transition time of the graph.

In this case the computational complexity of the algorithm is factorial in the
number of nodes in V , since it depends in a delicate manner on the architecture
of the graph. More precisely, the algorithm has a complexity of O(|U ||V |2|V |!).

See [99] for a deeper analysis of the algorithm complexity.
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§3.6 Proofs of the main results

The aim of this section is to prove the theorems in Section 3.3. In Section 3.6.1
we introduce some further definitions. In Section 3.6.2 we prove Lemmas 3.2.2 and
3.2.11. In the last three sections we prove the three main theorems, respectively: in
Section 3.6.3 we prove Theorem 3.3.2, in Section 3.6.4 we prove Theorem 3.3.3, and
in Section 3.6.5 we prove Theorem 3.3.5.

§3.6.1 Preparatory results
Consider an arbitrary bipartite graph G = ((U, V ), E) with |V | = N and let v1, . . . , vN
be the nodes in V . The activation path that the network follows is denoted by
v∗1 , . . . , v

∗
N , while the indices of the nodes that the algorithm picks are denoted by

Y1, . . . , YN (as in Definition 3.2.1). We want to study the transition time when the
network follows a path generated by the algorithm. When conditioning the network
on a specific activation order, we can write

{Yk = i} = {v∗k = vi}, (3.88)

in the sense that saying that the k-th index Yk chosen by the algorithm equals i is
equivalent to saying that the k-th activating node v∗k equals vi.
Definition 3.6.1 (Iteration graph).
For k = 1, . . . , N , suppose that k − 1 nodes in V already activated. Denote by
Gk = ((Vk, Uk), Ek) the subgraph of G = ((U, V ), E) consisting of:

• Vk = V \ {{vYi}0<i<k} ⊆ V , the set of nodes in V that have not yet activated;

• Uk = U \
⋃

0<i<kN(vYi) ⊆ U , the set of nodes in U that are not neighbors of
some of the nodes in V that already activated;

• Ek = {uv : u ∈ Uk, v ∈ Vk} ⊆ E, the set of edges between Uk and Vk.

Let d̄k be the minimum degree of the nodes in Vk and nk be the number of least
degree forks in Gk.

Definition 3.6.2 (Minimum degree subset).
Define the set of nodes with minimum degree in V as

M(V ) = {v′ ∈ V : d(v′) = minv∈V d(v)}. (3.89)

Lemma 3.6.3 (Probability of choosing the next node).
Given the graph Gk, in the subcritical and critical regimes, the probability that the
next node activating in Vk is node vi is

P(Yk = i) =

{
1
nk
, if β ∈ (0, 1

d̄k−1
], vi ∈M(Vk),

0, if β ∈ (0, 1
d̄k−1

], vi ∈ Vk \M(Vk),
(3.90)

which depends on the sequence of nodes already active in V .

Proof. By construction, the algorithm picks nodes in M(Vk) before before it picks
nodes in Vk \M(Vk). It is therefore enough to count the number of forks of minimum
degree at step k, which is nk. �
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§3.6.2 Proof: activation sticks and selects low degrees
We next prove two lemmas from Section 3.2 that will be needed to prove Theorem 3.3.2
in Section 3.6.3.

Proof of Lemma 3.2.2. Recall Definition 3.1.1. We claim that if a node u ∈ U deac-
tivates and one of its neighbors in V activates at time tu, then, with high probability
as r →∞, it will not activate anymore after time tu. The moments when u could pos-
sibly activate again are the moments when all its neighbors in V are simultaneously
inactive. We consider the worst case scenario when u has only one active neighbor
v ∈ V . Denote by tv the first moment when v deactivates after tu. This happens
many times, since the activity period of a node is described by an exponential variable
Z with rate 1. Instead, the inactivity periods are very short, since the nodes in V are
very aggressive and the activation rates grow with the queue lengths, which tend to
infinity as r → ∞. We consider a time period of length equal to the total transition
time, and we assume the transition time to be the longest possible (of order r). Then
on average we have a number of possibilities for u to activate that is equal to

E[T Q
0

G ]

E[Z]
= E[T Q

0

G ] = Cr [1 + o(1)], r →∞, (3.91)

with C a positive constant. At each of these times, nodes u and v are both inactive
and are competing with each other to activate again. Denote by Zu and Zv the lengths
of the inactivity periods of u and v, respectively. Then Zu ' Exp(gU (Qu(tv))) and
Zv ' Exp(gV (Qv(tv))) and so, with high probability as r → ∞, node v activates
before node u, i.e.,

lim
r→∞

P(Zv < Zu) = lim
r→∞

gV (Qv(tv))

gU (Qu(tv)) + gV (Qv(tv))
= lim
r→∞

K ′rβ
′

Krβ +K ′rβ′

= lim
r→∞

1

1 + (K/K ′)r−(β′−β)
= 1,

(3.92)

where we use that β′ > β, and K,K ′ are positive constants.
Note that the queue lengths in U are always of order r, except when we are in

the supercritical regime. In this regime we are not interested in the competition
between u and v anymore, since we know how long the transition takes. The queue
lengths in V start being of order r, increase while u is active and decrease when v is
active, but remain of order r. Indeed, if there are other nodes in U that take long
enough to activate so that the queue length of v becomes o(r), then we must be in
the supercritical regime. In the worst case scenario, nodes u and v compete with
each other for the duration of the transition, i.e., order r times. The probability of v
winning every competition is

lim
r→∞

P(Zv < Zu)r = lim
r→∞

(
1

1 + (K/K ′)r−(β′−β)

)Cr
= lim
r→∞

(
e−(K/K′)r−(β′−β)

)Cr
= lim
r→∞

e−C(K/K′)r−(β′−β−1)

= 1,

(3.93)
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where we use that β′ > β + 1. Hence, with Pu-probability tending to 1 as r → ∞,
node u will never win any competition against node v, and hence will remain blocked
for the duration of the transition. �

Proof of Lemma 3.2.11. We distinguish between node v being subcritical or critical.

(I) β ∈ (0, 1
d̄k−1

). From Theorem 2.1.6 we know the law of the nucleation time for
the fork of v, namely,

lim
r→∞

Pu
(
T Qk−1

v

Eu[T Qk−1

v ]
> x

)
= P1(x) = e−x, x ∈ [0,∞). (3.94)

From the same equations we also know the law of the nucleation time for the
fork of w, which depends on how β and d(w) are related to each other. It is
enough to verify that

lim
r→∞

Pu
(
T Qk−1

w

Eu[T Qk−1

w ]
> x

)
= P(x), x ∈ [0,∞), (3.95)

with P(x) ↑ 1 when x ↓ 0 and P(x) ↓ 0 when x ↑ ∞. To that end, assume that
T Qk−1

v and T Qk−1

w deviate from their mean such that T Qk−1

v > T Qk−1

w . This
happens with probability tending to 0 as r →∞, since the deviations must be
of order r. Thus,

lim
r→∞

Pu
(
T Q

k−1

v > T Q
k−1

w

)
= lim
r→∞

Pu
(
X k−1
v,v > X k−1

v,w

)
, (3.96)

where we abbreviate X k−1
v,w = T Qk−1

w /Eu[T Qk−1

v ]. For fixedM <∞, we can split
the right-hand side of (3.96) without the limit r →∞ as

Pu
(
X k−1
v,v > X k−1

v,w

)
= Pu

(
X k−1
v,v > X k−1

v,w

∣∣ X k−1
v,w > M

)
Pu
(
X k−1
v,w > M

)
+ Pu

(
X k−1
v,v > X k−1

v,w

∣∣ X k−1
v,w ≤M

)
Pu
(
X k−1
v,w ≤M

)
≤ P1(M)Pu

(
X k−1
v,w > M

)
+ Pu

(
X k−1
v,v > X k−1

v,w

∣∣ X k−1
v,w ≤M

)
Pu
(
X k−1
v,w ≤M

)
.

(3.97)

Pick ε > 0 so small that, for r > r0(ε),

Pu
(
X k−1
v,w ≤M

)
= Pu

(
X k−1
w,w ≤M

Eu[T Qk−1

v ]

Eu[T Qk−1

w ]

)
≤ Pu

(
X k−1
w,w ≤Mε

)
. (3.98)

Letting r →∞ followed by ε ↓ 0, we get

lim
ε↓0

lim
r→∞

Pu
(
X k−1
w,w ≤Mε

)
= lim

ε↓0
[1− P(Mε)] = 0. (3.99)

We can now let M →∞ and use (3.96)–(3.97) to arrive at

lim
r→∞

Pu
(
T Q

k−1

v > T Q
k−1

w

)
= 0. (3.100)
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(II) β = 1
d̄k−1

. As before, we know the law of the nucleation time for the fork of v and

w. As shown in Chapter 2, with high probability as r →∞, T Qk−1

w /Eu[T Qk−1

w ]

tends to 1. Moreover, with high probability as r → ∞, any nucleation time
of a complete bipartite graph in the critical regime (including the fork of v) is
smaller than the transition time of the same graph in the supercritical regime.

�

§3.6.3 Proof: most likely paths
Proof of Theorem 3.3.2. We prove the three statements separately.

(i) Assuming that the network does not follow the algorithm is equivalent to as-
suming that at some step k with β ∈ (0, d̄k − 1] a node w that does not have a
minimum degree is chosen instead of a node v with degree d̄k. The probability
of a group of d > d̄k nodes becoming simultaneously inactive before a group of
d̄k nodes is equivalent to the probability of w activating before v, which satisfies

lim
r→∞

Pu
(
T Q

k−1

w < T Q
k−1

v

)
= 0 (3.101)

by Lemma 3.2.11. Hence, with high probability as r →∞, nodes in V activate
in a greedy way, as described by the algorithm. By Lemma 3.2.2, we also know
that the nodes in U that deactivated remain inactive for the duration of the
transition process. Consequently, they do not influence any future activation
attempt of the nodes in V , whose activation therefore follows the algorithm. In
the supercritical regime, we are only interested in the order of activation of the
nodes until the first supercritical node, for which the above reasoning still holds.

(ii) Note that the queues Qk depend on the sequence of indices (Y1, . . . , Yk−1)

describing the order of the activating nodes in V . Indeed, we have seen in
Section 3.4.3 that the queues change according to which nodes already activ-
ated. Moreover, for k > 1, also the probabilities 1

nk
depend on the sequence

(Y1, . . . , Yk−1). The reader should keep this in mind while going through the
proof. The proof evolves in three steps.

1. Denote the graph G = ((U, V ), E) by G1 = ((U1, V1), E1). Write

Eu[T Q
0

G 1E(a∗)] = Eu[T Q
0

G1
1E(a∗)] =

∑
i1: vi1∈V1

Eu[T Q
0

G1
1E(a∗) | Y1 = i1]P(Y1 = i1).

(3.102)
By Lemma 3.6.3, when β(d̄1 − 1) ≤ 1 not all the terms in the above sum have
positive probability, only the ones corresponding to forks of minimum degree d̄1

(which all have the same probability). Recall that this probability is 1
n1

. We

can write the random variable T Q
0

G1
as sum of three random variables

T Q
0

G1
= τ̄1 +R1

U2
+ T Q

1

G2
, (3.103)
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where G2 = ((U2, V2), E2) is the subgraph with U2 = U1\N(vY1
), V2 = V1\{vY1

}
and E2 = E1 \ {(u, v) : u ∈ N(vY1

)}, while Q1 = Q(τ̄1) represents the updated
queue lengths. The first variable represents the time it takes for the the first
node to activate, the second variable represents the time it takes (after the
activation of the first node) to reach the state with all the nodes in U2 active
(see Lemma 3.4.2), while the third variable represents the transition time of
the remaining graph when we take the first activating node out. Note that, by
Corollary 3.4.4, if we condition the network to follow a path generated by the
algorithm with a specific first activating node, then we get

Eu[τ̄1 | Y1 = i1] = f1 Eu[T Q
0

vi1
], r →∞, (3.104)

where f1 is the factor that arises from considering the minimum of random
variables. Also the variable T Q

1

G2
changes accordingly, but with an abuse of

notation we may write it in the same way. Thus, with high probability as
r →∞, by Lemma 3.4.2,

Eu
[
T Q

0

G1
1E(a∗) | Y1 = i1

]
=Eu

[
(τ̄1 +R1

U2
+ T Q

1

G2
) | E(a∗) ∩ {Y1 = i1}

]
=Eu[τ̄11E(a∗) | Y1 = i1] + o(1)

+ Eu
[
T Q

1

G2
1E(a∗) | Y1 = i1

]
= f1 Eu

[
T Q

0

vi1
1E(a∗)

]
+ o(1)

+ Eu
[
T Q

1

G2
1E(a∗)

]
, r →∞.

(3.105)

We want to analyze the latter in a recursive way. The k-th iteration gives

Eu
[
T Q

k−1

Gk
1E(a∗)

]
=

∑
ik: vik∈Vk

Eu
[
T Q

k−1

Gk
1E(a∗) | Yk = ik

]
P(Yk = ik). (3.106)

2. We can again write the random variable T Q
k−1

Gk
as sum of three random

variables

T Q
k−1

Gk
= τ̄k +RkUk+1

+ T Q
k

Gk+1
, (3.107)

where Gk+1 = ((Uk+1, Vk+1), Ek+1), Uk+1 = Uk \ g(vYk), Vk+1 = Vk \ {vYk},
Ek+1 = Ek \ {(u, v) : u ∈ g(vYk)}, while Qk = Q(

∑k−1
j=1 T Q

j−1

vij
). By Corol-

lary 3.4.4, we again have that

Eu[τ̄k | Yk = ik] = fk Eu
[
T Q

k−1

vik

]
, r →∞, (3.108)

and also the variable T Q
k

Gk+1
changes accordingly when it is conditioned (again,

with an abuse of notation we write it in the same way). With high probability
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as r →∞, the conditional expectation in (3.106) can be written as

Eu
[
T Q

k−1

Gk
1E(a∗) | Yk = ik

]
=Eu

[
(T Q

k−1

vYk
+RkUk+1

+ T Q
k

Gk+1
)1E(a∗) | Yk = ik

]
=Eu

[
T Q

k−1

vYk
1E(a∗) | Yk = ik

]
+ o(1)

+ Eu
[
T Q

k

Gk+1
1E(a∗) | Yk = ik

]
= fk Eu

[
T Q

k−1

vik
1E(a∗)] + o(1)

+ Eu[T Q
k

Gk+1
1E(a∗)

]
, r →∞.

(3.109)

At each iteration the conditional expectation reduces to a sum of three terms:
the first term represents the expected time it takes to switch the following node
on (adjusted by a factor that keeps track of the fact that the node activates
before the other nodes), the second term represents the expected time it takes
(after the previous node activation) to reach the state with all the nodes re-
maining in U active, while the third term represents the mean transition time
of the remaining network when we take the following activating node out.

3. Note that, for each k = 1, . . . , N , the graph Gk+1 depends on the sequence
of indices (Y1, . . . , Yk). Moreover, we know that also the queue lengths Qk

depend on the indices (Y1, . . . , Yk−1). Thus, all the conditional expectations
depend on the sequence of indices of activated nodes. By Lemma 3.6.3, the
first iteration comes with a probability 1

n1
of choosing the first node activating,

while each iteration with k > 1 comes with a probability 1
nk

, also depending on
the sequence (Y1, . . . , Yk−1). After k = 2 steps, using (3.106) and (3.109), with
high probability as r →∞,

Eu
[
T Q

0

G1
1E(a∗)

]
=

∑
i1: vi1∈V1

1

n1

(
f1 Eu

[
T Q

0

vi1
1E(a∗)

]
+ o(1) + Eu

[
T Q

1

G2
1E(a∗)

])

=
∑

i1: vi1∈V1

1

n1

(
f1 Eu

[
T Q

0

vi1
1E(a∗)

]
+ o(1)

+
∑

i2: vi2∈V2

1

n2

(
f2 Eu

[
T Q

1

vi2
1E(a∗)

]
+ o(1) + Eu

[
T Q

2

G3
1E(a∗)

]))
, r →∞.

(3.110)

After N steps, the last node in V activates and the conditional expectation
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becomes

Eu
[
T Q

N−1

GN
1E(a∗)

]
=

∑
iN : viN∈VN

1

nN

(
fN Eu

[
T Q

N−1

viN
1E(a∗)

]
+ Eu[RNUN+1

]

+ Eu
[
T Q

N

GN+1
1E(a∗)

])
=

∑
iN : viN∈VN

1

nN
fN Eu

[
T Q

N−1

viN
1E(a∗)

]
, r →∞.

(3.111)

Indeed, as soon as the last node in V activates, we are actually done and we
are not interested in what happens after. We can set RNUN+1

= 0 and we have

VN+1 = ∅, which implies Eu[T Q
N

GN+1
] = 0. Thus, we have arrived at (3.26).

(iii) The claim follows from steps analogous to the ones in (ii), given any path a ∈ A
that the algorithm generates.

�

§3.6.4 Proof: mean of the transition time

Proof of Theorem 3.3.3. Recall that, in the subcritical and critical regimes, we are
computing the mean transition time conditioned on the event that the nucleation
follows a fixed path a = (v1, . . . , vN ) ∈ A. We again distinguish between the three
regimes.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. Every term in the sum is o(r), which means

that the significant terms are the ones with d̄k = d∗ only. The pre-factors of
these terms are given by subcritical forks, and so

Eu
[
T Q

0

G

]
=

∑
k: d̄k=d∗

fk Eu
[
T Q

k−1

vk

]
=

∑
k: d̄k=d∗

fk
Eu[Qk−1

U ]β(d∗−1)

d∗B−(d∗−1)
[1 + o(1)]

=
∑

k: d̄k=d∗

fk
γ
β(d∗−1)
U

d∗B−(d∗−1)
rβ(d∗−1) [1 + o(1)], r →∞,

(3.112)

with fk = 1
nk

. The last equality comes from (3.72) in Theorem 3.4.8.

(II) β = 1
d∗−1 : critical regime. Every term in the sum is o(r), except the terms with

d̄k = d∗, which is of order r. The significant terms are the ones with d̄k = d∗
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only. The pre-factors of these terms are given by critical forks, and so

Eu
[
T Q

0

G

]
=

∑
k: d̄k=d∗

fk Eu
[
T Q

k−1

vk

]
=

∑
k: d̄k=d∗

fk
Eu[Qk−1

U ]

d∗B−(d∗−1) + (c− ρU )
[1 + o(1)]

=
∑

k: d̄k=d∗

fk
γ

(k−1)
U

d∗B−(d∗−1) + (c− ρU )
r [1 + o(1)], r →∞,

(3.113)

with γ(k−1)
U defined in (3.74) in Theorem 3.4.8 and

fk =
d̄kB

−(d̄k−1) + (c− ρU )

nkd̄kB−(d̄k−1) + (c− ρU )
. (3.114)

(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. Denote by vsc the first supercritical node.

We know from (3.76) in Theorem 3.4.8 that, after vsc activates, the queue lengths
become negligible (order o(r)), and the mean transition time is given by the
expected time it takes for them to hit zero, i.e.,

Eu
[
T Q

0

G

]
=

γU
c− ρU

r [1 + o(1)], r →∞. (3.115)

�

§3.6.5 Proof: law of the transition time
Proof of Theorem 3.3.5. We again distinguish between the three regimes.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. Recall that the significant terms in the sum

for the mean transition time are those coming from nodes with degree d̄k = d∗

with d∗ < 1
β + 1. There are ma

sub such terms, where ma
sub depends on the path

a ∈ A, and each term comes with a multiplicative factor fk. We can write the
transition time along path a divided by its mean as

T Q
0

G |Aa
Eu[T Q0

G |Aa]
=

∑N
k=1 τ̄k +

∑N
k=2R

k−1
Uk

Eu[T Q0

G |Aa]

=

∑
k′ : d̄k′=d

∗ τ̄k′ +
∑
k′′ : d̄k′′<d

∗ τ̄k′′ +
∑N
k=2R

k−1
Uk

Eu[T Q0

G |Aa]
.

(3.116)

We know that the law of a sum of independent random variables has a density
given by the convolution of their densities. Here the nucleation times and the
return times can be considered as independent, since they only depend on the
queue lengths, which remain close to the initial value in the subcritical regime.

There are three types of sums in the numerator of the last line of (3.116). The
first type of sum is of the form τ̄k′/Eu[T Q

0

G |Aa], with k′ such that d̄k′ = d∗. As
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r → ∞, these are the significant terms in the sum, since they are of the same
order as the mean transition time. For each of them, i.e., for each k′, we have

lim
r→∞

Pu
(

τ̄k′

Eu[T Q0

G |Aa]
> x

)
= lim
r→∞

Pu
(

τ̄k′

Eu[τ̄k′ ]
>

Eu[T Q
0

G |Aa]

Eu[τ̄k′ ]
x

)
= exp

(
−
∑
i : d̄i=d∗

Eu[τ̄i]

Eu[τ̄k′ ]
x

)
= exp

(
−
∑
i : d̄i=d∗

fi

fk′
x

)
, x ∈ [0,∞),

(3.117)

where in the second step we use Proposition 3.4.6. We write the density as

P
fk′ ,Smasub

sub (x) =
Smasub

fk′
exp

(
−
Smasub

fk′
x

)
, x ∈ [0,∞), (3.118)

with
Smasub

=
∑

i : d̄i=d∗

fi. (3.119)

The second type of sum is of the form τ̄k′′/Eu[T Q
0

G |Aa], with k′′ such that
d̄k′′ < d∗. As r → ∞, these are negligible, since they are of smaller order than
the mean transition time. For each of them, i.e., for each k′′, we have

lim
r→∞

Pu
(

τ̄k′′

Eu[T Q0

G |Aa]
> x

)
= lim
r→∞

Pu
(

τ̄k′′

Eu[τ̄k′′ ]
>

Eu[T Q
0

G |Aa]

Eu[τ̄k′′ ]
x

)
, x ∈ [0,∞),

(3.120)
and the density is δ0, the Dirac function at 0. The third type of sum is of the
form Rk−1

Uk
/Eu[T Q

0

G |Aa], with k = 2, . . . , N . As r →∞, these are also negligible,
since they are o(1) by Lemma 3.4.2, and hence their density is also δ0.

The density of T Q
0

G |Aa/Eu[T Q
0

G |Aa] is given by the convolution of the densities
of the three types of terms. Since δ0 gives the identity for the convolution, we
can write

lim
r→∞

Pu
(

T Q
0

G

Eu[T Q0

G |Aa]
> x | Aa

)
=

∫ ∞
x

(
~m

a
sub

k′=1 P
fk′ ,Smasub

sub

)
(y)dy, x ∈ [0,∞),

(3.121)
and we can rename the index k′ by k.

(II) β = 1
d∗−1 : critical regime. For two reasons we do not know how to handle

this regime: (a) We do not know the law of the next nucleation times because
Proposition 3.4.6 only holds in the subcritical regime. (b) The next nucleation
times are dependent random variables, and so convolution is no longer relevant.

(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. Recall that TU = γU

c−ρU r [1 + o(1)] as
r → ∞. The law of the transition time is given by P3(x) from Theorem 2.1.6.
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Indeed, the mean transition time is the expected time it takes for the queue
lengths in U to hit zero and. With high probability as r → ∞, the transition
does not occur before or after its mean. Since

lim
r→∞

Pu
(
T Q

0

G > Eu
[
T Q

0

G

])
= lim
r→∞

Pu
(
T Q

0

G > TU
)

= 0, (3.122)

we can write

lim
r→∞

Pu
(
T Q

0

G

Eu[T Q0

G ]
> x

)
= 0, x ∈ [1,∞). (3.123)

We also have

lim
r→∞

Pu
(
T Q

0

G

Eu[T Q0

G ]
> x

)
= 1, x ∈ [0, 1). (3.124)

Hence the density is the Dirac function at 1.

�

§C Appendix: minimum of independent forks

In this appendix we compute the mean next nucleation time in the situation where
the forks competing for nucleation are disjoint, i.e., they have no nodes in common.
Recall that, in the subcritical regime, the nucleation time of a fork is given by an
exponential random variable, while in the critical regime it is given by a “polynomial"
random variable, in the sense that its law is truncated polynomial.

§C.1 Subcritical regime: exponential random vari-
ables

Let X1, . . . , Xn be i.i.d. exponential random variables with rate λ and let their min-
imum be Z = min{X1, . . . , Xn}. Then

P(Z > t) = P(X1 > t, . . . ,Xn > t) = P(X1 > t)n = e−nλt. (3.125)

Hence, Z is an exponential random variable with rate nλ, and we have

E[Z] =
1

nλ
=

1

n
E[X1]. (3.126)

If we consider X1, . . . , Xnk to be the nucleation times of disjoint forks of degree d̄k,
and Z to be the next nucleation time at step k, then we get

Eu[τ̄k] = f iid
k Eu

[
T Q

k−1

v∗k

]
, r →∞, (3.127)

with f iid
k = 1

nk
.
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§C.2 Critical regime: polynomial random variables
Let X1, . . . , Xn be i.i.d. polynomial random variables such that

P
(

Xi

E[Xi]
> x

)
=

{
(1− Cx)

1−C
C , if x ∈ [0, 1

C ),

0, if x ∈ [ 1
C ,∞),

i = 1, . . . , n, (3.128)

with
C =

c− ρU
d̄kB−(d̄k−1) + (c− ρU )

. (3.129)

Let Z = min{X1, . . . , Xn}. Then, for t = xE[Xi],

P(Xi > t) =


(
1− C

E[Xi]
t
) 1−C

C , if t ∈ [0, E[Xi]
C ),

0, if t ∈ [E[Xi]
C ,∞),

i = 1, . . . , n. (3.130)

Abbreviate C = C1

C1+C2
, where C1 = c−ρU and C2 = d̄kB

−(d̄k−1). Then the exponent
1−C
C becomes C2

C1
. We have

P(Z > t) = P(X1 > t, . . . ,Xn > t)

= P(X1 > t)n =


(
1− C

E[Xi]
t
)nC2

C1 , if t ∈ [0, E[X1]
C ),

0, if t ∈ [E[X1]
C ,∞).

