
Refining techniques for radiocarbon dating small archaeological bone
samples
Fewlass, H.K.

Citation
Fewlass, H. K. (2020, March 24). Refining techniques for radiocarbon dating small
archaeological bone samples. Retrieved from https://hdl.handle.net/1887/137931
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/137931
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/137931


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/137931 holds various files of this Leiden 
University dissertation.  
 
Author: Fewlass, H.K. 
Title: Refining techniques for radiocarbon dating small archaeological bone samples 
Issue date: 2020-03-24 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/137931
https://openaccess.leidenuniv.nl/handle/1887/1�


 

Chapter Three 
 

 

 

Pretreatment and gaseous 
radiocarbon dating of 40–100 mg 

archaeological bone 
 

 

 

H. Fewlass, T. Tuna, Y. Fagault, J.-J. Hublin, B. Kromer, E. Bard, S. Talamo 

 

 

 

Published in Scientific Reports, 2019, volume 9, article number: 5342 

DOI: 10.1038/s41598-019-41557-8 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

54



 

 

 

 

55



 

Published online: 29 March 2019 

xx xx xxxx 

 
 

 

 

 

 
 

         

 

  

 
 

 

OPEN 

 
 
 

Received: 8 October 2018 

Accepted: 11 March 2019 

 
 

 

Pretreatment and gaseous 
radiocarbon dating of 40–100 mg 
archaeological bone 
H. Fewlass1, T. Tuna2, Y.  Fagault2, J.-J. Hublin1, B. Kromer1,3, E. Bard2 & S. Talamo1

 

Radiocarbon dating archaeological bone typically requires 300–1000 mg material using standard 
protocols. We report the results of reducing sample size at both the pretreatment and 14C measurement 
stages for eight archaeological bones spanning the radiocarbon timescale at different levels of 
preservation. We adapted our standard collagen extraction protocol specifically for <100 mg bone 
material. Collagen was extracted at least twice (from 37–100 mg material) from each bone. Collagen 
aliquots containing <100 µg carbon were measured in replicate using the gas ion source of the 
AixMICADAS. The effect of sample size reduction in the EA-GIS-AMS system was explored by measuring 
14C of collagen containing either ca. 30 µg carbon or ca. 90 µg carbon. The gas dates were compared to 
standard-sized graphite dates extracted from large amounts (500–700 mg) of bone material pretreated 
with our standard protocol. The results reported here demonstrate that we are able to reproduce 
accurate radiocarbon dates from <100 mg archaeological bone material back to 40,000 BP. 

 

Bone is one of the most frequently radiocarbon-dated materials recovered from archaeological sites. However, 
many precious archaeological bones, such as human remains or Palaeolithic bone tools, are too small or valuable 
for extensive destructive sampling. The reduction of sample size to enable direct dating of precious bone is there- 
fore a key concern for the archaeological community. 

In the 1960s and 1970s, gas proportional counters required many grams of bone to produce a radiocarbon 
date1,2. The development and utilisation of Accelerator Mass Spectrometers (AMS) in the 1980s represented a 
revolutionary step in the reduction of sample size and time required for dating3. Routine measurements today 
typically require 500–1000 micrograms of carbon (μg C) to produce a high precision date. In recent years, sev- 
eral AMS labs have worked on modifications to the graphitisation and AMS measurement process for smaller 

samples containing <500 μg C4–13. However, the graphitisation of small sample sizes is often time consuming 
and can be prone to large contamination effects14,15. A recent study by Cersoy, et al.16 demonstrated that graphite 
targets containing ca. 200 μg C from archaeological bones can be successfully produced and measured using the 
IonPlus Automated Graphitisation Equipment III (AGE 3)17 and MIni CArbon DAting System (MICADAS)18,19

 

developed at ETH Zurich. However, the hybrid nature of the MICADAS system offers an alternative solution to 

the complex process of graphitising small samples. Organic samples containing <100 μg C can be placed into 
an elemental analyser (EA) directly coupled to the gas ion source of the MICADAS via the gas interface sys- 
tem (GIS)15,18,20–24. The automated system reduces both sample preparation time and the risk of contamination 
through handling, and has been successfully utilised in environmental and climatic applications23,25–28. In our 
preliminary study29 we demonstrated that the gas ion source of the AixMICADAS30 is suitable for dating bone 

collagen CO2 samples of <100 μg C back to 35,000 BP (uncalibrated radiocarbon years before AD 1950). 
However, as sample size is reduced the effect of contamination during pretreatment and measurement 

increases greatly. Sample pretreatment involves the extraction and purification of carbon endogenous to the orig- 
inal bone. Any contamination remaining in the sample at the time of dating can lead to erroneous results. The 
effects become increasingly catastrophic with the increasing age of the sample due to the minute concentrations 

of residual 14C. For example, in a bone extract ca. 40,000 BP, 1% modern carbon contamination would skew the 
resulting 14C age by over 7,000 years. 

 

1Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher platz 6, D-04103, 
Leipzig, Germany. 2CEREGE, Aix Marseille Univ, CNRS, IRD, INRA, Collège de France, Technopôle de l’Arbois, BP 
80, 13545, Aix-en-Provence, France. 3Institute of Environmental Physics, University of Heidelberg, INF 229, D- 
69120, Heidelberg, Germany. Correspondence and requests for materials should be addressed to H.F. (email: helen_ 
fewlass@eva.mpg.de) 
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It is standard practice to extract the proteinaceous portion of bone for 14C measurement, generally referred to 
as ‘collagen’31. Although collagen forms around 22% weight of modern bone, degradation following death and 
burial makes collagen extraction increasingly challenging with advancing age32. Whilst the minimum threshold 
for reliable 14C dating is generally considered to be 1%32, it is common for the collagen portion of Palaeolithic 

bone to constitute <10% weight. The lower the level of collagen preservation, the more bone must be pretreated 
to obtain sufficient material to assess the quality of the extract (i.e. isotopic and elemental analysis) and for 14C 
dating. Therefore, 300–1000 mg material is commonly sampled for dating Palaeolithic bones. 

The majority of 14C labs follow collagen extraction protocols based on Longin33. This involves demineral- 
isation of either powdered bone or bone chunks using hydrochloric acid (HCl) followed by gelatinisation of the 
collagen in weakly acidic water and freeze-drying of the final extract. Different labs vary in the strength of 
reagents used, the duration of treatments and the inclusion of further decontamination steps. Many studies have 
been published comparing the collagen yields and isotopic values of the various extraction protocols published in 
the literature34–38 as variations in pretreatment conditions can lead to differences in the quantity and quality of the 
final extracts. The addition of an ultrafiltration step, first proposed by Brown, et al.39 has in particular improved 

the accuracy of 14C dating of Palaeolithic bones40; gelatinised samples are filtered to concentrate large (>30 kDa) 
molecules to produce a ‘cleaner’ collagen extract. The technique is not unanimously agreed upon due to the risk 
of contamination from the humectant-coated filter41, the effectiveness of the application37 and the loss of collagen 
during filtration34. However, stringent cleaning steps have been established42–44 and in many cases the re-dating 
of ancient bones with ultrafiltration methods has produced much older dates than previous measurements from 
non-ultrafiltered extracts40,45,46. The collagen pretreatment protocol routinely applied to Palaeolithic bone at the 
Max Planck Institute for Evolutionary Anthropology (MPI-EVA, Leipzig, Germany) is based on a modified 
Longin plus ultrafiltration protocol36 and has a strong track record of obtaining high yields of high quality colla- 

gen from ca. 500 mg samples of Palaeolithic bone47. 

The aim of this study was to determine a suitable method to pretreat <100 mg bone material and further 
investigate if the gas ion source of the AixMICADAS29,30 at CEREGE (Centre de Recherche et d’Enseignement de 
Geosciences de l’Environnement, Aix-en-Provence, France) is suitable for measuring small archaeological bone 
samples with sufficient accuracy and precision. We investigated the effect of sample size reduction at both the pre- 
treatment and gas measurement stages. Tests were performed on a set of eight archaeological bones ranging from 

1% to >10% collagen preservation known to date from >50,000–1,400 BP. Each bone was pretreated multiple 
times from starting weights of 37–100  mg bone material. Each collagen extract was split and dated multiple times 
with the gas ion source of the AixMICADAS to test replicability. The gas dates were compared with graphite dates 
from collagen extracted from >500 mg material of the same bones. We further compared gas dates of ca. 30 μg C 
and ca. 90 μg C to explore the effect of sample size on the blank level of the EA-GIS-AMS system. The results 

demonstrate our ability to obtain accurate and moderately precise radiocarbon dates from <100 μg C extracted 
from 37–100 mg bone material back to 40,000 BP. The methods described will be used to extract and 14C date 
collagen from precious archaeological bone artefacts with minimal sample destruction. 

Results 
Bone pretreatment. Prior to this study, 500 to 700 mg of each bone had been pretreated using our standard 
collagen extraction protocol36. The extracts were analysed by EA-IRMS at the MPI-EVA to assess their suitability 

for dating (C%, N%, C:N, δ13C, δ15N) and were measured at the Klaus-Tschira-AMS lab in Mannheim, Germany 
(lab code: MAMS). The same collagen extracts from R-EVA 1489, R-EVA 123 and R-EVA 124 were also dated at 
the AixMICADAS facility to cross-check the ages29. The results were used as a reference for the preparation of 

small (<100  mg) aliquots of bone. 
Modifications to our standard pretreatment protocol were carried out for five bones (Fig. 1): three relatively 

‘well-preserved’ (>10% collagen preservation) archaeological bones (Fig. 1a,b,e) and two ‘poorly-preserved’ 

bones (<5% collagen preservation) (Fig. 1c,d). Once we had determined the optimum pretreatment protocol for 
<100  mg material, we applied this to three more archaeological samples: R-EVA 1489, R-EVA 1905 and R-EVA 
1860 (two extracts per bone) (pretreatment information shown in Supplementary Dataset S1). 

The standard practice in our lab is to extract large bone aliquots (ca. 500 mg material) as a solid piece. 
Although this method requires a large time investment (demineralisation can take up to four weeks with the HCl 
0.5 M changed twice per week), we observe much higher collagen yields using this technique compared to 

powdered extracts of equal starting weight. Small aliquots (<100  mg) of the test bones were initially pretreated 
as both fine powder and as solid chunks. For solid pieces of bone, in most cases the collagen yield from small 

extracts (<100  mg) equalled or exceeded the collagen yields of large extracts (500–700  mg material) and no dif- 
ference was observed between aliquots of 50 mg bone compared to 70 mg or 100 mg bone material (Fig. 1). In 
contrast, the powdered aliquots of well-preserved bones generally yielded around half the amount of collagen 
compared to solid pieces, in line with our observation for large starting weights of bone. Powdered aliquots from 

the poorly preserved bones either yielded nothing or small amounts (<1 mg) of crumbly yellow material. Due to 
the poor results from the pretreatment of powdered samples, our protocol for small amounts of bone is based on 
the extraction of solid pieces as per our standard protocol for larger aliquots. The pretreatment information for 
powdered extracts is included in the supplementary information. 

