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Chapter 5

Quantifying physiological synchrony 
through windowed cross-correlation analysis: 

Statistical and theoretical considerations

Abstract
Interpersonal synchrony is a widely studied phenomenon. A great challenge is to statistically capture 
the dynamics of social interactions with fluctuating levels of synchrony and varying delays between 
responses of individuals. Windowed Cross-Correlation analysis accounts for both characteristics 
by segmenting the time series into smaller windows and shifting the segments of two interacting 
individuals away from each other up to a  maximum lag. Despite evidence showing that these 
parameters affect the estimated synchrony level, there is a  lack of guidelines on  which parame-
ter configurations to use. The current study aimed to close this knowledge gap by comparing the 
effect of different parameter configurations on two outcome criteria: (1) the ability to distinguish 
synchrony from pseudosynchrony by means of surrogate data analyses and (2) the sensitivity to 
detect change in synchrony as measured by the difference between two within-subject conditions. 
Focusing on physiological synchrony, we performed these analyses on heartrate, skin conductance 
level, pupil size, and facial expressions data. Results revealed that a range of parameters was able 
to discriminate synchrony from pseudosynchrony. Window size was more influential than the max-
imum lag with smaller window sizes showing better discrimination. No clear patterns emerged for 
the second criterion. Integrating the statistical findings and theoretical considerations regarding the 
physiological characteristics and biological boundaries of the signals, we provide recommendations 
for optimizing the parameter settings to the signal of interest.

Based on: Behrens, F., Moulder, R. G., Boker, S. M., & Kret, M. E. (2020). 
Quantifying Physiological Synchrony through Windowed Cross-Correlation 

Analysis: Statistical and Theoretical Considerations. bioRxiv.
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Introduction
During social interactions, humans tend to synchronize on different levels: They mimic postures 
(Ramseyer & Tschacher, 2011), facial expressions (Chartrand & Bargh, 1999) and align their level 
of physiological arousal (Feldman, Magori-Cohen, Galili, Singer, & Louzoun, 2011; Levenson & 
Gottman, 1983; Prochazkova et al., 2018). Although this synchrony comes naturally and without 
effort, it is a  great challenge for social scientists to measure it statistically. The current paper 
addresses this issue and proposes a Windowed Cross-Correlation (WCC) analysis to investigate 
the dynamic changes in heartrate, skin conductance level, pupil size, and facial expression. Rec-
ommendations are provided on which parameter configurations to use to quantify synchrony of 
these four responses.

Synchrony is a  multifaceted phenomenon evident on  the behavioral, physiological, and 
neural level. Not surprisingly then, the causes and consequences of synchrony have been stud-
ied in  a  broad range of contexts investigating the dynamic nature of social interactions from 
clinical (Galazka et al., 2019; Wehebrink et al., 2018), developmental (de Klerk et al., 2018; Shih, 
Quiñones-Camacho, Karan, & Davis, 2019), evolutionary (Mancini et al., 2013; Palagi, Leone, 
Mancini, & Ferrari, 2009), neural (Hasson, Nir, Levy, Fuhrmann, & Malach, 2004; Prochazkova 
et al., 2018), social (Behrens et al., 2019; Tarr, Launay, & Dunbar, 2016b), and cognitive (Kret, 
Fischer, & De Dreu, 2015; Kret & De Dreu, 2017) perspectives. Such fascination across disciplines 
has revealed the far-reaching scope of synchrony: it has been demonstrated in different species, it 
occurs from birth on, and it influences a variety of interpersonal processes such as marital quality, 
cooperative success between strangers and outcomes of therapeutic interactions (Behrens et al., 
2019; Feldman et al., 2011; Kret, Tomonaga, & Matsuzawa, 2014; Levenson & Gottman, 1983; Ram-
seyer & Tschacher, 2011). Because of these implications and this wide interest, it is of particular 
importance to establish solid statistical methods to quantify synchrony.

A variety of methods have been proposed in  previous literature to quantify synchrony 
including correlations, regressions, structural equation models and recurrence quantification 
analyses. These approaches differ in  their assumptions, their operationalization of synchrony, 
and the type of synchrony they measure (for reviews, see Gates & Liu, 2016; McAssey et al., 2013; 
Schoenherr et al., 2018; Thorson, West, & Mendes, 2017). In the current article, we focus on con-
tinuous time series measures in dyads. For this type of data, it is important that the method cap-
tures responses that happen “in sync” (e.g., two individuals react simultaneously to an external 
event), but also responses that occur with a small time delay (e.g., one individual responds to 
another or at a different pace). Furthermore, the method needs to allow for changes in the level 
of synchrony as it will vary depending on the events happening in a conversation with moments 
of stronger and weaker synchrony. Moreover, we focus on the strength rather than the frequency 
of synchrony. Some methods first specify intervals of synchrony and subsequently compute the 
frequency of these intervals within a  time series (Altmann, 2011). This method is particularly 
interesting for movement synchrony where people can either move or not. In the current study, 
on the other hand, we concentrate on physiological measures that constantly change, therefore 
categorizing intervals into synchronous and non-synchronous segments is difficult. Instead, 
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we are interested in obtaining a global estimate of the strength of synchrony in a conversation. 
A method that fulfills these different criteria is Windowed Cross-Correlation (WCC) analysis, the 
focus of the current study (Boker et al., 2002).

WCC analysis offers a neat method to account for dynamic changes in synchrony (Boker 
et al., 2002). This is achieved by extending a classical cross-correlation estimate by two aspects: 
windows and lags. Specifically, rather than calculating a correlation coefficient over the whole 
time series, the signals are broken into smaller overlapping segments or windows. Changes 
in  synchronization can be captured because the degree to which two signals co-vary is esti-
mated for each window separately. The lag is introduced to account for differences in the pace 
of individuals’ responses to one another and to track the follow-lead relationship between them. 
It might be that at some point Person A responds to Person B and a moment later the pattern is 
reversed. Consequently, allowing for varying time lags can account for such dynamics. Although 
this method offers an advanced way to quantify synchrony in naturalistic settings, it does not 
come without a challenge: parameters need to be specified to tailor the analysis to the signal of 
interest. In the original paper by Boker and colleagues (2002), the authors advised on parameters 
using data from motor movements. To this date, there are no guidelines on which parameter 
settings are most suitable for physiological measures. The goal of the current paper is to close 
that knowledge gap.

WCC analysis requires the specification of four parameters that tailors the method to 
the signal of interest: window size, maximum lag, window increment, and lag increment (see 
Figure 1). Carefully choosing the right parameter settings is crucial, because these settings can 
substantially affect the outcome of the WCC analysis (Schoenherr et al., 2018). First, the window 
size determines the number of observations (i.e., data points) in  each sliding window across 
the time series. The window should be small enough to be sensitive to changes in the degree of 
synchronization and the lead-follow relationship between individuals. Disregarding fluctuations 
within a large window might undermine the strength of association at certain moments. Here, 
the biological nature of the signal of interest and its time course are of particular importance. 
A relatively slow signal such as skin conductance requires a  longer window than a  fast signal 
such as facial expressions. Moreover, the window segments need to be small enough such that 
the assumption of stationarity is likely to hold (Boker et al., 2002). However, if the window size 
is too small, there are not enough data points left to provide reliable estimates of the relationship 
between the two segments. Whereas 50–70 values have been proposed as sufficient (Cappella, 
1996), more recent work performing Monte-Carlo simulations recommends 65 to 250 values, 
depending on the strength of the correlation (Schönbrodt & Perugini, 2013). Given the high sam-
pling rates incorporated in many psychophysiological measurement devices, this range should 
be fairly easy to accomplish, if the window size is not overly small. Decisions on the window size 
should be based on both statistical and theoretical considerations.

Second, the maximum lag indicates the maximum number of observations one window 
is shifted in relation to the other window and consequently determines the maximum lag two 
events are still considered reactions to one another. For example, if  the maximum lag is three 
seconds, then if Person A smiles two seconds later in response to Person B, this would be cap-
tured with the three second window. However, if that smile occurs four seconds later, it would 
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not be considered a  response to the smile of the other person anymore. If the maximum lag 
is too long, synchrony might be attributed to two unrelated events. However, if the maximum 
lag is chosen too small, then important delayed responses between two individuals are missed. 
Previous research suggests that the maximum lag between responses impacts on  synchrony. 
Specifically, it has been shown that skin conductance responses within, but not beyond seven 
seconds correlate with the empathetic relationship between counselors and clients (Robinson, 
Herman, & Kaplan, 1982). The authors did not, however, directly compare whether the shorter 
latency could predict the relationship better than the longer latency. Additionally, although this 
study provides an indication that the maximum lag indeed matters, the categorization of latencies 
(responses between 0 and 7 sec compared to responses between 7 and 40 sec) does not allow for 
fine-grained conclusions about which maximum lag is optimal. To our knowledge, this is the only 
study investigating the impact of the maximum lag on synchrony. Thus, a systematic comparison 
of different maximum lags is needed to make well-informed decisions on this parameter.