(3.131)

The density function of Z is

fz(t) =
d

dt

[
1− P(Z > t)

]
=

 C
E[X1]n

C2

C1

(
1− C

E[X1] t
)nC2

C1
−1
, if t ∈ [0, E[X1]

C ),

0, if t ∈ [E[X1]
C ,∞).

(3.132)
Hence

E[Z] =

∫ E[X1]
C

0

fZ(t)t dt =
C

E[X1]
n
C2

C1

∫ E[X1]
C

0

(
1− C

E[X1]
t
)nC2

C1
−1

t dt. (3.133)

Substituting u = 1− C
E[X1] t, we get

E[Z] =
E[X1]

C
n
C2

C1

∫ 1

0

un
C2
C1
−1(1− u) du

=
E[X1]

C
n
C2

C1

[ ∫ 1

0

un
C2
C1
−1 du−

∫ 1

0

un
C2
C1 du

]
=

E[X1]

C
n
C2

C1

[
1

nC2

C1

− 1

nC2

C1
+ 1

]
=

E[X1]

C
n
C2

C1

[
1

nC2

C1
(nC2

C1
+ 1)

]
=

E[X1]

C

[
1

nC2

C1
+ 1

]
= E[X1]

C1 + C2

nC2 + C1

=
d̄kB

−(d̄k−1) + (c− ρU )

nd̄kB−(d̄k−1) + (c− ρU )
E[X1].

(3.134)
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If we consider X1, . . . , Xnk to be the nucleation times of disjoint forks of degree d̄k,
and Z to be the next nucleation time at step k, then we get

Eu[τ̄k] = f iid
k Eu[T Q

k−1

v∗k
], r →∞, (3.135)

with

f iid
k =

d̄kB
−(d̄k−1) + (c− ρU )

nkd̄kB−(d̄k−1) + (c− ρU )
. (3.136)
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CHAPTER 4
Dynamic bipartite interference

graphs

This chapter is based on:
M. Sfragara. Adding edge dynamics to wireless random-access networks. Preprint,
2020.

Abstract

We consider random-access networks with nodes representing servers with queues.
The nodes can be either active or inactive: a node deactivates at unit rate, while it
activates a rate that depends on its queue length, provided none of its neighbors is
active. In order to model the effects of user mobility in wireless networks, we analyze
dynamic interference graphs where the edges are allowed to appear and disappear
over time. We focus on bipartite graphs, and study the transition time between the
two states where one half of the network is active and the other half is inactive, in the
limit as the queues become large. Depending on the speed of the dynamics, we are
able to obtain a rough classification of the effects of the dynamics on the transition
time.
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§4.1 Introduction and main results

This chapter is a continuation of Chapters 2–3. We introduce an edge dynamics on
the bipartite interference graph, by allowing edges to appear and disappear over time.
This represents a natural basic model to capture the effects of user mobility in wireless
networks.

In Section 4.1.1 we motivate our interest in adding edge dynamics to random-
access network models. In Section 4.1.2 we describe the setting and the mathematical
model of interest in this chapter by specifying edge dynamics. In Section 4.1.3 we
state out main results for the mean transition time with dynamics. In Section 4.1.4
we explain the main idea behind our analysis and give an outline of the remainder of
the chapter.

§4.1.1 Motivation and background
User mobility is one of the major features in wireless networks. Different mobility
patterns can be distinguished (pedestrians, vehicles, aerial, dynamic medium, robot,
and outer space motion) and mathematical models can be developed in order to
generalize such patterns and analyze their characteristics. Understanding the effects
of user mobility in wireless networks is crucial in order to design efficient protocols
and improve the performance of the network.

For example, consider radio communication protocols, for which central radio
stations are used as base-stations for transmitting radio signals. The radio landscape
is partitioned into cells and in each cell a station serves the users in its vicinity. In
such cellular networks the users may be either stationary or mobile. User mobility
leads to problems of handover: when a user moves from one cell to another, the
transmitting signal has to be handed over from one station to another in order to
ensure continuity of service and seamless mobility. If not enough capacity is available
in the adjacent cell, then the transmission might be interrupted. Imagine that a node
transmitting to particular station moves away from its cell and reaches a cell where
another station serves for transmissions. Although initially the node interferes with
a specific group of nodes sharing the same initial station, after the node has moved it
interferes with the nodes in the new cell sharing the new station. In a similar fashion,
imagine a network where nodes represent transmitter-receiver pairs. The signal of
a node interferes with the signals of the nodes in its vicinity. Hence the protocol
allows only one of the interfering nodes to transmit alternately. When allowing node
mobility, we get new groups of nodes interfering with each other depending on their
vicinity. We are therefore dealing with a network whose interference graph changes
over time.

To the best of our knowledge, random-access models with user mobility in the
context of interference graphs have so far not been considered in the literature. All
the studies we are aware of that have examined the impact of user mobility in wireless
networks are concerned with handover mechanisms (see [89], [98]), so-called oppor-
tunistic scheduling algorithms (see [11], [101]), capacity issues in ad hoc and cellular
networks (see [15], [56]), and flow-level performance (see [7], [8], [16], [96]).
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In this chapter we investigate a dynamic version of the random-access protocols in
order to try to capture some features of user mobility in wireless networks. A natural
paradigm for constructing dynamic interference graphs would be to use geometric
graphs, such as unit-disk graphs, with node mobility, where each node follows a ran-
dom trajectory and experiences interference from all nodes within a certain distance.
A feasible state of the interference graph would then be generated by a specific in-
stance of the geometric graph. We follow a different approach and, with an explorative
intention, we consider a model where edges are allowed to appear and disappear from
the graph according to i.i.d. Poisson clocks placed on each edge. We find different
results for the mean transition time depending on the speed of the dynamics. The
evolution of the network is captured by a continuous-time Markov process that keeps
track of how the state, the queue length and the number of active neighbors change
for each node.

We focus on queue-based activation rates, in line with the models and the results in
Chapters 2–3. This leads to two level of complexity, driven by the queue dependencies
of the activation rates and by the edge dynamics. In the appendix we briefly consider
a simplified version of the model where the activation rates are fixed.

§4.1.2 Setting
We refer to Section 1.1.5 for a general introduction to the mathematical model. In
this chapter we add an extra dynamics to the model.

We are interested in analyzing the behavior of the network when we allow the
interference graph to change over time. We mainly focus on the model with queue-
based activation rates and assume these rates to satisfy Definitions 1.1.4 and 3.1.1.

Definition 4.1.1 (Dynamic interefence graphs).
We say that the interference graph is dynamic when the edges appear and disappear
according to a continuous-time flip process. Consider the dynamic bipartite interfer-
ence graph G(·) = (U t V,E(·)), where U t V is the set of nodes, with |U | = M and
|V | = N , and E(t) is the set of edges that are present between nodes in U and nodes
in V at time t. The number of edges |E(·)| changes over time and can vary from
a minimum of 0 to a maximum of MN . We set G(0) = G, where G is the initial
bipartite graph. We denote by GMN = (U t V,EMN ) the complete bipartite graph
associated to (U, V ) and, for every edge e ∈ EMN , at time t we define the Bernoulli
random variable Ye(t) as

Ye(t) =

{
0, if e /∈ E(t),

1, if e ∈ E(t).
(4.1)

In other words, Ye(t) = 0 if edge e is not present in the graph at time t, while Ye(t) = 1

if it is present. The joint edge activity state at time t is denoted by

Y (t) = {Ye(t)}e∈EMN (4.2)

and is an element of the state space

Y =
{
Y ∈ {0, 1}U×V

}
. (4.3)
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The degree of node v at time t is denoted by dv(t).

We model the dynamics of the graph in the following way. If an edge is not present,
then it appears according to a Poisson clock with rate λ, independently of the other
edges. If an edge is present, then it disappears according to a Poisson clock with rate
λ, independently of the other edges. This is equivalent to having a system of i.i.d.
Poisson clocks with rate λ on the edges and letting an edge change its state every
time its clock ticks. In order to study how the edge dynamics affects the transition
time, we consider Poisson clocks with rates λ = λ(r) depending on the parameter r.

Throughout the chapter we use the notation ≺, � to describe the asymptotic
behavior in the limit r →∞. More precisely, f(r) ≺ g(r) means that f(r) = o(g(r))

as r →∞, and f(r) � g(r) means that g(r) = o(f(r)) as r →∞.

Remark 4.1.2 (Rates on the edges).
We may allow different rates for the edges to change their state. Denote by λ+(r)

and λ−(r) the rates at which edges appear and disappear, respectively. If these are
of the same order, then we are in a situation similar to them being equal to λ(r).
If λ+(r) → ∞ and λ−(r) ≺ λ+(r), then, with high probability as r → ∞, in time
o(1) the dynamics turns the initial graph into the complete bipartite graph with all
the edges present. Analogously, if λ−(r) → ∞ and λ−(r) � λ+(r), then, with high
probability as r →∞, in time o(1) the dynamics turns the initial graph into the empty
graph with all the edges absent. Both these assumptions do not lead to interesting
models. When λ+(r) and λ−(r) are of different order and do not tend to infinity,
we have an intermediate situation where at any time t an edge is either present with
high probability as r → ∞ or absent with high probability as r → ∞, but the total
amount of time the edge has been absent or present, respectively, up to time t is not
always negligible.

Remark 4.1.3 (Appearing edge).
When an edge disappears from the graph, the states of the nodes do not change.
On the other hand, when an edge appears in the graph, it might appear between
two active nodes. In this case, we assume that the active node in U deactivates,
since the model does not allow two connected nodes to be simultaneously active. We
could study alternative models, where the active node in V deactivates or where the
deactivating node is chosen uniformly at random (or with certain probabilities). It is
obvious that these alternative models slow down the transition and lead to a possible
multiple counting of the time it takes for some nodes in V to activate.

§4.1.3 Main theorem
In Chapter 3 we analyzed the mean transition time for arbitrary bipartite graphs.
We introduced a randomized algorithm that takes as input the graph and gives as
output all the possible activation paths for nodes in V . We showed that, depending
on the value of β, the transition exhibits a subcritical regime, a critical regime and a
supercritical regime. Given a graph, the algorithm uniquely identifies the value

d∗ = max
1≤k≤N

d̄k, (4.4)
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which determines the leading order of the mean transition time and together with β
determines the regime we are in. We were also able to identify the law of the transition
time divided by its mean (in the subcritical and supercritical regime). The latter is
beyond the scope of the present chapter, since understanding the effect of the edge
dynamics is rather challenging. Our goal is to extend the results of Theorem 3.3.3 to
dynamic bipartite graphs. We will distinguish between different types of dynamics
and we will see how they affect the mean transition time. We denote by T Q

0

G(·) the
transition time of the dynamic graph G(·) with initial queue lengths Q0.

Theorem 4.1.4 (Mean transition time for dynamic bipartite graphs).
Consider the dynamic bipartite graph G(·) = ((U, V ), E(·)) with the edge dynamics
governed by λ(r) and initial queue lengths Q0.

(FD) If λ(r) → ∞, then the dynamics is fast and, with high probability as r → ∞,
the transition time satisfies

Eu[T Q
0

G(·)] � λ(r)−1 = o(1), r →∞. (4.5)

(RD) If λ(r) = C ∈ (0,∞), then the dynamics is regular and, with high probability as
r →∞, the transition time satisfies

Eu[T Q
0

G(·)] � λ(r)−1 = O(1), r →∞. (4.6)

(SD) If λ(r)→ 0, then the dynamics is slow and the following cases occur.

(SDc) If λ(r) � r−(1∧β(d∗−1)), then the dynamics is competitive and, with high
probability as r →∞, the transition time satisfies

Eu[T Q
0

G(·)] � λ(r)−1, r →∞. (4.7)

More precisely, let λ(r) = r−α with 0 < α ≤ 1 ∧ β(d∗ − 1), and let TU (r)

be the average time it takes for the queue lengths at nodes in U to hit zero.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. With high probability as r →∞,

Eu[T Q
0

G(·)] � r
α [1 + o(1)], r →∞. (4.8)

(II) β = 1
d∗−1 : critical regime. With high probability as r →∞,

Eu[T Q
0

G(·)] � r
α [1 + o(1)], r →∞. (4.9)

In particular, when α = 1, with positive probability,

Eu[T Q
0

G(·)] = TU (r) [1 + o(1)], r →∞. (4.10)

(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. When 0 < α ≤ 1, with high

probability as r →∞,

Eu[T Q
0

G(·)] � r
α [1 + o(1)], r →∞. (4.11)
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In particular, when α = 1, with positive probability,

Eu[T Q
0

G(·)] = TU (r) [1 + o(1)], r →∞. (4.12)

When α > 1, with high probability as r →∞,

Eu[T Q
0

G(·)] = TU (r) [1 + o(1)], r →∞. (4.13)

(SDnc) If λ(r) ≺ r−(1∧β(d∗−1)), then the dynamics is non-competitive and, with
high probability as r →∞, the transition time satisfies Theorem 3.3.3.

Note that the order of the mean transition time depends on the speed of the
dynamics. When the dynamics is fast (FD), the edges quickly appear and disappear,
reaching in time o(1) the state where nodes in V have no edges connecting them to
U . Since nodes in V are aggressive, they eventually activate in time o(1). When the
dynamics is regular (RD), the situation is similar, but it takes time O(1) to reach
the state where all the edges are simultaneously absent. When the dynamics is slow
(SD), a node in V can also activate through the nucleation of its fork (recall Definition
3.1.2). In the case of competitive dynamics (SDc), the relation between the speed of
the dynamics and the aggressiveness of the nodes in U plays a key role, while in the
case of non-competitive dynamics (SDnc), the network behaves as if the edges were
fixed at the initial configuration and there were no dynamics. Note that, in the cases
of fast, regular and competitive dynamics, the order of the mean transition time is
given by the reciprocal of the rate λ(r).

§4.1.4 Discussion and outline
Intuition. A node in V can activate for two reasons. It can activate when its neigh-
bors are simultaneously inactive or when there are no edges connecting it to nodes
in U . Interpolation between these two situations gives rise to different cases, which
mainly depend on the speed of the dynamics. In the case of competitive dynamics,
we are able to distinguish between different behaviors for the mean transition time by
analyzing the subcritical, critical and supercritical regimes separately. To summarize,
with high probability as r →∞, the order of activation of nodes in V follows one of
the paths generated by the algorithm until the edge dynamics of rate λ(r) becomes
competitive. The competition begins on time scale λ(r)−1, the time scale on which
all the remaining nodes in V activate, if there are any, and the transition occurs.

Pre-factor. In order to give precise asymptotics, including the pre-factor for the
mean transition time, we must analyze a more complicated Markov process describing
how the states of the nodes, the queue lengths and the states of the edges change over
time. This is beyond the scope of the present chapter, but in Section 4.4 we give an
overview of the main challenges.

Outline of the chapter. The remainder of this chapter is organized as follows. In
Section 4.2 we discuss the main effects of the dynamics on the mean transition time
and we explain how it can slow down or speed up the activation of each node in V .
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In Section 4.3 we prove Theorem 4.1.4 by discussing the different types of dynamics
separately. In Section 4.4 we describe the graph evolution and discuss what needs
to be considered in order to compute the pre-factor of the mean transition time. In
Appendix D we consider a model where the activation rates are fixed and not queue-
dependent. We adapt results from this chapter and the previous chapters in order to
study how the dynamics affects the transition time.

§4.2 The edge dynamics

In this section we analyze the effects that different types of dynamics have on the
mean transition time of the network.

§4.2.1 Disconnection time
Recall from Section 3.1.1 that the nucleation time T Qv of the fork of a node v ∈ V
given the initial queue lengths Q is the time it takes for its neighbors to become
simultaneously inactive, so that v can activate as soon as its clock ticks. Due to
the dynamics, a node v ∈ V does not necessarily activate through the nucleation
of its fork, but it can also activate if at some point there are no edges connecting
it to nodes in U . The dynamics, indeed, might sometimes bring the graph to a
configuration where the degree of v is temporarily 0, so that v can activate as soon
as its clock ticks in o(1).

Definition 4.2.1 (Disconnection time).
Given v ∈ V , we call disconnection time of v the time it takes for v to be disconnected
from U , i.e., to have all possible edges connecting it to U simultaneously absent. We
denote the disconnection time of v by DQ0

v , where Q0 indicates the initial queue
lengths.

As introduced in Section 4.1.2, the dynamics affects the network by allowing the
edges to appear and disappear according to a Poisson clock with rate λ(r). The
alternation between the states of each edge e ∈ EMN is described by an exponential
random variable Se ' Exp(λ(r)) with mean µ(r) = λ(r)−1. Note that, with high
probability as r → ∞, Se takes values of the order of its mean, i.e., Se � µ(r).
Indeed, if we pick x ≺ µ(r), then

lim
r→∞

P(Se ≤ x) = lim
r→∞

1− e−λ(r)x = 0, (4.14)

and the same holds for x � µ(r). In other words, if an edge is absent at time t, then,
with high probability as r →∞, it will take an amount of time of order µ(r) for the
Poisson clock to tick and for the edge to become present. Vice versa, if an edge is
present at time t, then it will take an amount of time of order µ(r) for the edge to
become absent.

The arbitrary bipartite initial configuration of the graph plays an important role
in understanding the transition time. Consider a node in v ∈ V of initial degree
dv(0) = d > 0. Since |U | = M , there are M possible total edges connecting v to U .

115



4. Dynamic bipartite interference graphs

C
h
a
pt

er
4

We construct a continuous-time Markov chain M where each state k represents the
set of configurations of the M edges in which k edges are present and M − k edges
are absent. State 0 corresponds to all edges being absent, state 1 corresponds to the
M possible configurations with exactly one edge present, and so on (see Figure 4.1
below).

0 1 2 · · · M − 1 M

(M − 1)λ (M − 2)λ λ

Mλ(M − 1)λ2λλ

Figure 4.1: The Markov chain M describing how the edge dynamics changes the degree of a
node in V . It is a birth-death process with M transient states and one absorbing state.

We consider state 0 as an absorbing state, since we are interested in computing
the hitting times to state 0 starting from any other state. From state M we can only
jump to state M − 1, when one of the M present edges disappears, which happens
with rate Mλ. From each state 0 < k < M we jump to the neighboring states also
with rate Mλ. Indeed, as soon as the clock of one of the M possible edges ticks, we
jump to the state k + 1 if the edge was absent and becomes present, while we jump
to the state k − 1 if the edge was present and becomes absent. Hence, we jump from
state k to state k+1 with probability M−k

M , while we jump from state k to state k−1

with probability k
M .

The transition rate matrix H of the Markov chainM is given by

H =



0 1 2 ··· M−1 M

0 0 0 0 0 0 0
1 λ −Mλ (M − 1)λ 0 0 0
2 0 2λ −Mλ · · · 0 0
... 0 0 · · · · · · · · · 0

M−1 0 0 0 · · · −Mλ λ
M 0 0 0 0 Mλ −Mλ


(4.15)

and can be written as

H =

(
0 0
S0 S

)
, (4.16)

where S is an M × M matrix and S0 = −S1M , where 1M represents the M -
dimensional column vector with every element being 1. Let

(a0,a) = (a0, a1, . . . , aM ) (4.17)

be the M + 1 dimensional row vector describing the probability of starting in one of
the M + 1 states. Since dv(0) = d, we have that the d-th entry of a equals 1 and all
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the other entries equal 0. Computing the disconnection time of a node with initial
degree d is equivalent to computing the hitting time of the Markov chainM to state
0 starting from state d.

Lemma 4.2.2 (Mean and law of the disconnection time).
Consider a node v ∈ V of initial degree dv(0) = d > 0, and let the edge dynamics be
such that Eu[Se] = µ(r) for each e ∈ EMN .

(i) The disconnection time DQ0

v satisfies

Eu[DQ0

v ] = Cd µ(r) [1 + o(1)], r →∞, (4.18)

where (C1 µ(r), . . . , CM µ(r)) is the solution of the linear system of equations

x1 = 1
M

µ(r)
M + M−1

M

(
µ(r)
M + x2

)
x2 = 2

M

(
µ(r)
M + x1

)
+ M−2

M

(
µ(r)
M + x3

)
· · · = · · ·

xM−1 = M−1
M

(
µ(r)
M + xM−2

)
+ 1

M

(
µ(r)
M + xM

)
xM = µ(r)

M + xM−1.

(4.19)

(ii) The law of the disconnection time DQ0

v follows a phase-type distribution PH(a, S)

and is given by

lim
r→∞

Pu(DQ0

v > x) = a exp(Sx)1, x ∈ (0,∞), (4.20)

where a and S are as in (4.17) and (4.16), respectively. In particular, the above
probability equals the sum of the entries in d-th row of the matrix exp(Sx).

Proof. We prove the two statements separately.

(i) Consider the Markov chainM described above. We know that from each state
k > 0, we jump to a neighboring state with rate Mλ. The jump occurs exactly
when the first of the M possible edges changes its state. This corresponds to
the minimum ofM i.i.d. exponential random variables, which is known to follow
an exponential distribution with mean µ(r)

M . If v has initial degree d, then we
start from state d. We denote by xk the mean hitting times of state 0 starting
from state k. The above system of equations allows us to compute the mean
disconnection time of v.

Since, the system of equations is linear in µ(r) and in the variables xi’s, its
solution is linear in µ(r). Hence the mean disconnection time is of order µ(r).

(ii) The disconnection time of a node v ∈ V of initial degree d > 0 is the hitting
time of state 0 of the Markov chainM starting from state d. The distribution
of the hitting time to the unique absorbing state, starting from any of the other
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finite transient states, is said to be phase-type and is denoted by PH(a, S), with
a and S as in (4.17) and (4.16), respectively.

The distribution function of DQ0

v is given by

lim
r→∞

Pu(DQ0

v ≤ x) =

∫ x

0

P(y) dy = 1− a exp(Sx)1, x ∈ (0,∞), (4.21)

where exp(·) indicates the matrix exponential, and

P(z) = a exp(Sz)S0, z ∈ (0,∞), (4.22)

with S0 as in (4.16). Since the vector a has its d-th entry equal to 1 and all the
other entries equal to 0, we have that the product a exp(Sx)1 equals the sum
of the entries in the d-th row of the matrix exp(Sx).

�

Note that the results of Lemma 4.2.2 hold even without letting r →∞.

§4.2.2 Nucleation vs. dynamics
Without loss of generality, we may consider interference graphs with no isolated nodes
in V , since after time o(1) we would be in such a scenario anyway.

Lemma 4.2.3 (Isolated nodes).
Nodes in V with initial degree 0 activate in time o(1) as r →∞.

Proof. Consider the situation where λ(r) ≺ gV (0), i.e., the dynamics is slower than
the average time it takes for the activation clock of nodes in V to tick. Then a node
v ∈ V with initial degree 0 activate as soon as its clock ticks, hence in time o(1). Next,
consider the situation where the dynamics is very fast, λ(r) � gV (0). Then a node
v ∈ V with initial degree 0 might be blocked by some active neighbors in U by the time
its activation clock ticks for the first time. Recall that |U | = M and note that there
are 2M possible configurations of edges connecting v to U . Each time the activation
clock of v ticks, the probability of being in each of the possible configurations tends to
the uniform probability 1/2M as r →∞. Therefore, after a finite number of attempts,
v eventually activates. Since each tick of the activation clock of v takes time o(1),
v activates in time o(1). Lastly, consider the situation where λ(r) � gV (0). If the
activation clock of a node v ∈ V with initial degree 0 ticks before any of its potential
edges appear, then v activates in time o(1). Otherwise, each subsequent activation
attempt will not be successful unless the edge configuration is such that v has no
neighbors. In other words, v can activate only when the Markov chain describing how
its degree changes over time is in state 0. In this case, v activates with a probability
that at time t is given by gV (t)

gV (t)+Mλ(r) > 0 as r → ∞. Since λ(r)−1 = o(1), by using
similar arguments as in the proof of Lemma 4.2.2, the time it takes for the Markov
chain to return to state 0 when starting from state 0 is o(1). Hence, v has the chance
to activate with positive probability every period of time o(1). Therefore, after a
finite number of attempts, v eventually activates in time o(1). �

118



§4.2. The edge dynamics

C
h
a
pter

4

We call activation time of v ∈ V the time it takes for v to activate. Depend-
ing on the dynamics, this can be given either by its nucleation time T Q0

v or by its
disconnection time DQ0

v . When the dynamics is fast enough, nodes in V eventually
activate because their clocks tick and no edges connect them to nodes in U . On the
other hand, when the dynamics is particularly slow, it is more likely for nodes in V
to activate through the nucleation of its fork, and the network tends to behave as
if the edges were frozen at the initial configuration. In between these two scenarios
the dynamics is more interesting and, depending on its speed, we distinguish between
different behaviors. Proposition 4.2.4 below describes the competition between the
nucleation and the dynamics.
Proposition 4.2.4 (Nucleation vs. dynamics).
Let v ∈ V be the node of minimum degree at time t = 0, with dv(0) = d > 0.

(i) If λ(r) � r−(1∧β(d−1)), then, with high probability as r →∞, the activation time
of v is given by its disconnection time, i.e.,

lim
r→∞

Pu(DQ0

v < T Q
0

v ) = 1. (4.23)

(ii) If λ(r) � r−(1∧β(d−1)), then the activation time of v is given either by its nuc-
leation time with positive probability or by its disconnection time with positive
probability.

(iii) If λ(r) ≺ r−(1∧β(d−1)), then, with high probability as r →∞, the activation time
of v is given by its nucleation time, i.e.,

lim
r→∞

Pu(T Q
0

v < DQ0

v ) = 1. (4.24)

Proof. Recall that µ(r) = λ(r)−1 and that the disconnection time DQ0

v is given by
a phase-type random variable with mean of order µ(r). Since phase-type random
variables are constructed by convolutions of exponential random variables, we have
that, with high probability as r → ∞, DQ0

v takes values of order µ(r). Recall also
that, depending on the relation between β and d, the nucleation time T Q0

v is given by
an exponential random variable with mean of order rβ(d−1), by a polynomial random
variable with mean of order r, or by TU (r), which is the average time it takes for the
queue lengths at nodes in U to hit zero. Hence, with high probability as r →∞, T Q0

v

takes values of order r1∧β(d−1). It is therefore immediate to distinguish between the
three cases.