We initially applied our standard collagen extraction protocol to <100  mg bone material of the well-preserved 
bones. Three steps of the pretreatment protocol were then modified to see what effect this had on the collagen 
yield and quality of extracts from small bone aliquots (Fig. 1): step (1) the duration of the demineralisation 
stage; step (2) the strength of HCl during the demineralisation stage; step (3) the temperature and duration of 
the gelatinisation stage. Bone collagen yields along with elemental (C%, N% and C:N) and stable isotopic data 
(δ13C and δ15N) were used to evaluate the extracts from the different methods. In addition, Fourier Transform 
Infrared Spectroscopy (FTIR) was used to double check the preservation of the extracted collagen, and to detect 
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Figure 1. Graphs showing the collagen yields from small aliquots of bone according to variations in 
pretreatment conditions: (a) R-EVA 123, (b) R-EVA 124 (c) R-EVA 570, (d) R-EVA 548 and (e) R-EVA 1753. 
Step 1: duration of the demineralisation stage. Step 2: strength of HCl during demineralisation. Step 3: duration 
and temperature of the gelatinisation stage (HCl pH3). In (a–d) the horizontal grey line shows the collagen 

yield from a large aliquot (>500 mg material) of the same bone. A higher number of data points are present for 
R-EVA 1753 (e) as an aliquot of this bone was extracted alongside each batch of samples. The horizontal grey 
band in e shows the range in collagen yield of repeated large extractions from the background bone. The dashed 
lines at 1% show the guideline minimum requirement for reliable 14C dating. Asterisks mark extracts which 
were dated using the gas ion source (see Fig. 3). 
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Figure 2. Summary of bone pretreatment protocols used at the MPI-EVA for large (left) and small (right) bone 
samples. 

 

 

the presence of possible carbon contaminants31,48,49. Detailed pretreatment information for all extracts can be 
seen in Supplementary Dataset S1. 

For the poorly preserved bones (Fig. 1c: R-EVA 570 and Fig. 1d: R-EVA 548) the pretreatment was softened 
in order to minimise collagen loss during the extraction. The weaker HCl (0.2 M) (step 2) and lower gelatinisa- 
tion temperature (60 °C) (step 3) required a greater time investment and did not necessarily increase the yield of 
collagen compared to using stronger acid (HCl 0.5 M) during demineralisation and higher temperatures (70 °C) 
during gelatinisation. For the poorly preserved samples, demineralisation in HCl 0.5 M generally occurred after 

one day (4 °C). As Schoeninger, et al.50 observed that one disadvantage of extracting collagen from solid chunks 

was the tendency for incomplete demineralisation, several extracts were demineralised in HCl 0.5 M for two days. 
This resulted in lower collagen yields for the poorly preserved bones and in the case of R-EVA 548, the yield of 
these extracts was so low that the extracts were affected by C contamination to a large extent. 

During the gelatinisation stage (step 3), the collagen yield was higher from aliquots which were removed from 
the heater block as soon as solubilisation had occurred compared to those left on the heater block for 20 h as per 

our standard protocol for >500  mg. For all bone samples >30,000 BP, solubilisation occurred in <6 h (Fig. 1), 
whereas R-EVA 1489 and R-EVA 1905 required up to 27 h for full solubilisation (Supplementary Dataset S1). 

Of the extracts dated, two (R-EVA 548.13 and R-EVA 548.14) fell close to or under the minimum threshold 
(1%) for reliable 14C dating (Supplementary Dataset S1). There were small variations in elemental values between 
pretreatments of the same bone but all values (Supplementary Dataset S1) fell within the accepted ranges of 
‘well-preserved’ collagen32. The stable isotopic values were in keeping with the palaeodietary expectations for 
each animal and were consistent between extracts. Analysis with FTIR was performed for all collagen extracts; 
each extract dated had a spectra characteristic of well-preserved collagen when compared to library spectra (see 
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Figure 3. 14C gas measurements of small (25–40  μg C) and large (70–100  μg C) aliquots of collagen extracted from 

eight bones (a–h) spanning the 14C time range. Each data point shows the 14C age (BP) and 1σ error (years) of a single 

EA-GIS-AMS measurement. a) Shows the uncorrected measurements of background bone R-EVA 1753 (>50,000 
BP). An aliquot of this bone was prepared alongside every batch of samples from sampling to measurement to 
monitor contamination introduced during sample preparation. These measurements were used in the age calculation 

of the other archaeological samples (b–h), according to session, size (small or large) and type (solid bone extract). The 
arithmetic mean and associated SD of system blank (IAEA-C1/phthalic anhydrite) measurements are shown as a solid 
horizontal blue line and dashed blue lines respectively for large 80–100  μg C measurements and as a solid horizontal 
grey line and dashed grey line for small 25–40 μg C measurements. For all gas measurements in graphs b-h: the 
absolute error of the blank has been set to 0.001 and an external error of 3.5‰ has been added to all measurements 
based on the long term standard deviation of standards. Dates >15,000 BP have been rounded to the nearest 10 

years. Asymmetrical errors are shown where F14C ≤ 1σ*10. Grey shaded bands show the 1σ range of graphite dates 
measured from large extracts of the same bone. In a-h, the vertical dotted lines separate different collagen extracts 
of the same bone with the bone starting weight and collagen yield shown below. The number in the top left of each 
section is the preparation number of the bone, corresponding to Supplementary Dataset S1. Asterisks mark collagen 

extracts dated with the gas ion source reported in Fewlass, et al.29. 
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Supplementary Fig. S3). Considering the collagen yields and 14C measurements, the optimum pretreatment pro- 

tocol for small aliquots of bone (<100  mg) is shown in Fig. 2. 

14C dating. For each of the bones, several collagen extracts (bone weight ranging from 37–100 mg, marked 
with asterisks in Fig. 1) were dated using the EA-GIS-AixMICADAS (Fig. 3). Each collagen extract was split and 
measured multiple times. Between two and four replicates were measured containing ca. 30–40 μg C, run for the 

duration of one titanium (Ti) target (ca. 12 minutes) and for each bone >20,000 BP, a single aliquot containing ca. 
80–90 μg C was measured over the duration of three targets to increase precision (see Supplementary Dataset S2). 
The gas ages obtained were compared to one or more graphite dates measured from collagen extracted from 
500–700  mg bone material (Supplementary Dataset S2). Discussed here are measurements made from collagen 
extracted from solid pieces of bone. Details of measurements made from powdered aliquots (lower collagen 
yields) are included in the supplementary information. 

Figure 3 shows the ages obtained for each bone. The accuracy of the dates generated by the gas ion source is 
clearly seen in comparison with the graphite dates. Of the 74 new measurements made with the EA-GIS-AMS 
system shown in Fig. 3b–h, 69 measurements agree within the 95% confidence limit (2σ) of the corresponding 
graphite dates and 57 agree within 1σ. There are five measurements outside 2σ: four are measurements of the two 
collagen extracts (R-EVA 548.13; R-EVA 548.14) which fell at or below the minimum threshold of preservation 
suitable for 14C dating (Fig. 3g), and the last (R-EVA 1905.4.1; Aix-12023.2.1) is slightly older than the other rep- 
licates of the same extract (Fig. 3c). 

Chi-squared tests (χ2)51 were performed using the R_Combine feature in OxCal 4.252 using the F14C and 
associated error for gas replicates of each collagen extract individually and for all replicates per bone. The replicate 
measurements are statistically indistinguishable for R-EVA 1489, R-EVA 1905, R-EVA 1860, R-EVA 123, R-EVA 
570 and R-EVA 124 (output of all statistical tests are included in Supplementary Dataset S2), demonstrating the 
reproducibility of the measurements and consistency between different pretreatment batches across the range of 
the 14C timescale. In addition, all of the measurements of R-EVA 1489, R-EVA 123 and R-EVA 124 from this 

study agree with the EA-GIS-AMS measurements made in 2016 reported in Fewlass, et al.29 (Supplementary 
Dataset S2). 

The exception is the roughly 40,000 year old bone R-EVA 548, which at ca. 1% collagen preservation repre- 
sents the limits of C14 dating. The gas dates obtained from the two low yield extracts (R-EVA 548.13 and R-EVA 
548.14) were much younger than the other extracts of this bone (Fig. 3g), showing they had been affected by 
contamination from modern carbon. Due to the low yield, under normal circumstances R-EVA 548.13 would 
not have been passed for dating following pretreatment. Excluding these two extracts, the replicates from R-EVA 
548.3 and R-EVA 548.8 are consistent with the graphite date for this bone. 

For background bone R-EVA 1753 (>50,000 BP), the dates from the collagen extracts (Supplementary 
Dataset S3) were on par with the blank standards (IAEA-C1/phthalic anhydride) of equal size (Supplementary 
Dataset S4). As expected, the blank level in the EA-GIS system was affected by the reduction in sample size from 

90 μg C to 30 μg C (Fig. 3a). The ages of the seven <50,000 BP samples were corrected with background collagen 
measurements of the same size (ca. 30 μg C or ca. 90 μg C) and type (solid/powder) measured during the same 
session. 

Discussion 
Using a slightly modified version of our standard pretreatment protocol the collagen yield from <100 mg bone 

material was of equally high quality as extracts from ‘large’ (>500 mg) bone samples. Decreasing sample size 
from ca. 100 mg to <50 mg bone material also had no detrimental effect on collagen yield. The agreement in 
age between multiple collagen extracts from different starting weights of bone (Fig. 3) indicates firstly that we 
obtain reproducible results with the pretreatment protocol and secondly, that the reduction in material during 
pretreatment did not detrimentally affect the results of 14C dating. In particular, the results indicate that the clean- 
ing steps used for the ultrafilters are sufficient as any C remaining in the filters after cleaning would have a more 
pronounced effect on reduced sample sizes. 

The main alteration to our standard protocol involved reduction in the duration of the gelatinisation stage, 
with samples removed from the heater block as soon as they had gelatinised (see Fig. 2). Different gelatinisation 
conditions have been well documented to affect the final extract quality and yield38,39,53,54. The higher collagen 
yields from these extracts supports observations that gelatinised collagen is degraded by prolonged exposure to 
higher temperatures and acidity39,53. 

R-EVA 548 represents a very challenging prospect for collagen extraction and radiocarbon dating due to the 

exceptionally low levels of preservation (<1% weight collagen) and old age (ca. 39,400 BP), even working with 
larger sample sizes. The harshest demineralisation (HCl 0.5 M, 2 days, 4 °C) applied to small aliquots of this bone 

(R-EVA 548.13; R-EVA 548.14) resulted in very low yields of ≤1 mg collagen, likely due to the solubilisation of 
collagen during the longer demineralisation stage. The resultant underestimated dates clearly show that these ali- 
quots were massively affected by modern carbon contamination. Prior to dating, the consideration of the quality 
of the extract is crucial in order to obtain reliable dates. Given the low yield of collagen (≤1%) following pretreat- 
ment, under normal circumstances these extracts would not been dated or would have been treated with caution. 
This bone demonstrates the difficulty of pretreatment of poorly preserved bones at the limit of the 14C method. 