Third, the window increment determines the size of the steps (i.e., the number of obser-
vations) when moving from one window segment to the next. If the increment is one, then the 
window is moved by one data point. If the window increment is the same size as the window size 
or greater, then adjacent windows are non-overlapping. Similarly, the fourth parameter, the lag 
increment, indicates how big the steps are between time lags. Both increment parameters regulate 
the resolution in terms of time lag and elapsed time. Ideally, the increment should be kept as small 
as possible to ensure the best resolution. However, at some point the estimates will stabilize and 
the limited additional information that can be added by increasing the resolution is not worth the 
increased computational time. Comparing it to sampling rates, if one aims to measure heartrate 
changes, a sampling rate of 1000 Hz gives a smooth signal. Increasing the sampling rate to 2000 
Hz adds little information because the heartrate does not change this fast resulting in very similar 
heartrate signals using both sampling rates. Similarly, increasing the resolution of the increment 
of the moving windows and lags will eventually stabilize around a correlation estimate. The size 
of the increment will, of course, also depend on the sampling rate which represents the lower 
bound of possible increments. Therefore, setting the increment parameters for the windows and 
lags is a question of balancing the benefit of a better resolution and the drawback of increased 
computational time.

In order to determine the best parameter configurations, we used two criteria. The first 
criterion was the ability to discriminate synchrony from pseudosynchrony. Pseudosynchrony has 
been defined as “the amount of apparent and spurious synchrony between two individuals not 
engaged in information exchange with one another” (Moulder et al., 2018, p. 2). The reason for 
spurious synchrony is that the signals of interest are restricted in their patterns and how they can 
behave across contexts. For example, heartrate is constantly changing, decreasing and increas-
ing depending on the person’s inner state and environmental circumstances (i.e., participating 
in a study with the same procedure across dyads). However, the changes stay in a certain range 
causing recursiveness and commonality within and between heartrate measures. As a  conse-
quence, to determine whether synchrony exists between two time series, the null hypothesis 
is not zero as for standard null-hypothesis testing, but rather a  fundamental value due to the 
similarities between the biological time series. It is therefore necessary to find an appropriate 
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comparison between the level of synchrony of individuals engaging in an interaction and the 
level of synchrony that occurs due to the nature of the signals. One way to account for pseudosyn-
chrony is to perform a surrogate data analysis (Moulder et al., 2018). The idea is that the original 
time series is compared to the same time series where synchrony is destroyed while keeping 
all other properties constant. Specifically, the synchrony level from the original dyads engaging 
in an interaction is compared to the synchrony levels from newly generated dyads that never 
actually interacted. To generate these dyads, the time series from each participant is coupled with 
every other participant. That way it can be tested whether being in an interaction adds something 
over and beyond being in the same situation and investigating the same physiological measure. 
Therefore, being able to distinguish synchrony from pseudosynchrony offers an ideal criterion to 
test whether some parameter configurations are more sensitive to this distinction.

wSize

wInc

t1

t2

t1

t2

t1

t2

tInc

t1

t2

tMax

t1

t2

original time series

window size

window increment

maximum lag

lag increment

Figure 1. Schematic outline of the four parameters that are specified in the WCC analysis: window size (wSize), 
window increment (wInc), maximum lag (tMax), and lag increment (tInc). The abbreviations tMax and tInc origi-
nate from using “tau” (τ) to refer to the lags in the cross-correlation equation (see Equation 1).

The second criterion that is essential when it comes to research on synchrony is to be able 
to detect changes in synchrony. To study the underlying mechanisms of synchrony, its boundary 
conditions and individual differences, researchers are often interested in how synchrony changes 
in relation to experimental manipulations. For example, in a previous study, we observed that 
physiological synchrony promoted cooperative success, but only when partners could see each 
other and not when a  cover prevented eye contact (our manipulation) (Behrens et al., 2019). 
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Another study investigated the effect of emotional salience during storytelling on pupil mimicry 
and showed that physiological coupling between the speaker and the listener was stronger during 
emotionally intense moments compared to less salient moments (Kang & Wheatley, 2017). Sto-
rytelling is particularly interesting because it is a uniquely human and universal activity creating 
social bonds between people (Smith et al., 2017). In Kang and Wheatley’s (2017) study, listeners 
watched videos of speakers telling the story and therefore did not engage in an actual conversation. 
However, direct face-to-face interactions has been shown to affect synchrony levels (Behrens et 
al., 2019). Therefore, in the current study, two individuals engaged in face-to-face storytelling and 
completed baseline measures, silent moments of eye-contact. In line with the findings by Kang 
and Wheatley (2017), we expected higher levels of synchrony when people engaged in storytelling 
compared to the baseline measure. Ideally, the analysis that measures synchrony is sensitive to 
detect changes in synchrony between the two (within-subject) conditions.

The aim of the current study was to determine the best parameter configurations for the 
WCC analysis applied to different common physiological measures. The two criteria we used to 
decide on these configurations are (i) the ability to distinguish synchrony from pseudosynchrony 
and (ii) the sensibility to detect changes in synchrony (i.e., distinguish between two conditions). 
The reason to include two criteria is to investigate whether the purpose of the study (i.e., detect 
synchrony or change in synchrony) influences which parameters configurations are most suit-
able. We tested these criteria on data from dyadic interactions where two individuals told each 
other four stories. During the interaction, their heartrate, skin conductance level, pupil size, and 
contractions of the left zygomaticus major (a muscle associated with smiling) were measured. For 
a range of window sizes and maximum lags that were tailored to each signal, we calculated a mea-
sure of distance for the comparison (i) between the original dyads and newly generated surrogate 
dyads, and (ii) between intervals of storytelling and baseline measures in the original dyads. The 
window and lag increments were not systematically compared, but were adjusted as a function of 
the window size and maximum lag, respectively. Based on the outcome of these comparisons, we 
provide recommendations on which parameter configurations are best for detecting synchrony 
and change in synchrony for the four physiological measures. With these recommendations, we 
hope to help other researchers to make well-informed decisions in applying the WCC analysis 
and to increase the comparability of findings across studies.

Method

Participants
In total, 34 same-sex dyads participated in the study of which six dyads had to be excluded due 
to technical problems (dyads included in analysis: Female = 22 [78%]; Mage = 22.79; SDage = 3.23; 
Dutch = 17 [30%]). Participants were recruited via the Leiden University online recruitment 
system, flyers distributed around the university building, and through personal contacts. In the 
latter case, participants were tested by a researcher they did not know. Individuals had normal 
or corrected-to-normal vision wearing contact lenses. Glasses were not compatible with the 
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eye-tracking glasses worn during the experiment. The duration of the study was about one hour 
and participants received two course credits or 6€, and chocolate for compensation. The study 
was approved by the local Psychology Ethics Committee of Leiden University (CEP19–0313/208).

Design
The design of the study is outlined in Figure 2. The study consisted of two parts. First, participants 
completed a breathing exercise where they were instructed to look at each other and synchro-
nize their breathing. Second, participants engaged in  storytelling with each participant telling 
a neutral and a positive story while the other participant was listening. Thus, participants told 
four stories in total with story 1 and story 3 always being told by participant 1 (sitting on the left 
side) and story 2 and story 4 being told by participant 2 (sitting on the right side). Story 1 & story 
2 and story 3 & story 4 were of the same valence, with the order of starting with the neutral or 
positive story being counterbalanced between dyads. The breathing and storytelling parts were 
both preceded by a 2-min baseline measure where participants were instructed to relax and look 
at each other. After the second baseline measure and after each story, participants filled out the 
Positive And Negative Affect Schedule (PANAS; Watson, Clark, & Tellegen, 1988) to measure 
their current affect. Also, they rated each story with regard to its valence and intensity on a scale 
from 0 to 10. The PANAS and the story ratings are not discussed any further, but the descriptive 
statistics are provided in Appendix D2 (see Table D.S1).