(i) Since µ(r) ≺ r1∧β(d−1), with high probability as r → ∞, v activates due to
absence of edges.

(ii) Since µ(r) � r1∧β(d−1), there is a competition between the nucleation time T Q0

v

and the phase-type random variable DQ0

v . Depending on their parameters, each
of them can occur before the other with positive probability.

(iii) Since µ(r) � r1∧β(d−1), with high probability as r → ∞, v activates through
the nucleation of its fork.

�
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§4.3 Proofs of the main results

In this section we prove Theorem 4.1.4 by analyzing the different types of dynamics
separately.

§4.3.1 Proof: fast dynamics
Consider the fast dynamics (FD) where λ(r)→∞ as r →∞.

Proof of Theorem 4.1.4 (FD). With high probability as r → ∞, for each edge the
random intervals between clock ticks are of order λ(r)−1 = o(1). By Lemma 4.2.2,
the mean disconnection time of a node in V is of order λ(r)−1. Moreover, by Pro-
position 4.2.4, with high probability as r →∞, each node activates due to absence of
edges and not through the nucleation of its fork, and hence it activates in a time of
order λ(r)−1. In conclusion, with high probability as r → ∞, the transition time of
G(·) with initial queue lengths Q0 satisfies

Eu[T Q
0

G(·)] � λ(r)−1 = o(1), r →∞, (4.25)

hence the claim is settled. �

§4.3.2 Proof: regular dynamics
Consider the regular dynamics (RD) where λ(r) = C ∈ (0,∞).

Proof of Theorem 4.1.4 (RD). With high probability as r → ∞, for each edge the
random intervals between clock ticks are of order λ(r)−1 = O(1). By Lemma 4.2.2,
the mean disconnection time of a node in V is of order λ(r)−1. Note that nodes in
V of initial degree 1 can activate either because their only neighbor deactivates in
O(1) or due to absence of edges with a mean disconnection time of order λ(r)−1.
Moreover, by Proposition 4.2.4, with high probability as r →∞, nodes in V of initial
degree greater than 1 activate due to absence of edges in a time of order λ(r)−1. In
conclusion, with high probability as r → ∞, the transition time of G(·) with initial
queue lengths Q0 satisfies

Eu[T Q
0

G(·)] � λ(r)−1 = O(1), r →∞, (4.26)

hence the claim is settled. �

§4.3.3 Proof: non-competitive dynamics

Consider the slow dynamics where λ(r) → 0 as r → ∞ with λ(r) ≺ r−(1∧β(d∗−1)),
called the non-competitive dynamics (SDnc). In this case the dynamics is so slow
that it has no effect on the transition.
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Proof of Theorem 4.1.4 (SDnc). The mean disconnection time of any node in V is of
order larger than r1∧β(d∗−1). Hence each node in V activates through the nucleation
of its fork, which is at most of order r1∧β(d∗−1). The dynamics is very slow, almost
frozen, and so it does not affect the nucleation of the forks. Hence, with high prob-
ability as r → ∞, the transition time of G(·) with initial queue lengths Q0 satisfies
Theorem 3.3.3 and the network behaves as if there were no dynamics. Hence the
claim is settled. �

§4.3.4 Proof: competitive dynamics
Consider the slow dynamics (SD) where λ(r) → 0 as r → ∞ with λ(r) = r−α,
with 0 < α ≤ 1 ∧ β(d∗ − 1), called the competitive dynamics (SDc). This is the
most interesting type of dynamics, since it competes with the fork nucleations. The
activation of the nodes in V can occur both because of the absence of their edges and
because of the nucleation of their forks. Recall the algorithm defined in Section 3.2
in Chapter 3.

Proof of Theorem 4.1.4 (SDc). Denote by d̂ the largest integer such that β(d̂−1) < α.
Let the algorithm generate all possible activation paths for nodes in V and denote
this set by A. Fix a path a ∈ A. Consider the sequence of activating nodes along
the path a up to the step in which the degree is larger than d̂. Say that at step
k we have d̄k > d̂. Consider only the first k − 1 steps. We indicate by Aa(α) the
event that the network follows the path a ∈ A until time scale rα. On time scale
rα the dynamics starts competing with the nucleation, and the order of activation of
the remaining nodes described by the algorithm is not preserved anymore. In other
words, the order of activation of nodes in V follows the order of activation of the
path a only for the first k − 1 nodes. With each of these k − 1 nodes is associated a
nucleation time of order less than or equal to r1∧β(d̂−1). Hence, by Proposition 4.2.4,
with high probability as r → ∞, the activation time of these nodes is given by their
nucleation time. We apply Proposition 4.2.4 to each iteration of the graph, each time
by considering a node with minimum degree d̄j for j = 1, . . . , k− 1. Indeed, we know
from Lemma 4.2.2, that the mean disconnection time of a node is of order rα. We
treat the subcritical, critical and supercritical regimes separately.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. We have 0 < α ≤ β(d∗ − 1) < 1. The

activation time of the next activating node is of order rα. It cannot be of
smaller order since at step k we have d̄k > d̂ by construction. It cannot be of
higher order either since the disconnection time of any of the remaining nodes
is of order rα. After this activation, there might be nodes whose degree has
decreased and whose nucleation time is of smaller order. When we sum the
mean activation times of the nodes in V to compute the mean transition time,
we see that these nodes will not contribute significantly as r → ∞. All the
remaining nodes are likely to activate in any possible order, but none of them
will have an activation time of order larger than rα. To know how many nodes
contribute to the transition time with an activation time of order rα, we need
to have more control on how the degrees of the nodes evolve over time. To
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conclude, the order of activation of nodes in V follows the path a as long as the
nucleation times associated to the nodes are of order smaller than rα. After that,
the remaining nodes can activate with positive probability in any order with an
activation time of order at most rα. Hence, the transition time conditional on
the event Aa(α) satisfies

Eu[T Q
0

G(·) |Aa(α)] � rα [1 + o(1)], r →∞, (4.27)

and we get
Eu[T Q

0

G(·)] � r
α [1 + o(1)], r →∞. (4.28)

(II) β = 1
d∗−1 : critical regime. For 0 < α < 1, the situation is the same as in the

subcritical regime described above. For α = 1, the activation time of the next
activating node is of order r. After this activation, all the remaining nodes are
likely to activate in any possible order, but none of them will have an activation
time of order larger than r. The order of activation of nodes in V follows the
path a as long as the nucleation times associated to the nodes are of order smaller
than r. After that, the remaining nodes can activate with positive probability
in any order with an activation time of order at most r. Hence, the transition
time conditional on the event Aa(α) satisfies

Eu[T Q
0

G(·) |Aa(α)] � r [1 + o(1)], r →∞, (4.29)

and we get
Eu[T Q

0

G(·)] � r [1 + o(1)], r →∞. (4.30)

Note that if any of the nodes has an activation time of order r but larger than
TU (r), then the transition time conditional on the event Aa(α) is the time it
takes for the queue lengths at nodes in U to hit zero, which satisfies

Eu[T Q
0

G(·) |Aa(α)] = TU (r) [1 + o(1)], r →∞. (4.31)

Hence,
Eu[T Q

0

G(·)] = TU (r) [1 + o(1)], r →∞. (4.32)

(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. For 0 < α < 1, the situation is the same

as in the subcritical regime described above. For α = 1, the situation is the
same as in the critical regime described above. For α > 1, the transition time
conditional on the event Aa(α) is the time it takes for the queue lengths at
nodes in U to hit zero, which satisfies

Eu[T Q
0

G(·) |Aa(α)] = TU (r) [1 + o(1)], r →∞. (4.33)

Hence,
Eu[T Q

0

G(·)] = TU (r) [1 + o(1)], r →∞. (4.34)

�
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Note that the order of the transition time does not depend on the path along which
we compute it. The algorithm generates all possible activation paths of the nodes
nucleating before time scale λ(r)−1 = rα. The remaining nodes can activate in any
order depending on the dynamics. To compute the pre-factor of the mean transition
time along these paths, we need to analyze in detail the Markov process describing
the graph evolution, in particular, the degrees of the nodes changing over time. Our
methods do not capture this detail and we are only able to state a result for the
leading order term.

§4.4 The graph evolution

In this section we discuss the Markov process describing the graph evolution under the
dynamics. Control on this process is the key to obtaining a more precise asymptotics
for the mean transition time of the network.

§4.4.1 The graph evolution process
Consider a dynamics with rate λ(r) = r−α. We have seen in Proposition 4.2.4 that
each node in V whose nucleation time is of smaller order than rα activates through
the nucleation of its fork. On time scale rα the dynamics starts competing with
the nucleation and the order of activation of the remaining nodes described by the
algorithm is not preserved anymore. Note that the algorithm updates the graph at
each iteration in order to keep track of the degree of the remaining nodes after each
activation. When introducing the dynamics on the edges, we need information about
the states of the nodes and the edges in the graph. We assume that the algorithm
does not update the graph at each iteration anymore, but we focus on the number of
active neighbors each node has.

Definition 4.4.1 (Active degree).
We define the active degree of a node as the number of its active neighbors. For
u ∈ U , the active degree at time t is given by

d̃u(t) =
∣∣{v ∈ V : uv ∈ E(t), Xv(t) = 1}

∣∣. (4.35)

Analogously, for v ∈ V , the active degree at time t is given by

d̃v(t) =
∣∣{u ∈ U : uv ∈ E(t), Xu(t) = 1}

∣∣. (4.36)

Note that for a node to activate, its active degree must be 0. It is immediate to see
that the active degree of a node cannot exceed its degree, i.e., for any u ∈ U and
v ∈ V ,

d̃u(t) ≤ du(t), d̃v(t) ≤ dv(t). (4.37)

The main challenge in describing the graph evolution is that any of the remaining
nodes could activate next with positive probability. The activation of a node due to
absence of edges is captured by the scenario in which its active degree hits 0. The
activation of a node through the nucleation of its fork depends on the aggressiveness of
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the activation rates and on the number of active neighbors. Both types of activation
are determined by the degree evolution. Assume, for example, that an edge between
two active nodes appears. By our model assumptions (see Remark 4.1.3), the node
in U deactivates, implying that the active degrees of its neighbors in V decrease by
1. If the mean nucleation time of the new fork of one of the neighbors is of order less
than or equal to rα, then this neighbor will be more likely to activate through the
nucleation of its fork. The degree evolution induced by the dynamics affects both the
disconnection and the nucleation times of the nodes.

The node activity process (X(t), Q(t))t≥0 and the edge activity process (Y (t))t≥0

form a continuous-time Markov process on

X × R≥0 × Y (4.38)

that describes the evolution of the graph under the effect of the dynamics. We refer
to this process as the graph evolution process. Note that if we know which nodes are
active and which edges are present, then we can recover the degree and the active
degree of each node in the graph. Hence, understanding the graph evolution process
is crucial to describe how the degrees of the nodes change over time and how nodes
activate.

§4.4.2 Transitions
Consider a feasible state where some nodes are active and some edges are present. By
feasible we mean that it respects the constraints given by the edges, for which two
connected nodes cannot be active simulteneously. Recall that |U | = M, |V | = N and
|EMN | = MN . Hence, an arbitrary feasible state at time t has h active nodes in U
with h = 0, . . . ,M , k active nodes in V with k = 0, . . . , N , and l present edges with
l = 0, . . . ,MN . Consequently, there are M − h inactive nodes in U , N − k inactive
nodes in V , and MN − l absent edges. Note that the initial state u is described by
h = M , k = 0 and l = |E(0)|, while the transition occurs as soon as state v is reached,
for which k = N .

Clock ticks. The graph evolution is governed by different Poisson clocks ticking at
various rates: the activation clocks, the deactivation clocks and the edge clocks. We
analyze how the network evolves each time one of these clock ticks. Moreover, note
that the queue lengths, hence the input process (recall Definition 1.1.3), also play a
role, since the activation rates depend on them.

• The activation clock of a node u ∈ U ticks at rate gU (Qu(t)) at time t. The
probability of this clock being the first one to tick is given by

gU (Qu(t))

Z
, (4.39)

with

Z =

M−h∑
i=1

gU (Qi(t)) +

N−k∑
j=1

gV (Qj(t)) + h+ k +MNλ(r). (4.40)
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The tick has two possible effects on the network. If the neighbors of u are all
inactive, then u activates and the active degrees of all its neighbors increase by
1. If there is at least one active neighbor of u, then the activation attempt fails
and nothing happens.

• The deactivation clock of a node u ∈ U ticks at rate 1. The probability of this
clock being the first one to tick is given by

1

Z
. (4.41)

Node u deactivates and the active degrees of all its neighbors decrease by 1.

• The activation clock of a node v ∈ V ticks at rate gV (Qv(t)) at time t. The
probability of this clock being the first one to tick is given by

gV (Qv(t))

Z
. (4.42)

The tick has two possible effects on the network. If the neighbors of v are all
inactive, then v activates and the active degrees of all its neighbors increase by
1. If there is at least one active neighbor of v, then the activation attempt fails
and nothing happens.

• The deactivation clock of a node v ∈ V ticks at rate 1. The probability of this
clock being the first one to tick is given by

1

Z
. (4.43)

Node v deactivates and the active degrees of all its neighbors decrease by 1.

• The activation clock of an edge e ∈ EMN ticks at rate λ(r). The probability of
this clock being the first one to tick is given by

λ(r)

Z
. (4.44)

Depending on which edge appears or disappears and on the nodes involved, the
tick has different effects on the network, which are described below.

Edge appearing and disappearing. If we know the number of active nodes in U
and V , then we can compute the probabilities of each of the following scenarios with
simple combinatorial arguments. There are four possible scenarios in which an edge
can appear.

(◦ ◦) When an edge between two inactive nodes appears, their degrees increase by 1.

(◦ •) When an edge between an inactive node in U and an active node in V appears,
the active degree of the node in U increases by 1 and the degree of the node in
V increases by 1.
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(• ◦) When an edge between an active node in U and an inactive node in V appears,
the degree of the node in U increases by 1 and the active degree of the node in
V increases by 1.

(• •) When an edge between two active nodes appears, the node in U deactivates, its
active degree increases by 1, the active degrees of all its neighbors in V decrease
by 1 and the degree of the node in V increases by 1.

In a similar fashion, there are three possible scenarios in which an edge can disappear.
Recall that there cannot be an edge between two active nodes.

(◦ ◦) When an edge between two inactive nodes disappears, their degrees decrease by
1.

(◦ •) When an edge between an inactive node in U and an active node in V disappears,
the active degree of the node in U decreases by 1 and the degree of the node in
V decreases by 1.

(• ◦) When an edge between an active node in U and an inactive node in V disappears,
the degree of the node in U decreases by 1 and the active degree of the node in
V decreases by 1.

The transition time is related to the graph evolution process, since the activation
times of the nodes in V depend on the activation rates, the speed of the dynamics
and the degree evolution. The complicated nature of the process prevents us from
deriving an explicit formula for the pre-factor of the mean transition time, which
would require a better control on the precise asymptotics of each activation.

§D Appendix: a model with fixed activation rates

We have seen how the dynamics influences the mean transition time of wireless
random-access models where the activation rates depend on the current queue lengths
at the nodes. The model is quite challenging and deals with two levels of complexity,
namely, the queue-based activation rates and the edge dynamics. Not much is known
in the literature for random-access protocols with dynamic interference graph, even
for models with fixed activation rates. In this section we adapt the theory built up
in Chapters 2–3 to study the effect of the dynamics on such type of models. Assume
that the activation rates are of the form

ri(t) =

{
rβ , if i ∈ U,
rβ
′
, if i ∈ V, (4.45)

with β, β′ ∈ (0,∞) and β′ > β + 1. We recall that we are interested in the transition
time asymptotics as r →∞.

We start by adapting the results for complete bipartite graphs in Chapter 2 to
the model with fixed activation rates. The following theorem is consistent with [59,
Example 4.1].
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Theorem D.1 (Complete bipartite graphs with fixed activation rates).
Consider the complete bipartite graph G = ((U, V ), E) with initial queue lengths Q0

as in (1.11). Suppose that (4.45) holds.

(I) β ∈ (0, 1
|U |−1 ): subcritical regime. The transition time satisfies

Eu[T Q
0

G ] =
1

|U |
rβ(|U |−1) [1 + o(1)], r →∞. (4.46)

(II) β = 1
|U |−1 : critical regime. The transition time satisfies

Eu[T Q
0

G ] =
1

|U |
r [1 + o(1)], r →∞. (4.47)

(III) β ∈ ( 1
|U |−1 ,∞): supercritical regime. The transition time satisfies

Eu[T Q
0

G ] =
γU

c− ρU
r [1 + o(1)], r →∞. (4.48)

Proof. The claims follow from Sections 2.4.1–2.4.2 in Chapter 2. We compute the
critical time scale and the mean transition time using fixed activation rates instead of
time depending ones. In both the critical and subcritical regimes, the pre-factor turns
out to be 1

|U | and the law is exponential. In the critical regime, we know that the
queue lengths decrease significantly after a time of order r. However, this does not
affect the transition time, since now the activation rates do not depend on the queue
lengths. In the supercritical regime, we still have the same behavior as in the model
with queue-dependent activation rates. Indeed, when the queue lengths at nodes in
U hit zero, the nodes in U deactivate by assumption and the transition occurs. �

Next, we state a result for arbitrary bipartite graphs with fixed activation rates
(analogue of Theorem 3.3.3 in Chapter 3). Note that the algorithm still plays a crucial
role in determining the mean transition time.

Theorem D.2 (Arbitrary bipartite graphs with fixed activation rates).
Consider the bipartite graph G = ((U, V ), E) with initial queue lengths Q0 as in (1.11).
Suppose that (4.45) holds. Let Aa be the event that the network follows the path a ∈ A,
among the paths generated by the algorithm.

(I) β ∈ (0, 1
d∗−1 ): subcritical regime. The transition time satisfies

Eu[T Q
0

G |Aa] =
∑

1≤k≤N
k: d̄k=d∗

1

nkd∗
rβ(d∗−1) [1 + o(1)], r →∞. (4.49)

(II) β = 1
d∗−1 : critical regime. Then the transition time satisfies

Eu[T Q
0

G |Aa] =
∑

1≤k≤N
k: d̄k=d∗

1

nkd∗
r [1 + o(1)], r →∞. (4.50)
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The above result holds as long as the pre-factor is below the value γU
c−ρU , which

corresponds to the time it takes for the queue lengths at nodes in U to hit zero.
Otherwise, the supercritical regime applies.

(III) β ∈ ( 1
d∗−1 ,∞): supercritical regime. The transition time satisfies

Eu[T Q
0

G ] =
γU

c− ρU
r [1 + o(1)], r →∞. (4.51)

Proof. The claims follow from Theorem D.1 and the analysis of the algorithm and
the next nucleation times in Sections 3.2 and 3.4.2 in Chapter 3. We derive the
mean transition time along the paths generated by the algorithm by computing the
next nucleation times at each step. In the subcritical regime, the nucleation times of
nodes in V are all exponentially distributed and independent of each other. Indeed,
the activation rates are the same, independently of the queue lengths decreasing over
time. At each step k, the next nucleation time is the minimum of nk i.i.d. exponential
random variables, and hence its mean exhibits the term fk = 1

nk
in the pre-factor.

In the critical regime, the pre-factor of the mean transition time along each path
must be below the value γU

c−ρU , otherwise the supercritical regime applies and the
transition occurs because the queue lengths at nodes in U hit 0. If we assume that
γU
c−ρU > 1, then the nucleation of a fork occurs before the queue lengths at nodes in
U hit zero. We are able to derive the law of the transition time along each path for
both the subcritical and critical regimes. Both are described by convolutions of the
exponential laws of the next nucleation times of the activating nodes in V . In the
supercritical regime, we have the same behavior as in the model with queue-dependent
activation rates. �

Finally, we show that the results from Theorem 4.1.4 also hold when we consider
a dynamic bipartite graph with fixed activation rates. We are able to compute the
order of the mean transition time, while the pre-factor still depends on the graph
evolution described in Section 4.4.

Theorem D.3 (Dynamic bipartite graphs with fixed activation rates).
Consider the dynamic bipartite graph G(·) = ((U, V ), E(·)) with the edge dynamics
governed by λ(r) and initial queue lengths Q0. Suppose that (4.45) holds. Then the
results of Theorem 4.1.4 hold.

Proof. The claim follows from Theorem D.2 and the intuition behind Proposition 4.2.4.
The order of the mean transition time in the model with fixed activation rates is the
same as in the model with queue-dependent activation rates. The dynamics com-
petes with the nucleations of the nodes in the same way, depending on its speed.
The different type of dynamics (fast, regular and slow) lead to the same results as in
Theorem 4.1.4. �
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CHAPTER 5
Spectral distribution of the

adjacency and the Laplacian matrix

This chapter is based on:
A. Chakrabarty, R.S. Hazra, F. den Hollander, M. Sfragara. Spectra of adjacency and
Laplacian matrices of Inhomogeneous Erdős-Rényi random graphs. Random Matrices:
Theory and Applications, 2020.

Abstract

We consider inhomogeneous Erdős-Rényi random graphs GN on N vertices in the
non-sparse non-dense regime. The edge between the pair of vertices {i, j} is re-
tained with probability εN f( iN ,

j
N ), 1 ≤ i 6= j ≤ N , independently of other edges,

where f : [0, 1]2 → [0,∞) is a continuous function such that f(x, y) = f(y, x) for all
(x, y) ∈ [0, 1]2. We study the empirical distribution of both the adjacency matrix
AN and the Laplacian matrix ∆N associated with GN , in the limit as N →∞ when
limN→∞ εN = 0 and limN→∞NεN = ∞. In particular, we show that the empir-
ical spectral distributions of AN and ∆N , after appropriate scaling and centering,
converge to deterministic limits weakly in probability. For the special case where
f(x, y) = r(x)r(y) with r : [0, 1] → [0,∞) a continuous function, we give an explicit
characterization of the limiting distributions. Furthermore, we apply our results to
constrained random graphs, Chung-Lu random graphs and social networks.
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§5.1 Introduction and main results

In Section 5.1.1 we define the mathematical model. In Section 5.1.2 we state the exist-
ence of the limiting spectral distributions for the adjancency and Laplacian matrices
after suitable scaling. In Section 5.1.3 we identify those limiting spectral distribu-
tions under the assumption that the connection probabilities have a multiplicative
structure. In Section 5.1.4 we generalize our results to graphs where the connection
probabilities are randomized. In Section 5.1.5 we anticipate some of the applications
that we will discuss later and give an outline of the remainder of the chapter.

§5.1.1 Setting
We refer to Section 1.2.3 for a general introduction to spectra of Erdős-Rényi random
graphs. We focus on inhomogeneous Erdős-Rényi random graphs and consider the
non-dense non-sparse regime, where the degrees of the vertices diverge sublinearly
with the size of the graph.

Let f : [0, 1]2 → [0,∞) be a continuous function, satisfying

f(x, y) = f(y, x) ∀ (x, y) ∈ [0, 1]2. (5.1)

A sequence of positive real numbers (εN : N ≥ 1) is fixed that satisfies

lim
N→∞

εN = 0, lim
N→∞

NεN =∞. (5.2)

Consider the random graph GN on the set of vertices {1, . . . , N} where, for each (i, j)

with 1 ≤ i < j ≤ N , an edge is present between vertices i and j with probability

εNf( iN ,
j
N ), (5.3)

independently of other pairs of vertices. In particular, GN is an undirected graph with
no self loops and no multiple edges. Boundedness of f ensures that εNf( iN ,

j
N ) ≤ 1

for all 1 ≤ i < j ≤ N when N is large enough. If f ≡ c with c a constant, then GN is
the Erdős-Rényi graph with edge retention probability εNc. For general f , GN can
be thought of as an inhomogeneous version of the Erdős-Rényi graph.

We next define our two main objects of interest. We refer to Section 1.2.2 for more
details.

Definition 5.1.1 (Adjacency and Laplacian matrices).
The adjacency matrix of GN is denoted by AN and defined as in (1.15). Clearly,
AN is a symmetric random matrix whose diagonal entries are zero and whose upper
triangular entries are independent Bernoulli random variables, i.e.,

AN (i, j) , BER
(
εNf

(
i
N ,

j
N

))
, 1 ≤ i 6= j ≤ N. (5.4)

The Laplacian matrix of GN is denoted ∆N and defined as in (1.17).
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§5.1.2 Existence of the limiting spectral distribution
We recall the definition of empirical spectral distribution (ESD) in (1.19). It is the
probability measure that puts mass 1/N at every eigenvalue, respecting its algebraic
multiplicity.

Our first theorem states the existence of the limiting spectral distribution of AN
after suitable scaling.

Theorem 5.1.2 (Existence of the limiting spectral distribution of AN).
There exists a symmetric probability measure µ on R such that

lim
N→∞

ESD
(
(NεN )−1/2AN

)
= µ weakly in probability, (5.5)

and µ is compactly supported. Furthermore, if

min
0≤x,y≤1

f(x, y) > 0, (5.6)

then µ is absolutely continuous with respect to Lebesgue measure.

Our second theorem is the analogue of Theorem 5.1.2 with AN replaced by ∆N .

Theorem 5.1.3 (Existence of the limiting spectral distribution of ∆N).
There exists a symmetric probability measure ν on R such that

lim
N→∞

ESD
(
(NεN )−1/2(∆N −DN )

)
= ν weakly in probability, (5.7)

where
DN = Diag

(
E
[
∆N (1, 1)

]
, . . . ,E

[
∆N (N,N)

])
. (5.8)

Furthermore, if
f 6≡ 0, (5.9)

then the support of ν is unbounded.

The ESD of a random matrix is a random probability measure. Note that µ and
ν are both deterministic, i.e., a law of large numbers is in force.