At such small sample sizes, the consideration of the background correction is crucial. The gas measure- 
ments of R-EVA 1489, R-EVA 1905, R-EVA 1860, R-EVA 123, R-EVA 570, R-EVA 548 and R-EVA 124 were 
all corrected with gas measurements of background bone collagen (R-EVA 1753) of equal size (ca. 30 μg C or 
ca. 90 μg C) prepared alongside every batch of samples and measured during the same measurement session to 
account for any C added during sample preparation and measurement. Figure 3a shows the ages obtained for the 
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background bone containing ca. 25–40 μg C (small) and ca. 80–100 μg C (large). The large measurements (mean 

F14C = 0.0024, SD = 0.0006, n = 9, equivalent to 48,600 BP) are on par with the system blank (either IAEA-C1 or 

phthalic anhydride) measurements of equal size (mean F14C = 0.0026, SD = 0.0006, n = 7, equivalent to 48,000 
BP) (Supplementary Datasets S3 and S4), indicating that no carbon contamination was introduced during sam- 
ple preparation. An increased sensitivity to modern 14C is to be expected at lower levels of carbon and it is clear 
that the smaller background collagen measurements are generally younger. The 25–40 μg C background collagen 

samples (mean F14C = 0.0039, SD = 0.0007, n = 22, equivalent to 44,530 BP) are likewise equal to the system blank 

measurements of equal size (mean F14C = 0.0036, SD = 0.0006, n = 5, equivalent to 45,180 BP) (Supplementary 
Datasets S3 and S4). These values are lower than previously published values for blank IAEA-C1 samples meas- 

ured at CEREGE reported in Bard, et al.30 (F14C = 0.02 for sample sizes around 30 μg C and F14C = 0.005 for 
samples of 80–100 μg C) and to phthalic anhydride blanks measured at ETH Zurich reported in McIntyre, et al.24 

(mean F14C = 0.0046 ± 0.0012, n = 6, size range 84–100 μg C). The results indicate the lower limit of 14C detection 

with the gas ion source to be around F14C = 0.004. As demonstrated by R-EVA 124, beyond this limit the minute 
levels of 14C can be measured but the uncertainty of the background correction dominates accuracy and precision. 

The system blank of the EA-GIS-AMS is affected by the carbon content of the silver cups, cross-talk of the zeo- 
lite trap and the cleanliness of the ion source at the time of the measurement24. The mass (Mc) and F14C (F14Cc) of 

the constant contamination of the EA + GIS system was deduced by least square regression of modern carbonate 
and blanks (IAEA-C1) with sample weights ranging between 3 and 100 μg C to be Mc = 0.55 ± 0.05 μg C and 

F14Cc = 0.12 ± 0.0355. The silver cups (5 × 3 mm from Elementar; cleaned at 800 °C, 2 h) had a consistent carbon 

contribution of 0.049 ± 0.02 μg C. The zeolite trap was heated (450 °C) and the system was flushed with helium 
between samples to minimize cross-contamination. However, small amounts of C may reside in the zeolite trap 

after flushing which has been demonstrated to have a large influence on samples <20 μg carbon23,55. With this 

in mind, even our ‘small’ samples were kept >20 μg carbon. To further alleviate problems of cross-talk, samples 
were run in order of increasing activity (oldest to youngest) according to the standard practice55. Background 
corrections of samples were applied according to sample size and an external error was added during the age 
calculation of all samples based on the long term standard deviation of standards and blanks (error 2 described 

in Fewlass, et al.29). 
In a real life situation, if a small bone sample yielded a high amount of collagen (for example, the mammoth 

bone R-EVA 123 or the Medieval human bone R-EVA 1489 included in this study), dating with graphite targets 
would be preferentially undertaken as the precision achieved is much higher and measurements can be made 
routinely. However, the results of this study demonstrate that the gas ion source can produce an accurate radiocar- 
bon date at low precision from as little as 30 μg C. The precision of the date can be improved when larger sample 
sizes (up to 100 μg C) are available for measurement over several targets (as demonstrated in Fig. 3). In order to 
assess variability in handling and blank contribution, in this study we compared multiple measurements of ca. 
30 μg C with larger aliquots containing ca. 90 μg C. When taking the weighted mean and error of the three small 
aliquots the precision achieved is higher compared to the single large measurement of a roughly equal amount of 
carbon. However, as the likelihood of contamination being introduced via handling, the EA-GIS or the silver cup 
is increased for the smaller sample sizes, the preferred method for measuring larger samples would be to measure 
several targets from a single syringe, rather than splitting a sample into smaller aliquots. Although the measure- 
ment of gas samples requires more supervision than graphite targets, the direct coupling of the EA with the GIS 
significantly reduces sample preparation time by cutting out the graphitisation step which poses a large risk of 
contamination at such small sample sizes. Therefore in situations where sample size is limited the gas ion source 
offers an attractive solution for archaeological, as well as environmental, applications. 

Even working with the assumption of 1% collagen preservation, in theory sufficient collagen could be 
extracted from less than 10 mg bone material to obtain a 14C date using the EA-GIS-AMS. However in order to 
assess the quality of the extract prior to dating and obtain high-resolution stable isotopic data for palaeodietary 
reconstruction, collagen should also be analysed with an EA-IRMS. At 1%, around 40 mg bone material would 

supply enough collagen for dating and isotopic analysis. For any sample >1% preservation, excess collagen would 
be available for further analyses and/or multiple aliquots could be measured with the gas ion source to achieve 
better counting statistics and thus increase precision. Bearing this in mind, when dating highly precious bone it 
would be useful to assess the preservation of the artefact prior to sampling or have an understanding of collagen 
preservation at the archaeological site (for example if other fauna has been sampled for isotopic or 14C dating 
purposes). Bones of high patrimonial value could be sampled strategically – i.e. for older samples expected to 
have less than 10% collagen preservation 40 mg bone material could be sampled, whereas for well-preserved 
Holocene bone much smaller samples could be taken. The case of R-EVA 548 demonstrates that for very old sam- 

ples (>35,000 BP) with very poor levels of preservation (1–2%), yields falling below 1 mg collagen can be subject 
to severe contamination issues. 

The results presented here provide further confirmation that 14C measurements using the gas ion source of the 
MICADAS are stable, reproducible and accurate, reaching a level of precision suitable for dating archaeological 
samples particularly for Palaeolithic samples back to 40,000 BP. In this respect this technique will be highly useful 
for directly dating precious archaeological bone where limited material is available. 

Methods 
Sample selection. Eight bones were selected to span the 14C timescale (back to 50,000 BP) at a range of pres- 
ervation typical for archaeological bones. Collagen extracts from bones R-EVA 124, R-EVA 123 and R-EVA 1489 

were previously dated using both graphite targets and the gas ion source in Fewlass, et al.29. R-EVA 124 was pre- 
viously labelled as a bison bone but recent aDNA analysis has identified it as belonging to a woolly rhinoceros56. 
R-EVA 548 and R-EVA 570 are two faunal long bones from Teixoneres, Spain. R-EVA 1860 is a faunal long bone 
excavated from the site of Ranis, Germany and R-EVA 1905 is a predominantly trabecular fragment of horse bone 
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excavated from Pietraszyn, Poland. R-EVA 1753 is a well-preserved cave bear rib known to date beyond the 14C 
timescale based on repeated measurements. As standard practice, an aliquot of this bone is extracted and dated 
alongside every batch of samples to monitor contamination introduced during sample preparation and is used in 
the age correction of the unknown samples. This is the referred to in the text as the ‘background bone’. 

Collagen extraction. For each bone, large aliquots (500–700 mg material) were pretreated using our stand- 

ard acid-base-acid + gelatinisation + ultrafiltration protocol (see Fig. 2) based on Talamo and Richards36 to pro- 
duce collagen for dating with graphite targets. 

In order to optimise our standard protocol for sample sizes <100 mg, small aliquots of each bone were pre- 
treated multiple times to compare collagen yields and sample quality. Firstly, the outer surface of bone was 
removed using a sandblaster and aliquots were taken using a rotary drill. Fine diamond grit disc drill pieces 
were used to remove solid pieces of bone. Fine powder was drilled using round tungsten carbide burs (2.3 mm 
diameter). Aliquots were weighed via a microbalance into cleaned glass tubes. Solid samples were demineralised 
in HCl at 4°C with regular visual and mechanical checks and monitoring of CO2 effervescence. For powdered 
samples, HCl was added and samples were monitored at room temperature (RT) until CO2 effervescence had 
stopped. Following demineralisation, samples were rinsed with ultra-pure Milli-Q water to a neutral pH. Samples 
were treated with NaOH (0.1 M) at RT for 10 min to remove humic acid contamination and re-acidified with HCl 
(0.5 M). If a considerable colour change was observed, NaOH was changed and left for another 10 min. Samples 
were then gelatinised in weak HCl (pH 3) on a heater block set to 60 °C, 70 °C or 75 °C. Samples were either left 
for 20 h (as per our standard pretreatment), or regularly monitored and removed from the heater block when the 

sample had fully solubilised. The resultant gelatin was filtered to remove large particles >80 μm (Ezee filters, Elkay 
labs, UK) and ultrafiltered with Sartorius VivaSpin Turbo 15 (30 kDa MWCO) ultrafilters precleaned according 

to Brock, et al.43 to separate the high molecular weight fraction (>30kD) for freeze drying (48 h). For details of 

acid strength, duration of treatment and temperature during pretreatment of samples <100 mg, see Fig. 1 and 
Supplementary Dataset S1. 

 
Collagen quality assessment. To assess the quality of the collagen, all extracts were analysed via EA-IRMS to 
obtain elemental (C%, N%, C:N) and stable isotopic data (δ13C and δ15N). Collagen (ca. 400 μg) was weighed into 
tin cups using a microbalance and measured on a ThermoFinnigan Flash EA coupled to a Thermo Delta 
plus XP isotope ratio mass spectrometer (IRMS). Stable carbon isotope ratios were expressed relative to VPDB 
(Vienna PeeDee Belemnite) and stable nitrogen isotope ratios were measured relative to AIR (atmospheric N2), 
using the delta notation (δ) in parts per thousand (‰). Repeated analysis of both internal and international stand- 
ards indicates an analytical error of 0.2‰ (1σ) for δ13C and δ15N. Where sufficient material was available, collagen 
(ca. 300 μg) was homogenized and mixed with ∼40 mg of IR grade KBr powder in an agate mortar and pestle, 
pressed into a pellet using a manual hydraulic press (Wasserman) and analysed with an Agilent Technologies 
Cary FTIR Spectrometer with a DTGS detector. Spectra were recorded in transmission mode at 4 cm−1 resolution 

with averaging of 34 scans between 4000 and 400 cm−1 using Resolution Pro software (Agilent Technologies). The 
spectra were evaluated and compared to library spectra of well-preserved collagen and bone to look for evidence 
of incomplete demineralisation, degraded collagen or the presence of any exogenous material in the extracts. 