Procedure
Upon arrival at the lab, participants were separated, received information about the study, and 
gave informed consent for participation. Afterwards, electrodes were attached to the torso, fin-
gers, and face as preparation for the measurement of ECG, EDA, and EMG activity, respectively. 
Specifically, three electrodes were attached on the left and right side of the abdomen and on the 
thorax below the right collar bone to measure heartrate; two electrodes were attached to the 
non-dominant hand on the intermediate phalanges of the index and ring finger to measure skin 
conductance level; and three electrodes were attached to the left face on the zygomaticus major 
and behind the ear to measure facial expressions. The MP160 BIOPAC data acquisition system 
was used to record these measures at a sampling rate of 2000 Hz. After the preparation, partici-
pants filled out the Interpersonal Reactivity Inventory (IRI; Davis, 1980) and the Five Facet Mind-
fulness Questionnaire (FFMQ; Baer, Smith, Hopkins, Krietemeyer, & Toney, 2006) online. The 
descriptive statistics of both questionnaires can be found in Appendix D2 (see Table D.S1). Next, 
participants were seated on the same table and participants were asked to wear the eye-tracking 
device Tobii Pro Glasses 2 which were subsequently calibrated. Afterwards, the experimenters left 
the room and started the recordings of the physiological measures and the pre-recorded instruc-
tions that were provided via speakers. The experiment started with a 2-min baseline measure 
where participants were instructed to relax and look at each other (Baseline 1). Afterwards, the 
breathing exercise started where participants were again asked to look at each other, but this time 
synchronize their breathing for two minutes (not discussed in the current study). After this first 
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part of the experiment, participants had time to think of a neutral and positive personal story. 
When they were ready to begin, another 2-min baseline (Baseline 2) was taken and participants 
filled out the first PANAS which was provided on the table. Then Participant 1 (the individual 
at the left side of the table) started with the first story. Participants were instructed to talk for 
at least three minutes till they heard a beep and were requested to finish up. Afterwards, both 
participants filled out the PANAS and rated the story based on its valence and intensity on a scale 
between 0 and 10. Then the next story began. Participants took turns in telling them and filled out 
the PANAS and the rating after each story. At the end, participants put all filled out papers in an 
envelope, read the debriefing, and the experimenters removed the electrodes. Finally, individuals 
were paid and thanked for participation.
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Figure 2. The time course of the study. The study was divided into two parts: breathing exercise (Part 1) and story-
telling (Part 2). During the dark grey epochs, people interacted with each other; during the light grey epochs, they 
prepared the storytelling and filled out questionnaires; P1/P2 = Participant 1 and 2; PANAS = Positive And Negative 
Affect Schedule; Story 1 & 2 and Story 3 & 4 were of the same valence (positive or neutral); the order of starting with 
the positive or neutral story was counter balanced between dyads.

Preprocessing of the physiological measures
The physiological measures were pre-processed offline with the PhysioData Toolbox (Sjak-Shie, 
2017). The heartrate data were preprocessed applying a  band-filter between 1Hz and 50Hz. 
R-peaks were detected and transformed to inter-beat intervals (IBI) and subsequently to heartrate 
(bpm) values. The skin conductance signal was low-pass filtered with a cut-off of 5Hz. The EMG 
signal was preprocessed with a low-pass FIR filter of 28Hz and a high-pass FIR filter of 500Hz 
and a Notch-filter of 50Hz. The rectified signal was subsequently smoothed with a Boxcar filter 
of 100ms. The pupil size data were preprocessed in multiple stages according to recommended 
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guidelines described elsewhere (Kret & Sjak-Shie, 2018). After applying the filters, each signal 
was visually inspected and if necessary, manually corrected. If missing or incorrect intervals were 
manually detected, the signals were linearly interpolated. Finally, all signals were down-sampled 
to 20Hz.

Windowed Cross-Correlation analysis
Two challenges in analyzing physiological responses between two individuals include i) to sta-
tistically represent the dynamics of an interaction and ii) to quantify the associated patterns that 
might vary in the strength of association and the timing of the responses. Windowed Cross-Cor-
relation (WCC) analysis offers a method that addresses both challenges. Specifically, the two time 
series are broken into smaller, overlapping windows before the correlation is estimated for each 
window. This way, the strength of association can vary between these windows accounting for the 
non-stationarity of the signals. The overlap between windows assures that strong synchronization 
that occurs at the edge of non-overlapping adjacent segments is not missed. Additionally, for each 
window, the two segments are lagged away from each other up to a maximum lag such that the 
segment of either participant 1 or participant 2 precedes the other participant’s segment in time. 
This way the method accounts for the (varying) delay between two responses. This generates 
a result matrix r with correlations for the different segments and time lags defined as

 

94 
 

Researchers face the challenge to statistically represent the dynamics of an interaction 

and quantify the associated patterns in physiological responses between two individuals that 

might vary in the strength of association and the timing of the responses. Windowed Cross-

Correlation (WCC) analysis offers a method that addresses both challenges. Specifically, the 

two time series are broken into smaller, overlapping windows before the correlation is 

estimated for each window. This way, the strength of association can vary between these 

windows accounting for the non-stationarity of the signals. The overlap between windows 

prevents missing moments of strong synchronization that occur at the edge of non-

overlapping adjacent segments. Additionally, for each window, the two segments are lagged 

away from each other up to a maximum lag such that the segment of either participant 1 or 

participant 2 precedes the other participant’s segment in time. This way the method accounts 

for the (varying) delay between two responses. This generates a result matrix r with 

correlations for the different segments and time lags defined as 

 

,  
  

 

Where  is the total amount of observations (i.e., data points) in each window  

and  consisting of observations  and  where  Є {1, …, ),  and  are the 

means of the observations in each window, and  and  the standard 

deviations of each window. In the result matrix, each row represents one window, while each 

column represents one lag. Because the first window needs to have “enough space” to lag the 

segments up to the maximum lag and because the window includes more than one data point, 

the number of rows is given by (N – wSize – tMax) / wInc. Diving by wInc accounts for how 

many observations are skipped between one window and the next one. For example, if the 

window increment is one, then the number of rows of the result matrix will be equal to the 

number of observations of the time series (after accounting for the window size and 

maximum lag as just described). But if the increment is 10, then the steps are bigger between 

the windows, reducing the number of segments needed to cover the whole time series and 

therefore decreasing the number of rows in the result matrix. The number of columns in the 

result matrix is (tMax * 2)/tInc + 1 because the segments are shifted such that first Participant 

1 and then Participant 2 precedes the other participant up to the maximum lag (i.e., twice the 

(1) 

 (1)

Where Tw is the total amount of observations (i.e., data points) in each window Wx and 
Wy consisting of observations Wxt and Wyt where t Є {1, …, Tw), Wx and Wy  are the means 
of the observations in each window, and sd(Wx) and sd(Wy) the standard deviations of each 
window. In the result matrix, each row represents one window, while each column represents 
one lag. Because the first window needs to lag segments up to the maximum lag and because the 
window includes more than one data point, the number of rows is given by (N – wSize – tMax) 
/ wInc. Dividing by wInc accounts for how many observations are skipped between one window 
and the next one. For example, if the window increment is one, then the number of rows of the 
result matrix will be equal to the number of observations of the time series (after accounting for 
the window size and maximum lag as just described). But if the increment is 10, then the steps 
are bigger between the windows, reducing the number of segments needed to cover the whole 
time series and therefore decreasing the number of rows in  the result matrix. The number of 
columns in the result matrix is (tMax * 2)/tInc + 1 because the segments are shifted such that first 
Participant 1 and then Participant 2 precedes the other participant up to the maximum lag (i.e., 
twice the tMax). The tInc accounts for the size of the steps between two lags. The extra column 
( + 1) represents the case where the lag is zero.
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Peak picking. Following the WCC analysis, Boker et  al. (2002) developed the so-called 
peak-picking algorithm where the maximum correlation across different lags is determined for 
each window (i.e., the maximum correlation per row of the result matrix). The maximum correla-
tion should be preceded and succeeded by lower correlation values. For example, if Participant 
1 synchronizes with Participant 2 at a  lag of 1 second, then the correlation should be highest 
(i.e., peak) at that time lag and the correlation should be lower at both lag .5 and 1.5 seconds. 
This “peak” criterion is implemented to ensure that individuals indeed react to one another. If 
both individuals did nothing, they both would show more or less flat lines in their physiolog-
ical responses and the correlation between their signals would be high for all lags. Requiring 
a peak in the correlation across lags prevents such events from being termed “synchrony”. The 
peak-picking algorithm outputs a matrix with the maximum (“peak”) correlation and its corre-
sponding time lag for each window. In a last step, a summary statistic is computed by calculating 
the mean of the maximum correlations. This measure provides an indication of the overall level 
of synchrony between the two time series.

Choosing values for parameter configurations
As mentioned above, there are four parameters that need to be specified: window size, window 
increment, maximum lag, and lag increment. The window size (wSize) determines how long each 
window is, the window increment (wInc) indicates the size of the steps between two adjacent 
(overlapping) windows, the maximum lag (tMax) regulates how far the segments of the two time 
series are shifted away from each other, and the lag increment (tInc) determines the size of the 
steps with which the segments are shifted.