Theorems 5.1.2–5.1.3 are existential, in the sense that explicit descriptions of µ
and ν are missing. We have some control on the Stieltjes transform of µ. In the proof
of Theorem 5.1.2 (in Lemma 5.2.3) we will see that the ESD of (NεN )−1/2AN has
the same limit as the ESD of

ĀN (i, j) =

√
1

N
f

(
i

N
,
j

N

)
Gi∧j,i∨j (5.10)

with (Gi,j : 1 ≤ i ≤ j) a family of i.i.d. standard Gaussian random variables. Such
random matrices are known in the literature as Wigner matrices with a variance profile
(see, for example, [107], [129], [164], [185]). The limiting spectral distribution of ĀN
matches with the one of certain symmetric random matrices with dependent entries
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(see [135] for details). It turns out that, by using the combinatorics of non-crossing
partitions, we can derive a recursive equation for the Stieltjes transform of µ, i.e.,

Gµ(z) =

∫
R

1

z − x
µ(dx), z ∈ C \ R. (5.11)

It turns out that

Gµ(z) =

∫ 1

0

H(z, x) dx, (5.12)

where H(z, x), x ∈ [0, 1], is the unique analytic solution of the integral equation

zH(z, x) = 1 +H(z, x)

∫ 1

0

H(z, y)f(x, y) dy, x ∈ [0, 1]. (5.13)

The form of H(z, x) can also be expressed in terms of non-crossing partitions and
the function f(x, y) (see [134, Section 4.1] for details). We mention that the above
measure is similar to the limiting measure in [196, Theorem 3.4]. There it is shown
that a graphon sequence WN can be associated with a Wigner matrix with a variance
profile (si,j : 1 ≤ i, j ≤ N). If the sequence of graphons WN converges in the cut
norm to W with W (x, y) = f(x, y), then the limiting measure matches with µ.

The description of ν through its Stieltjes transform is hard to obtain, although,
just like before, the ESD of (NεN )−1/2(∆N −DN ) turns out to be the same as that
of

∆̃N = ĀN + YN , (5.14)

where YN is a diagonal matrix of order N defined by

YN (i, i) = Zi

√√√√ 1

N

∑
1≤j≤N, j 6=i

f

(
i

N
,
j

N

)
, 1 ≤ i ≤ N, (5.15)

where (Zi : i ≥ 1) is a family of i.i.d. standard normal random variables, independent
of (Gi,j : 1 ≤ i ≤ j). Suppose that YN is a deterministic diagonal matrix, embedded
in L∞[0, 1] (as a step function). For the case where this function converges to a
function h in the ‖ · ‖∞ norm, the limiting spectral distribution of ĀN + YN was
studied in [185] (see also [186, Theorem 22.7.2]). In our case, due to the presence
in YN of Gaussian random variables (which have unbounded support) and the fact
that the spectral norm of YN tends to infinity as N →∞, the existing results cannot
be applied. One of the major contributions of our paper is to overcome this hurdle.
Also, our proofs ensure that ν has a finite moment generating function (see (5.123)
below) and unbounded support.

§5.1.3 Identification of the limiting spectral distribu-
tion

Our next theorem identifies µ and ν under the additional assumption that f has a
multiplicative structure, i.e.,

f(x, y) = r(x)r(y), (x, y) ∈ [0, 1]2, (5.16)
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for some continuous function r : [0, 1]→ [0,∞). The statement is based on the theory
of (possibly unbounded) self-adjoint operators affiliated with a W ∗-probability space.
Recall Section 1.2.4 for an introduction to free probability theory. A few extra relevant
definitions are given below. For details the reader is referred to [108, Section 5.2.3].

Definition 5.1.4 (Operators affiliated with a W ∗-probability space).
A C∗-algebra A ⊂ B(H), with H a Hilbert space, is a W ∗-algebra when A is closed
under the weak operator topology. If, in addition, τ is a state such that there exists
a unit vector ξ ∈ H satisfying

τ(a) = 〈aξ, ξ〉 ∀ a ∈ H, (5.17)

then (A, τ) is a W ∗-probability space. In that case a densely defined self-adjoint
(possibly unbounded) operator T on H is said to be affiliated with A if h(T ) ∈ A
for any bounded measurable function h defined on the spectrum of T , where h(T ) is
defined by the spectral theorem. Finally, for an affiliated operator T , its law L(T ) is
the unique probability measure on R satisfying

τ(h(T )) =

∫
R
h(x)(L(T ))(dx) (5.18)

for every bounded measurable h : R→ R.

The distribution of a single self-adjoint operator is defined above. For two or
more self-adjoint operators T1, . . . , Tn, a description of their joint distribution is a
specification of

τ(h1(Ti1) · · ·hk(Tik)), (5.19)

for all k ≥ 1, all i1, . . . , ik ∈ {1, . . . , n}, and all bounded measurable functions
h1, . . . , hk from R to itself. Once the above is specified, it is immediate to see that
L(p(T1, . . . , Tk)) can be calculated for any polynomial p in k variables such that
p(T1, . . . , Tk) is self-adjoint.

Definition 5.1.5 (Free independence of operators).
Let (A, τ) be a W ∗-probability space and a1, a2 ∈ A. Then a1 and a2 are freely
independent if

τ(p1(ai1) · · · pn(ain)) = 0, (5.20)

for all n ≥ 1, all i1, . . . , in ∈ {1, 2} with ij 6= ij+1, j = 1, . . . , n−1, and all polynomials
p1, . . . , pn in one variable satisfying

τ(pj(aij )) = 0, j = 1, . . . , n. (5.21)

For (possibly unbounded) operators a1, . . . , ak and b1, . . . , bm affiliated with A, the
collections (a1, . . . , ak) and (b1, . . . , bm) are freely independent if and only if

p(h1(a1), . . . , hk(ak)) and q(g1(b1), . . . , gm(bm)), (5.22)

are freely independent for all bounded measurable h1, . . . , hk and g1, . . . , gm, and
all polynomials p and q in k and m non-commutative variables, respectively. It is
immediate that the two operators in the above display are bounded, and hence belong
to A.
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We are now in a position to state our next theorem.

Theorem 5.1.6 (Identification of the limiting spectral distribution).
If f is as in (5.16), then

µ = L
(
r1/2(Tu)Tsr

1/2(Tu)

)
, (5.23)

and

ν = L
(
r1/2(Tu)Tsr

1/2(Tu) + αr1/4(Tu)Tgr
1/4(Tu)

)
, (5.24)

where

α =

(∫ 1

0

r(x) dx

)1/2

. (5.25)

Here, Tg and Tu are commuting self-adjoint operators affiliated with a W ∗-probability
space (A, τ) such that, for bounded measurable functions h1, h2 from R to itself,

τ(h1(Tg)h2(Tu)) =

(∫
R
h1(x)φ(x) dx

)(∫ 1

0

h2(u) du

)
, (5.26)

with φ the standard normal density. Furthermore, Ts has a standard semicircle dis-
tribution and is freely independent of (Tg, Tu).

The right-hand side of (5.23) is the same as the free multiplicative convolution
of the standard semicircle law and the law of r(U), where U is a standard uniform
random variable.

The fact that Tg and Tu commute, together with (5.26), specifies their joint distri-
bution. In fact, they are standard normal and standard uniform, respectively, inde-
pendently of each other in the classical sense. Free independence of Ts and (Tg, Tu),
plus the fact that the former follows the standard semicircle law, specifies the joint
distribution of Ts, Tg, Tu.

In order to admit the unbounded operator Tg, a W ∗-probability space is needed.
If all the operators would have been bounded, then a C∗-probability space would have
sufficed.

§5.1.4 Randomization
Theorem 5.1.2 can be generalized to the situation where the function f is random.
Such a randomization helps us to address the applications listed in Section 5.4. Sup-
pose that (εN : N ≥ 1) is a sequence of positive numbers satisfying (5.2). Suppose
further that, for every N ≥ 1, (RNi : 1 ≤ i ≤ N) is a collection of non-negative
random variables (defined on the same probability space) such that there is a determ-
inistic C <∞ for which

sup
N≥1

max
1≤i≤N

RNi ≤ C almost surely. (5.27)
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In addition, suppose that there is a probability measure µr on R such that

lim
N→∞

1

N

N∑
i=1

δRNi = µr weakly almost surely. (5.28)

The non-negativity of RNi and (5.27) ensure that µr is concentrated on [0, C]. Fur-
thermore, the first line of (5.2) ensures that the additional assumption

sup
N≥1

εN ≤
1

C2
(5.29)

entails no loss of generality.
For fixed N and conditional on (RN1, . . . , RNN ), the random graph GN is con-

structed as before, except that there is an edge between i and j with probability
εNRNiRNj , which is at most 1 by (5.29) for all 1 ≤ i < j ≤ N . In other words,
GN has two levels of randomness: one in the choice of (RN1, . . . , RNN ) and one in
the choice of the set of edges. Once again, AN is the adjacency matrix of GN . The
following is a randomized version of Theorem 5.1.2.

Theorem 5.1.7 (Limiting spectral distribution of AN).
Under the assumptions (5.2) and (5.27)–(5.28),

lim
N→∞

ESD
(
(NεN )−1/2AN

)
= µr � µs weakly in probability, (5.30)

where µs is the standard semicircle law.

§5.1.5 Applications and outline
As we will see in Section 5.4, our results can be applied in various ways. A first ap-
plication consists in constrained random graphs. Given a sequence of positive integers,
among the probability distributions for which the sequence of average degrees matches
the given sequence, called the soft configuration model, the one that maximizes the
entropy is the canonical Gibbs measure. It is known that, under a sparsity condition,
the connection probabilities arising out of the canonical Gibbs measure asymptotically
have a multiplicativestructure (see [187]). We show that our results on the adjacency
matrix can be easily extended to cover such situations. Another important applic-
ation consists in Chung-Lu type random graph, which are used to model sociability
patterns in networks. We show how to use the rescaled empirical spectral distribu-
tion and free probability to statistically recover the underlying sociability distribution.

Outline of the chapter. The remainder of this chapter is organized as follows. In
Section 5.2 a number of technical lemmas are proved. These serve as preparation
for the proofs of our main theorems, which are given in Section 5.3. In Section 5.4,
the above applications are discussed, organized into three propositions. Appendix E
collects a few basic facts that are needed along the way.
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§5.2 Preparatory approximations

The proofs of our main theorems rely on several preparatory approximations, which
we organize in Lemmas 5.2.1–5.2.4 and 5.2.6 below. Along the way we need several
basic results, which we collect in Appendix E.

§5.2.1 Centering
The first approximation is that the mean of each off-diagonal entry of AN and ∆N

can be subtracted, with negligible perturbation in the respective empirical spectral
distributions.

Lemma 5.2.1 (Centering).
Let A0

N and ∆0
N be N ×N matrices defined by

A0
N (i, j) = (NεN )−1/2

(
AN (i, j)− E[AN (i, j)]

)
, (5.31)

∆0
N (i, j) = (NεN )−1/2

(
∆N (i, j)− E[∆N (i, j)]

)
, (5.32)

for all 1 ≤ i, j ≤ N . Then

lim
N→∞

L
(
ESD(A0

N ),ESD((NεN )−1/2AN )
)

= 0 in probability,

lim
N→∞

L
(
ESD(∆0

N ),ESD((NεN )−1/2(∆N −DN ))
)

= 0 in probability,
(5.33)

where L(η1, η2) denotes the Lévy distance between the probability measures η1 and η2,
and DN is the diagonal matrix defined in (5.8).

Proof. An appeal to Lemma E.1 shows that

L3
(
ESD(A0

N ),ESD((NεN )−1/2AN )
)

≤ 1

N2εN

N∑
i,j=1

E2[AN (i, j)]

=
1

N2εN

∑
i6=j

ε2
Nf

2

(
i

N
,
j

N

)
= εN

∫
[0,1]2

f2(x, y) dx dy [1 + o(1)], N →∞.

(5.34)

The first claim follows by recalling that εN → 0. The proof the second claim is
verbatim the same. �

§5.2.2 Gaussianisation
One of the crucial steps in studying the scaling properties of ESD is to replace each
entry by a Gaussian random variable.
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Lemma 5.2.2 (Gaussianisation).
Let (Gi,j : 1 ≤ i ≤ j) be a family of i.i.d. standard Gaussian random variables. Define
N ×N matrices AgN and ∆g

N by

AgN (i, j) =

{√
1
N f
(
i
N ,

j
N

)(
1− εNf

(
i
N ,

j
N

))
Gi∧j,i∨j , i 6= j,

0, i = j,
(5.35)

∆g
N (i, j) =

{
AgN (i, j), i 6= j,

−
∑N
k=1,k 6=iA

g
N (i, k), i = j.

(5.36)

Fix z ∈ C \ R and a three times continuously differentiable function h : R → R such
that

max
0≤j≤3

sup
x∈R
|h(j)(x)| <∞. (5.37)

For an N ×N real symmetric matrix M , define

HN (M) =
1

N
Tr
(
(M − zIN )−1

)
, (5.38)

where IN is the identity matrix of order N . Then

lim
N→∞

E
[
h
(
<HN (AgN )

)
− h
(
<HN (A0

N )
)]

= 0, (5.39)

lim
N→∞

E
[
h
(
=HN (AgN )

)
− h
(
=HN (A0

N )
)]

= 0, (5.40)

and

lim
N→∞

E
[
h
(
<HN (∆g

N )
)
− h
(
<HN (∆0

N )
)]

= 0, (5.41)

lim
N→∞

E
[
h
(
=HN (∆g

N )
)
− h
(
=HN (∆0

N )
)]

= 0, (5.42)

where < and = denote the real and the imaginary part of a complex number, respect-
ively.

Proof. We only prove (5.41). The proofs of the other claims are similar. We use ideas
from [136]. Let z = u+ iv ∈ C+ and n = N(N − 1)/2. Define φ : Rn → C as

φ(x) = HN (∆(x)) (5.43)

where ∆(x) is the N ×N symmetric Laplacian matrix given by

∆(x)(i, j) =

{
−
∑N
k=1,k 6=i xi,k, i = j,

xi∧j,i∨j , i 6= j.
(5.44)

Note that ∂∆(x)/∂xij is the N ×N matrix that has −1 at the i-th and j-th diagonal
and 1 at (i, j)-th and (j, i)-th entry. The following identities were derived in [136,
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Section 2]:

∂φ

∂xi,j
= −N−1 Tr

(
∂∆

∂xi,j
K2

)
,

∂2φ

∂x2
i,j

= 2N−1 Tr

(
∂∆

∂xi,j
K

∂∆

∂xi,j
K2

)
, (5.45)

∂3φ

∂x3
i,j

= −6N−1 Tr

(
∂∆

∂xi,j
K

∂∆

∂xi,j
K

∂∆

∂xi,j
K2

)
,

where K(x) = (∆(x)− zI)−1. Now using these identities we get∥∥∥ ∂φ

∂xij

∥∥∥
∞
≤ 4

|=z|2
1

N
,

∥∥∥ ∂2φ

∂x2
ij

∥∥∥
∞
≤ 8

|=z|3
1

N
,

∥∥∥ ∂3φ

∂x3
ij

∥∥∥
∞
≤ 48

|=z|4
1

N
. (5.46)

If we define

λ2(φ) = sup

{∥∥∥ ∂φ

∂xi,j

∥∥∥2

∞
,
∥∥∥ ∂2φ

∂x2
i,j

∥∥∥
∞

}
, (5.47)

λ3(φ) = sup

{∥∥∥ ∂φ

∂xi,j

∥∥∥3

∞
,
∥∥∥ ∂2φ

∂x2
i,j

∥∥∥2

∞
,
∥∥∥ ∂3φ

∂x3
i,j

∥∥∥
∞

}
, (5.48)

then there exist constants C2 and C3 depending on =z such that λ2(φ) ≤ C2N
−1 and

λ3(φ) ≤ C3N
−1. Hence, using λr(<φ) ≤ λr(φ) and

U = <
(
HN (∆0

N )
)
, V = =

(
HN (∆g

N )
)
, (5.49)

we have from [136, Theorem 1.1]∣∣E[h(U)]− E[h(V )]
∣∣

≤ C1(h)λ2(φ)
∑

1≤i 6=j≤N

(
E[A0

N (i, j)2; |A0
N (i, j)| > K]

+ E[AgN (i, j)2; |AgN (i, j)| > K]
)

+ C2(h)
λ3(φ)

(NεN )3/2

∑
i 6=j

(
E[A0

N (i, j); |A0
N (i, j)| > K]

+ E[AgN (i, j)3; |AgN (i, j)| > K]
)
.

(5.50)

Using the fact that εN → 0, we have that E[A0
N (i, j)4] = O(N−2ε−1

N ). Also

P(|A0
N (i, j)| > K) ≤ O(N−1). (5.51)

So, by the Cauchy-Schwartz inequality and the above bounds, we have

E[A0
N (i, j)2; |A0

N (i, j)| > K] ≤ O
(
ε
−1/2
N N−3/2

)
. (5.52)

Since NεN →∞, we have

λ2(φ)
∑

1≤i 6=j≤N

E[A0
N (i, j)2; |A0

N (i, j)| > K] ≤ CN−1/2ε
−1/2
N , (5.53)
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which tends to 0 as N →∞. Similarly, we have

λ3(φ)
∑
i 6=j

E[A0
N (i, j)3; |A0

N (i, j)| > K] ≤ C

N5/2ε
3/2
N

N2εN , (5.54)

which also tends to 0 as N →∞. Using Gaussian tail bounds, we can also show that
the other two terms in (5.50) tend to 0 as N → ∞, which settles (5.41). In order
to prove (5.42), a similar computation can be done for the imaginary part in (5.49).
The proofs of (5.39) and (5.40) are analogous (and, in fact, closer to the argument in
[136]). �

§5.2.3 Leading order variance

Next, we show that another minor tweak to the entries of AgN and ∆g
N results in a

negligible perturbation.

Lemma 5.2.3 (Leading order variance).
Define an N ×N matrix AN by

ĀN (i, j) =

√
1

N
f

(
i

N
,
j

N

)
Gi∧j,i∨j , 1 ≤ i, j ≤ N, (5.55)

and let

∆̄N = ĀN −XN , (5.56)

where XN is a diagonal matrix of order N defined by

XN (i, i) =

N∑
k=1,k 6=i

ĀN (i, k), 1 ≤ i ≤ N. (5.57)

Then

lim
N→∞

L
(
ESD(AgN ),ESD(ĀN )

)
= 0 in probability, (5.58)

lim
N→∞

L
(
ESD(∆g

N ),ESD(∆̄N )
)

= 0 in probability. (5.59)
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Proof. To prove (5.59), yet another application of Lemma E.1 implies that

E
[
L3
(
ESD(∆g

N ),ESD(∆̄N )
)]

≤ 1

N
E
[

Tr
((

∆g
N − ∆̄N

)2)]
=

1

N

∑
1≤i 6=j≤N

Var(ĀN (i, j)−AgN (i, j))

+
1

N

N∑
i=1

Var

( N∑
j=1,j 6=i

(ĀN (i, j)−AgN (i, j))

)
+

1

N2

N∑
i=1

f

(
i

N
,
i

N

)

=
4

N2

∑
1≤i<j≤N

f

(
i

N
,
j

N

)(
1−

√
1− εNf

(
i

N
,
j

N

))2

+
1

N2

N∑
i=1

f

(
i

N
,
i

N

)
,

(5.60)

which tends to 0 as N → ∞ because f is bounded. Thus, (5.59) follows. The proof
of (5.58) is similar. �

§5.2.4 Decoupling

The (diagonal) entries of XN are nothing but the row sums of ĀN . However, the
correlation between an entry of ĀN and that of XN is small. The following decoupling
lemma shows that it does not hurt when the entries ofXN are replaced by a mean-zero
Gaussian random variable of the same variance that is independent of ĀN .

Lemma 5.2.4 (Decoupling).
Let (Zi : i ≥ 1) be a family of i.i.d. standard normal random variables, independent
of (Gi,j : 1 ≤ i ≤ j). Define a diagonal matrix YN of order N by

YN (i, i) = Zi

√√√√ 1

N

N∑
j=1,j 6=i

f

(
i

N
,
j

N

)
, 1 ≤ i ≤ N, (5.61)

and let
∆̃N = ĀN + YN . (5.62)

Then, for every k ∈ N,

lim
N→∞

1

N
E
[

Tr
(
(∆̃N )2k − (∆̄N )2k

)]
= 0, (5.63)

and

lim
N→∞

1

N2
E
[

Tr2
(
(∆̃N )k

)
− Tr2

(
(∆̄N )k

)]
= 0. (5.64)
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Proof. Without loss of generality we may assume that f ≤ 1. For N ≥ 1, define the
N ×N matrices M̄N and M̃N by

M̄N (i, j) =

{
N−1/2Gi∧j,i∨j , i 6= j,

N−1/2Gi,i −
∑N
k=1, k 6=i M̄N (i, k), i = j,

(5.65)

and

M̃N (i, j) =

{
M̄N (i, j), i 6= j,

N−1/2Gi,i + Zi

√
N−1
N , i = j.

(5.66)

Note that, in the special case where f is identically 1, M̄N and M̃N are identical to
∆̄N and ∆̃N , respectively. For k ∈ N and Π a partition of {1, . . . , 2k}, let

Ψ(Π, N) =
{
i ∈ {1, . . . , N}2k : iu = iv ⇐⇒ u, v belong to the same block of Π

}
.

(5.67)
For fixed Π and N , an immediate application of Wick’s formula shows that, for all
i, j ∈ Ψ(Π, N),

E
[ 2k∏
u=1

M̄N (iu, iu+1)

]
= E

[ 2k∏
u=1

M̄N (ju, ju+1)

]
, (5.68)

with the convention that i2k+1 ≡ i1, and

E
[ 2k∏
u=1

M̃N (iu, iu+1)

]
= E

[ 2k∏
u=1

M̃N (ju, ju+1)

]
, (5.69)

Therefore, for any i ∈ Ψ(Π, N), we can unambiguously define

ψ(Π, N) = E
[ 2k∏
u=1

M̄N (iu, iu+1)

]
− E

[ 2k∏
u=1

M̃N (iu, iu+1)

]
. (5.70)

As shown in [128, Lemma 4.12], for a fixed Π,

lim
N→∞

N−1|ψ(Π, N)||Ψ(Π, N)| = 0. (5.71)

An immediate observation is that, for all 1 ≤ i, j, i′, j′ ≤ N ,

Cov
(
M̃N (i, j), M̃N (i′, j′)

)
= 0 if (i ∧ j, i ∨ j) 6= (i′ ∧ j′, i′ ∨ j′), (5.72)

and likewise for ∆̃N . Furthermore,

Var
(
M̃N (i, j)

)
= Var

(
M̄N (i, j)

)
, 1 ≤ i, j ≤ N, (5.73)

and likewise for ∆̃N and M̄N . For N ≥ 1 and 1 ≤ i, j, i′, j′ ≤ N , define

ηN (i, j, i′, j′) =


Cov
(

∆̄N (i,j),∆̄N (i′,j′)
)

Cov
(
M̄N (i,j),M̄N (i′,j′)

) , if the denominator is non-zero,

0, otherwise.
(5.74)
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It is easy to check that the assumption f ≤ 1 ensures that |ηN (i, j, i′, j′)| ≤ 1. There-
fore, for all N and 1 ≤ i, j, i′, j′ ≤ N ,

Cov
(
∆̄N (i, j), ∆̄N (i′, j′)

)
= ηN (i, j, i′, j′)Cov

(
M̄N (i, j), M̄N (i′, j′)

)
,

Cov
(
∆̃N (i, j), ∆̃N (i′, j′)

)
= ηN (i, j, i′, j′)Cov

(
M̃N (i, j), M̃N (i′, j′)

)
.

For fixed Π, N and i ∈ Ψ(Π, N), by an appeal to Wick’s formula the above implies
that there exists a ξ(i,N) ∈ [−1, 1] such that

E
[ 2k∏
u=1

∆̄N (iu, iu+1)

]
− E

[ 2k∏
u=1

∆̃N (iu, iu+1)

]
= ξ(i,N)ψ(Π, N), (5.75)

and therefore, by (5.71),

∑
i∈Ψ(Π,N)

∣∣∣∣E[ 2k∏
u=1

∆̄N (iu, iu+1)

]
− E

[ 2k∏
u=1

∆̃N (iu, iu+1)

]∣∣∣∣
=

∑
i∈Ψ(Π,N)

|ξ(i,N)||ψ(Π, N)| ≤ |ψ(Π, N)||Ψ(Π, N)| = o(N), N →∞.

(5.76)

Since this holds for every partition Π of {1, . . . , 2k}, (5.63) follows. The proof of
(5.64) follows along similar lines. �

§5.2.5 Combinatorics from free probability
The final preparation is a general result from random matrix theory. To state this,
the following notions from the theory of free probability are borrowed. We refer to
Section 1.2.4 for an introduction to free probability theory and to [186] for more
details.

Definition 5.2.5 (Kreweras complement).
For an even positive integer k, NC2(k) is the set of non-crossing pair partitions
of {1, . . . , k}. For σ ∈ NC2(k), its Kreweras complement K(σ) is the maximal
non-crossing partition σ̄ of {1̄, . . . , k̄}, such that σ ∪ σ̄ is a non-crossing partition
of {1, 1̄, . . . , k, k̄}. For example,

K({(1, 4), (2, 3)}) = {(1, 3), (2), (4)},
K({(1, 2), (3, 4), (5, 6)}) = {(1), (2, 4, 6), (3), (5)}.

(5.77)

The second example is illustrated as

1 1̄ 2 2̄ 3 3̄ 4 4̄ 5 5̄ 6 6̄
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For σ ∈ NC2(k) and N ≥ 1, define

S(σ,N) =
{
i ∈ {1, . . . , N}k : iu = iv ⇐⇒ u, v belong to the same block of K(σ)

}
(5.78)

and
C(k,N) = {1, . . . , N}k \

( ⋃
σ∈NC2(k)

S(σ,N)

)
. (5.79)

In other words, S(σ,N) is the same as Ψ(K(σ), N) defined in (5.67).