AMS graphite measurements. Each bone was pretreated as per our standard protocol from approximately 
500 mg material. From theses extracts, approximately 3–5 mg collagen was weighed into pre-cleaned tin cups at 
the MPI-EVA and sent to the Curt-Engelhorn-Centre for Archaeometry Klaus-Tschira-AMS facility in 
Mannheim, Germany (lab code: MAMS) for graphite dating. The samples were combusted in an EA and the 
sample CO2 was converted catalytically to graphite. The samples were dated using the MICADAS-AMS57. Age 
and error calculation of unknown samples was performed using BATS software58, using background collagen 
samples and standards measured in the same batch, with an added external error of 1‰ as per their standard 

practice. Collagen samples measured at CEREGE were weighed into tin cups (ca. 2 mg), combusted in a vario 
MICRO cube EA (Elementar Analysensysteme GmbH, Germany), graphitized using the AGE 3 and dated using 
the AixMICADAS. Oxalic acid standards and background collagen samples measured in the same session were 
used to calculate the age of the samples. An external error of 1‰ was also propagated in the error calculation. 

 
AMS gas ion source measurements. Small aliquots (<100 mg) of the same bones were pretreated to purify 
the collagen. Three or four aliquots of each collagen extract (containing ca. 25–40 μg C and a single aliquot per 
bone containing ca. 80–100 μg C) were measured via a microbalance into pre-cleaned silver cups (800 °C, 2 h). 
These were placed into the auto-sampler of a vario MICRO cube EA which was directly coupled to the gas 
ion source of the AixMICADAS via the GIS20,22. Following combustion, sample CO2 was adsorbed on a zeolite 
trap and subsequently expanded to the syringe of the GIS where it was mixed with He (5% CO2) and introduced 

to the gas ion source at a flow rate of ca. 2 μg C/min. The EA-GIS system was flushed with helium between sam- 
ples. Pre-cleaned titanium (Ti) gas targets were pre-sputtered for approximately two minutes in the ion source 
to remove any remaining surface contamination before the sample CO2 injection. Around 30–40 μg C was con- 

sumed by the AMS over the duration of one Ti target21,55. For the large aliquots containing ca. 80–90 μg C meas- 
urements were performed over multiple targets (which can be changed during measurement). Each step was fully 
controlled via the gas-interface handling software. 

The gas measurements in this study were made over two measurement sessions six months apart, both carried 
out shortly after the ion source had been cleaned. Each measurement session commenced with two oxalic acid 
II NIST standards (from a gas canister) to normalize and correct samples for fractionation. Blank (14C-free) CO2 
samples (also from a gas canister) were then measured to purge the system and reach a stable operational level 

(F14C < 0.004) (these measurements were not used in age calculation). In the first session, carbonate reference 
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material (IAEA-C1) were run prior to the collagen samples to check the background level of the instrument and 
begin the measurement of old samples under optimal conditions. In the second measurement session, phthalic 
anhydride was run for the same purpose. In order to alleviate problems of memory effect, the GIS system was 
flushed with helium between samples and samples were measured in order of increasing activity as per standard 

procedure (for further discussion, see Tuna, et al.55). Low energy ion currents for the gas analyses were in the 
range of 10–15 μA. BATS58 was used for data reduction. The uncorrected collagen background (R-EVA 1753) 
measurements of the corresponding type (piece/powder) and equal size were used to correct the archaeological 
samples measured in the same session (i.e. ‘small’ sample aliquots were corrected only with ‘small’ background 

collagen samples). For all samples, the long term standard deviation of blanks (F14C = 0.001) was used as the 
absolute blank error and an external error of 3.5‰ was added to take into account the long-term variability of 
standards (‘error 2’ described in Fewlass, et al.29). 

Data Availability 
All data generated or analysed during this study are included in this article and the accompanying supplementary 
information files. 
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Supplementary Text 

Pretreatment and 14C dating of powdered bone samples  

Bone aliquots were extracted in two forms: fine powder and solid pieces (as per our standard 

protocol for ca. 500mg bone). We attempted to extract collagen from finely powdered bone 

to increase our sampling options for precious bones (i.e. a key hole drilling technique). 

However, the collagen yield of powdered bone was much lower than solid pieces for all 

samples in the study (Supplementary Fig. S2; Supplementary Dataset S1). Where collagen was 

recovered often the extracted material appeared poorly preserved with a crumbly texture 

and was often dark grey or yellow in colour. Where enough material was available for analysis, 

these extracts were still identified as collagen when analysed with FTIR (Supplementary Fig. 

S3), although several extracts from the poorly preserved bones showed evidence of 

incomplete demineralisation. Anecdotally, the striking difference between the two forms was 

observed at the demineralisation stage; for the older, poorly preserved bones much of the 

powdered material was lost as soon as HCl was added to the tube. Although the powdered 

method has the benefit of being faster, increased solubilisation of collagen during 

demineralisation in powdered bones compared to solid bone sherds was also observed by 

Schoeninger, et al. 1 and Collins and Galley 2. As the length of demineralisation is based on 

visual inspection, a suitable duration is much easier to judge for solid pieces (transparency, 

softness, buoyancy, CO2 effervescence).  

As a consequence of the low yield of collagen for the poorly preserved bones (R-EVA 570 and 

R-EVA 548) no powdered extracts from these bones were dated. Despite the lower collagen 

yield, sufficient collagen was available for gas dating from powdered aliquots of the well-

preserved bones, R-EVA 123, R-EVA 124 and R-EVA 1753. The age of the background collagen 

extracts were slightly younger than their solid counterparts (Supplementary Fig. S1) but it is 

unknown whether this reflected the limited number of measurements made, the lower 

collagen yield from these pretreatments and/or the small size of the aliquots measured in the 

EA-GIS-AMS (ca. 25 μg C).The ages of the <50,000 BP samples were corrected with 

background collagen measurements of the same size (ca. 30 μg C or ca. 90 μg C) and type 

(solid/powder) measured during the same session. The exception to this are the large (ca. 90 

μg C) powder samples from R-EVA 123 and R-EVA 124 (Aix-12002.7.1; 12002.8.1; 12003.8.5; 

12003.9.5) which are marked with an asterisk in Supplementary Figure S2. No background 

measurement of corresponding size/type was made so these were corrected with small (ca. 

30 μg C) powder backgrounds meaning they are slightly over-corrected. Even with this over-

correction, the age of Aix-12002.8.1 is younger than other measurements for this bone. We 

do not have an explanation for this measurement.  

Despite this, there is no difference between the gas measurements obtained from powdered 

versus solid extracts for R-EVA 123 or R-EVA 124, which all agree within Χ2 despite the over-

corrected samples (Supplementary Fig. S2; Supplementary Dataset S2). Further, the gas dates 

from the powdered extracts of R-EVA 123 and R-EVA 124 all agree with the graphite dates 

68



 

within 2σ. However, due to the reduced collagen yield we will continue our standard practice 

of extracting collagen from solid chunks of bone (also documented in Tuross 3). 

References 

1 Schoeninger, M. J., Moore, K. M., Murray, M. L. & Kingston, J. D. Detection of bone 
preservation in archaeological and fossil samples. Applied Geochemistry 4, 281-292, 
doi:10.1016/0883-2927(89)90030-9 (1989). 

2 Collins, M. J. & Galley, P. Towards an optimal method of archaeological collagen 
extraction: The influence of pH and grinding. Ancient Biomolecules 2, 209 (1998). 

3 Tuross, N. Comparative Decalcification Methods, Radiocarbon Dates, and Stable 
Isotopes of the Viri Bones. Radiocarbon 54, 837-844 (2012). 

4 Fewlass, H. et al. Size Matters: Radiocarbon Dates of <200 µg Ancient Collagen 
Samples with AixMICADAS and Its Gas Ion Source. Radiocarbon 60, 425-439, 
doi:10.1017/rdc.2017.98 (2017). 

 

 

 

 

Supplementary figure S1 Gas measurements of collagen from background bone R-EVA 1753 according to the 
amount of carbon in the EA-GIS system. Error bars are shown to 1σ.  
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Supplementary figure S2 Gas measurements of collagen from R-EVA 123 and R-EVA 124. Figure amended from 
Figure 3 in the main text to include gas measurements of collagen extracted from powdered bone.  

 

 

 

Supplementary figure S3 FTIR spectra of collagen extracted from a) R-EVA 570.15 (powder) and b) R-EVA 
1489.2 (solid) in comparison to characteristic FTIR spectra of c) well-preserved collagen and d) bone.    
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Pretreatment and gaseous radiocarbon dating of 40-100 mg archaeological bone

Supplementary Dataset S1 – Pretreatment information for all collagen extracts in the study

R-EVA AMS lab code prep 

no

batch form bone wt 

(mg)

HCl 

strength

Temp Duration Temp Duration Coll yld 

(mg)