To choose the range of values we considered for the window size and maximum lag param-
eters, we employed a bottom-up approach by running preliminary WCC analyses on the whole 
time series (including all data of the study). Inspecting the result matrix plots, we examined the 
patterns seen in these plots. Examples of a “good” and “bad” parameter configurations are shown 
in Figure 3. Good parameter configurations show sharp contrasts between regions of high and 
low synchrony. The bad choices show a more smoothed image and thus less contrast between 
these regions, making differences more difficult to detect.

With regard to the maximum lag, we examined the plots inspecting whether the peak cor-
relations fell within the range of lags or whether they fell outside the plots (not shown in Figure 
3). For reasons of simplicity, the range of maximum lags was equal to the range of window sizes. 
In addition to the visual inspection, we ensured that the range of parameters included the param-
eters previously used in the literature. Finally, the minimum value for the window size was set 
to 3 sec to include at least 60 data points (20Hz sampling rate) per window size which is in line 
with previous guidelines for reliably estimating correlation coefficients (Schoeneberger, 2016). 
The window size and maximum lag parameters chosen for each physiological measure are listed 
in Table 1. For the window and lag increment parameters, we used 1/10th of the window size and 
the maximum lag, respectively.
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and (b) 20 sec, representing a “good” and “bad” example of parameter settings, respectively. Between around 100 
and 200 seconds, people engage in a breathing exercise where they breathe synchronously which is refl ected in the 
steadily high correlations around the time lag of zero.
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Table 1
Window size and maximum lag parameters used for each physiological measure

Signal Window size Maximum lag

Heartrate 4 – 12 sec in steps of ½ sec 4 – 12 sec in steps of ½ sec

Skin conductance level 5 – 25 sec in steps of 1 sec 5 – 25 sec in steps of 1 sec

Pupil size 3 – 9 sec in steps of ½ sec 3 – 9 sec in steps of ½ sec

Facial expression 3 – 9 sec in steps of ½ sec 3 – 9 sec in steps of ½ sec

Note. The window and lag increments were equal to 1/10th of the window size and the maximum lag, respectively.

Choosing the best parameter settings
We conducted the WCC and peak-picking analyses for all combinations of the window size and 
maximum lag parameters with their corresponding increments as described in the previous sec-
tion. For each parameter configuration, we calculated the mean peak correlation across window 
segments per dyad as the measure of synchrony. To determine the best parameter configurations 
for each physiological measure we used two criteria: (i) the ability to discriminate synchrony 
from pseudosynchrony, and (ii) the ability to detect change in synchrony. For the first criterion, 
we compared the original dyads consisting of the individuals who in fact interacted with each 
other during the experiment with the surrogate dyads consisting of all possible combinations 
of pairing individuals who did not interact during the experiment. If being in the specific social 
interaction evoked synchrony above and beyond the synchrony evoked by the fact of being in any 
actual interaction, synchrony levels are expected to be higher in  the original compared to the 
surrogate dyads. Therefore, we calculated the mean peak correlation for both the original and the 
surrogate dyads and investigated whether specific parameter configurations were more sensitive 
to detect the difference between synchrony (original dyads) and pseudosynchrony (surrogate 
dyads). Sensitivity was quantified by the t-statistics of an independent t-test between the mean 
estimates of the two groups. A positive t-statistic indicates that the true dyads show higher levels 
of synchrony than the surrogate dyads. To determine the best parameter configuration, we located 
which configuration generated the largest t-statistic and inspected the pattern in changes of t-sta-
tistics across parameter configurations. Note that we used the t-statistic as a measure of distance 
between the two group means without running hypothesis testing (i.e., decide on whether the 
distance is significant or not). We therefore interpret the t-statistics in relative rather than absolute 
terms and do not draw any conclusions about whether the differences reveal significant results 
or not. The analysis was conducted with the data from the first baseline measure (see Figure 1). 
To investigate whether the results of this analysis would replicate, we additionally conducted the 
same analysis again with data from the second baseline measure.

For the second criterion, that is, which parameter configurations are most sensitive to detect 
change in synchrony, we concentrated on the original dyads and investigated which parameter 
configurations generated the biggest difference between two conditions of the experiment. We 
used the t-statistic based on a paired t-test as a measure of distance between the mean estimates of 
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the two conditions. A positive t-statistic indicates higher levels of synchrony during storytelling 
than baseline. Similar to the first criterion, we identified the largest t-statistic and inspected the 
pattern in changes of t-statistics across parameter configurations. We also ran the analysis twice. 
First, we compared story 1 and story 3 with the two baseline measures. Second, we compared 
story 2 and story 4 with the two baseline measures (see Appendix D1 for the reasoning behind 
the choice of these comparisons). To keep the length of the stories equal, we only used the first 
three minutes of each story. This way, both comparisons included a positive and a neutral story (a 
preliminary analysis yielded no differences between the positive and negative stories). The only 
difference was that in the first analysis, Participant 1 told the stories and in the replication anal-
ysis, Participant 2 told the stories. Being Participant 1 or 2 was based on the participant number 
and therefore should not have had any systematic impact on the synchrony level between the two 
individuals. Therefore, we could investigate whether specific parameter configurations were more 
sensitive than others to detect differences in synchrony levels when people just looked at each 
other compared to when they engaged in storytelling.

Results

Synchrony versus pseudosynchrony
Heartrate. There was a range of positive t-statistics indicating that multiple parameter config-
urations could differentiate between the original and the surrogate dyads (Figure 4a). The best 
discrimination (maximum t-statistic = 28.32) was evident for the smallest window size (4 sec) and 
a maximum lag of 7.5 sec (the most yellow combination in Figure 5a). When mapping the t-sta-
tistics distribution onto the parameter configuration space, a clear pattern emerged: the smaller 
the window size, the larger the t-statistics. This pattern was evident by the gradual changes in col-
oring from blue to yellow in Figure 5a when moving down the y-axis (i.e., moving from large to 
small window sizes). When the window size became too large, the synchrony level dropped in the 
original dyads such that it became lower than the synchrony level apparent in the surrogate dyads 
(especially, when the maximum lag was small; dark blue coloring in Figure 5a).

The maximum lag was less influential on differentiating between original and surrogate 
dyads than the window size, yet not trivial. The maximum t-statistic was evident for a maximum 
lag of 7.5 sec. The optimal maximum lag was therefore around twice the optimal window size (4 
sec). Increasing or decreasing the maximum lag reduced the sensitivity to distinguish between 
the original and surrogate dyads as indicated by  less yellow colors when moving left or right 
on  the x-axis in Figure 5a. The replication analysis using data from the second baseline mea-
sure revealed similar results to the primary analysis and is depicted in Figure D.S1a-D.S2a. The 
maximum t-statistic (35.23) for a window size of 4 sec was replicated. The maximum lag differed 
slightly by 1.5 sec showing the highest t-statistic at 9 sec. However, the pattern was comparable 
with smaller window sizes and maximum lags around twice the window sizes yielding the largest 
difference between the original and surrogate dyads. In conclusion, if the aim of the study is to 
verify whether synchrony evolved as a result of interpersonal processes during a conversation 
above and beyond the shared environment of two participant, the range of parameters able to 
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detect that difference is rather wide. In general, we recommend using a small window size for 
heartrate synchrony. Regarding the maximum lag, the choice of parameters is less influential, 
however, we recommend using a maximum lag that is around twice the window size.

Skin conductance level. As with heartrate synchrony, there was a  range of parameter 
configurations with a positive t-statistic that was sensitive to distinguish the original from the 
surrogate dyads (see Figure 4b). The largest t-statistic of 37.71 was observed for a window size 
of 6 sec and a maximum lag of 24 sec (see Figure 5b). Similar to the heartrate data, the smaller 
the window size, the greater the distance in estimated means between the original and surrogate 
dyads. Also, the outcome flipped with higher synchrony levels for the surrogate compared to 
the original dyads when the window size was too large paired with a  small maximum lag. In 
contrast to heartrate, the discriminative ability steadily increased when the small window size 
was combined with an increasingly larger maximum lag (around four times the window size). 
In the replication analysis, the same pattern emerged as in the primary analysis: the greatest 
discrimination was seen for a small window size and a large maximum lag (see Figure D.S1b-D.
S2b). The largest t-statistic (48.71) was observed for a window size of 5 sec and a maximum lag 
of 21 sec. Again, when the window size became too large paired with smaller maximum lags, the 
analysis would estimate higher synchrony levels for the surrogate compared to the original dyads. 
Based on these results, we recommend using a small window size and a large maximum lag that 
is around four times the window size.