Lemma 5.2.6 (Trace of product of random matrices).
Suppose that, for each N ≥ 1, WN,1, . . . ,WN,k are N × N real (and possibly asym-
metric) random matrices, where k is a positive even number. Suppose further that,
for each u = 1, . . . , k,

max
1≤i,j≤N

E
[
WN,u(i, j)k

]
= O(N−k/2) (5.80)

and

lim
N→∞

E
[(

1

N

∑
i∈C(k,N)

Pi

)2 ]
= 0, (5.81)

and that, for every σ ∈ NC2(k), there exists a deterministic and finite β(σ) such that

lim
N→∞

E
(

1

N

∑
i∈S(σ,N)

Pi

)
= β(σ), (5.82)

lim
N→∞

E
[(

1

N

∑
i∈S(σ,N)

Pi

)2 ]
= β(σ)2, (5.83)

where

Pi = WN,1(i1, i2) · · ·WN,k−1(ik−1, ik)WN,k(ik, i1), i ∈ {1, . . . , N}k. (5.84)

Furthermore, let V1, V2, . . . be i.i.d. random variables drawn from some distribution
with all moments finite, independent of (WN,j : N ≥ 1, 1 ≤ j ≤ k), and let

UN = Diag(V1, . . . , VN ), N ≥ 1. (5.85)

Then, for all choices of n1, . . . , nk ≥ 0,

lim
N→∞

1

N
Tr
(
Un1

N WN,1 · · ·UnkN WN,k

)
= c in L2 (5.86)

for some deterministic c ∈ R (depending on k, n1, . . . , nk).

Proof. The fact that the sets S(σ,N) are disjoint for different σ ∈ NC2(k) allows us
to write

Tr
(
Un1

N WN,1 · · ·UnkN WN,k

)
=

∑
σ∈NC2(k)

∑
i∈S(σ,N)

P̃i +
∑

i∈C(k,N)

P̃i, (5.87)
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where

P̃i =

k∏
j=1

(
V
nj
ij
WN,j(ij , ij+1)

)
, i ∈ {1, . . . , N}k. (5.88)

In order to show that the second sum in the right-hand side is negligible after scaling
by N , the independence of (V1, V2, . . .) and (WN,j : N ≥ 1, 1 ≤ j ≤ k), together with
the fact that the common distribution of the former has finite moments, implies that

E
[(

1

N

∑
i∈C(k,N)

P̃i

)2 ]
≤ KN−2

∑
i,j∈C(k,N)

E[PiPj ],

where K is a finite constant. Assumption (5.81) shows that

lim
N→∞

1

N

∑
i∈C(k,N)

P̃i = 0 in L2. (5.89)

In order to complete the proof, it suffices to show that for every σ ∈ NC2(k) there
exists a θ(σ) ∈ R with

lim
N→∞

1

N

∑
i∈S(σ,N)

P̃i = θ(σ) in L2. (5.90)

To that end, fix σ ∈ NC2(k) and note that, for i ∈ S(σ,N),

E[P̃i] = E[Pi]E
[ k∏
j=1

V
nj
ij

]
= E[Pi]

∏
u∈K(σ)

E
[
V

∑
j∈u nj

1

]
, (5.91)

the product in the last line being taken over every block u of K(σ). Putting

θ(σ) = β(σ)
∏

u∈K(σ)

E
[
V

∑
j∈u nj

1

]
, (5.92)

we see that (5.82) gives

lim
N→∞

E
[

1

N

∑
i∈S(σ,N)

P̃i

]
= θ(σ). (5.93)

Let us call i, j ∈ Nk “disjoint” if no coordinate of i matches any coordinate of j, i.e.,

min
1≤u,v≤k

|iu − jv| ≥ 1. (5.94)

Since K(σ) has exactly 1
2k + 1 blocks, (5.80) implies that

lim
N→∞

N−2
∑

i,j∈S(σ,N)
i,j not disjoint

E[P̃iP̃j ] = 0. (5.95)
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If i, j ∈ S(σ,N) are disjoint, then it is immediate that

E[P̃iP̃j ] =

( ∏
u∈K(σ)

E
[
V

∑
j∈u nj

1

])2

E[PiPj ]. (5.96)

The above two displays, in conjunction with (5.83), show that

lim
N→∞

E
[(

1

N

∑
i∈S(σ,N)

P̃i

)2 ]
= θ(σ)2. (5.97)

This, along with (5.93), establishes (5.90), from which the proof follows. �

§5.3 Proofs of the main results

In this section we prove the theorems in Section 5.1. In Section 5.3.1 we prove
Theorems 5.1.2–5.1.3 on the existence of the limiting spectral distributions of AN
and ∆N . In Section 5.3.2 we identify those distributions by proving Theorem 5.1.6.
In Section 5.3.3 we prove Theorem 5.1.7.

§5.3.1 Proof: existence
Proof of Theorem 5.1.2. From [129, Theorem 2.1] we know that, as N →∞,

lim
N→∞

ESD(ĀN ) = µ weakly in probability, (5.98)

for a compactly supported symmetric probability measure µ. Lemma 5.2.3 immedi-
ately tells us that

lim
N→∞

ESD(AgN ) = µ weakly in probability, (5.99)

and hence for h and HN as in Lemma 5.2.2,

lim
N→∞

E
[
h
(
<HN (AgN )

)]
= h

(
<
∫
R

1

x− z
µ(dx)

)
. (5.100)

The claim in (5.39) shows that AgN can be replaced by A0
N in the above display.

Since the right-hand side is deterministic and the above holds for any h satisfying the
hypothesis of Lemma 5.2.2, it follows that

lim
N→∞

<HN (A0
N ) = <

∫
R

1

x− z
µ(dx) in probability. (5.101)

A similar argument works for the imaginary part, which shows that

lim
N→∞

ESD(A0
N ) = µ weakly in probability. (5.102)

Lemma 5.2.1 completes the proof of (5.5).
Finally, if f is bounded away from 0, then the combination of [129, Lemma 3.1]

and [120, Corollary 2] implies that µ is absolutely continuous with respect to the
Lebesgue measure (see also [131]). �
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A close inspection of the proof reveals that it suffices to assume that f is bounded
and Riemann integrable instead of continuous. In other words, if f is symmetric and
bounded, and its set of discontinuities has Lebesgue measure zero, then the result
holds. However, continuity will be used later in (5.107) in the proof of Theorem 5.1.3.
Furthermore, if εN = 1 for all N , then

lim
N→∞

ESD
(
N−1/2(AN − E(AN ))

)
= µ√

f(1−f)
weakly in probability, (5.103)

where the right-hand side is the probability measure obtained after replacing f with√
f(1− f) in [129, Theorem 2.1].

Proof of Theorem 5.1.3. The proof comes in three steps.

1 (Riemann approximation). For N ≥ 1, define the N ×N diagonal matrix QN by

QN (i, i) = F (i/N)Zi, 1 ≤ i ≤ N, (5.104)

where

F (x) =

(∫ 1

0

f(x, y) dy

)1/2

, x ∈ [0, 1], (5.105)

and (Zi : i ≥ 1) is as in Lemma 5.2.4. Lemma E.2 implies that∣∣∣∣( 1

N
Tr
(
(∆̃N )k

))1/k

−
(

1

N
Tr
(
(ĀN +QN )k

))1/k∣∣∣∣ ≤ ( 1

N
Tr
(
(YN −QN )k

))1/k

.

(5.106)
Since, f being continuous,

E
[
N−2 Tr2

(
(YN −QN )k

)]
= O(1) sup

x∈[0,1]

[
F (x)−

(
1

N

N∑
j=1,j 6=[Nx]/N

f

(
x,

j

N

))1/2 ]2k

, N →∞,
(5.107)

and it tends to 0 as N →∞, we get that, for every even k,(
1

N
Tr
(
(∆̃N )k

))1/k

−
(

1

N
Tr
(
(ĀN +QN )k

))1/k

(5.108)

tends to 0 in L2k as N →∞.
Our next step is to show that, for every even integer k,

lim
N→∞

1

N
Tr
(
(ĀN +QN )k

)
= γk in L2 (5.109)

for some γk ∈ R. The above will follow once we show that, for all m ≥ 1 and
n1, . . . , nm ≥ 0,

lim
N→∞

1

N
Tr
(
Qn1

N ĀN · · ·Q
nm
N ĀN

)
= θ in L2 (5.110)
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for some θ ∈ R (depending on m,n1, . . . , nm). To that end, define the diagonal
matrices UN and BN by

UN (i, i) = Zi and BN (i, i) = F (i/N), (5.111)

for i = 1, . . . , N . Observe that

QN = BNUN = UNBN , (5.112)

and hence the left-hand side of (5.110) is the same as

1

N
Tr
(
Un1

N WN,1 · · ·UnmN WN,m

)
, (5.113)

where
WN,j = B

nj
N ĀN , j = 1, . . . ,m. (5.114)

In order to apply Lemma 5.2.6 we need to verify its hypotheses.

2 (Verification of the hypotheses). Our next claim is that WN,1, . . . ,WN,m satisfy
(5.80)–(5.83). To that end, observe that for N ≥ 1 and j = 1, . . . ,m,

WN,j(u, v) = Fnj
(
u

N

)
f1/2

(
u

N
,
v

N

)
N−1/2Gu∧v, u∨v, 1 ≤ u, v ≤ N. (5.115)

Let
Hj(x, y) = Fnj (x)f1/2(x, y), (x, y) ∈ [0, 1]2. (5.116)

Fix a partition Π of {1, . . . ,m}. Recall the notation Ψ(Π, N) introduced in the proof
of Lemma 5.2.4. Clearly, for every i ∈ Ψ(Π, N),

E
[ m∏
j=1

WN,j(ij , ij+1)

]
= N−m/2ψ(Π)

( m∏
j=1

Hj

(
ij
N
,
ij+1

N

))
, (5.117)

where

ψ(Π) = E
[ m∏
j=1

Gij∧ij+1,ij∨ij+1

]
, (5.118)

which does not depend on i ∈ Ψ(Π, N). The standard arguments leading to a proof
via the method of moments of the Wigner semicircle law show that

lim
N→∞

N−m/2+1 ψ(Π) |Ψ(Π, N)|

=

{
1, if m is even, and Π = K(σ) for some σ ∈ NC2(m),

0, otherwise.

(5.119)

Assume for the moment that m is even, and let σ ∈ NC2(m). It is known that K(σ)

has m/2 + 1 blocks. Define a function Lσ : {1, . . . ,m} → {1, . . . , 1
2m + 1} such that
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Lσ(j) = Lσ(k) if and only if j, k are in the same block of K(σ). It follows that for
Π = K(σ),

lim
N→∞

1

N

∑
i∈Ψ(Π,N)

E
[ m∏
j=1

WN,j(ij , ij+1)

]

=

∫
[0,1](m/2)+1

∏
(u,v)∈σ,u<v

Hu

(
xLσ(u), xLσ(v)

)
dx1 · · · dx(m/2)+1.

(5.120)

This shows that hypothesis (5.82) holds. The hypotheses (5.81) and (5.83) follow
similarly by an analogue of the standard arguments, while (5.80) is trivial.

Thus, WN,1, . . . ,WN,m and UN satisfy the hypotheses of Lemma 5.2.6. The claim
of that lemma shows that the random variable in (5.113) converges in L2 to a finite
deterministic constant as N → ∞, i.e., (5.110) holds. This in turn proves (5.109),
which in conjunction with (5.108) shows that

lim
N→∞

1

N
Tr
(
(∆̃N )k

)
= γk in L2. (5.121)

Lemma 5.2.4 asserts that

lim
N→∞

1

N
Tr
(
(∆̄N )k

)
= γk in L2, (5.122)

and hence also in probability.

3 (Uniqueness of the limiting measure). Equation (5.109) ensures that there exists a
symmetric probability measure on R whose k-th moment is γk for every even integer
k. Our next claim is that such a measure is unique, i.e., (γk : k ≥ 1) determines the
measure. It is not obvious how to check Carleman’s condition, and therefore we argue
as follows. It suffices to exhibit a probability measure ν whose odd moments are zero
and whose k-th moment is γk for even k such that∫

R
etxν(dx) <∞ ∀ t ∈ R. (5.123)

To do so we bring in the notion of a non-commutative probability space (NCP), which
is defined in Appendix E. For K > 0 and N ≥ 1, define

UNK = Diag
(
Z11(|Z1| ≤ K), . . . , Z11(|ZN | ≤ K)

)
, (5.124)

and
QNK = BNUNK . (5.125)

The arguments leading to (5.110) can be easily tweaked to show that, for fixed K > 0

and a fixed polynomial p in two non-commuting variables,

lim
N→∞

1

N
E
[

Tr
(
p(ĀN , QNK)

)]
(5.126)
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exists. Lemma E.4 implies that there exist self-adjoint elements q and a in a tracial
NCP (A, φ) such that the above limit equals φ [p (a, q)] for every polynomial p in two
non-commuting variables. Hence

lim
N→∞

EESD
[
p(ĀN , QNK)

]
= L(p (a, q)) in distibution, (5.127)

for any symmetric polynomial p, where EESD denotes the expectation of ESD. The-
orem 5.1.2 implies that the limiting spectral distribution of ĀN , which is L(a) by
(5.127), is compactly supported, and hence a is a bounded element. The spectrum of
q is clearly a subset of [−K,K]. The second claim in Lemma E.4 allows us to assume
that (A, φ) is a W ∗-probability space.

Let
νK = L(a+ q). (5.128)

If C is a finite constant such that

−C1 ≤ a ≤ C1, (5.129)

then clearly
a+ q ≤ C1 + q. (5.130)

Applying the method of moments to QNK , we find by an appeal to (5.127) that the
law of q is the same as the law of

F (V )Z11(|Z1| ≤ K),

where V is standard uniform independently of Z1, and F is as in (5.105). Under the
assumption that f ≤ 1, which represents no loss of generality,∫

R
etx
(
L(q)

)
(dx) ≤ et

2/2, t ∈ R. (5.131)

By [118, Corollary 3.3] applied to (5.130), it follows that∫
R
etxνK(dx) ≤

∫
R
etx
(
L(C1 + q)

)
(dx) ≤ exp

(
1
2 t

2 + tC
)
, t > 0. (5.132)

Lemma E.1 applied to ĀN +QNK1
and ĀN +QNK1

shows that

sup
N≥1

L
(
EESD[ĀN +QNK1

],EESD[ĀN +QNK2
]
)

(5.133)

is small for large K1 and K2. Thus, (νK : K > 0) is Cauchy in the Lévy metric, and
hence there exists a probability measure ν such that

lim
K→∞

νK = ν. (5.134)

This, along with (5.132), establishes that∫
R
etxν(dx) ≤ exp

(
1
2 t

2 + tC
)
, t > 0, (5.135)
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and
lim
K→∞

∫
R
xkνK(dx) =

∫
R
xkν(dx), k ≥ 1. (5.136)

Clearly, ∫
R
xkνK(dx) = lim

N→∞
N−1E

[
Tr
(
(ĀN +QNK)k

)]
. (5.137)

Therefore, by keeping track of the limit in (5.126), we can show (with some effort)
that

lim
K→∞

∫
R
xkνK(dx) =

{
γk, k even,
0, k odd.

(5.138)

Thus, ν has the desired moments. By extending (5.135) to the case t < 0, we see
that (5.123) follows. Thus, ν is the only symmetric probability measure whose even
moments are (γk).

Equation (5.122) and the claim proved above show that

lim
N→∞

ESD(∆̄N ) = ν weakly in probability. (5.139)

Hence Lemmas 5.2.1–5.2.3 imply that

lim
N→∞

ESD
(
(NεN )−1/2(∆N −DN )

)
= ν weakly in probability. (5.140)

as in the proof of Theorem 5.1.2.
It remains to show that if f is not identically zero, then the support of ν is

unbounded. To that end, recall that (5.109), together with the fact that ν is the only
symmetric probability measure whose even moments are (γk), establish that

lim
N→∞

ESD(ĀN +QN ) = ν weakly in probability, (5.141)

where ĀN and QN are as in (5.55) and (5.104), respectively. Fix 0 < p < 1/2, and for
any N × N real symmetric matrix Σ, enumerate its eigenvalues in descending order
by λ1(Σ), . . . , λN (Σ). Weyl’s inequality (see [189, Equation (1.54)]) implies that

λ2dNpe−1(QN ) ≤ λdNpe(ĀN +QN ) + λdNpe(−ĀN ), (5.142)

where dxe denotes the smallest integer larger than or equal to x. Therefore

lim sup
N→∞

λdNpe(ĀN +QN ) ≥ lim sup
N→∞

λ2dNpe−1(QN )− lim inf
N→∞

λdNpe(−ĀN )

≥ lim sup
N→∞

λ2dNpe−1(QN )− C,
(5.143)

where C is as in (5.129). Letting p→ 0 and appealing to Lemma E.6, we find that

sup(Supp(ν)) = lim
p→0

lim sup
N→∞

λdNpe(ĀN +QN )

≥ lim
p→0

lim sup
N→∞

λ2dNpe−1(QN )− C =∞,
(5.144)

where the last line uses the fact that, as N → ∞, ESD(QN ) converges weakly in
probability to the distribution of F (V )Z1, the support of which is unbounded because
f is not identically zero. �
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§5.3.2 Proof: identification
Proof of Theorem 5.1.6. Let (Gi,j : 1 ≤ i ≤ j) and (Zi : i ≥ 1) be as in Lemma 5.2.4.
For N ≥ 1, define the N ×N matrices

GN (i, j) = N−1/2Gi∧j,i∨j , 1 ≤ i, j ≤ N, (5.145)

RN = Diag
(√

r(1/N), . . . ,
√
r(1)

)
, (5.146)

UN = Diag(Z1, . . . , ZN ). (5.147)

The notation UN is exactly as in the proof of Theorem 5.1.3. Let ĀN and QN be as
in (5.55) and (5.104), respectively. Observe that, under the assumption (5.16),

ĀN = RNGNRN , (5.148)

and
QN = αR

1/2
N UNR

1/2
N , (5.149)

where α is as defined in the statement of Theorem 5.1.6. Proceeding as in the proofs
of Theorems 5.1.2–5.1.3, wee see that it suffices to show that

lim
N→∞

ESD (RNGNRN ) = L
(
r1/2(Tu)TsT

1/2(Tu)
)

weakly in probability (5.150)

and

lim
N→∞

ESD
(
RNGNRN + αR

1/2
N UNR

1/2
N

)
= L

(
r1/2(Tu)TsT

1/2(Tu) + αr1/4(Tu)Tgr
1/4(Tu)

)
weakly in probability,

(5.151)

where Ts, Tg, Tu are as in the statement. Define UNK to be the “truncated” version
of UN , for a fixed K > 0, as in the proof of Theorem 5.1.3. Both (5.150) and (5.151)
will follow once we show that

lim
N→∞

1

N
Tr
(
p
(
R

1/2
N , UNK , GN

))
= τ

(
p(Tr, T

′
g, Ts)

)
in probability, (5.152)

where Tr = r1/4(Tu) and T ′g = Tg1{|Tg|≤K}, for any symmetric polynomial p in three
non-commuting variables. It is a well known fact that, for all k ≥ 1,

lim
N→∞

1

N
Tr(GkN ) = τ(T ks ) in probability. (5.153)

Since RN and UNK are diagonal matrices, they commute. This, in conjunction
with the strong law of large numbers, implies that, for any k ≥ 1, m1, . . . ,mk and
n1, . . . , nk ≥ 0,

lim
N→∞

1

N
Tr
(
Rm1

N Un1

NK · · ·R
mk
N UnkNK

)
=

∫ 1

0

r(m1+...+mk)/4(u) du

∫ K

−K
(2π)−1/2xn1+...+nke−x

2/2 dx almost surely

(5.154)
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The above, in conjunction with (5.26) and the fact that Tg and Tr commute, implies
that

lim
N→∞

1

N
Tr
(
p
(
R

1/2
N , UNK

))
= τ

(
p(Tr, T

′
g)
)

almost surely (5.155)

for any polynomial p in two variables.
Thus, all that remains to show is the asymptotic free independence of Ts and

(Tr, T
′
g), which is precisely the claim of Lemma E.5, i.e., (5.153) and (5.155) imply

(5.152). Applying (5.152) to p(x, y, z) = x2zx2 and p(x, y, z) = x2zx2 +αxyx, we get
the truncated versions of (5.150) and (5.151), respectively. Yet another application of
Lemma E.1 allows us to let K → ∞, obtaining (5.150) and (5.151). This completes
the proof of (5.23) and (5.24). �

§5.3.3 Proof: randomization
Proof of Theorem 5.1.7. As before, Lemma 5.2.1 and (5.2) imply that the mean of the
entries of AN can be subtracted at the cost of a negligible perturbation of the ESD.
The inequalities (5.2) and (5.27) ensure that the Gaussianization as in Lemma 5.2.2
goes through by conditioning on RN1, . . . , RNN . That is, if (Gij : 1 ≤ i ≤ j)

is a collection of i.i.d. standard normal random variables that are independent of
(RNi : 1 ≤ i ≤ N,N ≥ 1), W g

N is an N ×N matrix defined by

W g
N (i, j) = Gi∧j,i∨j , 1 ≤ i, j ≤ N, (5.156)

and
ΘN = Diag

(√
RN1, . . . ,

√
RNN

)
, (5.157)

then the ESD of AN/
√
NεN is close to that of ΘNW

g
NΘN/

√
N .

The assumptions (5.27) and (5.28) imply that, for k ≥ 1,

lim
N→∞

1

N
Tr
(
Θ2k
N

)
=

∫
R
xkµr(dx) almost surely. (5.158)

Finally, Lemma E.5 together with (5.27) shows the asymptotic free independence of
ΘN and W g

N , that is,

lim
N→∞

ESD
(
N−1/2ΘNW

g
nΘN

)
= µr � µs weakly in probability. (5.159)

This completes the proof. �

§5.4 Applications

In this section we discuss three applications, explained in Sections 5.4.1–5.4.3.

§5.4.1 Constrained random graphs
Let SN be the set of all simple graphs on N vertices. Suppose that we fix the degrees
of the vertices, namely, vertex i has degree k∗i . Here, k∗ = (k∗i : 1 ≤ i ≤ N) is a
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sequence of positive integers of which we only require that they are graphical, i.e.,
there is at least one simple graph with these degrees. The so-called canonical ensemble
PN is the unique probability distribution on SN with the following two properties.

(I) The average degree of vertex i, defined by
∑
G∈SN ki(G)PN (G), equals k∗i for

all 1 ≤ i ≤ N .

(II) The entropy of PN , defined by −
∑
G∈SN PN (G) logPN (G), is maximal.

The name canonical ensemble comes from Gibbs theory in equilibrium statistical
physics. The probability distribution PN describes a random graph of which we have
no prior information other than the average degrees, and is called the soft configuration
model. It is known that, because of property (II), PN takes the form (see [169])

PN (G) =
1

ZN (θ∗)
exp

[
−

N∑
i=1

θ∗i ki(G)

]
, G ∈ SN , (5.160)

where θ∗ = (θ∗i : 1 ≤ i ≤ N) is a sequence of real-valued Lagrange multipliers that
must be chosen in such a way that property (I) is satisfied. The normalization constant
ZN (θ∗), which depends on θ∗, is called the partition function in Gibbs theory.

The gradients of the constraints in property (I) are linearly independent vectors
and the matching of property (I) uniquely fixes θ∗. It turns out that

PN (G) =
∏

1≤i<j≤N

(p∗ij)
AN [G](i,j) (1− p∗ij)1−AN [G](i,j), G ∈ SN , (5.161)

where AN [G] is the adjacency matrix of G, and p∗ij represent a reparameterisation of
the Lagrange multipliers, namely,

p∗ij =
x∗i x

∗
j

1 + x∗i x
∗
j

, 1 ≤ i 6= j ≤ N, (5.162)

with x∗i = e−θ
∗
i (see [187] for more details). Thus, we see that PN is nothing other than

an inhomogeneous Erdős-Rényi random graph where the probability that vertices i
and j are connected by an edge equals p∗ij . In order to match property (I), these
probabilities must satisfy

k∗i =

N∑
j=1,j 6=i

p∗ij , 1 ≤ i ≤ N, (5.163)

which constitutes a set of N equations for the N unknowns x∗1, . . . , x∗N .
In order to state the next result, we need to make some assumptions on the

sequence (k∗Ni : 1 ≤ i ≤ N). For the sake of notational simplification, the dependence
on N will be suppressed from the notation.