Coll yld 

(%)
δ13C δ15N C% N% C:N FTIR Collagen 

appearance

14C 

dated

1753 Aix-12018 2 A piece 97.1 0.5M 4°C 44h 75°C 20h 4.6 4.7 -22.55 1.45 40.8 14.8 3.2 collagen white and fluffy

3 A piece 55.4 0.5M 4°C 20h 75°C 20h 2.6 4.7 -22.76 1.26 40.5 14.7 3.2 collagen white and fluffy

4 B piece 102.5 0.5M 4°C 26h 70°C 4h 8.8 8.6 -22.67 1.44 39.7 14.8 3.1 collagen white and fluffy

5 B piece 55.9 0.5M 4°C 26h 70°C 2h 5.5 9.8 -22.65 1.59 49.5 18.3 3.2 collagen white and fluffy

29 H piece 69.2 0.5M 4°C 26h 70°C 6h 7.6 11.0 -22.88 1.64 41.1 15.3 3.1 collagen white and fluffy gas

48 L piece 62.0 0.5M 4°C 27h 70°C 5h 8.4 13.5 -22.72 1.37 43.9 16.1 3.2 collagen white and fluffy gas

56 P piece 68.7 0.5M 4°C 29h 70°C 3h 8.9 13.0 -23.24 1.70 45.0 15.6 3.4 collagen white and fluffy gas

60 S piece 69.3 0.5M 4°C 29h 70°C 3h 10.2 14.7 -22.85 1.44 44.6 16.0 3.3 collagen white and fluffy gas

61 T piece 40.8 0.5M 4°C 24h 70°C 20h 5.5 13.5 -22.86 1.94 44.8 16.2 3.2 collagen white and fluffy gas

62 U piece 55.9 0.5M 4°C 32h 70°C 3h 8.6 15.4 -23.21 1.52 45.4 15.6 3.4 collagen white and fluffy gas

39 A1 piece 99.7 0.5M 4°C 50h 70°C 3h 12.2 12.2 -22.94 1.53 43.0 15.9 3.2 collagen white and fluffy gas

40 A1 piece 74.5 0.5M 4°C 45h 70°C 3h 10.1 13.6 -23.16 1.91 43.4 15.9 3.2 collagen white and fluffy

41 A2 piece 97.6 0.5M 4°C 50h 70°C 3h 12.8 13.1 -22.99 1.81 43.7 16.1 3.2 collagen white and fluffy gas

42 A2 piece 92.8 0.5M 4°C 50h 70°C 3h 11.1 12.0 -23.06 2.16 42.3 15.8 3.1 collagen white and fluffy

59 R piece 79.9 0.5M 4°C 50h 70°C 3h 11.7 14.6 -22.85 1.28 45.0 16.1 3.2 collagen white and fluffy gas

33 J piece 90.3 0.5M 4°C 42h 60°C 6h 10.3 11.4 -22.31 1.36 43.7 15.8 3.2 collagen white and fluffy

34 J piece 99.4 0.2M 4°C 98h 60°C 6h 10.9 11.0 -22.28 1.25 44.2 15.7 3.3 collagen white and fluffy gas

6 C powder 97.4 0.5M RT 40min 75°C 20h 2.9 3.0 -22.65 1.90 34.5 12.9 3.1 collagen white and fluffy

7 C powder 51.6 0.5M RT 40min 75°C 20h 1.7 3.3 -22.63 1.52 38.4 14.2 3.2 collagen white and fluffy

8 D powder 97.3 0.5M 4°C 2h 70°C 3h 6.2 6.4 -22.35 1.25 37.0 13.5 3.2 collagen white and fluffy

9 D powder 51.3 0.5M 4°C 2h 70°C 3h 3.4 6.6 -22.57 1.30 42.2 15.4 3.2 collagen white and fluffy

30 H2 powder 68.0 0.5M RT 10min 70°C 4h 4.2 6.2 -23.04 1.90 41.5 15.4 3.2 collagen white and fluffy

43 A3 powder 80.9 0.2M RT 10min 70°C 4h 1.9 2.3 -23.20 1.99 35.2 12.9 3.2 collagen white and fluffy gas

44 A3 powder 76.4 0.2M RT 30min 70°C 3h 1.0 1.3 -23.08 2.73 41.7 15.3 3.2 collagen white and fluffy

45 A4 powder 87.8 0.2M RT 20min 70°C 6h 5.1 5.8 -22.90 1.85 34.9 12.9 3.2 collagen white and fluffy gas

46 A4 powder 83.3 0.2M RT 20min 70°C 6h 4.5 5.4 -23.00 1.75 35.8 13.1 3.2 collagen white and fluffy

Demineralisation Gelatinisation Quality control
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Pretreatment and gaseous radiocarbon dating of 40-100 mg archaeological bone

Supplementary Dataset S1 – Pretreatment information for all collagen extracts in the study

R-EVA AMS lab code prep 

no

batch form bone wt 

(mg)

HCl 

strength

Temp Duration Temp Duration Coll yld 

(mg)

Coll yld 

(%)
δ13C δ15N C% N% C:N FTIR Collagen 

appearance

14C 

dated

Demineralisation Gelatinisation Quality control

124 Aix-12002 43 2016 piece 639.5 0.5M 4°C 16days 75°C 20h 74.6 11.7 -20.00 3.30 45.9 17.2 3.1 - white and fluffy
graphite + 

gas

46 A piece 106 0.5M 4°C 44h 75°C 20h 13.5 12.7 -20.30 2.90 42.2 15.3 3.2 collagen white and fluffy

47 A piece 58.8 0.5M 4°C 44h 75°C 20h 6.4 10.9 -20.28 2.93 42.8 15.6 3.2 collagen white and fluffy

48 B piece 95.5 0.5M 4°C 69h 70°C 5h 12.7 13.3 -20.41 3.05 42.1 15.8 3.1 collagen white and fluffy

49 B piece 55 0.5M 4°C 44h 70°C 4h 7.8 14.2 -20.34 3.08 46.9 17.6 3.1 collagen white and fluffy

58 A1 piece 70.6 0.5M 4°C 71h 70°C 6h 10.2 14.4 -20.38 4.12 42.6 15.7 3.2 collagen white and fluffy gas

59 A2 piece 90.2 0.5M 4°C 71h 70°C 6h 13.3 14.7 -20.32 3.16 44.6 16.1 3.2 collagen white and fluffy gas

51 C powder 51.5 0.5M RT 45min 75°C 20h 1.6 3.1 -20.38 3.14 38.8 14.3 3.2 collagen black and crumbly 

52 D powder 99.6 0.5M 4°C 2h 70°C 3h 5.0 5.0 -20.34 3.08 32.9 11.9 3.2 collagen dark grey 

53 D powder 52 0.5M 4°C 2h 70°C 3h 1.5 2.9 -20.43 3.09 37.6 13.7 3.2 collagen dark grey 

60 A3 powder 88.8 0.2M RT 35min 70°C 4h 3.5 3.9 -20.13 3.26 40.3 14.7 3.2 collagen grey and fluffy gas

61 A4 powder 83.1 0.2M RT 30min 70°C 6h 6.1 7.3 -20.29 3.08 41.7 15.3 3.2 collagen white and fluffy gas

548 Aix-12017 17 2017 piece 597.5 0.5M 4°C 15days 75°C 20h 5.0 0.8 -20.27 4.74 40.4 13.9 3.4 collagen white and fluffy graphite

3 H piece 71.2 0.5M 4°C 26h 70°C 3h 1.5 2.1 -20.43 4.70 38.5 13.8 3.2 collagen white and fluffy gas

13 A1 piece 78.1 0.5M 4°C 45h 70°C 2h 0.6 0.8 -20.73 4.20 42.9 14.8 3.4 - white and fluffy gas

14 A2 piece 86.4 0.5M 4°C 45h 70°C 2h 1.1 1.3 -20.33 4.33 41.5 14.6 3.3 - white and fluffy gas

7 J piece 74.7 0.5M 4°C 27h 60°C 6h 0.7 0.9 - - - - - collagen white and fluffy

8 J piece 84.7 0.2M 4°C 90h 60°C 6h 1.5 1.8 -20.29 5.40 41.5 15.1 3.2 collagen white and fluffy gas

4 H powder 80.6 0.5M RT 5min 70°C 2h 0.2 0.2 - - - - - - white marks

15 A3 powder 82.4 0.2M RT 10min 70°C 3h 0.5 0.6 - - - - - - white marks

16 A4 powder 80.7 0.2M RT 20min 70°C 4h 0.9 1.1 - - - - -  white marks

9 J powder 86.7 0.5M RT 5min 60°C 4h 0.5 0.6 - - - - - - white marks

10 J powder 86.5 0.2M RT 50min 60°C 4h 0.3 0.3 - - - - - - white marks
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Pretreatment and gaseous radiocarbon dating of 40-100 mg archaeological bone

Supplementary Dataset S1 – Pretreatment information for all collagen extracts in the study

R-EVA AMS lab code prep 

no

batch form bone wt 

(mg)

HCl 

strength

Temp Duration Temp Duration Coll yld 

(mg)

Coll yld 

(%)
δ13C δ15N C% N% C:N FTIR Collagen 

appearance

14C 

dated

Demineralisation Gelatinisation Quality control

570 Aix-12015 17 2017 piece 451.9 0.5M 4°C 13days 75°C 20h 15.2 3.4 -18.41 7.34 44.5 15.4 3.4 collagen white and fluffy graphite

3 H piece 62.1 0.5M 4°C 26h 70°C 2h 2.9 4.7 -19.13 7.63 43.3 15.4 3.3 collagen white and fluffy gas

19 U piece 43.8 0.5M 4°C 24h 70°C 2h 2.2 5.0 -18.43 7.89 44.0 15.1 3.4 collagen white and fluffy gas

13 A1 piece 87 0.5M 4°C 45h 70°C 2h 2.2 2.5 -19.47 7.28 43.9 15.3 3.3 collagen white and fluffy gas

14 A2 piece 90.1 0.5M 4°C 45h 70°C 2h 4.0 4.4 -18.87 7.21 43.1 15.2 3.3 collagen white and fluffy gas

7 J piece 77.9 0.5M 4°C 42h 60°C 5.5h 3.9 5.0 -18.83 7.67 41.5 14.7 3.3 collagen white and fluffy

8 J piece 69.8 0.2M 4°C 98h 60°C 5h 3.5 5.0 -18.72 7.86 43.5 15.2 3.3 collagen white and fluffy gas

18 P piece 53.2 0.5M 4°C 24h 70°C 3h 2.1 3.9 -19.45 7.39 42.6 15.2 3.3 collagen white and fluffy

4 H powder 62.6 0.5M RT 5min 70°C 3h 0.4 0.6 - - - - - - tiny white fluff 

9 J powder 83 0.5M RT 5min 60°C 4h 0.9 1.1 - - - - - collagen white and crumbly 

10 J powder 72 0.2M RT 50min 60°C 4h 0.8 1.1 - - - - - collagen white and fluffy

  15 A3 powder 85.9 0.2M RT 10min 70°C 3h 0.8 0.9 - - - - -
collagen + 

other peaks
yellow and crumbly 

16 A4 powder 88.1 0.2M RT 20min 70°C 4h 1.5 1.7 - - - - - - tiny yellow fluff

123 Aix-12003 53 2016 piece 559.4 0.5M 4°C 12days 75°C 20h 62.6 11.2 -21.10 7.10 45.6 17.2 3.2 - white and fluffy
graphite + 

gas

60 A piece 100.2 0.5M 4°C 44h 75°C 20h 9.4 9.4 -21.19 6.81 37.9 13.7 3.2 collagen white and fluffy

61 A piece 51.7 0.5M 4°C 20h 75°C 20h 3.5 6.8 -21.44 6.79 38.8 14.2 3.2 collagen white and fluffy

62 B piece 101.1 0.5M 4°C 26h 70°C 3.5h 10.4 10.3 -21.37 6.84 42.2 15.6 3.2 collagen white and fluffy

63 B piece 50 0.5M 4°C 21h 70°C 3h 5.0 10.0 -21.41 6.84 43.2 16.0 3.2 collagen white and fluffy

81 P piece 60.7 0.5M 4°C 24h 70°C 5h 7.9 13.0 -21.23 6.79 41.8 15.0 3.2 collagen white and fluffy gas

68 A1 piece 75 0.5M 4°C 45h 70°C 4h 7.6 10.1 -21.24 6.86 43.4 15.6 3.2 collagen white and fluffy gas

69 A2 piece 82.4 0.5M 4°C 45h 70°C 4h 9.0 10.9 -21.00 6.92 44.2 15.9 3.2 collagen white and fluffy gas

64 C powder 100.5 0.5M RT 50min 75°C 20h 9.4 9.4 -21.33 6.90 37.3 13.8 3.2 collagen white and fluffy

65 C powder 50.5 0.5M RT 50min 75°C 20h 2.8 5.5 -21.24 6.88 41.0 15.4 3.1 collagen white and fluffy

66 D powder 103.3 0.5M 4°C 2h 70°C 3h 7.5 7.3 -21.27 6.80 35.9 13.2 3.2 collagen white and fluffy

67 D powder 50.3 0.5M 4°C 2h 70°C 3h 4.0 8.0 -21.10 6.84 36.7 13.6 3.2 collagen white and fluffy

70 A3 powder 79.9 0.2M RT 35min 70°C 4h 2.4 3.0 -21.24 6.82 36.0 13.1 3.2 collagen grey and fluffy gas

71 A4 powder 94.5 0.2M RT 30min 70°C 6h 5.7 6.0 -21.14 6.98 31.8 11.8 3.1 collagen grey and fluffy gas
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Pretreatment and gaseous radiocarbon dating of 40-100 mg archaeological bone