Pupil size. The number of positive t-statistics depicted in Figure 4c indicates that there was 
a range of parameter configurations that could differentiate synchrony from pseudosynchrony. 
The maximum t-statistic of 16.12 was associated with a window size of 3 sec and a maximum lag 
of 9 sec. The general pattern as for the other measures was observed: the smaller the window 
size, the greater the difference between the original and surrogate dyads (see Figure 5c). Again, 
when the window size became too large, the estimates of synchrony level would become larger 
for the surrogate compared to the original dyads. With respect to the maximum lag, it was less 
influential than the window size, but showed a slight tendency to larger maximum lags. A similar 
pattern was observed for the replication analysis with a maximum t-statistic (18.04) evident for 
a window size of 3 sec and a maximum lag of 6.5 sec (see Figure D.S1c-D.S2c). In conclusion, 
smaller window sizes were more sensitive to distinguishing synchrony from pseudosynchrony 
in pupil size data. The maximum lag did not have as much of an impact, but should be set to two 
to three times the window size.

Facial expression. All t-statistics were positive indicating that the level of synchrony was 
higher for the original compared to the surrogate dyads for all parameter configurations. How-
ever, compared to the other three measures, the distribution showed less variance with t-statistics 
ranging from 1.68 to 5.14 (see Figure 4d). The latter was observed for a window size of 3 sec and 
a maximum lag of 5 sec. As shown in Figure 5d, the same pattern as for the other three measures 
emerged: the smaller the window size, the better the original dyads could be distinguished from 
the surrogate dyads. Furthermore, the maximum lag did not have a great impact on the discrim-
inative ability, but the largest t-statistic was observed at almost twice the window size (5 sec). For 
the replication analysis, a similar pattern was observed (see Figure D.S1d-D.S2d) with a slightly 
wider range of t-statistics (maximum = 7.05; minimum = -.16). The maximum t-statistic was asso-
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ciated with a window size of 3 sec and a maximum lag of 8.5 sec. Again, the smaller the window 
size, the greater the difference between synchrony and pseudosynchrony with limited impact of 
the maximum lag. In conclusion, we recommend using a small window size and a maximum lag 
that is two to three times the window size.
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Figure 4. Distribution of t-statistics of the comparison between the original and surrogate dyads for each physio-
logical measure. A positive value indicates higher synchrony level in the original compared to the surrogate dyads. 
Each data point represents one parameter configuration. For the analyses, data from the first baseline measure 
were used.
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Figure 5. Distribution of the t-statistics of the comparison between the originate and surrogate dyads for all 
parameter configurations and each physiological measure. The color coding runs from the lowest (blue) to the 
highest (yellow) t-statistic. A positive t-statistic indicates that the original dyads showed higher synchrony lev-
els than the surrogate dyads. The more yellow, the better the discrimination between the original and surrogate 
dyads. Data from the first baseline measure were used. Notice that the scaling of the axes and the color coding are 
adjusted to each physiological measure to increase comparability between parameters.

Change in synchrony
Heartrate. The largest absolute t-statistic was negative indicating that synchrony levels were higher 
during baseline compared to during storytelling (see Figure 6a). The highest absolute t-statistic of 
4.86 was observed when the window size was set to 4 sec. Similar to the first comparison analysis, 
smaller window sizes could discriminate the two conditions better than large window sizes (see 
Figure 7a). Also, the maximum lag was less influential than the window size parameter, but the 
best outcome was observed for the smallest maximum lag of 4 sec. The absolute t-statistic steadily 
decreased with increasing maximum lags. For the replication analysis, the results were similar 
to the primary analysis, with smaller window sizes showing the greatest discriminative power 
between the conditions (see Figure D.S3a-D.S4a). Specifically, the largest absolute t-statistic was 
again observed for a window size of 4 sec. The maximum lag increased from 4 to 7 sec in the rep-
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lication analysis with only slight changes across maximum lags. Therefore, based on both analyses 
the conclusion is: if the aim is to distinguish synchrony levels in heartrate responses between two 
(within-subject) conditions, the smaller the window size, the better. The maximum lag is less 
influential, but should be equal to or twice the window size.

Skin conductance level. All t-statistics were negative indicating that the level of synchrony 
was higher during the baseline measures compared to during storytelling (see Figure 6b). The 
highest absolute t-statistic of 4.37 was observed for a window size of 18 sec and a maximum lag 
of 25 sec. Interestingly, the previous pattern of smaller window sizes showing greater t-statistics 
was not evident (see Figure 7b). In fact, although there seemed to be a weak tendency for absolute 
t-statistics to become larger with larger window sizes and larger maximum lags, the pattern was 
rather weak. In addition, the difference between t-statistics was small ranging from -1.61 to -4.37. 
For the replication study, the range was also rather narrow from -.19 to -2.56 (see Figure D.S3b-D.
S4b). The maximum absolute t-statistic was observed for a window size of 5 sec and a maximum 
lag of 12 sec, deviating substantially from the primary analysis. Although the general pattern (i.e., 
the smaller window size, the higher the t-statistic) was observed to a stronger degree compared to 
the primary analysis, it was still weak. In conclusion, given the lack of clear patterns in the param-
eter configuration space and considerable discrepancies in the results between the primary and 
replication analyses, we cannot draw strong conclusions about which parameter configuration is 
best to distinguish between two conditions when looking at skin conductance level synchrony.

Pupil size. For this measure, the parameter configurations strongly influenced whether 
synchrony levels were higher during baseline or storytelling (see Figure 7c). Generally, if both the 
window size and the maximum lag were small, synchrony levels were higher during storytelling; 
if the window size and maximum lag were large, synchrony levels were higher during the baseline 
measures. Specifically, the largest positive t-statistic of 1.72 (storytelling showed more synchrony) 
was observed for a  window size of 3.5 sec and a  maximum lag of 3 sec. However, the largest 
absolute t-statistic of 2.07 (baseline showed more synchrony) was associated with a window size 
of 8.5 sec and a maximum lag of 9 sec. A similar, but weaker pattern was evident for the repli-
cation analysis (see Figure D.S3c-D.S4c). The window sizes and maximum lags associated with 
the largest (absolute) t-statistic were the same as for the primary analysis. Given the ambiguity 
across parameters, we refrain from providing any recommendations about the best parameter 
configurations when the aim is to detect change in pupil size synchrony between conditions and 
instead caution that parameter choices can have a large effect on the outcome of this type of study.

Facial expressions. All t-statistics were positive indicating that the level of synchrony was 
higher during storytelling compared to baseline (see Figure 6d). The largest t-statistic of 3.99 
was evident for a window size of 3 sec (see Figure 7d). Albeit weak, the general pattern emerged 
with larger t-statistics being associated with smaller windows sizes. The maximum lag associated 
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with the biggest difference between conditions was 3.5 sec, but the differences across lags were 
trivial. The replication analysis revealed similar results with the largest t-statistic (4.53) observed 
for a window size of 3 sec (see Figure D.S3d-D.S4d). The maximum lag of 9 sec deviated from 
the primary analysis, however, the differences across the maximum lags were again rather small. 
To conclude, if the aim is to detect change in synchrony between two conditions in facial expres-
sions, then the window size should be set to a small value. The effect of the maximum lag was 
negligible, however, to be consistent with the other measures, we recommend a maximum lag 
twice the window size.
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Figure 6. Distribution of t-statistics of the comparison between storytelling and baseline for each physiological 
measure. A positive value indicates higher synchrony levels during storytelling compared to baseline. Each data 
point represents one parameter configuration.
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Figure 7. Distribution of t-statistics of the comparison between storytelling and baseline of all parameter con-
figurations for each physiological measure. The color coding runs from the lowest (blue) to the highest (yellow) 
t-statistic. A positive t-statistic indicates that the level of synchrony was higher during storytelling than during 
baseline. Analysis was based on data from both baseline measures and the first and third stories. Notice that the 
scaling of the axes and the color coding are adjusted to each physiological measure to increase comparability 
between parameters. Also, the highest t-statistic was not always the highest absolute value with the latter value 
being discussed in the result section. However, the general idea of greater (absolute) t-statistics indicating better 
discrimination between the two conditions remains.
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Discussion
The phenomenon that people synchronize each other’s emotional expressions and physiological 
states has intrigued researchers in many different disciplines. Studying this phenomenon comes 
with the challenge of statistically capturing the dynamic nature of a social interaction. Over the 
years, several methods have been developed that address this dynamic to different degrees and 
in different ways. One such method is the Windowed Cross-Correlation analysis (Boker et al., 
2002). It accounts for changes in the strength of synchrony throughout an interaction and in the 
different paces in which people respond. The method requires researchers to specify parameters 
that allow us to tailor the method to the signal of interest. Albeit increasing the method’s flexibil-
ity, there is a lack of guidelines on which parameters to use for which signal, which can have an 
impact on the outcome of the analysis. The aim of the current study was to statistically determine 
the most suitable parameter settings applied to four different physiological measures: heartrate, 
skin conductance level, pupil size, and activity of the zygomaticus major muscle (associated with 
smiling). To that end, we systematically investigated the influence of a range of parameter config-
urations on two criteria: i) the ability to distinguish synchrony from pseudosynchrony, and ii) the 
sensitivity to detect change in synchrony (i.e., distinguish two within-subject conditions).