Proposition 5.4.1 (Theorem 5.1.7 for constrained random graphs).
Let (k∗i : 1 ≤ i ≤ N) be a graphical sequence of positive integers. Define

mN = max
1≤`≤N

k∗` . (5.164)
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Assume that
lim
N→∞

mN =∞, lim
N→∞

mN/
√
N = 0, (5.165)

and

lim
N→∞

1

N

N∑
i=1

δk∗i /mN = µr weakly, (5.166)

for some probability measure µr. Let x∗i and p∗ij be determined by (5.162) and (5.163).
Let AN be the adjacency matrix of an inhomogeneous Erdős-Rényi random graph on
N vertices, with p∗ij the probability of an edge being present between vertices i and j
for 1 ≤ i 6= j ≤ N . Then

lim
N→∞

ESD
(
(NεN )−1/2AN

)
= µr � µs weakly in probability. (5.167)

Proof. Abbreviate

σN =

N∑
`=1

k∗` . (5.168)

In [187] it is shown that

max
1≤`≤N

x∗` = o(1), N →∞, (5.169)

in which case (5.162) and (5.163) give

x∗i =
k∗i√
σN

[1 + o(1)] and p∗ij =
k∗i k
∗
j√

σN
[1 + o(1)], N →∞, (5.170)

with the error term uniform in 1 ≤ i 6= j ≤ N . Pick

εN =
m2
N

σN
. (5.171)

It follows from (5.165) that

lim
N→∞

εN = 0, lim
N→∞

NεN =∞. (5.172)

As in the proof of Theorem 5.1.7, Lemmas 5.2.1–5.2.2 imply that the upper triangular
entries of AN can be replaced by independent mean-zero normal random variables.
In other words, if (Gij : 1 ≤ i ≤ j) are i.i.d. standard normal, and AgN is the random
matrix defined by

AgN (i, j) =
√
p∗ij Gi∧j,i∨j , 1 ≤ i, j ≤ N, (5.173)

with p∗ii = 0 for all 1 ≤ i ≤ N , then ESD
(
(NεN )−1/2AN

)
and ESD

(
(NεN )−1/2AgN

)
are asymptotically close. The second part of (5.170) implies that

√
p∗ij =

√
εN

k∗i k
∗
j

m2
N

[1 + o(1)], N →∞, (5.174)
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uniformly in 1 ≤ i 6= j ≤ N , and hence

N∑
i,j=1

(√
p∗ij −

√
εN

k∗i k
∗
j

m2
N

)2

= o(N2εN ), N →∞. (5.175)

In other words, if ÃN is defined by

ÃN (i, j) =

√
k∗i k
∗
j

m2
N

Gi∧j,i∨j , 1 ≤ i, j ≤ N, (5.176)

then
lim
N→∞

1

N
E
[

Tr
(
(NεN )−1/2AgN −N

−1/2ÃN
)2]

= 0. (5.177)

Lemma E.1 implies that

lim
N→∞

L
(
ESD

(
(NεN )−1/2AgN

)
,ESD

(
N−1/2ÃN

))
= 0 in probability. (5.178)

Finally, by an appeal to Lemma E.5, (5.166) implies that

lim
N→∞

ESD
(
N−1/2ÃN

)
= µr � µs weakly in probability, (5.179)

where µs is the standard semicircle law. Hence

lim
N→∞

ESD
(
(NεN )−1/2AN

)
= µr � µs weakly in probability, (5.180)

and this completes the proof. �

Remark 5.4.2 (Example).
We look at a concrete example of a graphical sequence (k∗i : 1 ≤ i ≤ N) satisfying
(5.165)–(5.166). For N ≥ 1, let

k∗i = bi1/3c, 1 ≤ i ≤ N, (5.181)

where bxc denotes the greatest integer smaller than or equal to x. Then [165, The-
orem 7.12] implies that (k∗i : 1 ≤ i ≤ N) is graphical for N large enough. Since
mN = bN1/3c, it is immediate that (5.165) holds and that

lim
N→∞

(
1

N

N∑
i=1

δk∗i /mN

)
(·) = P

(
U1/3 ∈ ·

)
weakly, (5.182)

with U a standard uniform random variable.

§5.4.2 Chung-Lu graphs
The following random graph introduced by [140] is similar to the one discussed in
Section 5.4.1. For N ≥ 1, let (dNi : 1 ≤ i ≤ N) be a sequence of positive real
numbers. Abbreviate

mN = max
1≤i≤N

dNi, σN =

N∑
i=1

dNi. (5.183)
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Assume that

lim
N→∞

m2
N

σN
= 0, lim

N→∞
N
m2
N

σN
=∞, (5.184)

and

lim
N→∞

1

N

N∑
i=1

δdNi/mN = µr weakly (5.185)

for some measure µr on R. Consider an inhomogeneous Erdős-Rényi graph on N

vertices where an edge exists between i and j, 1 ≤ i 6= j ≤ N , with probability
dNidNj/σN . Such graph is called a Chung-Lu graph. If AN denotes its adjacency
matrix, then the following result follows from Theorem 5.1.7.

Proposition 5.4.3 (Theorem 5.1.7 for Chung-Lu graphs).
Under the hypotheses mentioned above,

lim
N→∞

ESD
(
(NεN )−1/2AN

)
= µr � µs weakly in probability, (5.186)

where

εN =
m2
N

σN
(5.187)

and µs is the standard semicircle law.

§5.4.3 Social networks
Consider a community consisting of N individuals. Data is available on whether
the i-th individual and the j-th individual are acquainted, for every pair (i, j) with
1 ≤ i, j ≤ N . Based on this data, the sociability pattern of the community has to be
inferred statistically. Examples arise in social networks and collaboration networks.

The above situation can be modeled in several ways, one being the following.
Denote by ρ the sociability distribution of the community, which is a compactly sup-
ported probability measure on [0,∞). Let (Ri)1≤i≤N be i.i.d. random variables drawn
from ρ. Think of Ri as the sociability index of the i-th individual. Fix εN > 0 such
that εNm2 ≤ 1, where m is the supremum of the support of ρ, so that

0 ≤ εNRiRj ≤ 1, 1 ≤ i 6= j ≤ N. (5.188)

Suppose that, conditional on (Ri)1≤i≤N , the i-th and the j-th individual are ac-
quainted with probability εNRiRj . In other words, the graph in which the vertices
are individuals and the edges are mutual acquaintances is an inhomogeneous Erdős-
Rényi random graph GN with random connection parameters that are controlled by
ρ. The data that is available is the adjacency matrix AN of this graph. The goal
is to draw information about ρ from this data. This statistical inference problem
boils down to estimating ρ from AN . Without loss of generality we assume that ρ is
standardized, i.e., ∫ ∞

0

xρ(dx) = 1. (5.189)
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Proposition 5.4.4 (Theorem 5.1.7 for social networks).
Under the assumptions N−1 � εN � 1 and (5.189),

lim
N→∞

ESD

(√
N

Tr(A2
N )

AN

)
= ρ� µs weakly in probability, (5.190)

where µs is the standard semicircle law.

Proof. It is immediate that

lim
N→∞

1

N

N∑
i=1

δRi = ρ weakly almost surely. (5.191)

Theorem 5.1.7 implies that if N−1 � εN � 1, then

lim
N→∞

ESD
(
(NεN )−1/2AN

)
= ρ� µs weakly in probability. (5.192)

Since AN (i, j) is either 0 or 1,

E
[

Tr(A2
N )
]

=

N∑
i,j=1

E[AN (i, j)] =
∑

1≤i 6=j≤N

εNE[RiRj ] = εNN(N − 1), (5.193)

where the last equality follows from (5.189). Consequently,

lim
N→∞

1

N2εN
E
[

Tr(A2
N )
]

= 1. (5.194)

The fact that the variance equals the sum of the expectation of the conditional vari-
ance and the variance of the conditional expectation, implies that

Var
(

Tr(A2
N )
)

= Var

(
2

∑
1≤i<j≤N

AN (i, j)

)

= 4E

( ∑
1≤i<j≤N

εNRiRj(1− εNRiRj)
)

+ 4Var

( ∑
1≤i<j≤N

εNRiRj

)
= O(N2εN ) + 4ε2

N

∑
1≤i<j≤N

∑
1≤k<l≤N

Cov(RiRj , RkRl)

= O(N3ε2
N ), N →∞,

(5.195)

where the last line follows from the observation that if i, j, k, l are distinct, then
Cov(RiRj , RkRl) vanishes. Hence,

lim
N→∞

Var

(
1

N2εN
Tr(A2

N )

)
= 0. (5.196)

The above in conjunction with (5.194) shows that

lim
N→∞

1

N2εN
Tr(A2

N ) = 1 in probability. (5.197)

This, together with (5.192), completes the proof. �
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Thus, ρ� µs can in principle be statistically estimated from AN . Subsequently, ρ
can be computed because the moments of ρ� µs are functions of the moments of ρ,
as shown below. We know from [183, Equation (14.5)] that, for n ≥ 1,∫

R
x2n ρ� µs(dx) =

∑
σ∈NC2(2n)

n+1∏
j=1

∫
R
xlj(σ)ρ(dx), (5.198)

where l1(σ), . . . , ln+1(σ) are block sizes of K(σ), the Kreweras complement of σ.
With the help of the above, the n-th moment of ρ can be written in terms of the
2n-th moment of ρ�µs, and the first n− 1 moments of ρ. Therefore, the moments of
ρ can be recursively computed from those of ρ� µs. Since ρ is compactly supported,
it can be computed from its moments.

§E Appendix: basic facts

The following is [114, Corollary A.41], and is also a corollary of the Hoffman-Wielandt
inequality.

Lemma E.1 (Lévy distance between empirical spectral distributions).
If L denotes the Lévy distance between two probability measures, then for N × N

symmetric matrices A and B,

L3
(
ESD(A),ESD(B)

)
≤ 1

N
Tr
(
(A−B)2

)
. (5.199)

The following is a consequence of the Minkowski and k-Hoffman-Wielandt inequal-
ities. The latter can be found in Exercise 1.3.6 of [189].

Lemma E.2 (Difference of traces).
For real symmetric matrices A and B of the same order, and an even positive integer
k, ∣∣Tr1/k(Ak)− Tr1/k(Bk)

∣∣ ≤ Tr1/k
(
(A−B)k

)
. (5.200)

Definition E.3 (Non-commutative probability space).
A non-commutative probability space (NCP) (A, φ) is a unital ∗-algebra A equipped
with a linear functional φ : A → C that is unital, i.e.,

φ(1) = 1, (5.201)

and positive, i.e.,
φ(a∗a) ≥ 0 ∀ a ∈ A. (5.202)

An NCP (A, φ) is tracial if

φ(ab) = φ(ba), a, b ∈ A. (5.203)

Lemma E.4 (Limit of polynomials in an NCP).
Suppose that, for every n ∈ N, (An, φn) is a tracial NCP, and there exist self-adjoint
an1, . . . , ank ∈ An such that, for every polynomial p in k non-commuting variables,

lim
n→∞

φn
(
p(an1, . . . , ank)

)
= αp ∈ C. (5.204)
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Then there exists a tracial NCP (A∞, φ∞) and self-adjoint a∞1, . . . , a∞k ∈ A∞ such
that, for every polynomial p in k non-commuting variables,

φ∞
(
p(a∞1, . . . , a∞k)

)
= αp. (5.205)

Furthermore, if

sup
1≤i≤k, j≥1

(
φ∞
(
a2j
∞i
))1/2j

<∞, (5.206)

then (A∞, φ∞) can be embedded into a W ∗-probability space.

Proof. Let
A∞ = C[X1, . . . , Xk], (5.207)

the set of all polynomials in k non-commuting variables. For a monomial

p = αXi1 . . . Xim , (5.208)

define
p∗ = αXim . . . Xi1 . (5.209)

This defines the ∗-operation on the whole of A. Let

φ∞(p) = αp ∀ p ∈ A∞. (5.210)

It is immediate from (5.204) that φ∞ is positive and unital, i.e., (A∞, φ∞) is an NCP.
The desired conclusions are ensured by defining

a∞1 = X1, . . . , a∞k = Xk. (5.211)

Finally, (5.206) implies that a∞,1, . . . , a∞,k are bounded. Hence, by going from poly-
nomials to continuous functions with the help of the Bolzano-Weierstrass theorem,
we can embed (A∞, φ∞) into a W ∗-probability space. �

The next lemma follows from [182, Theorem 4.20] (which is due to Voiculescu)
and the discussion immediately following it.

Lemma E.5 (Polynomials and independence in an NCP).
Suppose that WN is an N ×N scaled standard Gaussian Wigner matrix, i.e., a sym-
metric matrix whose upper triangular entries are i.i.d. normal with mean zero and
variance 1/N . Let D1

N and D2
N be (possibly random) N×N symmetric matrices such

that there exists a deterministic C satisfying

sup
N≥1,i=1,2

‖Di
N‖ ≤ C <∞, (5.212)

where ‖ · ‖ denotes the usual matrix norm (which for a symmetric matrix is the same
as the largest absolute value of its eigenvalues). Furthermore, assume that there is a
W ∗-probability space (A, τ) in which there are self-adjoint elements d1 and d2 such
that, for any polynomial p in two variables, it

lim
N→∞

1

N
Tr
(
p(D1

N , D
2
N )
)

= τ
(
p(d1, d2)

)
almost surely. (5.213)
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Finally, suppose that (D1
N , D

2
N ) is independent ofWN . Then there exists a self-adjoint

element s in A (possibly after expansion) that has the standard semicircle distribution
and is freely independent of (d1, d2), and is such that

lim
N→∞

1

N
Tr
(
p(WN , D

1
N , D

2
N )
)

= τ
(
p(s, d1, d2)

)
almost surely (5.214)

for any polynomial p in three variables.

Lemma E.6 (Support of the limiting measure of random variables).
Suppose that for all n ≥ 1, Zn1 ≥ . . . ≥ Znn are random variables such that

lim
n→∞

1

n

n∑
j=1

δZnj = µ weakly in probability, (5.215)

for some probability measure µ on R, where δx is the probability measure that puts
mass 1 at x. Then,

lim
p→0

lim sup
n→∞

Zn dnpe = sup(Supp(µ)) almost surely, (5.216)

where dxe denotes the smallest integer larger than or equal to x.

Proof. Our first claim is that if x ∈ R and 0 < p < 1 are such that

µ((−∞, x)) < 1− p, (5.217)

then
lim sup
n→∞

Zn dnpe ≥ x almost surely. (5.218)

To see why, fix p, x as above and ε > 0 such that µ({x − ε}) = 0, and note that the
hypothesis implies that

lim
n→∞

1

n

∣∣{1 ≤ j ≤ n : Znj ≤ x− ε}
∣∣ = µ((−∞, x− ε]) in probability. (5.219)

Therefore,

P

(
lim sup
n→∞

Zn dnpe ≤ x− ε
)

≤ P
(

1

n

∣∣{1 ≤ j ≤ n : Znj ≤ x− ε}
∣∣ ≥ 1− 1

n
dnpe for large n

)
≤ lim sup

n→∞
P

(
1

n

∣∣{1 ≤ j ≤ n : Znj ≤ x− ε}
∣∣ ≥ 1− 1

n
dnpe

)
= 0,

(5.220)

where the last step follows from (5.219) and the observation that

lim
n→∞

1− 1

n
dnpe = 1− p > µ((−∞, x)) ≥ µ((−∞, x− ε]). (5.221)

Since ε > 0 can be chosen to be arbitrarily small such that µ({x − ε}) = 0, (5.218)
follows.
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It is immediate to see that lim supn→∞ Zn dnpe is monotone in p, and hence the
almost sure limit exists as p→ 0. Furthermore,

lim
p→0

lim sup
n→∞

Zn dnpe ≤ α almost surely, (5.222)

where
α = sup(Supp(µ)). (5.223)

To complete the proof, choose xk such that xk → α and xk < α. Since α is the
right end point of the support of µ, it follows that

µ((−∞, xk)) < 1. (5.224)

Choosing

0 < pk < [1− µ((−∞, xk))] ∧ 1

k
, k ≥ 1, (5.225)

we see that (5.218) implies

lim sup
n→∞

Zn dnpke ≥ xk almost surely. (5.226)

Therefore, since xk → α,

lim inf
k→∞

lim sup
n→∞

Zn dnpke ≥ α almost surely. (5.227)

Since pk → 0, the left-hand side above equals that of (5.222). �
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CHAPTER 6
Largest eigenvalue of the adjacency

matrix

This chapter is based on:
A. Chakrabarty, R.S. Hazra, F. den Hollander, M. Sfragara. Large deviation prin-
ciple for the maximal eigenvalue of inhomogeneous Erdős-Rényi random graphs.
[arXiv:2008.08367], 2020.

Abstract

We consider inhomogeneous Erdős-Rényi random graphs GN on N vertices in the
dense regime. The edge between the pair of vertices {i, j} is retained with probability
r( iN ,

j
N ), 1 ≤ i 6= j ≤ N , independently of other edges, where r : [0, 1]2 → (0, 1)

is a symmetric function that plays the role of a reference graphon. Let λN be the
largest eigenvalue of the adjacency matrix of GN . It is known that λN/N satisfies a
large deviation principle as N → ∞. The associated rate function ψr is given by a
variational formula that involves the rate function Ir of a large deviation principle on
graphon space. We analyze this variational formula in order to identify the properties
of ψr, specially when the reference graphon is of rank 1.
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§6.1 Introduction and main results

In Section 6.1.1 we define the mathematical model and we state the large deviation
principle (LDP) for inhomogeneous Erdős Rényi random graphs. In Section 6.1.2 we
present some facts about graphon operators. In Section 6.1.3 we state the LDP for
the largest eigenvalue of the adjacency matrix, together with some properties of the
rate function. Moreover, under the assumption that the connection probabilities have
a multiplicative structure, we identify the scaling behavior of the rate function around
its minimum and its end points. In Section 6.1.4 we briefly discuss these results and
give an outline of the remainder of the chapter.

§6.1.1 Setting
We refer to Section 1.2.3 for a general introduction to spectra of Erdős-Rényi random
graphs. We focus on inhomogeneous Erdős-Rényi random graphs and consider the
dense regime, where the degrees of the vertices diverge linearly with the size of the
graph.

Recall Section 1.2.5 for an introduction to graphon theory. Let r ∈ W be a
reference graphon satisfying

∃ η > 0: η ≤ r(x, y) ≤ 1− η ∀ (x, y) ∈ [0, 1]2. (6.1)

Fix N ∈ N and consider the random graph GN with vertex set [N ] = {1, . . . , N}
where the pair of vertices i, j ∈ [N ], i 6= j, is connected by an edge with probability
r( iN ,

j
N ), independently of other pairs of vertices. Write PN to denote the law of GN .

Use the same symbol for the law on W induced by the map that associates with the
graph GN its graphon hGN , defined by

hGN (x, y) =

{
1, if there is an edge between vertex dNxe and vertex dNye,
0, otherwise.

(6.2)
Recall the equivalence relation ∼ on W defined in Section 1.2.5 and write P̃N to
denote the law of h̃GN .

The following LDP is proved in [145] and is an extension of the celebrated LDP
for homogeneous Erdős-Rényi random graphs derived in [138]. Further properties of
the rate function were derived in [179].

Theorem 6.1.1 (LDP for inhomogeneous Erdős-Rényi random graphs).
Subject to (6.1), the sequence (P̃N )N∈N satisfies the LDP on (W̃, δ�) with rate

(
N
2

)
,

i.e.,

lim sup
N→∞

1(
N
2

) log P̃N (C) ≤ − inf
h̃∈C

Jr(h̃) ∀ C ⊂ W̃ closed,

lim inf
N→∞

1(
N
2

) log P̃N (O) ≥ − inf
h̃∈O

Jr(h̃) ∀O ⊂ W̃ open,
(6.3)

where the rate function Jr : W̃ → R is given by

Jr(h̃) = inf
φ∈M

Ir(h
φ), (6.4)
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where h is any representative of h̃ and

Ir(h) =

∫
[0,1]2

R
(
h(x, y) | r(x, y)

)
dx dy, h ∈ W, (6.5)

with
R
(
a | b

)
= a log a

b + (1− a) log 1−a
1−b (6.6)

the relative entropy of two Bernoulli distributions with success probabilities a ∈ [0, 1],
b ∈ (0, 1) (with the convention 0 log 0 = 0).

It is clear that Jr is a good rate function, i.e., Jr 6≡ ∞ and Jr has compact level sets.
Note that (6.4) differs from the expression in [145], where the rate function is the
lower semi-continuous envelope of Ir(h). However, it was shown in [180] that, under
the integrability conditions log r, log(1 − r) ∈ L1([0, 1]2), the two rate functions are
equivalent, since Jr(h̃) is lower semi-continuous on W̃. Clearly, these integrability
conditions are implied by (6.1).

§6.1.2 Graphon operators
With h ∈ W we associate a graphon operator acting on L2([0, 1]), defined as the linear
integral operator

(Thu)(x) =

∫
[0,1]

h(x, y)u(y) dy, x ∈ [0, 1], (6.7)

with u ∈ L2([0, 1]). The operator norm of Th is defined as

‖Th‖ = sup
u∈L2([0,1])
‖u‖2=1

‖Thu‖2, (6.8)

where ‖·‖2 denotes the L2-norm. Given a graphon h ∈ W, we have that ‖Th‖ ≤ ‖h‖2.
Hence, a graphon sequence converging in the L2-norm also converges in the operator
norm.

The product of two graphons h1, h2 ∈ W is defined as

(h1h2)(x, y) =

∫
[0,1]

h1(x, z)h2(z, y) dz, (x, y) ∈ [0, 1]2, (6.9)

and the n-th power of a graphon h ∈ W as

hn(x, y) =

∫
[0,1]n−1

h(x, z1) · · ·h(zn−1, y) dz1 · · · dzn−1, (x, y) ∈ [0, 1]2, n ∈ N.

(6.10)

Definition 6.1.2 (Eigenvalues and eigenfunctions).
The number µ ∈ R is said to be an eigenvalue of the graphon operator Th if there
exists a non-zero function u ∈ L2([0, 1]) such that

(Thu)(x) = µu(x), x ∈ [0, 1]. (6.11)

The function u is said to be an eigenfunction associated with µ.
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Proposition 6.1.3 (Properties of the graphon operator).
For any h ∈ W the following statements hold.

(i) The graphon operator Th is self-adjoint, bounded and continuous.

(ii) The graphon operator Th is diagonalisable and has countably many eigenvalues,
all of which are real and can be ordered as µ1 ≥ µ2 ≥ . . . ≥ 0. Moreover,
there exists a collection of eigenfunctions which form an orthonormal basis of
L2([0, 1]).

(iii) The largest eigenvalue µ1 of the graphon operator Th is strictly positive and has
an associated eigenfunction u1 satisfying u1(x) > 0 for all x ∈ [0, 1]. Moreover,
µ1 = ‖Th‖, i.e., the largest eigenvalue equals the operator norm.

Proof. The claim is a special case of [184, Theorem 7.3] (when the compact Hermitian
operators considered there are taken to be the graphon operators). See also [143,
Theorem 19.2] and [147, Appendix A]. �

§6.1.3 Main theorems
Let λN be the largest eigenvalue of the adjacency matrix AN of GN . Write P∗N to
denote the law of λN/N .

Cr 10

C1
r

C0
r

β

φr(β)

+∞+∞

s

s

s◦◦

Figure 6.1: Graph of β 7→ ψr(β).

Theorem 6.1.4 (LDP for the largest eigenvalue).
Subject to (6.1), the sequence (P∗N )N∈N satisfies the LDP on R with rate

(
N
2

)
and with

rate function

ψr(β) = inf
h̃∈W̃
‖T
h̃
‖=β

Jr(h̃) = inf
h∈W
‖Th‖=β

Ir(h), β ∈ R. (6.12)

Proof. Note that λN/N = ‖ThGN ‖, where h is any representative of h̃ (we use the
fact that ‖Th̃‖ = ‖Thφ‖ for all φ ∈ M). Also note that h̃ 7→ ‖Th̃‖ is a bounded
and continuous function on W̃ [137, Exercises 6.1–6.2, Lemma 6.2]. Hence the claim
follows from Theorem 6.1.1 via the contraction principle (see [167, Chapter 3]). �
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Put
Cr = ‖Tr‖. (6.13)

When β = Cr, the graphon h that minimizes Ir(h) such that ‖Th‖ = Cr is the
reference graphon h = r almost everywhere, for which Ir(r) = 0 and no large deviation
occurs. When β > Cr, we are looking for graphons h with a larger operator norm.
The large deviation cannot go above 1, which is represented by the constant graphon
h ≡ 1, for which Ir(1) = C1

r . Similarly, when β < Cr, we are looking for graphons
h with a smaller operator norm. The large deviation cannot go below 0, which is
represented by the constant graphon h ≡ 0, for which Ir(0) = C0

r (see Figure 6.1).

Theorem 6.1.5 (Properties of the rate function).
Subject to (6.1), the rate function in (6.12) satisfies the following.

(i) The rate function ψr is continuous and unimodal on [0, 1], with a unique zero
at Cr.

(ii) The rate function ψr is strictly decreasing on [0, Cr] and strictly increasing on
[Cr, 1].

(iii) For every β ∈ [0, 1], the set of minimisers of the variational formula for ψr(β)

is non-empty and compact in W̃.

If the reference graphon r is of rank 1, i.e.,

r(x, y) = ν(x) ν(y), (x, y) ∈ [0, 1]2, (6.14)

for some ν : [0, 1]→ [0, 1] that is bounded away from 0 and 1, then we are able to say
more. Define

mk =

∫
[0,1]

ν(x)k dx, k ∈ N. (6.15)

Note that Cr = m2. Abbreviate

Br =

∫
[0,1]2

r(x, y)3(1− r(x, y)) dx dy, (6.16)

and note that Br = m2
3 −m2

4. Further abbreviate

N1
r =

∫
[0,1]2

1− r(x, y)

r(x, y)
dx dy, N0

r =

∫
[0,1]2

r(x, y)

1− r(x, y)
dx dy. (6.17)

Recall from Section 1.2.5 thatM is the set of Lebesgue measure-preserving bijective
maps φ : [0, 1]→ [0, 1].

Theorem 6.1.6 (Scaling of the rate function).
Let ψr be the rate function in (6.12).

(i) Subject to (6.1) and (6.14),

ψr(β) = Kr (β − Cr)2 [1 + o(1)], β → Cr, (6.18)

with

Kr =
C2
r

2Br
=

m2
2

2(m2
3 −m2

4)
. (6.19)
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(ii) Subject to (6.1),

C1
r − ψr(β) = (1− β)

(
log

N1
r

1− β
+ 1 + o(1)

)
, β → 1. (6.20)

(iii) Subject to (6.1),

C0
r − ψr(β) = β

(
log

N0
r

β
+ 1 + o(1)

)
, β → 0. (6.21)

Theorem 6.1.7 (Scaling of the minimisers).
Let hβ ∈ W be any minimiser of the second infimum in (6.12).

(i) Subject to (6.1) and (6.14),

lim
β→Cr

(β − Cr)−1‖hβ − r − (β − Cr)∆‖2 = 0, (6.22)

with
∆(x, y) =

Cr
Br

r(x, y)2(1− r(x, y)), (x, y) ∈ [0, 1]2. (6.23)

(ii) Subject to (6.1),

lim
β→1

(1− β)−1‖1− hβ − (1− β)∆‖2 = 0, (6.24)

with
∆(x, y) =

1

N1
r

1− r(x, y)

r(x, y)
, (x, y) ∈ [0, 1]2. (6.25)

(iii) Subject to (6.1),
lim
β→0

β−1‖hβ − β∆‖2 = 0, (6.26)

with
∆(x, y) =

1

N0
r

r(x, y)

1− r(x, y)
, (x, y) ∈ [0, 1]2. (6.27)

§6.1.4 Discussion and outline
Theorems. Theorem 6.1.5 confirms the picture of ψr drawn in Figure 6.1. It remains
open whether or not ψr is convex. We do not expect ψr to be analytic, because
bifurcations may occur in the set of minimisers of ψr as β is varied. Theorem 6.1.6
identifies the scaling of ψr around its minimum and near its end points, provided
r is of rank 1. The inverse curvature 1/Kr equals the variance in the central limit
theorem derived in [130]. This is in line with the standard folkore of large deviation
theory. Theorem 6.1.7 identifies the corresponding scaling of the minimiser hβ of ψr.
Interestingly, the scaling corrections are not rank 1. It remains open to determine
what happens near Cr when r is not of rank 1 (see Appendix F).