Supplementary Dataset S1 – Pretreatment information for all collagen extracts in the study

R-EVA AMS lab code prep 

no

batch form bone wt 

(mg)

HCl 

strength

Temp Duration Temp Duration Coll yld 

(mg)

Coll yld 

(%)
δ13C δ15N C% N% C:N FTIR Collagen 

appearance

14C 

dated

Demineralisation Gelatinisation Quality control

1860 Aix-12022 1 2017 piece 454.4 0.5M 4°C 10days 75°C 20h 41.1 9.0 -18.04 4.64 42.6 15.4 3.2 - white and fluffy graphite

2 R piece 55.7 0.5M 4°C 72h 70°C 4h 4.9 8.8 -18.34 4.54 45.2 15.8 3.3 collagen white and fluffy gas

3 S piece 44.6 0.5M 4°C 24h 70°C 6h 4.5 10.1 -18.11 4.66 43.2 15.3 3.3 collagen white and fluffy gas

1905 Aix-12023 1 2017 piece 582.9 0.5M 4°C 26days 75°C 20h + 20h 31.9 5.5 -20.70 5.62 41.4 15.0 3.2 - white and fluffy graphite

3 S piece 65.0 0.5M 4°C 24h 70°C 27h 4.7 7.2 -20.71 5.53 43.6 15.4 3.3 collagen white and fluffy gas

4 T piece 54.9 0.5M 4°C 9h 70°C 25h 2.0 3.6 -20.53 5.44 41.1 15.3 3.1 collagen white and fluffy gas

1489 Aix-12004 1 2016 piece 753.2 0.5M 4°C 18days 75°C 20h 134.5 17.9 -16.40 8.80 45.4 16.7 3.2 - white and fluffy
graphite + 

gas

2 L piece 53.9 0.5M 4°C 21h 70°C 11h 9.7 18.0 -16.35 8.79 45.0 16.4 3.2 collagen white and fluffy gas

4 T piece 37.4 0.5M 4°C 24h 70°C 20h 7.0 18.7 -16.27 8.74 45.1 16.3 3.2 collagen white and fluffy gas
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Pretreatment and gaseous radiocarbon dating of 40-100 mg archaeological bone

Supplementary Dataset S2 – Radiocarbon dates for all samples in the study dated with graphite targets and the gas ion source

R-EVA Site R-EVA 
Bone wt 

(mg)
Coll yld (%) C:N AMS lab code 14C age ± R-EVA AMS lab code

GIS C 

(μg)
14C age ± (err 2) Session R-EVA Batch Form

Bone wt 

(mg)

Coll yld 

(mg)

Coll yld 

(%)
C:N

1489
San Martino Lundo 

Lomaso, Italy
1489.1 753.2 17.9 3.2 Aix-12004.1.1 1490 17 1489.1 Aix-12004.3.1 84 1401 75

Human, long bone Aix-12004.1.2 1470 17 1489.1 Aix-12004.3.2 74 1530 72

MAMS-26317 1481 23 1489.1 Aix-12004.3.3 77 1494 60
1489.1 Aix-12004.3.4 74 1368 65

1905 Pietraszyn, Poland 1905.1 582.9 2.3/5.5 3.2 MAMS-31228 23000 100

Horse, trabecular

1860 Ranis, Germany 1860.1 454.4 9 3.2 MAMS-30401 30010 140
Unknown fauna, long 

bone

~500mg extraction, solid graphite target dates
~500mg bone extraction, EA-GIS-AMS dates (Fewlass et 

al., 2018)

Dec-17 1489.2 L piece 53.9 9.7 18.0 3.2

  <100mg bone extraction

Dec-17 1489.4 T piece 37.4 7.0 18.7 3.2

Dec-17 1905.3 S piece 65.0 4.7 7.2 3.3

3.6 3.1

Dec-17 1860.2 R piece 55.7 4.9 8.8 3.3

Dec-17 1905.4 T piece 54.9 2.0

10.1 3.3Dec-17 1860.3 S piece 44.6 4.5
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Pretreatment and gaseous radiocarbon dating of 40-100 mg archaeological bone

Supplementary Dataset S2 – Radiocarbon dates for all samples in the study dated with graphite targets and the gas ion source

R-EVA

1489

1905

1860

Statistical agreement of replicate measurements 

AMS lab code
Coll wgt 

(μg)
GIS C (μg) F14C ± 14C age ± 14C age ±

T is the calculated χ2 value and should be lower than the value 

given in brackets to be considered contamporaneous at 95% 

confidence. The degrees of freedom are given by 'df'. 

Aix-12004.6.1 107 42 0.8339 0.0074 1,459 72 1,459 72
χ2 test including the Fewlass et al 2017 gas 

measurements: 

Aix-12004.6.2 96 42 0.8302 0.0073 1,495 71 1,495 71 χ2 test: (df = 3, N = 4) T=0.8 (5% 7.8) (df = 11, N = 12) T = 11.2 (5% 19.7)

Aix-12004.6.3 96 42 0.8275 0.0072 1,521 70 1,521 70 weighted mean: 1506 +/- 36 weighted mean: 1480 +/- 20

Aix-12004.6.4 93 40 0.8248 0.0073 1,548 71 1,548 71
AIX-12004.7.1 105 49 0.8349 0.0071 1,449 68 1,449 68
AIX-12004.7.2 90 40 0.8257 0.0075 1,539 73 1,539 73 χ

2
 test: (df = 3, N = 4) T=5.3 (5% 7.8)

AIX-12004.7.3 105 46 0.8209 0.0074 1,585 73 1,585 73 weighted mean: 1484 +/-36

AIX-12004.7.4 109 48 0.8426 0.0072 1,376 69 1,376 69

χ2 for all replicates: (df = 7, N = 7) T=6.3 (5% 14.1) 

Weighted mean: 1495 +/-25

Aix-12023.1.1 102 44 0.0529 0.0019 23,607 283 23,610 280

Aix-12023.1.2 94 38 0.0553 0.0020 23,251 293 23,250 290
Aix-12023.1.3 87 37 0.0558 0.0020 23,188 283 23,190 280 χ2 test: (df = 3, N = 4) T = 2.9 (5% 7.8)

Aix-12023.1.4 245 99 0.0569 0.0014 23,020 192 23,020 190 weighted mean: 23220 +/-130 

Aix-12023.2.1 101 41 0.0510 0.0017 23,903 264 23,900 260
Aix-12023.2.2 93 39 0.0542 0.0019 23,412 279 23,410 280
Aix-12023.2.3 99 39 0.0518 0.0020 23,780 304 23,780 300 χ2 test: (df = 3, N = 4) T = 2.3 (5% 7.8)

Aix-12023.2.4 97 40 0.0539 0.0018 23,461 275 23,460 270 weighted mean: 23650 +/-140

χ2 test for all replicates: (df = 7, N = 8) T = 10.1 (5% 14.1) 

weighted mean: 23,420 +/-100

Aix-12022.1.1 91 43 0.0227 0.0015 30,421 518 30,420 520

Aix-12022.1.2 101 41 0.0223 0.0014 30,554 509 30,550 510

Aix-12022.1.3 90 39 0.0190 0.0015 31,822 625 31,820 630 χ2 test: (df=2, N = 3) T = 1.5 (5% 6.0)
Big discharges inside source during 

measurement - not included in X2 test

Aix-12022.1.4 93 38 0.0248 0.0016 29,699 519 29,700 520 weighted mean: 30,250 +/-300

Aix-12022.2.1 98 43 0.0240 0.0014 29,972 484 29,970 480
Aix-12022.2.2 98 43 0.0243 0.0015 29,865 481 29,860 480
Aix-12022.2.3 97 35 0.0255 0.0015 29,473 461 29,470 460 χ2 test: (df = 3, N = 4) T = 0.6 (5% 7.8)

Aix-12022.2.4 227 96 0.0245 0.0011 29,800 374 29,800 370 weighted mean: 29780 +/-220

χ2 test for all replicates: (df = 6, N = 7) T=3.7 (5% 12.6) 

weighted mean: 29,950 +/- 180

Adjusted age

Notes 

  <100mg bone extraction, EA-GIS-AMS dates
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R-EVA Site R-EVA 
Bone wt 

(mg)
Coll yld (%) C:N AMS lab code 14C age ± R-EVA AMS lab code

GIS C 

(μg)
14C age ± (err 2) Session R-EVA Batch Form

Bone wt 

(mg)

Coll yld 

(mg)

Coll yld 

(%)
C:N

~500mg extraction, solid graphite target dates
~500mg bone extraction, EA-GIS-AMS dates (Fewlass et 

al., 2018)

Dec-17 1489.2 L piece 53.9 9.7 18.0 3.2

  <100mg bone extraction

123
Brown Bank, North 

sea Plains
123.53 559.40 11.2 3.2 Aix-12003.1.1 34390 240 123.53 Aix-12003.5.1 89 34260 750

Mammoth, rib Aix-12003.1.2 34320 240 123.53 Aix-12003.5.2 78 34820 770
MAMS-26876 34360 300 123.53 Aix-12003.5.3 75 34710 680

123.53 Aix-12003.5.4 98 34260 760

Dec-17 123.81 P piece 60.7 7.9 13.0 3.2

10.1 3.3

Jun 17 123.69 A2 piece 82.4 9.0 10.9 3.2

Jun 17 123.68 A1 piece 75 7.6

3.0 3.2

Jun 17 123.71 A4  powder 94.5 5.7 6.0 3.2

Jun 17 123.70 A3  powder 79.9 2.4
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R-EVA

1489
123

Statistical agreement of replicate measurements 

AMS lab code
Coll wgt 

(μg)
GIS C (μg) F14C ± 14C age ± 14C age ±

T is the calculated χ2 value and should be lower than the value 

given in brackets to be considered contamporaneous at 95% 

confidence. The degrees of freedom are given by 'df'. 