Regarding the first criterion, the results revealed that a wide range of parameter config-
urations could distinguish between the original dyads and dyads that participated in the study, 
but never engaged in an actual interaction (i.e., surrogate dyads). Additionally, a general pattern 
across all physiological measures emerged: the smaller the window size, the better the discrim-
inative ability tear apart the original dyads from the surrogate dyads. In contrast, if the window 
size became too large, the estimated level in true dyads dropped to such an extent that it became 
lower than the synchrony level estimated in the surrogate dyads. With respect to the second 
parameter, the maximum lag was generally larger than the corresponding window size. How 
much larger differed between physiological measures: the optimal maximum lag was two, four, 
and two to three times the window size for heartrate, skin conductance level, pupil size and facial 
expressions, respectively.

Regarding the second criterion, that is, the sensitivity to detect change in synchrony, the 
results were less clear cut. Here, we compared two baseline measures where people looked at each 
other in silent with periods where participants engaged in storytelling. For heartrate and facial 
expressions, the general pattern was visible with better discriminative ability between storytelling 
and baseline with smaller window sizes. For facial expressions, this pattern was, however, weak 
at best. Interestingly, differences across measures emerged of whether synchrony levels were 
higher during storytelling or baseline. (Almost) all parameter configurations for the heartrate 
and skin conductance level measures indicated higher levels of synchrony during baseline. For 
pupil size, both patterns emerged with small window sizes and maximum lags showing more 
synchrony during storytelling, whereas large window sizes and maximum lags revealed more 
synchrony during baseline. For facial expressions, storytelling showed higher levels of synchrony 
for all parameter configurations. Other than these differences between measures, the range of 
t-statistics within each measure was considerably smaller than for the surrogate data analysis, 
suggesting less sensitivity to parameter choice. In the following, we will discuss our findings 
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in depth and integrate them with theoretical considerations. In Table 2, we summarize the global 
recommendations on determining the parameter configurations. We hope that these guidelines 
provide researchers with information that assist them to make well-informed decisions about the 
optimal parameters for their WCC analysis.

Table 2
Summary of global recommendations per parameter of the WCC analysis

Parameter  Recommendations 

Window size •  Lower bound: large enough to capture meaningful information and variance within the 
signal of interest

•  Upper bound: the response duration of the signal of interest; assumption of stationarity 
is met 

Maximum lag •  Lower bound: at least as long as the window size
•  Upper bound: at most twice as long as the window size

Window and lag increment •  Lower bound: 1 datapoint
•  Upper bound: same as the window size / maximum lag
•  Balance computational time and resolution: 1•5% of the window size / maximum lag

Synchrony versus pseudosynchrony–Window size
We observed that a wide range of window sizes was able to distinguish between synchrony and 
pseudosynchrony. However, in general smaller window sizes performed better. However, if the 
window size became too large, synchrony levels dropped to the extent that the levels became 
lower for the true dyads than the surrogate dyads. How can this general pattern across measures 
be explained? To understand it, let us quickly recapture the purpose of the surrogate data analysis. 
As introduced above, the aim is to destroy any synchrony that is the result of interpersonal pro-
cesses while preserving all other statistical properties by generating new dyads that participated 
in the study, but never actually interacted. This way we know that the null hypothesis that there 
is no synchrony between participants is true. As the null hypothesis will be true independent 
of the parameter configurations, the distribution of cross-correlations stays constant across all 
parameters. In contrast, for the original dyads, synchrony does emerge, which we expected based 
on prior research. During a dynamic interaction, there are moments when dyads are in sync, but 
also out of sync (Boker & Rotondo, 2002). If the window size becomes too large, both moments of 
synchrony and “anti-synchrony” are likely to be included into one window segment, substantially 
reducing the strength of synchrony. This causes a drop in overall synchrony that can be lower 
than in the surrogate dyads with no synchrony at all (i.e., no synchrony and no “anti-synchrony”). 
On the other hand, decreasing the window size decreases the variance within a window causing 
the overall synchrony level to increase. Specifically, as seen in Equation 1, the cross-correlation 
is calculated by dividing the distance between each datapoint and the mean of the window seg-
ment by  its standard deviation. The smaller the window size, the less change for variation to 
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occur within a window (i.e., the smaller the standard deviation), which causes the correlation 
to increase. Thus, while the distribution of correlation estimates stays constant for the surrogate 
dyads, the estimates for the original dyads increase with smaller window sizes. Consequently, the 
distance between the mean of these two groups becomes increasingly larger, causing the general 
pattern we see across the physiological measures. This pattern is therefore an intrinsic character-
istic of the way the cross-correlation is estimated applying to all types of time series.

The question then arises whether steadily decreasing the window size will also steadily 
increase the ability to distinguish synchrony from pseudosynchrony. The short answer is no. 
Imagine the extreme case, where the window size consists of two datapoints. These two data-
points hold very little information and would only allow possible correlation values of -1 and 1. 
This reduces the sensitivity for measuring synchrony and therefore for distinguishing synchrony 
from pseudosynchrony. Consequently, somewhere between a window size containing two data-
points and the smallest window sizes we examined, there will be a turning point, where the two 
types of dyads will become distinguishable.

Although statistically possible, making the window size as small as possible (but above the 
turning point) is not advisable for two reasons: (1) a sufficient number of data points are needed 
to reliably estimate correlation coefficients (Schönbrodt & Perugini, 2013), and (2) the window 
should capture a meaningful response. As outlined earlier, in order to reliably estimate a correla-
tion coefficient, a recent study showed that 65 to 250 datapoints are necessary depending on the 
strength of the correlation. With a sampling rate of 20Hz across all measures, we therefore used 
a window size of at least 3 seconds (60 datapoints). If researchers want to further decrease the 
window size, they should increase their sampling rate accordingly. With that said, a window size 
must include responses constricted by a meaningful upper and lower bound.

In the current study, we narrowed the possible values for the window size parameter 
by  showing a  range of parameters that qualify as potentially suitable parameters. How can 
researchers choose between these options? To answer this question, let us go back to the aim 
of cutting the time series into segments in the first place, namely, reducing the non-stationarity 
in the signals. A stationary signal has constant statistical properties with, among others, a con-
stant mean and standard deviation within that signal. In a dynamic interaction, the strength of 
synchrony (our statistical property of interest) will vary between moments of strong and weak 
synchrony. The window size needs to be small enough such that the synchrony level stays con-
stant within that window. Determining how small the window must be, depends on the nature of 
the signal and is contained by an upper and lower bound.

Imagine smiles of two interaction partners are coded during a conversation such that a per-
son either smiles or not. If the two participants smile at the same time for the same duration, 
there will be perfect synchrony between them for the entire duration of the two smiles (given an 
appropriate correlation measure for categorical variables). In this case, the window size could be 
as large as the duration of the smile because the level of synchrony is constant during that inter-
val. However, if the smiling response occurs in a real conversation and is measured continuously 
reflected in the activity of the zygomaticus major (as in the current study), there are variations 
in latency, magnitude and duration of the smiles within and between individuals. In this case, the 
level of synchrony is likely to change even within the window that would have been categorized as 
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a “smile” in the artificial categorical scenario just described. For example, one person might show 
a long, pronounced smile, while the other person might smile later and and for a shorter length 
of time. Then the synchrony would only occur during the short time where both people smile 
simultaneously. Therefore, the window size should be smaller than the duration of a “typical” smile 
to capture these variations. More specifically, we recommend a window size that is at most half 
the response duration, such that at least two estimates of the level of synchrony will be computed 
for that response capturing changes in synchrony that are twice the speed of the overall response.

Other than the upper bound for window size being smaller than the response duration of 
interest, there is a lower bound as well. In particular, the window size should be large enough to cap-
ture meaningful variations within a response. For example, if the signal of interest is skin conduc-
tance level, a window size of 1 second would contain straight lines in most windows. This produces 
extreme cross-correlations without capturing meaningful changes in the signal. On the other hand, 
applying the same window size to facial expressions might be considered a medium to large window 
given that a smile has been shown to last 500ms to 4 seconds (Frank, Ekman, & Friesen, 1993). Both 
the upper and lower bound therefore determine the potential values for the window size.

When talking about “the duration of a  response” we realize that this can be difficult to 
define as physiological measures show great variations within and between individuals. In the 
section “physiological boundaries” below, we provide an overview of the “typical” temporal char-
acteristics of each physiological measure realizing that this overview is far from being exhaustive. 
It is beyond the scope of the current paper to provide concrete guidelines for this matter and it 
is up to the researcher to decide on which responses she is interested in. As the most suitable 
(range of) window size(s) likely differs across situations and conditions, choosing a window size 
should be seen as a hypothesis that is tested, namely, that responses synchronize that are equal to 
or longer than the window size chosen. Although faster responses are still included in the window 
segments, they are likely to be averaged out and changes in the faster responses will be reduced. 