Conditions. It would be interesting to investigate to what extent the condition on
the reference graphon in (6.1) can be weakened to some form of integrability condition.
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Especially for the upper bound in the LDP this is delicate, because the proof in [145]
is based on block-graphon approximation (see [180]).

Outline of the chapter. The remainder of this chapter is organized as follows. In
Section 6.2 we derive an expansion for the operator norm of a graphon around any
graphon of rank 1. In Section 6.3 we prove our main theorems. In Appendix F we
show how the expansion around reference graphons can be extended to finite rank.

§6.2 Expansion around rank-one graphons

In this section we show how we can expand the operator norm of a graphon around any
graphon of rank 1. This prepares for the perturbation analysis in Sections 6.3.2–6.3.4.
Lemma 6.2.1 (Rank-one expansion).
Consider a graphon h̄ ∈ W of rank 1 such that h̄(x, y) = ν̄(x)ν̄(y), (x, y) ∈ [0, 1]2.
For any h ∈ W such that ‖Th−h̄‖ < ‖Th‖, the operator norm µ = ‖Th‖ is a solution
of the equation

µ =
∑
n∈N0

1

µn
Fn(h, h̄), (6.28)

where
Fn(h, h̄) =

∫
[0,1]2

ν̄(x)(h− h̄)n(x, y)ν̄(y) dx dy. (6.29)

Proof. By Proposition 6.1.3, we have

Thu = µu, (6.30)

where µ equals both the norm and the largest eigenvalue of Th, and u is the eigen-
function associated with µ. Put g = h− h̄ and we have (µ− Tg)u = Th̄u. This gives

u = (µ− Tg)−1ν̄〈ν̄, u〉, (6.31)

where we use that µ−Tg is invertible because ‖Tg‖ = ‖Th−h̄‖ < ‖Th‖. Hence, taking
the inner product of u with ν̄ and observing that 〈ν̄, u〉 6= 0, we get

〈ν̄, u〉 = 〈ν̄, u〉〈ν̄, (µ− Tg)−1ν̄〉, (6.32)

which gives
µ = 〈ν̄, (1− Tg/µ)−1ν̄〉. (6.33)

We can expand the above to get

µ =

〈
ν̄,
∑
n∈N0

(
Tg
µ

)n
ν̄

〉
=
∑
n∈N0

1

µn

∫
[0,1]n+1

ν̄(x0)g(x0, x1) · · · g(xn−1, xn)ν̄(xn) dx0 dx1 · · · dxn

=
∑
n∈N0

1

µn
Fn(h, h̄),

(6.34)

and this completes the proof. �
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Subject to (6.14), it follows from Lemma 6.2.1 with h = h̄ = r that

Cr = ‖Tr‖ = m2, (6.35)

because only the term with n = 0 survives in the expansion.

Remark 6.2.2 (Higher rank).
The expansion around reference graphons of rank 1 can be extended to finite rank.
We provide the details in Appendix F. In this chapter we focus on rank 1, for which
Lemma 6.2.1 allows us to analyse the behavior of ψr(β) near the values β = Cr, β = 1

and β = 0. Note that both the graphons h = r and h ≡ 1 are of rank 1.

§6.3 Proofs of the main results

In this section we prove the theorems in Section 6.1.3. In Section 6.3.1 we prove
Theorem 6.1.5. In the last three sections we prove Theorems 6.1.6–6.1.7 by analyzing
graphon perturbations around the minimum of the rate function and near its end
points. The proofs of the theorems rely on the variational formula in (6.12). Since
the largest eigenvalue is invariant under relabeling of the vertices, we can work directly
with Ir in (6.5) without worrying about the equivalence classes.

§6.3.1 Proof: properties of the rate function
Proof of Theorem 6.1.5. We follow [137, Chapter 6]. Even though this monograph
deals with constant reference graphons only, most arguments carry over to r satisfying
(6.1). Define

ψ+
r (β) = inf

h∈W
‖Th‖≥β

Ir(h), ψ−r (β) = inf
h∈W
‖Th‖≤β

Ir(h), β ∈ R. (6.36)

(i) Because h 7→ ‖Th‖ is a nice graph parameter, in the sense of [137, Definition 6.1],
it follows that β 7→ ψ+

r (β) is non-decreasing and continuous, while β 7→ ψ−r (β) is
non-increasing and continuous (see [137, Proposition 6.1]). The proof requires
the fact that ‖fn − f‖2 → 0 implies Ir(fn) → Ir(f) and that Ir(f) is lower
semi-continuous on W. The continuity and unimodality of ψr follow from the
proof of (iii). Moreover, since Ir(h) = 0 if and only if h = r almost everywhere,
it is immediate that Cr is the unique zero of ψr.

(ii) The proof is by contradiction. Suppose that β 7→ ψ+
r (β) is not strictly increasing

on [Cr, 1]. Then there exist β1, β2 ∈ [Cr, 1], β1 < β2, such that ψ+
r is constant on

[β1, β2]. Consequently, there exist minimisers hφ1

β1
, hφ2

β2
, φ1, φ2 ∈ M, satisfying

r ≤ hφ1

β1
≤ hφ2

β2
, such that Ir(h

φ1

β1
) = Ir(h

φ2

β2
) and ‖T

h
φ1
β1

‖ = β1 < β2 = ‖T
h
φ2
β2

‖.
However, since a 7→ R(a | b) is strictly increasing on [b, 1] (recall (6.5)), it follows
that hφ1

β1
= hφ2

β2
almost everywhere. This in turn implies that ‖T

h
φ1
β1

‖ = ‖T
h
φ2
β2

‖,
which is a contradiction. A similar argument shows that β 7→ ψ−r (β) cannot
have a flat piece on [0, Cr].
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(iii) The variational formulas in (6.36) achieve minimisers. In fact, the sets of minim-
iser are non-empty compact subsets of W̃ (see [137, Theorem 6.2]). In addition,
all minimisers h of φ+

r (h) satisfy h ≥ r almost everywhere, while all minimisers
h of φ−r satisfy h ≤ r almost everywhere (see [137, Lemma 6.3]). Moreover,
because

h1 ≥ h2 ≥ r =⇒ ‖Th1
‖ ≥ ‖Th2

‖, Ir(h1) ≥ Ir(h2),

h1 ≤ h2 ≤ r =⇒ ‖Th1‖ ≤ ‖Th2‖, Ir(h1) ≤ Ir(h2),
(6.37)

(use that a 7→ R(a | b) is unimodal on [0, 1] with unique zero at b), it follows
that both variational formulas achieve minimisers with norm equal to β, and so

ψr(β) =

{
ψ+
r (β), β ≥ Cr,

ψ−r (β), β ≤ Cr.
(6.38)

�

§6.3.2 Proof: perturbation around the minimum
Note that when β = Cr, the infimum in (6.12) is attained at h = r and ψr(Cr) = 0.
Take β = Cr + ε with ε > 0 small, and assume that the infimum is attained by a
graphon of the form h = r + ∆ε, where ∆ε : [0, 1]2 → R represents a perturbation of
the graphon r. Note that r + ∆ε ∈ W, hence we are dealing with a perturbation ∆ε

which is symmetric and bounded. We compare

ψr(Cr + ε) = inf
∆ε : [0,1]2→R
r+∆ε∈W

‖Tr+∆ε‖=Cr+ε

Ir(r + ∆ε) (6.39)

with ψr(Cr) = 0 by computing the difference

δr(ε) = ψr(Cr + ε)− ψr(Cr) = ψr(Cr + ε) (6.40)

and studying its behavior as ε → 0. Since r(x, y) = ν(x)ν(y), (x, y) ∈ [0, 1]2, we can
use Lemma 6.2.1 to control the norm of Th = Tr+∆ε

. Pick h̄ = r and h = r + ∆ε in
(6.28) such that ‖∆ε‖2 → 0 as ε → 0. Note that ‖T∆ε

‖ ≤ ‖∆ε‖2 < Cr for ε small
enough. Hence, writing out the expansion for the norm, we get

‖Tr+∆ε
‖ = Cr +

∑
n∈N

1

‖Tr+∆ε
‖n
Fn(r + ∆ε, r). (6.41)

Since ‖Tr+∆ε‖ = Cr + ε, we have

Cr + ε = Cr +
〈ν,∆εν〉
Cr + ε

+
∑

n∈N\{1}

1

(Cr + ε)n
〈ν,∆n

ε ν〉 (6.42)

with 〈ν,∆εν〉 =
∫

[0,1]2
r∆ε. So

ε(Cr + ε) =

∫
[0,1]2

r∆ε +
∑

n∈N\{1}

1

(Cr + ε)n−1
〈ν,∆n

ε ν〉. (6.43)
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Since ν is bounded, using the generalized Hölder’s inequality (see [179, Theorem 3.1])
we get

|〈ν,∆n
ε ν〉| ≤ ‖∆ε‖n2 . (6.44)

Since ‖∆ε‖2 → 0 as ε→ 0, we can choose ε small enough such that ‖∆ε‖2 < 1
2 (Cr+ε),

which gives ∑
n∈N\{1}

1

(Cr + ε)n−1
〈ν,∆n

ε ν〉 = O
(
‖∆ε‖22

)
. (6.45)

The constraint ‖r + ∆ε‖ = Cr + ε therefore reads∫
[0,1]2

r∆ε = εCr + ε2 +O
(
‖∆ε‖22

)
. (6.46)

Observe that if ∆ε = ε∆ for some function ∆ ∈ L2([0, 1]2), then∫
[0,1]2

r∆ = Cr [1 + o(1)]. (6.47)

Small perturbation on a given region. In what follows we use the standard
notation o(·), O(·), � to describe the asymptotic behavior in the limit as ε→ 0. We
first show that it is enough to consider ∆ε of the form ε∆ for some ∆ ∈ L2([0, 1]2),
because these perturbations contribute to the minimum cost.

Lemma 6.3.1 (Order of minimal cost).
Let ∆ε : [0, 1]2 → R be such that r + ∆ε ∈ W and ‖Tr+∆ε‖ = Cr + ε. Then

Ir(r + ∆ε) ≥ 2ε2. (6.48)

Moreover, if ∆ε = ε∆, then

Ir(r + ε∆) = 2ε2
∫

[0,1]2

∆(x, y)2

4r(x, y)(1− r(x, y))
dx dy [1 + o(1)], ε→ 0. (6.49)

Proof. Fix b ∈ [0, 1] and abbreviate (recall (6.6))

χ(a) = R(a | b) = a log
a

b
+ (1− a) log

1− a
1− b

, a ∈ [0, 1]. (6.50)

Note that
χ(b) = χ′(b) = 0, χ′′(a) ≥ 4, a ∈ [0, 1]. (6.51)

Consequently,
χ(a) ≥ 2(a− b)2, a ∈ [0, 1], (6.52)

and hence
Ir(r + ∆ε) ≥ 2

∫
[0,1]2

∆2
ε = 2‖∆ε‖22. (6.53)

Next observe that

Cr + ε = ‖Tr+∆ε
‖ = ‖Tr + T∆ε

‖ ≤ ‖Tr‖+ ‖T∆ε
‖ ≤ Cr + ‖∆ε‖2, (6.54)
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which gives ‖∆ε‖2 ≥ ε. Inserting this lower bound into (6.53), we get (6.48). To get
(6.49), we need a higher-order expansion of χ, namely,

χ(x) = 1
2χ
′′(b)(x− b)2 +O((x− b)3), x→ b. (6.55)

Since r is bounded away from 0 and 1, and the constraint r + ∆ε ∈ W implies that
∆ε(x, y) ∈ [−1, 1], we see that the third-order term is smaller than the second-order
term when ∆ε = ε∆. Hence (6.49) follows. �

Next we consider different types of small perturbations in a given region and
compute their total cost.

Lemma 6.3.2 (Cost of small perturbations).
Let B ⊆ [0, 1]2 be a measurable region with area |B|. Suppose that ∆ε = εα∆ on B,
with ε > 0, α > 0 and ∆: [0, 1]2 → R. Then the contribution of B to the cost Ir(h) is∫

B

R(h | r) = ε2α
∫
B

∆2

2r(1− r)
[1 + o(1)], ε→ 0. (6.56)

If the integral diverges, then the contribution decays slower than ε2α.

Proof. The proof is similar to that of Lemma 6.3.1. �

Approximation by block graphons. We next introduce block graphons, which
will be useful for our perturbation analysis. It follows from Lemma 6.3.1 that optimal
perturbations with ∆ε must satisfy ‖∆ε‖2 � ε, and hence it is desirable to have
∆ε = ε∆. We argue through block graphon approximations that this is indeed the
case.
Definition 6.3.3 (Block graphons).
Let WN ⊂ W be the space of graphons with N blocks having a constant value on
each of the blocks, i.e., f ∈ WN is of the form

f(x, y) =

{
fi,j , if (x, y) ∈ Bi ×Bj ,
0, otherwise,

(6.57)

where Bi = [ i−1
N , iN ), 1 ≤ i ≤ N − 1 and BN = [N−1

N , 1] and fi,j ∈ [0, 1]. Write
Bi,j = Bi ×Bj . With each f ∈ W associate the block graphon fN ∈ WN given by

fN (x, y) = N2

∫
Bi,j

f(x′, y′) dx′ dy′ = f̄N,ij , (x, y) ∈ Bi,j . (6.58)

Observe that if fN is the block graphon associated with a graphon f , then

‖TfN − Tf‖ = ‖TfN−f‖ ≤ ‖fN − f‖2. (6.59)

We know from [137, Proposition 2.6] that, for any f ∈ W and its associated sequence
of block graphons (fN )N∈N, ‖fN − f‖2 → 0 and hence limN→∞ ‖TfN ‖ = ‖Tf‖. The
following lemma shows that the cost function associated with the graphons r and f
is well approximated by the cost function associated with the block graphons rN and
fN .
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Lemma 6.3.4 (Convergence of the cost function).
For any f ∈ W

lim
N→∞

IrN (fN ) = Ir(f). (6.60)

Proof. Since f ∈ L2([0, 1]2), fN is bounded. The assumption in (6.1) implies that
η ≤ rN ≤ 1 − η for all N ∈ N. We know from [145, Lemma 2.3] that there exists a
constant c > 0 independent of f such that

|IrN (f)− Ir(f)| ≤ c ‖rN − r‖1 ≤ c ‖rN − r‖2. (6.61)

Hence

|IrN (fN )− Ir(f)| ≤ |IrN (fN )− Ir(fN )|+ |Ir(fN )− Ir(f)|
≤ c ‖rN − r‖2 + |Ir(fN )− Ir(f)|.

(6.62)

Since limN→∞ ‖rN−r‖2 = 0, the first term tends to zero. Since limN→∞ ‖fN−f‖2 = 0

and Ir is continuous in the L2-topology onW (see [180, Lemma 3.4]), also the second
term tends to zero and the claim follows. �

Block graphon perturbations. In what follows we fix N ∈ N, analyze different
types of perturbation and identify which one is optimal. For each N ∈ N, we associate
with the perturbed graphon h = r + ∆ε the block graphon hN ∈ WN given by

hN,ij(x, y) = rN,ij(x, y) + ∆εN,ij(x, y), (x, y) ∈ Bi,j , (6.63)

with

rN,ij = N2

∫
Bi,j

r(x′, y′) dx′ dy′, ∆εN,ij = N2

∫
Bi,j

∆ε(x
′, y′) dx′ dy′. (6.64)

Observe that optimal perturbations must have ‖∆ε‖2 = O(ε), and hence the con-
straint in (6.46) becomes

N∑
i,j=1

∫
Bi,j

r(x, y)∆ε(x, y) dx dy =

N∑
i,j=1

1

N2
r∆εN,ij = Crε [1 + o(1)], ε→ 0.

(6.65)
The block constraint in (6.65) implies that the sum over each block must be of order
ε. We therefore must have that

r∆εN,ij = O(ε), ε→ 0, ∀(i, j), (6.66)

which means that
∆εN,ij = O(ε), ε→ 0, ∀(i, j), (6.67)

since (6.1) implies that r∆εN,ij � ∆εN,ij . There are the following two possible cases.

(I) All blocks contribute to the constraint with a term of order ε (balanced perturb-
ation).
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(II) Some blocks contribute to the constraint with a term of order ε and some with
o(ε) (unbalanced perturbation).

Perturbations of type (I) consist of a small perturbation on each block, i.e., ∆εN,ij � ε
for each block Bi,j . By Lemma 6.3.2, this contributes a term of order ε2 to the
total cost. Since all blocks have the same type of perturbation, they all contribute
in the same way, and so we get IrN (hN ) � ε2. We will see in Corollary 6.3.6 that
perturbations of type (II) are worse than perturbations of type (I). Let 1 ≤ k ≤ N2−1

be the number of blocks that contribute a term of order o(ε) to the constraint, i.e.,
∆εN,ij = o(ε). By Lemma 6.3.2, these blocks contribute order o(ε2) to the total cost.
The remaining blocks must fall in the class of blocks of type (I), with a perturbation
of order ε on each of them. Corollary 6.3.6 below shows that the cost function attains
its infimum when the small perturbation of order ε is uniform on [0, 1]2.

Optimal perturbation. We have shown that perturbations of type (I) lead to the
minimal total cost. They consist of perturbations of order ε on all blocks, and hence
on [0, 1]2. A sequence of such perturbations (∆ε,N )N∈N converges to a perturbation
∆ε as N → ∞. We can identify the cost of ∆ε = ε∆ with ∆: [0, 1]2 → R, which we
refer to as balanced perturbation.

Lemma 6.3.5 (Balanced perturbations).
Suppose that ∆ε = ε∆ with ∆: [0, 1]2 → R. Let M be the set of Lebesgue measure-
preserving bijective maps. Then

δr(ε) = Krε
2 [1 + o(1)], ε→ 0, (6.68)

with

Kr =
1

2
C2
r inf
φ∈M

Dφ
r

(Bφr )2
, (6.69)

where Bφr =
∫

[0,1]2
rφr2(1− r) and Dφ

r =
∫

[0,1]2
(rφ)2r(1− r).

Proof. The constraint in (6.46) becomes∫
[0,1]2

r∆ = Cr [1 + o(1)], ε→ 0, (6.70)

and we get

δr(ε) = inf
∆: [0,1]2→R
r+ε∆∈W∫

[0,1]2
r∆=Cr [1+o(1)]

Ir(r + ε∆)

= inf
∆: [0,1]2→R
r+ε∆∈W∫

[0,1]2
r∆=Cr [1+o(1)]

∫
[0,1]2

R
(
(r + ε∆)(x, y) | r(x, y)

)
dx dy.

(6.71)

By Lemma 6.3.2 (with α = 1), we have

δr(ε) = Krε
2 [1 + o(1)], ε→ 0, (6.72)
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with

Kr = inf
∆: [0,1]2→R
r+ε∆∈W∫

[0,1]2
r∆=Cr [1+o(1)]

∫
[0,1]2

∆(x, y)2

2r(x, y)(1− r(x, y))
dx dy. (6.73)

The term 1 + o(1) in (6.72) arises after we scale ∆ by 1 + o(1) in order to force∫
[0,1]2

r∆ = Cr. Note that the optimization problem in (6.73) no longer depends on
ε.

We can apply the method of Lagrange multipliers to solve this constrained optim-
ization problem. To that end we define the Lagrangian

LAr (∆) =

∫
[0,1]2

∆2

2 r(1− r)
+Ar

∫
[0,1]2

r∆, (6.74)

where Ar is a Langrange multiplier. Since
∫

[0,1]2
r =

∫
[0,1]2

rφ for any Lebesgue
measure-preserving bijective map φ ∈M, we get that the minimizer (in the space of
functions from [0, 1]2 → R) is of the form

∆φ(x, y) = −Ar rφ(x, y)r(x, y)(1− r(x, y)), (x, y) ∈ [0, 1]2, φ ∈M. (6.75)

We pick Ar such that the constraint is satisfied, i.e.,

−ArBφr = Cr [1 + o(1)] (6.76)

with

Bφr =

∫
[0,1]2

r(x, y)φr(x, y)2(1− r(x, y)) dx dy. (6.77)

We get

∆φ(x, y) =
Cr

Bφr
rφ(x, y)r(x, y)(1− r(x, y)), (x, y) ∈ [0, 1]2, φ ∈M, (6.78)

and

Kr = inf
φ∈M

∫
[0,1]2

(∆φ)2

2r(1− r)
=

1

2
C2
r inf
φ∈M

Dφ
r

(Bφr )2
(6.79)

with

Dφ
r =

∫
[0,1]2

(rφ)2r(1− r). (6.80)

This completes the proof. �

We next show that the infimum in (6.79) is uniquely attained when φ is the
identity. For this we show that Dφ

r /(B
φ
r )2 ≥ 1/Br with equality if and only if φ = Id.
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Indeed, write

BrD
φ
r − (Bφr )2

=

∫
[0,1]2

r(x, y)(1− r(x, y)) dx dy

∫
[0,1]2

r(x̄, ȳ)(1− r(x̄, ȳ)) dx̄ dȳ

×
(
r(x, y)2rφ(x̄, ȳ)2 − r(x, y)rφ(x, y)r(x̄, ȳ)rφ(x̄, ȳ)

)
=

∫
[0,1]2

r(x, y)(1− r(x, y)) dx dy

∫
[0,1]2

r(x̄, ȳ)(1− r(x̄, ȳ)) dx̄ dȳ

× 1

2

(
r(x, y)2rφ(x̄, ȳ)2 + rφ(x, y)2r(x̄, ȳ)2 − 2r(x, y)rφ(x, y)r(x̄, ȳ)rφ(x̄, ȳ)

)
=

∫
[0,1]2

r(x, y)(1− r(x, y)) dx dy

∫
[0,1]2

r(x̄, ȳ)(1− r(x̄, ȳ)) dx̄ dȳ

× 1

2

(
r(x, y)rφ(x̄, ȳ)− rφ(x, y)r(x̄, ȳ)

)2

,

(6.81)

where the second equality uses the symmetry between the integrals. Hence we obtain
BrD

φ
r − (Bφr )2 ≥ 0, with equality if and only if r(x, y)/rφ(x, y) = C for almost every

(x, y) ∈ [0, 1]2. Clearly, for non-constant r this can hold only for C = 1, which
amounts to φ = Id.

We conclude that the infimum in (6.79) equals 1/Br, and so we find that

Kr =
C2
r

2Br
. (6.82)

Finally, note that Cr = m2 by (6.35), and that Br = m2
3 −m2

4 by (6.15). This settles
the expression for Kr in (6.19).

Corollary 6.3.6 (Unbalanced perturbations).
Perturbations of order ε that are not balanced, i.e., that do not cover the entire unit
square [0, 1]2, are worse than the balanced perturbation in Lemma 6.3.5.

Proof. The argument of the variational formula can be reduced to an integral that
considers only those regions that contribute order ε2, which constitute a subset of
[0, 1]2. Applying the method of Lagrange multipliers as in Lemma 6.3.5, we obtain
that the solution is given by

δr(ε) = [1 + o(1)]K ′rε
2, ε→ 0, (6.83)

with K ′r > Kr. The strict inequality comes from the fact that the optimal balanced
perturbation ∆Id found in (6.75) is non-zero everywhere. �

Proof of Theorems 6.1.6(i)–6.1.7(i). We have shown that a balanced perturbation is
optimal and we have identified in (6.78) the form of the optimal balanced perturbation.
The claim in Theorem 6.1.6(i) is settled by Lemma 6.3.5 and (6.82), while (6.78) settles
the claim in Theorem 6.1.7(i). �
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§6.3.3 Proof: perturbation near the right end
For β = 1− ε consider a graphon of the form h = 1−∆ε, where ∆ε : [0, 1]2 → [0,∞)

represents a symmetric and bounded perturbation of the constant graphon h ≡ 1. We
compare

ψr(1− ε) = inf
∆ε : [0,1]2→[0,∞)

1−∆ε∈W
‖T1−∆ε‖=1−ε

Ir(1−∆ε) (6.84)

with
C1
r = Ir(1) (6.85)

by computing the difference

δr(ε) = ψr(1)− ψr(1− ε) (6.86)

and studying its behavior as ε→ 0. Since Ir(1) is a constant, we can write

δr(ε) = sup
∆ε : [0,1]2→[0,∞)

1−∆ε∈W
‖T1−∆ε‖=1−ε

(
Ir(1)− Ir(1−∆ε)

)
. (6.87)

We again use the expansion in Lemma 6.2.1. Pick h̄ = 1 and h = 1−∆ε in (6.28), to
get

‖T1−∆ε
‖ = 1 +

∑
n∈N

1

‖T1−∆ε
‖n
Fn(1−∆ε, 1). (6.88)

Since ‖T1−∆ε
‖ = 1− ε, this gives

1− ε = 1 +
〈1, (−∆ε)1〉

1− ε
+
〈1, (−∆ε)

21〉
(1− ε)2

+
∑

n∈N\{1,2}

〈1, (−∆ε)
n1〉

(1− ε)n
. (6.89)

For ε→ 0 we have ‖∆ε‖2 → 0 and |〈1, (−∆ε)
n1〉| = O(‖∆ε‖n2 ). Therefore

ε(1− ε) =

∫
[0,1]2

∆ε −
〈1,∆2

ε1〉
(1− ε)

+O
(
‖∆ε‖32

)
. (6.90)

The restriction 1−∆ε ∈ W implies that ∆ε ∈ [0, 1]. Hence ‖∆ε‖22 ≤ ‖∆ε‖1. Moreover,

1− ε = ‖T1−∆ε
‖ ≤ ‖1−∆ε‖2 ≤

√
‖1−∆ε‖1. (6.91)

Since ‖1−∆ε‖1 = 1− ‖∆ε‖1, we have

‖∆ε‖1 ≤ 1− (1− ε)2 = ε(2− ε). (6.92)

Since ‖∆ε‖32 = O(ε3/2), (6.90) reads

1

1− ε

∫
[0,1]3

∆ε(x, y)(1−∆ε(y, z)) dx dy dz−
ε

1− ε
‖∆ε‖1 = ε(1− ε)+O(ε3/2), (6.93)
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which, because ‖∆ε‖1 = O(ε), further reduces to∫
[0,1]3

∆ε(x, y)(1−∆ε(y, z)) dx dy dz = ε [1 +O(ε1/2)]. (6.94)

Note that when ∆ε = ε∆, the constraint reads∫
[0,1]2

∆ = 1 +O(ε1/2), ε→ 0. (6.95)

The following lemma gives an upper bound for Ir(1)− Ir(1−∆ε).