Adjusted age

Notes 

  <100mg bone extraction, EA-GIS-AMS dates

Aix-12003.10.1 102 45 0.0143 0.0012 34,138 699 34,140 700
χ2 test including the Fewlass et al 2017 gas 

measurements:

Aix-12003.10.2 91 38 0.0135 0.0012 34,555 728 34,550 730 (df = 23, N = 24) T = 19.2 (5% 35.2)

Aix-12003.10.3 105 43 0.0116 0.0012 35,835 829 35,830 +880/-780 χ2 test: (df = 3, N = 4) T = 2.8 (5% 7.8) weighted mean: 34400 +/- 160

Aix-12003.10.4 239 98 0.0136 0.0012 34,546 707 34,550 710 weighted mean: 34,730 +/-360

Aix-12003.6.6 211 86 0.0151 0.0012 33,694 649 33,690 650
Aix-12003.6.7 72 29 0.0147 0.0014 33,919 772 33,920 770
Aix-12003.6.8 86 34 0.0157 0.0014 33,347 735 33,350 740 χ2 test: (df = 3, N = 4) T = 1.8 (5% 7.8)

Aix-12003.6.9 76 31 0.0133 0.0013 34,725 810 34,720 810 weighted mean: 33,910 +/-360

Aix-12003.7.5 205 83 0.0128 0.0012 35,028 765 35,030 760
Aix-12003.7.6 72 29 0.0152 0.0014 33,637 742 33,640 740

Aix-12003.7.7 78 32 0.0132 0.0014 34,777 835 34,780 +880/-790 χ2 test: (df = 3, N = 4) T = 2.0 (5% 7.8)

Aix-12003.7.8 71 26 0.0142 0.0014 34,186 782 34,190 780 weighted mean: 34,430 +/-390

Aix-12003.8.5 209 67 0.0131 0.0013 34,842 792 34,840 +830/-760
Large sample size corrected with small size 

background - Overcorrected

Aix-12003.8.6 85 25 0.0159 0.0015 33,281 765 33,280 +800/-730
Aix-12003.8.7 69 28 0.0157 0.0015 33,347 757 33,350 +800/-720 χ2 test: (df = 3, N = 4) T = 2.7 (5% 7.8)

Aix-12003.8.8 79 23 0.0141 0.0014 34,260 824 34,260 +870/-780 weighted mean: 33,970 +/-390

Aix-12003.9.5 209 70 0.0113 0.0012 36,013 869 36,010 +920/-830
Large sample size corrected with small size 

background - Overcorrected

Aix-12003.9.6 82 25 0.0131 0.0014 34,847 874 34,850 +930/-830
Aix-12003.9.7 81 21 0.0153 0.0016 33,589 856 33,590 +900/-810 χ2 test: (df = 3, N = 4) T = 4.5 (5% 7.8)

Aix-12003.9.8 79 na 0.0140 0.0015 34,285 837 34,290 +880/-800 weighted mean: 34,820 +/-430

χ2 test for all replicates: (df=19, N = 20) T = 18.5 (5% 30.1)

weighted mean: 34,380 +/-170
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R-EVA Site R-EVA 
Bone wt 

(mg)
Coll yld (%) C:N AMS lab code 14C age ± R-EVA AMS lab code

GIS C 

(μg)
14C age ± (err 2) Session R-EVA Batch Form

Bone wt 

(mg)

Coll yld 

(mg)

Coll yld 

(%)
C:N

~500mg extraction, solid graphite target dates
~500mg bone extraction, EA-GIS-AMS dates (Fewlass et 

al., 2018)

Dec-17 1489.2 L piece 53.9 9.7 18.0 3.2

  <100mg bone extraction

570 Teixoneres, Spain 570.2 451.9 3.4 3.4 MAMS-34680 34270 190

Unknown fauna, long 

bone

548 Teixoneres, Spain 548.17 597.5 0.8 3.4 MAMS-34677 39390 320

Unknown fauna, long 

bone

Jun 17

5.0 3.4

Jun 17 570.3 H piece 90.1 2.9 4.4 3.3

Dec 17 570.19 U piece 43.8 2.2

5.0 3.3

Jun 17 570.13 A1 piece 87 2.2 2.5 3.3

Jun 17 570.8  J piece 69.8 3.5

4.4 3.3

Jun 17 548.3 H piece 71.2 1.5 2.1 3.3

Jun 17 570.14 A2 piece 90.1 4.0

1.8 3.2

Jun 17 548.13 A1 piece 78.1 0.6 0.8 3.4

Jun 17 548.8 J piece 84.7 1.5

3.3548.14 A2 piece 86.4 1.1 1.3
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R-EVA

1489
570

548

Statistical agreement of replicate measurements 

AMS lab code
Coll wgt 

(μg)
GIS C (μg) F14C ± 14C age ± 14C age ±

T is the calculated χ2 value and should be lower than the value 

given in brackets to be considered contamporaneous at 95% 

confidence. The degrees of freedom are given by 'df'. 

Adjusted age

Notes 

  <100mg bone extraction, EA-GIS-AMS dates

Aix-12015.6.1 95 42 0.0150 0.0013 33,755 689 33,750 690

Aix-12015.6.2 104 46 0.0135 0.0013 34,606 748 34,610 750

Aix-12015.6.3 98 44 0.0135 0.0012 34,608 724 34,610 720 χ2 test: (df = 3, N = 4) T= 0.9 (5% 7.8)

Aix-12015.6.4 223 99 0.0138 0.0010 34,410 600 34,410 600 weighted mean: 34,340 +/-340

Aix-12015.5.1 200 82 0.0132 0.0011 34,768 647 34,770 650
Aix-12015.5.2 73 na 0.0147 0.0014 33,879 765 33,880 760
Aix-12015.5.3 84 32 0.0147 0.0014 33,921 763 33,920 760 χ2 test: (df = 3, N = 4) T = 1.4 (5% 7.8)

Aix-12015.5.4 76 31 0.0131 0.0014 34,830 836 34,830 +880/-800 weighted mean: 34,390 +/-380

Aix-12015.2.5 199 81 0.0132 0.0013 34,777 790 34,780 790
Aix-12015.2.6 78 31 0.0125 0.0013 35,177 862 35,180 +910/-820
Aix-12015.2.7 74 31 0.0132 0.0013 34,768 812 34,770 810 χ2 test: (df = 3, N = 4) T = 1.4 (5% 7.8)

Aix-12015.2.8 79 32 0.0147 0.0014 33,916 755 33,920 760 weighted mean: 34,670 +/-400

Aix-12015.3.5 194 79 0.0145 0.0012 33,988 643 33,990 640
Aix-12015.3.6 69 28 0.0159 0.0014 33,274 721 33,270 720
Aix-12015.3.7 87 35 0.0132 0.0013 34,772 806 34,770 810 χ2 test: (df = 3, N = 4) T = 2.0 (5% 7.8)

Aix-12015.3.8 74 30 0.0146 0.0014 33,971 768 33,970 770 weighted mean: 34,010 +/-370

Aix-12015.4.5 209 86 0.0128 0.0012 35,037 772 35,040 770
Aix-12015.4.6 86 34 0.0128 0.0013 34,992 835 34,990 840
Aix-12015.4.7 77 33 0.0147 0.0014 33,925 779 33,930 780 χ2 test: (df = 3, N = 4) T = 2.0 (5% 7.8)

Aix-12015.4.8 69 28 0.0121 0.0013 35,469 863 35,470 +910/-820 weighted mean: 34,870 +/-400

χ2 test for all replicates: (df=19, N =20) T=10.7 (5% 30.1) 

weighted mean: 34,450 +/-170

Aix-12017.2.1 191 71 0.0076 0.0011 39,247 1,145 39,250
+1,240/-

1,070

Aix-12017.2.2 68 27 0.0069 0.0012 39,986 1,417 39,990
+1,560/-

1,310

χ2 test for replicates from R-EVA 570.3 and 

R-EVA 570.8:

Aix-12017.2.3 84 31 0.0065 0.0012 40,479 1,521 40,480
+1,690/-

1,400
χ2 test: (df = 3, N = 4) T = 0.7 (5% 7.8) (df = 6, N = 7) T = 3.5 (5% 12.6)

Aix-12017.2.4 72 26 0.0077 0.0012 39,115 1,272 39,120
+1,380/-

1,180
weighted mean: 39,640 +/-660 weighted mean: 39050 +/-460

Aix-12017.1.2 71 28 0.0077 0.0012 39,129 1,264 39,130
+1,380/-

1,170

Aix-12017.1.3 70 26 0.0086 0.0013 38,229 1,177 38,230
+1,270/-

1,100
χ2 test: (df = 2, N = 3) T = 0.7 (5% 6.0)

Aix-12017.1.4 201 81 0.0091 0.0011 37,749 973 37,750 +1,040/-920 weighted mean: 38,300 +/-650

Aix-12017.3.1 64 25 0.0316 0.0017 27,747 439 27,750 440 χ2 test: (df = 1, N = 2) T = 0.2 (5% 3.8) Very low collagen yield

Aix-12017.3.2 69 29 0.0305 0.0018 28,027 461 28,030 460 weighted mean: 27,880 +/-320

Aix-12017.4.1 71 28 0.0168 0.0014 32,833 688 32,830 690 Very low collagen yield

Aix-12017.4.2 72 28 0.0102 0.0013 36,862 1,040 36,860 +1,110/-980 χ2 test: (df = 2, N = 3) T=12.3 (5% 6.0)

Aix-12017.4.3 69 27 0.0122 0.0014 35,378 907 35,380 +960/-860 weighted mean: 34,930 +/-490

χ2 test for all replicates: (df = 11, N =12) T = 339.3 (5% 19.7) 
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R-EVA Site R-EVA 
Bone wt 

(mg)
Coll yld (%) C:N AMS lab code 14C age ± R-EVA AMS lab code

GIS C 

(μg)
14C age ± (err 2) Session R-EVA Batch Form

Bone wt 

(mg)

Coll yld 

(mg)

Coll yld 

(%)
C:N

~500mg extraction, solid graphite target dates
~500mg bone extraction, EA-GIS-AMS dates (Fewlass et 

al., 2018)

Dec-17 1489.2 L piece 53.9 9.7 18.0 3.2

  <100mg bone extraction

124
Brown Bank, North 

sea Plains
124.43 639.5 11.7 3.1 MAMS-26877 50150

+2080/−

1650
124.43 Aix-12002.4.1 84 >45430

Woolly Rhino, long 

bone
Aix-12002.1.2 49300

+1610/−

1340
124.43 Aix-12002.4.2 89 >43770

(Previously labeled as 

Bison)
Aix-12002.1.3 48800

+1530/−

1290
124.43 Aix-12002.4.3 80 48610

+4930/-

3030

124.43 Aix-12002.4.4 74 >43590

Jun 17 124.58 A1 piece 70.6 10.2 14.4 3.2

7.3 3.2Jun 17 124.61 A4  powder 83.1 6.1

14.7 3.2

Jun 17 124.60 A3  powder 88.8 3.5 3.9 3.2

Jun 17 124.59 A2 piece 90.2 13.3
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R-EVA

1489
124

Statistical agreement of replicate measurements 

AMS lab code
Coll wgt 

(μg)
GIS C (μg) F14C ± 14C age ± 14C age ±

T is the calculated χ2 value and should be lower than the value 

given in brackets to be considered contamporaneous at 95% 

confidence. The degrees of freedom are given by 'df'. 