If the researcher has no strong a priori hypotheses, multiple window sizes can be tested 
across a range of possible values taking a data-driven bottom-up approach to determine the best 
parameter choice. Obviously, it is not realistic that researchers perform such elaborated analyses 
as in the current study, however, comparing two to three potential values can shed light on the 
rate at which synchrony occurs in a particular context. Of course, it is unlikely that people will 
synchronize on one specific response duration only, so one would expect more similar results for 
window sizes closer together. However, referring to “skin conductance synchrony” based on one 
parameter setting is likely an overgeneralization and needs more detailed investigation.

To conclude, the results of the current study indicate that a  range of window sizes is 
able to detect synchrony that occurs as a result of interpersonal processes with a preference for 
shorter window sizes. From a  theoretical perspective, the range of potential window sizes is 
contained by (i) an upper bound defined by the length of the duration of the responses under 
investigation and (ii) a lower bound defined by sufficient variation within the window. Rather 
than searching for that one most suitable parameter for each physiological measure, choosing 
a window size should be seen as a hypothesis being tested. Importantly, researchers need to be 
specific about what aspect of a signal they investigate which should be clearly stated in both 
their hypothesis and conclusions.
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Synchrony versus pseudosynchrony: maximum lag
Our results revealed that the maximum lag was less influential than the window size, yet not triv-
ial. In contrast to the window size, the optimal maximum lag differed between the physiological 
measures. For heartrate, pupil size, and facial expression, the optimal maximum lag was around 
5–10 seconds. Skin conductance level deviated from the other measures with the optimal param-
eter being around 20–25 seconds. This is consistent with the fact that skin conductance level is 
a considerably slower signal compared to the others. However, it contrasts the finding reported 
by Robinson and colleagues (1982) who showed that synchrony in skin conductance response 
within, but not outside the range of 7 sec was associated with the empathetic relationship 
between therapists and clients. Such discrepancy can be explained by the fact that while these 
authors concentrated on the phasic response, we have focused on the tonic, slower responses. 
This underscores the importance of being specific about what aspect of a signal the researcher is 
interested in and shows again the importance of the theoretical consideration for choosing the 
parameter configurations for the WCC analysis. In the following, we aim to provide the reader 
with a sense of how the maximum lag influences the analysis.

Essentially, the maximum lag indicates how far responses between participants can lie apart 
that can still be considered a response to one another. Thus, similar to choosing the window size, 
the maximum lag considerably depends on the interest of the researcher. Given their link, it seems 
reasonable to choose the maximum lag in relation to the window size. In line with our findings, we 
recommend using a maximum lag that is equal to or twice the size of the window. For simplicity, 
let us assume that stationarity is met for the length of a full response, all response cycles have the 
same length and the window segments start at the beginning of a new response. If the maximum 
lag is the same length as the window size, the window segment of Person A will be shifted away 
from the segment of Person B (and vice versa) until the two segments succeed one another with 
no overlap in time. When Person A, now later in time, shows a response, then Person B reacts right 
after the response of Person A. Thus, over the range of all considered lags, synchrony can happen 
between people being in sync (lag = 0) and people responding to each other in direct succession. 
In a similar vein, setting the maximum lag to twice the window size means that there can be up 
to a  full response duration between the responses of the interacting individuals. For example, 
imagine the measure of interest is facial activity and the window size is 2 seconds. If the maximum 
lag is 4 seconds, then two smiles that occur simultaneously up to the situation that they are 4 
seconds apart from each other are considered synchronized responses. The latter situation seems 
still reasonable in the context of a real conversation, yet on the upper limit. Therefore, expanding 
the maximum lag to 6 seconds likely increases the chance of linking two unrelated events to one 
another. The decision to set the maximum lag equal to or twice the window size depends on the 
researcher’s preference of what she considers reasonable in the context of interest. In a controlled 
environment with straightforward, stereotypical displays of emotions, a  person should react 
rapidly and a smaller maximum lag might be sufficient. However, in a natural interaction where 
ambiguous expressions and verbal conversations require more elaborated processing, a response 
might take longer and therefore a  larger maximum lag might be appropriate. In addition, the 
latency of a response itself is important, especially in relation to the response duration. For exam-
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ple, if a response is expected to be initiated rapidly, but last relatively long, a small maximum lag is 
sufficient. However, if the latency of a response is long and the duration of the response short, then 
a longer maximum lag is required. In sum, as a general rule of thumb we recommend a maximum 
lag of at least equal to and at most twice the size of the window size.

We would like to point out that the results considerably deviated for the skin conductance 
level. While the three other measures showed the largest discrimination between synchrony and 
pseudosynchrony for a maximum lag that was about twice the window size, for skin conductance 
level it was four times (around 20–25 seconds). As described above, this is consistent with the fact 
that skin conductance level is a substantially slower response compared to the other signals. One 
might therefore argue that the associated window size of 5 seconds might be too small capturing 
mostly responses with little meaningful variation. Increasing the window size might therefore be 
advisable, which then align with our recommendation of choosing a maximum lag that is at most 
twice the window size. In conclusion, our findings revealed that from a statistical point of view, 
the maximum lag is less influential than the window size. Nevertheless, this does not safeguard 
the researcher from using any parameter and tailoring it to the nature of the signal of interest is 
essential. Here, we have provided more information about the meaning of the maximum lag and 
recommended to specify the maximum lag equal to or twice the window size.

Window and lag increments
In the current study, we have adjusted the increments such that the windows and lags moved 
by  10% of the window size and maximum lag, respectively. This was a  choice of practicality, 
reducing the computational time in light of the huge amount of analyses run while keeping the 
resolution sufficiently high. As already mentioned at the beginning of the paper, both param-
eters determine the resolution of the changes occurring between window segments and lags. 
Ideally, the increments should be as small as possible (i.e., 1 data point). However, the increments 
heavily influence the computational time which is why researchers might want to increase these 
parameters. Nevertheless, the increments should never be set higher than the window size and 
maximum lag themselves. In case the lag increment is equal to the maximum lag, three situations 
are analyzed: people responding in sync (lag = 0), Person A responds to Person B with a delay 
of the maximum lag, and Person B responds to Person A with a delay of the maximum lag. For 
the window size, two adjacent segments would not overlap. If the increment would be greater 
than the window size, there would be a gap between two adjacent segments. This is problematic 
because moments of synchrony occurring during that gap are missed. Generally, unless research-
ers are specifically interested in one particular time lag, we recommend keeping the increment 
small in relation to the window size. Using the 10%-rule of thumb was fine for the current study, 
however, we needed to account for an enormous amount of analyses. We believe that reducing the 
percentage to 1 to 5% offers a good balance between analysis sensitivity and computational time.



Quantifying physiological synchrony through windowed cross-correlation analysis: Statistical and theoretical considerations 93

5

Change in synchrony
Besides the ability to detect synchrony, we also investigated the effect of the parameter config-
urations on  the sensitivity to detect change in  synchrony. The results were less clear-cut here. 
While for heartrate and facial expression synchrony, the general pattern of smaller window 
sizes increasing the discrimination ability was (weakly) apparent, it was not observed for skin 
conductance level and pupil size. Additionally, the primary and replication analyses sometimes 
showed large deviations. For example, for the skin conductance level, the greatest differences 
between conditions was apparent for a window size of 5 seconds in the primary analysis and 18 
seconds in the replication analysis. On top of that, there were differences between measures and 
parameters in whether synchrony levels were higher during storytelling or baseline. In particular, 
for heartrate and skin conductance synchrony, (almost) all parameter configurations suggested 
higher levels of synchrony during baseline, whereas the reverse was evident for facial expres-
sions. Such discrepancy might be explained by the function of the signal. Facial expressions are 
displayed for communicative purposes which is particularly important during storytelling where 
people react to one another more than during silent moments of eye-contact during baseline. 
While arousal levels also play a crucial role during conversations, during the baseline measure 
people could concentrate on  each other nonverbally and were not “disturbed” by  engaging 
in conversations, overall leading to higher synchrony during baseline. On top of that, the baseline 
condition consisted of two baselines measures with the second being preceded by the breathing 
exercise where participants were instructed to synchronize their breathing. This might have influ-
enced the second baseline measure leading to higher overall synchrony levels. In general, given 
the lack of clear patterns and inconsistencies between the primary and replication analyses, we 
refrain from giving recommendations for parameter configurations based on these results.