Lemma 6.3.7 (Order of minimal cost).
Let ∆ε : [0, 1]2 → [0, 1] be such that 1 −∆ε ∈ W and ‖T1−∆ε

‖ = 1 − ε. Then, for ε
small enough,

Ir(1)− Ir(1−∆ε) ≤ ‖∆ε‖1 log
1

‖∆ε‖1
+O(‖∆ε‖1). (6.96)

Moreover, δr(ε) ≤ ε log 1
ε +O(ε).

Proof. Abbreviate (recall (6.6))

χ(a) = R(a | r) = a log
a

r
+ (1− a) log

1− a
1− r

, a ∈ [0, 1]. (6.97)

Then

χ(1)− χ(1−∆ε(x, y)) = ∆ε(x, y) log

(
1−∆ε(x, y)

∆ε(x, y)

1− r(x, y)

r(x, y)

)
− log(1−∆ε(x, y)),

(6.98)
and so

Ir(1)− Ir(1−∆ε) =

∫
[0,1]2

(
∆ε log

(
1−∆ε

∆ε

1− r
r

)
− log(1−∆ε)

)
. (6.99)

Let µε be the probability measure on [0, 1]2 whose density with respect to the
Lebesgue measure is Z−1

ε (1−∆ε(x, y)), where Zε =
∫

[0,1]2
(1−∆ε) = 1−O(ε). Since

u 7→ s̄(u) = u log(1/u) is strictly concave, by Jensen’s inequality we have∫
[0,1]2

∆ε log

(
1−∆ε

∆ε

)
= Zε

∫
[0,1]2

µεs̄

(
∆ε

1−∆ε

)
≤ Zεs̄

(
Z−1
ε ‖∆ε‖1

)
= ‖∆ε‖1 log

(
Zε
‖∆ε‖1

)
.

(6.100)

Moreover,∫
[0,1]2

∆ε log

(
1− r
r

)
= O(‖∆ε‖1), −

∫
[0,1]2

log(1−∆ε) = O(‖∆ε‖1). (6.101)

Hence

Ir(1)− Ir(1−∆ε) ≤ ‖∆ε‖1 log
1

‖∆ε‖1
+O(‖∆ε‖1), ε→ 0, (6.102)

and since ‖∆ε‖1 = O(ε) also δr(ε) ≤ ε log 1
ε +O(ε). �
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The following is the analogue of Lemma 6.3.2 for perturbations near the right end.

Lemma 6.3.8 (Cost of small perturbations).
Let B ⊆ [0, 1]2 be a measurable region of area |B|. Suppose that ∆ε = εα∆ on B with
ε > 0, α > 0 and ∆: [0, 1]2 → [0,∞). Then the contribution of B to the cost Ir(h) is∫

B

R(1 | r)−R(h | r) =

∫
B

εα∆ log

(
1− r
εα∆r

)
[1 + o(1)], ε→ 0. (6.103)

Proof. Observe that

R(1 | r)−R(1− εα∆ | r) = εα∆ log

(
1− r
εα∆r

)
[1 + o(1)], ε→ 0. (6.104)

The proof is analogous to that of Lemma 6.3.2. �

Following the argument in Section 6.3.2, we can approximate the cost function by
using block graphons. The constraint becomes

N∑
i,j=1

∫
Bi,j

∆ε,N (x, y) dx dy =

N∑
i,j=1

1

N2
∆εN,ij = ε [1 + o(1)], ε→ 0. (6.105)

The block constraint in (6.105) implies that the sum over each block must be of order
ε. Hence

∆εN,ij = O(ε), ε→ 0, ∀ (i, j). (6.106)

There are two cases to distinguish: all blocks contribute to the constraint with a term
of order ε (balanced perturbation), or some of the blocks contribute to the constraint
with a term of order ε and some with o(ε). Analogously to the analysis in Section
6.3.2, using Lemma 6.3.8, we can compute the total cost that different types of block
perturbations produce. This again shows that the optimal perturbations are the
balanced perturbations, consisting of small perturbations of order ε on every block.
As N → ∞, a sequence of such perturbations converges to a perturbation ∆ε = ε∆

with ∆: [0, 1]2 → [0,∞), which we analyze next.

Lemma 6.3.9 (Balanced perturbations).
Suppose that ∆ε = ε∆ with ∆: [0, 1]2 → [0,∞). Then

δr(ε) =

(
ε+ ε log

(
N1
r

ε

))
[1 +O(ε1/2)] +O(ε2), ε→ 0. (6.107)

Proof. By (6.95) and (6.99),

δr(ε) = sup
∆: [0,1]2→[0,∞)

1−ε∆∈W∫
[0,1]2

∆=1+O(ε1/2)

(Ir(1)− Ir(1− ε∆))

= sup
∆: [0,1]2→[0,∞)

1−ε∆∈W∫
[0,1]2

∆=1+O(ε1/2)

∫
[0,1]2

(
ε∆ log

(
1− ε∆
ε∆

1− r
r

)
− log(1− ε∆)

)
.

(6.108)
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The integral in (6.108) equals∫
[0,1]2

(
ε∆ log

(
1− r
ε∆r

)
− (1− ε∆) log(1− ε∆)

)
=

∫
[0,1]2

ε∆ log

(
1− r
ε∆r

)
+ ε

∫
[0,1]2

∆ +O(ε2).

(6.109)

Hence

δr(ε) =

(
ε+ sup

∆: [0,1]2→[0,∞)∫
[0,1]2

∆=1

∫
[0,1]2

ε∆ log

(
1− r
ε∆r

))
[1 + O(ε1/2)] +O(ε2), (6.110)

where we scale ∆ by 1+O(ε1/2) in order to force
∫

[0,1]2
∆ = 1. Note that the constraint

under the supremum no longer depends on ε.
We can solve the optimization problem by applying the method of Lagrange mul-

tipliers. To that end we define the Lagrangian

LAr (∆) =

∫
[0,1]2

ε∆ log

(
1− r
ε∆r

)
+Ar

∫
[0,1]2

∆, (6.111)

where Ar is a Langrange multiplier. Since
∫

[0,1]2
log 1−r

r =
∫

[0,1]2
log 1−rφ

rφ
for any

Lebesgue measure-preserving bijective map φ ∈M, we get that the minimizer (in the
space of functions from [0, 1]2 → R) is of the form

∆φ(x, y) = e−
ε−Ar
ε

1

ε

1− rφ(x, y)

rφ(x, y)
, (x, y) ∈ [0, 1]2, φ ∈M. (6.112)

We pick Ar such that the constraint
∫

[0,1]2
∆ = 1 is satisfied. This gives

∆φ(x, y) =
1

N1
r

1− rφ(x, y)

rφ(x, y)
, (x, y) ∈ [0, 1]2, φ ∈M, (6.113)

with N1
r =

∫
[0,1]2

(1−r)
r . Hence the supremum in (6.110) becomes

sup
φ∈M

∫
[0,1]2

ε∆φ log

(
1− r
ε∆φr

)
. (6.114)

We have∫
[0,1]2

ε∆φ log

(
1− r
ε∆φr

)
= ε log

(
N1
r

ε

)
− ε
∫

[0,1]2
∆φ log

(
∆φ

∆

)
, (6.115)

where we use that
∫

[0,1]2
∆φ = 1. Since the function u 7→ s(u) = u log u is strictly

convex on [0,∞), Jensen’s inequality gives∫
[0,1]2

∆φ log

(
∆φ

∆

)
=

∫
[0,1]2

∆ s

(
∆φ

∆

)
≥ s
(∫

[0,1]2
∆

∆φ

∆

)
= s

(∫
[0,1]2

∆φ

)
= s(1) = 0,

(6.116)
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where we use that
∫

[0,1]2
∆ = 1. Equality holds if and only if ∆ = ∆φ almost

everywhere on [0, 1]2, which amounts to φ = Id. Hence the supremum in (6.114) is
uniquely attained at φ = Id and equals∫

[0,1]2
ε

1

N1
r

(1− r)
r

log

(
N1
r

ε

)
= ε log

(
N1
r

ε

)
. (6.117)

Consequently, (6.110) gives (6.107), and this completes the proof. �

Proof of Theorems 6.1.6(ii)–6.1.7(ii). The claim in Theorem 6.1.6(ii) is settled by
Lemma 6.3.9. Since we have shown that a balanced perturbation is optimal, (6.113)
settles the claim in Theorem 6.1.7(ii). �

§6.3.4 Proof: perturbation near the left end
For β = ε consider a graphon of the form h = ∆ε, where ∆ε : [0, 1]2 → [0,∞)

represents a symmetric and bounded perturbation of the constant graphon h ≡ 0.
We compare

ψr(ε) = inf
∆ε : [0,1]2→[0,∞)

∆ε∈W
‖T∆ε‖=ε

Ir(∆ε) (6.118)

with
ψr(0) = Ir(0) (6.119)

by computing the difference

δr(ε) = ψr(ε)− ψr(0) (6.120)

and studying its behavior as ε→ 0.
We claim that analyzing (6.120) is equivalent to analyzing

δr̂(ε) = φr̂(1)− φr̂(1− ε), (6.121)

where r̂ is the reflection of r defined as

r̂(x, y) = 1− r(x, y), (x, y) ∈ [0, 1]2. (6.122)

Indeed,

Ir(0) =

∫
[0,1]2

R(0 | r) =

∫
[0,1]2

log

(
1

1− r

)
=

∫
[0,1]2

R(1 | r̂) = Ir̂(1) (6.123)

and

Ir(∆ε) =

∫
[0,1]2

R(∆ε | r) =

∫
[0,1]2

(
∆ε log

(
∆ε

r

)
+ (1−∆ε) log

(
1−∆ε

1− r

))
=

∫
[0,1]2

R(1−∆ε | r̂) = Ir̂(1−∆ε).

(6.124)
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We can therefore use the results in Section 6.3.3. From Lemma 6.3.9 we know that

δr̂(ε) =

(
ε+ ε log

(
N1
r̂

ε

))
[1 +O(ε1/2)] +O(ε2), ε→ 0, (6.125)

and hence we obtain

δr(ε) =

(
ε+ ε log

(
N0
r

ε

))
[1 +O(ε1/2)] +O(ε2), ε→ 0. (6.126)

The optimal perturbation is then given by the balanced perturbation ∆ε = ε∆ with

∆(x, y) =
1

N0
r

r(x, y)

1− r(x, y)
, (x, y) ∈ [0, 1]2, (6.127)

with N0
r =

∫
[0,1]2

r
1−r .

Proof of Theorems 6.1.6(iii)–6.1.7(iii). The claim in Theorem 6.1.6(iii) is settled by
the scaling in (6.126). Since we have shown that a balanced perturbation is optimal,
(6.127) settles the claim in Theorem 6.1.7(iii). �

§F Appendix: finite-rank expansion

The following lemma shows how the expansion around reference graphons of rank 1
can be extended to finite rank.

Lemma F.1 (Finite-rank expansion).
Consider a graphon h̄ ∈ W such that

h̄(x, y) =

k∑
i=1

θiν̄i(x)ν̄i(y), (x, y) ∈ [0, 1]2, (6.128)

for some k ∈ N, where θ1 > θ2 ≥ . . . ≥ θk ≥ 0 and {ν̄1, ν̄2, . . . , ν̄k} is an orthonormal
set in L2([0, 1]). Then there exists an ε > 0 such that, for any h ∈ W satisfying
‖Th−h̄‖ < min(ε, ‖Th‖), the operator norm ‖Th‖ solves the equation

‖Th‖ = λk

( ∑
n∈N0

1

‖Th‖n
Fn(h, h̄)

)
, (6.129)

where λk(M) is the largest eigenvalue of a k × k Hermitian matrix M , and Fn(h, h̄)

is a k × k matrix whose (i, j)-th entry is√
θiθj

∫
[0,1]2

ν̄i(x)(h− h̄)n(x, y)ν̄j(y) dx dy (6.130)

for 1 ≤ i, j ≤ k and n ∈ N0.

Proof. Put µ = ‖Th‖, and let u be the eigenfunction corresponding to µ, i.e.,

Thu = µu. (6.131)
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Put g = h− h̄ and rewrite the above as

(µ− Tg)u = Th̄u. (6.132)

The assumption ‖Th−h̄‖ < ‖Th‖ implies that µ− Tg is invertible, which allows us to
write

u = (µ− Tg)−1Th̄u =

k∑
j=1

θj〈ν̄j , u〉(µ− Tg)−1ν̄j . (6.133)

For fixed 1 ≤ i ≤ k, it follows that

〈ν̄i, u〉 =

k∑
j=1

θj〈ν̄j , u〉〈ν̄i, (µ− Tg)−1ν̄j〉. (6.134)

Multiplying both sides by µ
√
θi, we get

Mv = µv, (6.135)

where M = (Mij)1≤i,j≤k is the k × k real symmetric matrix with elements

Mij =
√
θiθj

〈
ν̄i,

(
1− Tg

µ

)−1

ν̄j

〉
, 1 ≤ i, j ≤ k, (6.136)

and
v =

(√
θ1〈ν̄1, u〉, . . . ,

√
θk〈ν̄k, u〉

)′
. (6.137)

The first entry of v is non-zero for ε small with ‖Tg‖ < ε. Thus, (6.135) means that
µ is an eigenvalue of M . By studying the diagonal entries of M , we can shown with
the help of the Gershgorin circle theorem that, for small ‖Tg‖,

µ = λk(M). (6.138)

With the help of the observation

Mij =
√
θiθj

∑
n∈N0

1

µn
〈ν̄i, gnν̄j〉, 1 ≤ i, j ≤ k, (6.139)

i.e.,

M =
∑
n∈N0

1

µn
Fn(h, h̄), (6.140)

this completes the proof. �
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Summary

This thesis is divided into two parts. In Part I we study metastability properties of
queue-based random-access protocols for wireless networks. The network is modeled
as a bipartite graph whose edges represent interference constraints. In Part II we
study spectra of inhomogeneous Erdős-Rényi random graphs. We focus in particular
on the limiting spectral distribution of the adjacency and Laplacian matrices and on
the largest eigenvalue of the adjacency matrix.

Part I

Random-access protocols have been introduced in the context of wireless networks
with the aim to avoid collisions between ongoing transmissions of wireless signals.
The main idea behind these protocols is to associate with each device a random
clock that determines when the device attempts to transmit. Hence, devices decide
autonomously when to start a transmission using only local information. We consider
random-access networks where each node represents a server with a queue. The nodes
can be either active or inactive: a node deactivates at unit rate, while it activates at a
rate that depends on its queue length, provided none of its neighbors is active. Wire-
less random-access networks are known to exhibit metastability effects. In a regime
where the activation rates become large, the stationary distribution of the joint activ-
ity process concentrates on states where the maximum number of nodes is active, with
extremely slow transitions between them. Individual nodes may experience prolonged
periods of starvation, resulting in severe build-up of queues and long delays. A deeper
understanding of metastability properties is important for designing mechanisms to
improve the network performance. We model the network as a bipartite graph and,
in the limit as the queues become large, we study the transition time between the two
states where one half of the network is active and the other half is inactive.

In Chapter 2 we consider complete bipartite graphs. We compare the transition
time of an internal model in which the activation rates depend on the current queue
lengths with that of an external model in which the activation rates depend on the
current mean queue lengths. We define two perturbed models with externally driven
activation rates that sandwich the queue lengths of the internal model and its trans-
ition time. We show with the help of coupling that with high probability the mean
transition time and its distribution for the internal model are asymptotically the same
as for the external model. The law of the transition time divided by its mean is ex-
ponential, truncated polynomial or deterministic, depending on the activation rate
functions.

In Chapter 3 we consider arbitrary bipartite graphs. We decompose the transition
into a succession of transitions on complete bipartite subgraphs. This succession
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depends in a delicate manner on the full structure of the graph. We formulate a
greedy algorithm to analyze the most likely transition paths between dominant states.
By combining our results for complete bipartite graphs with a detailed analysis of the
algorithm, we determine the mean transition time and its distribution along each
path. Depending on the activation rate functions, we again identify three regimes of
behavior.

In Chapter 4 we consider dynamic bipartite graphs. In order to try to capture the
effects of user mobility in wireless networks, we analyze dynamic interference graphs
where the edges are allowed to appear and disappear over time. A node can activate
either when its neighbors are simultaneously inactive or when the edges connecting it
with its neighbors disappear. Interpolation between these two situations gives rise to
different scenarios and interesting behavior. We identify how the order of the mean
transition time depends on the speed of the dynamics.

Part II

Eigenvalues play a central role in our understanding of graphs. Spectral graph theory
studies the properties of eigenvalues and eigenvectors of the associated adjacency and
Laplacian matrices. The eigenvalues of the adjacency matrix carry information about
topological features of the graph, such as connectivity and subgraph counts. The
eigenvalues of the Laplacian matrix carry information about random walks on the
graph and allow us to analyze approximation algorithms. The standard Erdős-Rényi
random graph model, which is the most basic model in random graph theory, is formed
by connecting each pair of vertices with a certain fixed probability, independently of
each other. The spectra of both the adjacency and Laplacian matrices are well studied
and well understood. We consider inhomogeneous Erdős-Rényi random graphs, where
each pair of vertices is connected with a certain probability that is not necessarily the
same for all pairs, but still independently of each other.

In Chapter 5 we consider inhomogenerous Erdős-Rényi random graphs in the non-
dense non-sparse regime, where the degrees of the vertices diverge sublinearly with the
size of the graph. We study the limiting behavior of the emprical spectral distributions
of the adjacency and Laplacian matrices. When the connection probabilities have a
multiplicative structure, we give an explicit description of the scaling limits using
tools from free probability theory. Furthermore, we apply our results to constrained
random graphs, Chung-Lu random graphs and social networks.

In Chapter 6 we consider inhomogenerous Erdős-Rényi random graphs in the dense
regime, where the degrees of the vertices are proportional to the size of the graph.
Using the theory of graphons, we derive a large deviation principle for the largest
eigenvalue and analyze the associated rate function in detail. Indeed, the structure of
the graph conditional on a large deviation can be expressed in terms of a variational
problem involving graphons. When the connection probabilities have a multiplicative
structure, we analyze the variational formula in order to identify the scaling properties
of the rate function.
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Dit proefschrift is opgedeeld in twee delen. In deel I bestuderen we de metastabili-
teitseigenschappen van zogeheten “op wachtrij gebaseerde toegangsprotocollen” voor
draadloze netwerken. Het netwerk wordt gemodelleerd door een bipartiete graaf waar-
van de zijden van de graaf de storingsbeperkingen representeren. In deel II bestuderen
we de spectra van inhomogene Erdős-Rényi random grafen. In het bijzonder bekijken
we de verdeling van de spectra van de nabuurmatrix en de Laplace matrix. Daarnaast
bestuderen we de grootste eigenwaarde van de nabuurmatrix.

Deel I

Toegangsprotocollen voor draadloze netwerken zijn ingevoerd om botsingen tussen
draadloze signalen te voorkomen. Het belangrijkste idee achter deze protocollen is
dat elk apparaat in het netwerk een willekeurige klok heeft die bepaalt wanneer het
een poging doet om een signaal te zenden. Elk apparaat beslist dus zelf wanneer het
start met het zenden van signalen en gebruikt daarbij alleen lokale informatie. We be-
schouwen netwerken met toevallige toegangsprotocollen, waarbij elke knoop een server
met een wachtrij representeert. De knopen kunnen actief of inactief zijn: een actieve
knoop wordt inactief met snelheidsparameter één, terwijl een inactieve knoop geacti-
veerd wordt met een snelheidsparameter die afhangt van de lengte van de wachtrij,
indien geen van de naburige knopen actief is. Van netwerken met draadloze toe-
gangsprotocollen is bekend dat zij metastabiliteit vertonen. In een regiem waarbij de
activatieparameters groot zijn, concentreert de evenwichtsverdeling van het gezamen-
lijke activiteitsproces zich op toestanden waarin een maximaal aantal knopen actief
is. Na zeer lange tijden kan een overgang tussen twee van zulke toestanden plaats-
vinden. Individuele knopen kunnen lang gedeactiveerd zijn, wat resulteert in lange
wachtrijen en grote vertragingen. Om mechanismen te ontwerpen die het functioneren
van draadloze netwerken verbeteren, is een goed begrip van de metastabiliteitseigen-
schappen belangrijk. We modelleren het netwerk als een bipartiete graaf. In de limiet
dat de wachtrijen lang worden, bestuderen we de transitietijden tussen de toestanden
waarbij enkel de helft van het netwerk actief is en de andere helft inactief is.

In hoofdstuk 2 beschouwen we complete bipartiete grafen. We vergelijken de
transitietijden van een “intern” model, waarbij de activatieparameters afhangen van
de lengte van de wachtrijen op dat moment, met de transitietijden van een “extern”
model, waarbij de activatieparameters afhangen van de gemiddelde lengte van de
wachtrijen op dat moment. We definiëren twee gepertubeerde externe modellen met
activatieparameters die de activatieparameters van het interne model insluiten. Met
behulp van koppelingstechnieken laten we zien dat de kans groot is dat de gemiddelde
transitietijden en de verdeling van het interne model asymptotisch gelijk zijn aan die
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van het externe model. Afhankelijk van de activatieparameters is de verdeling van
de transitietijden, gedeeld door de gemiddelde transitie tijd, exponentieel, afgekapt
polynomiaal of deterministisch.

In hoofdstuk 3 beschouwen we willekeurige bipartiete grafen. We beschrijven de
transitie van de graaf als een opeenvolging van transities van complete bipartiete
deelgrafen. Deze opeenvolging hangt op een subtiele manier af van de volledige struc-
tuur van de graaf. We formuleren een “greedy algorithmöm de meest waarschijnlijke
transitiepaden tussen dominante toestanden te analyseren. Door de resultaten voor
complete bipartiete grafen te combineren met een gedetailleerde analyse van het al-
goritme, bepalen we voor elk pad de gemiddelde transitietijd en de verdeling van de
transitietijd. Afhankelijk van de activatieparameters kunnen we opnieuw het gedrag
van de transitietijden in drie regimes indelen.

In hoofdstuk 4 beschouwen we dynamische bipartiete grafen. Om het effect van
bewegende gebruikers in een draadloos netwerk te begrijpen, analyseren we dynami-
sche storingsgrafen waarbij de randen kunnen verschijnen en verdwijnen over de tijd.
Een knoop kan activeren als de naburige knopen allemaal inactief zijn of als de ver-
bindingszijde met naburige knopen verdwijnt. Wanneer we interpoleren tussen deze
twee situaties komen er verschillende scenario’s en interessant gedrag naar voren. We
identificeren hoe de orde van grootte van de gemiddelde transitietijd afhangt van de
snelheid van de dynamica.

Deel II

Eigenwaarden spelen een belangrijke rol in de analyse van grafen. Spectrale grafen-
theorie bestudeert de eigenschappen van eigenwaarden en eigenvectoren van de bijbe-
horende nabuurmatrices en Laplace matrices. De eigenwaarden van de nabuurmatrix
bevatten informatie over de topologische eigenschappen van de graaf, zoals de verbon-
denheid en het aantal deelgrafen met een bepaalde eigenschap. De eigenwaarden van
de Laplace matrix bevatten informatie over toevalswandelingen op de graaf en stellen
ons in staat om benaderingsalgoritmen te analyseren. In het standaard Erdős-Rényi
model, dat het meest elementaire model in de theorie van toevallige grafen is, zijn elk
paar knopen met een vaste kans met elkaar te verbonden. De spectra van zowel de
nabuurmatrices als van de Laplace matrices zijn reeds in detail bestudeerd en worden
goed begrepen. We beschouwen inhomogene Erdős-Rényi random grafen, waar elk
paar knopen verbonden is met een zekere kans die niet voor elk paar knopen hetzelfde
is, maar waarbij de kansen nog steeds onafhankelijk van elkaar zijn.

In hoofdstuk 5 beschouwen we inhomogene Erdős-Rényi random grafen in het niet-
dichte en niet-dunne regime, waarbij de graad van de knopen sublineair groeit met
de grootte van de graaf. We bestuderen het limietgedrag van de empirische spectrale
verdeling van de nabuurmatrix en Laplace matrix. Wanneer de verbindingskansen
een multiplicatieve structuur hebben, dan geven we een expliciete beschrijving van
de schalingslimieten met behulp van technieken uit de theorie van vrije kansrekening.
Daarnaast passen we onze resultaten toe op grafen met restricties, Chung-Lu grafen
en sociale netwerken.
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In hoofdstuk 6 beschouwen we inhomogene Erdős-Rényi random grafen in het
dichte regime, waar het aantal verbindingen van de knopen lineair groeit met de
grootte van de graaf. Met behulp van grafons leiden we een grote-afwijkingen-principe
af voor de grootste eigenwaarde, en analyseren we de bijbehorende entropiefunctie
in detail. De structuur van de graaf geconditioneerd op een grote afwijking kan
uitgedrukt worden in termen van een variationeel probleem voor grafons. Wanneer
de verbindingskansen een multiplicatieve structuur hebben, dan analyseren we dit
variationeel probleem om de schalingseigenschappen van de entropiefunctie te bepalen.
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