Adjusted age

Notes 

  <100mg bone extraction, EA-GIS-AMS dates

Aix-12002.5.2 213 89 0.0038 0.0011 44,678 2,228 44,680
+2,610/-

1,970

χ2 test including the Fewlass et al 2017 gas 

measurements: 

Aix-12002.5.3 67 27 0.0029 0.0011 46,959 3,156 46,960
+4,010/-

2,660
χ2 test: (df = 2, N = 3) T = 1.5 (5% 6.0) (df=18, N=19) T = 10.1 (5% 28.9)

Aix-12002.5.4 82 34 0.0019 0.0011 50,193 4,503 >44,150 weighted mean: 47,030 +/-1780 weighted mean: 49210 +/- 930

Aix-12002.6.1 218 91 0.0025 0.0010 48,114 3,263 48,110
+4,190/-

2,740

Aix-12002.6.2 74 31 0.0031 0.0011 46,451 2,908 46,450
+3,610/-

2,480

Aix-12002.6.3 76 32 0.0023 0.0011 48,845 3,745 48,840
+5,040/-

3,070
χ2 test: (df = 3, N = 4) T = 0.3 (5% 7.8)

Aix-12002.6.4 77 32 0.0024 0.0011 48,528 3,698 48,530 +4950/-3040 weighted mean: 47,900 +/-1680

Aix-12002.7.1 201 73 0.0010 0.0010 55,266 8,199 >46,330
Large sample size corrected with small size 

background - Overcorrected

Aix-12002.7.2 78 30 0.0019 0.0011 50,253 4,801 >43,940

Aix-12002.7.3 67 24 0.0025 0.0011 48,219 3,701 48,220
+4,960/-

3,040
χ2 test: (df = 3, N = 4) T = 1.1 (5% 7.8)

Aix-12002.7.4 89 33 0.0020 0.0011 49,849 4,479 >43,830 weighted mean: 50,730 +/-2380

Aix-12002.8.1 190 75 0.0039 0.0012 44,586 2,446 44,590
+2,920/-

2,140

Large sample size corrected with small size 

background - Overcorrected

Aix-12002.8.2 81 28 0.0013 0.0011 53,543 7,035 >45,410
Aix-12002.8.3 69 33 0.0013 0.0011 53,475 6,813 >45,510 χ2 test: (df = 3, N = 4) T = 3.8 (5% 7.8)

Aix-12002.8.4 80 33 0.0012 0.0011 54,116 7,436 >45,700 weighted mean: 50,580 +/-2450

χ2 test for all replicates: (df=14, N =15) T = 9.2 (5% 23.7)

Weighted mean: 49,030 +/-1010

Unknown archaeological samples corrected with collagen backgrounds measured in same session according to size (small or large sample size) and type (extracted in solid or powder form) 
All powder samples corrected with 30ug powder backgrounds only (no 100 ug C BG)
3.5 ‰ scatter added to all samples 
Absolute error of the blank changed to 0.001
For dates >15,000 BP, values have been rounded to 10 
Asymmetrical errors given wherever F14C ≤ 1σ*10
“Older than” ages have been calculated for samples where F14C < 2σ, according to convention in van der Plicht and Hogg (2006)
"na" shows missing data. 
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Supplementary Dataset S3: EA-GIS-AMS data from background bone R-EVA 1753

Session R-EVA AMS lab code Batch Form Bone wt (mg) Collagen yld (%)
Collagen yld 

(mg)

GIS C mass 

(ug)
F

14
C F

14
C err

14
C age (y) +-(y)

Small aliquots

Jun-17 1753.29 Aix-12018.1.2 H Piece 69.2 11.0 83 32 0.0031 0.0005 46,441 1,173

Jun-17 1753.29 Aix-12018.1.3 H Piece 69.2 11.0 75 29 0.0036 0.0005 45,181 1,166

Jun-17 1753.34 Aix-12018.3.6 J Piece 99.4 11.0 79 33 0.0026 0.0004 47,829 1,319

Jun-17 1753.39 Aix-12018.4.7 A1 Piece 99.7 12.2 79 32 0.0035 0.0005 45,333 1,143

Jun-17 1753.39 Aix-12018.4.8 A1 Piece 99.7 12.2 76 32 0.0029 0.0005 46,916 1,318

Jun-17 1753.41 Aix-12018.5.2 A2 Piece 97.6 13.1 69 28 0.0042 0.0006 43,951 1,076

Jun-17 1753.41 Aix-12018.5.3 A2 Piece 97.6 13.1 81 33 0.0028 0.0005 47,101 1,311

Jun-17 1753.43 Aix-12018.6.6 A3 Powder 80.9 2.3 76 27 0.0047 0.0006 43,011 1,013

Jun-17 1753.45 Aix-12018.7.2 A4 Powder 87.8 5.8 76 24 0.0054 0.0006 41,989 941

Jun-17 1753.45 Aix-12018.7.3 A4 Powder 87.8 5.8 81 24 0.0047 0.0008 43,127 1,453

Dec-17 1753.48 Aix-12018.9.1 L Piece 62 13.5 99 50 0.0043 0.0005 43,680 990

Dec-17 1753.48 Aix-12018.9.2 L Piece 62 13.5 95 36 0.0046 0.0006 43,300 1,010

Dec-17 1753.56 Aix-12018.12.1 P Piece 68.7 13.0 90 39 0.0044 0.0005 43,600 940

Dec-17 1753.56 Aix-12018.12.2 P Piece 68.7 13.0 103 45 0.0038 0.0005 44,830 1,000

Dec-17 1753.59 Aix-12018.13.1 R Piece 79.9 14.6 90 41 0.0039 0.0006 44,470 1,200

Dec-17 1753.59 Aix-12018.13.2 R Piece 79.9 14.6 105 46 0.0037 0.0004 44,880 930

Dec-17 1753.60 Aix-12018.10.2 S Piece 69.3 14.7 99 43 0.0038 0.0005 44,720 1,060

Dec-17 1753.62 Aix-12018.14.1 U Piece 55.9 15.4 93 41 0.0049 0.0005 42,800 880

Dec-17 1753.62 Aix-12018.14.2 U Piece 55.9 15.4 112 49 0.0038 0.0005 44,710 1,000

Dec-17 1753.64 Aix-12018.15.1 BK Piece 76.2 11.0 102 53 0.0040 0.0004 44,450 890

Dec-17 1753.64 Aix-12018.15.2 BK Piece 76.2 11.0 108 41 0.0038 0.0004 44,700 880

Dec-17 1753.64 Aix-12018.15.3 BK Piece 76.2 11.0 98 34 0.0039 0.0004 44,630 890

Arithmetic mean: 0.0039

SD: 0.00069

Large aliquots 

Jun-17 1753.29 Aix-12018.1.1 H Piece 69.2 11.0 0.207 79 0.0025 0.0004 48,105 1,348

Jun-17 1753.34 Aix-12018.3.5 J Piece 99.4 11.0 0.198 82 0.0013 0.0003 53,533 1,772

Jun-17 1753.39 Aix-12018.4.6 A1 Piece 99.7 12.2 0.205 88 0.0018 0.0003 50,621 1,417

Jun-17 1753.41 Aix-12018.5.1 A2 Piece 97.6 13.1 0.218 89 0.0027 0.0004 47,386 1,299

Dec-17 1753.56 Aix-12018.12.3 P Piece 68.7 13.0 226 97 0.0024 0.0004 48,530 1,210

Dec-17 1753.60 Aix-12018.10.3 S Piece 69.3 14.7 231 96 0.0026 0.0004 47,870 1,260

Dec-17 1753.60 Aix-12018.10.4 S Piece 69.3 14.7 221 96 0.0029 0.0004 47,000 1,190

Dec-17 1753.62 Aix-12018.14.3 U Piece 55.9 15.4 224 97 0.0034 0.0004 45,650 870

Dec-17 1753.64 Aix-12018.15.4 BK Piece 76.2 11.0 252 98 0.0023 0.0003 48,780 1,060

Arithmetic mean: 0.0024

SD: 0.00061
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Supplementary Dataset S4: EA-GIS-AMS data from system blanks

Session 1: June 2017 

AMS lab code Sample GIS C mass (ug) F14C F14C err 14C age (y) +-(y) Notes

Aix-10424.2.10 IAEA-C1 103 0.0022 0.0004 48,982 1,337

Aix-10424.2.11 IAEA-C1 not recorded - large 0.0026 0.0004 47,787 1,177

Aix-10424.2.12 IAEA-C1 not recorded - large 0.0039 0.0005 44,607 1,068

Aix-10424.2.24 IAEA-C1 104 0.0024 0.0005 48,487 1,520

Aix-10424.2.9 IAEA-C1 120 0.0025 0.0004 48,128 1,214

Aix-10424.2.13 IAEA-C1 not recorded - small 0.0036 0.0005 45,153 1,111

Aix-10424.2.14 IAEA-C1 39 0.0046 0.0008 43,311 1,330

Aix-10424.2.16 IAEA-C1 19 0.0089 0.0009 37,896 832 not included due to small size

Aix-10424.2.17 IAEA-C1 14 0.0067 0.0010 40,164 1,158 not included due to small size

Aix-10424.2.21 IAEA-C1 28 0.0032 0.0005 46,039 1,225

Session 2: December 2017

AMS lab code Sample GIS C mass (ug) F14C F14C err 14C age (y) +-(y) Notes

Aix-10109.2.12 Phthalic anhydride 46 0.0039 0.0004 44,648 870 8.00592.0100 from millipore

Aix-10109.2.13 Phthalic anhydride 117 0.0020 0.0004 49,822 1,598 8.00592.0100 from millipore

Aix-10109.2.14 Phthalic anhydride 43 0.0030 0.0004 46,759 1,046 8.00592.0100 from millipore

Aix-10109.2.15 Phthalic anhydride 133 0.0025 0.0004 48,245 1,300 8.00592.0100 from millipore
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