The inconclusiveness of the results might be attributed to two potential explanations: (1) 
the difference between the two conditions was negligible and the sensitivity to detect such small 
differences was barely affected by  the parameters; (2) there were differences between the two 
conditions, but the method was not sensitive to detect them. In support of the first explanation, 
in two previous studies, we have used parameters included in the current analysis with which we 
were able to detect differences in within-subject conditions and could link it to interpersonal out-
comes (Behrens et al., 2019; Prochazkova, Sjak-Shie, Behrens, Lindh, & Kret, 2019). The method 
therefore has been shown to be sensitive in other contexts. However, future studies are needed to 
address this question using either simulated data or more extreme conditions where the differ-
ence is more pronounced and possible differences between parameters are more likely to show.



Chapter 594

Physiological boundaries
Every physiological measure has its temporal characteristics and we will give a short overview for 
each of the four measures considered in the current study. First, the time course of heartrate is 
controlled by several physiological processes that can operate to varying degrees depending on the 
situation and psychological process of interest. Generally, parasympathetic nervous system activ-
ity slows the heartrate down, while sympathetic activity increases heartrate. While parasympa-
thetic activity is associated with fast changes in heartrate and is predominantly related to breathing 
(changes within millisecond to second range), sympathetic activity takes more time to show and 
is attributed to changes in arousal levels (changes within second range) (Berntson, Cacioppo, & 
Quigley, 1991). The pace of the heart can change on a beat-by-beat interval and the peak of heart-
rate acceleration has been shown to occur within the first 4 seconds (Critchley et al., 2005). The 
duration of a response to an external event (e.g., stimulus presentation) usually takes around 5–8 
seconds, although full recovery from stressful events can take several minutes (Berntson et al., 
1991; Bradley, Codispoti, Cuthbert, & Lang, 2001; Bradley et al., 2008; McAssey et al., 2013).

Skin conductance measures are indications of arousal resulting from sympathetic nervous 
system activity and are divided into tonic (skin conductance level) and phasic (skin conductance 
response) components. The tonic activity consists of gradual changes over time that vary con-
siderably between and within individuals. It decreases during rest and increases more quickly 
in  response to new events (Dawson et al., 2000). The phasic activity, the high-frequency com-
ponent of the skin conductance measure, is faster than the tonic response and reflects responses 
directly linked to an external or internal event. The latency of a response is usually between 1–3 
seconds and the time to reach the peak amplitude takes between 1–4 seconds. The duration of 
a  full response from stimulus presentation to 50% recovery of the amplitude after the response 
peak varies between 4 to 16 seconds (Dawson et al., 2000). This is consistent with a power spectral 
analysis showing that the sympathetic activity is reflected in frequencies between .045–.25 Hz, cor-
responding to response durations of 22 and 4 seconds, respectively (Posada-Quintero et al., 2016).

Changes in  pupil size can result from both parasympathetic and sympathetic activity. 
Specifically, pupil constriction is mainly controlled by parasympathetic activity, whereas pupil 
dilation is an indication of sympathetic activity. Pupil size changes in response to light are rapid 
showing a  constriction response 200ms after turning on  the light (Mathôt, 2018). Pupil size 
changes in response to psychosensory processes are slower and vary with, among others, mental 
effort and saliency of the stimulus (for a review, see Beatty & Lucero-Wagoner, 2000). The typical 
response is characterized by an initial constriction in response to the stimulus and subsequently, 
a more pronounced dilation of the pupil with a peak after 2 to 3 seconds and a total response 
duration of 4 to 6 seconds (Bradley et al., 2008; Kret et al., 2015; Oliva & Anikin, 2018).

Facial expressions consist of changes in  facial muscles such as the zygomaticus major, 
associated with smiling, and the corrugator supercilii, associated with frowning. The duration of 
a facial response depends on whether researchers investigate subtle, rapid changes or full-blown 
smiles in a natural conversation. For example, a facial response can occur as fast as 200–300ms 
in  response to stereotypical, controlled stimuli (Achaibou, Pourtois, Schwartz, & Vuilleumier, 
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2008). In a more natural setting, Frank, Ekman, and Friesen (1993) showed that a Duchenne smile 
of enjoyment lasts between 500ms to 4 seconds. Accordingly, response windows used in previous 
studies greatly differ ranging from 1.4 – 5 seconds after stimulus onset showing static images 
(Achaibou et al., 2008; Drimalla, Landwehr, Hess, & Dziobek, 2019; Lang, Greenwald, Bradley, 
& Hamm, 1993), to 15 second intervals investigating facial activity in real-life interactions (Hess 
& Bourgeois, 2010). This section gives a brief glimpse into the temporal characteristics of the 
physiological measures we have focused on in this paper. However, we would like to emphasize 
that this overview is far from being exhaustive and researchers need more elaborated knowledge 
to make well-informed decisions about the signal of interest.

Limitations
There are a few limitations that we would like to point out. First, in the current study we concen-
trated on the window size and maximum lag parameters, while setting the window and lag incre-
ments to 10%. A systematic investigation of the effect of changing these parameters is needed. As 
mentioned earlier, estimations of the level of synchrony will stabilize with smaller increments 
such that decreasing the increments even further will add little information at the cost of extra 
computational time. Although we propose to set the increments to 1– 5% of the window size and 
maximum lag, this suggestion is not based on statistical analyses and future research is needed to 
determine the optimal balance between sensitivity and computational time. Second, the general 
guidelines we propose in Table 2 may not be generalizable to other measures of synchrony and 
may not be applicable to other biological time series. Researchers should therefore be careful with 
making any inferences about other statistical analyses and time series than used in the current 
study. Third, all data come from a single study and is subject to method variation. To reduce such 
variation, we ran all analyses twice with different data from the same study. However, this does 
not address method variations that are the result of the study itself and future studies should rep-
licate our findings in a different dataset. Finally, we changed the original plan for the comparison 
of time intervals as outlined in Appendix D1. A more tailored study design may have observed 
more specific results, in particular with the regard to the sensitivity to detect change in synchrony.

Future directions and conclusions
The most important lesson the current study teaches us is that researchers need to be precise 
in what they (aim to) investigate as defined by the parameters specified in the analyses. In the 
current study, dyads synchronized on  a  range of response windows. However, this might not 
always be true, especially, if  the aim is to link it to specific psychological processes that might 
be influenced by  only particular physiological processes. Future studies are therefore needed 
that make more refined distinctions of which components of a particular physiological signal is 
involved in the process of interest and how the different components interact. This will facilitate 
making well-informed decisions about the response windows and shed more light on the biolog-
ical underpinnings of psychological processes.
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Before making well-informed decisions on the parameter configurations within a particular 
method, it is important to realize what the differences are between methods. WCC analysis is one 
of many possible methods and each method has its strengths and weaknesses. While one method 
might be appropriate for one, it might not be for another depending on, among others, the type of 
data (e.g., continuous or categorical measures) and the measure of interest (e.g., strengths versus 
frequency of synchrony; global versus time-sensitive measure of synchrony) (Gates & Liu, 2016; 
Schoenherr et al., 2018). For example, we chose to treat facial muscle activity as a continuous 
measure. However, researchers might also be interested in investigating concrete events of, for 
example, smiling and its synchrony in a conversation. Here, the analysis developed by Altmann 
(2011) might be appropriate where time series are first categorized into intervals of synchrony 
and intervals of no synchrony before measures of the strength and frequency of synchrony are 
computed. Despite using the same data, the outcomes can be somewhat different as demonstrated 
by  Schoenherr and her colleagues (2018). Performing an exploratory factor analysis on  seven 
linear time series analyses and different outcome variables (among others the WCC analysis), 
they reported that all these methods measure the overall phenomenon of synchrony, but could 
be categorized into three correlated, yet distinct facets of synchrony: the strength of synchrony 
of the total interaction, the strength of synchrony during synchronization intervals, and the fre-
quency of synchrony (Schoenherr et al., 2018). The WCC analysis as performed in the current 
study reflects the first facet. Researchers should therefore refine which facet of synchrony they are 
interested in and choose the appropriate methods accordingly.

The aim of the current study was to optimize the parameters for the WCC analysis from 
a statistical point of view. The initial idea was to provide researchers with concrete guidelines 
on which specific parameters would be most appropriate for the four physiological measures. 
However, the results show that when the aim is to detect synchrony, the parameters follow a gen-
eral pattern that is not specific to the signal of interest, but rather a result of intrinsic character-
istics of how the cross-correlation is calculated. That does not mean that the parameters should 
not be tailored to the signal of interest. Instead, theoretical considerations should be integrated 
with the findings observed in  the current study. Here, there is no one-fits-all solution, which 
might not be surprising given that we aim to capture a highly complex process. The current study 
narrows down the range of possible parameters and we provide guidelines on how to tailor the 
parameters further to the interest of the researcher. Being specific and transparent about these 
choices will increase the comparability across studies and add more and more pieces to the puzzle 
of understanding the phenomenon of synchrony.


