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Abstract

Purpose: Despite intense research, treatment options for patients with mesothelioma are
limited and offer only modest survival advantage. We screened a large panel of compounds
in multiple mesothelioma models and correlated sensitivity with a range of molecular
features to detect biomarkers of drug response.

Experimental design: We utilized a high-throughput chemical inhibitor screen in a panel of
889 cancer cell lines, including both immortalized and primary early-passage mesothelioma
lines, alongside comprehensive molecular characterization using lllumina whole-exome
sequencing, copy-number analysis and Affymetrix array whole transcriptome profiling.
Subsequent validation was done using functional assays such as siRNA silencing and
mesothelioma mouse xenograft models.

Results: A subgroup of immortalized and primary MPM lines appeared highly sensitive
to FGFR inhibition. None of these lines harbored genomic alterations of FGFR family
members, but rather BAP1 protein loss was associated with enhanced sensitivity to FGFR
inhibition. This was confirmed in an MPM mouse xenograft model and by BAP1 knockdown
and overexpression in cell line models. Gene expression analyses revealed an association
between BAP1 loss and increased expression of the receptors FGFR1/3 and ligands FGF9/18.
BAP1 loss was associated with activation of MAPK signaling. These associations were
confirmed in a cohort of MPM patient samples.

Conclusions: A subgroup of mesotheliomas cell lines harbor sensitivity to FGFR inhibition.
BAP1 protein loss enriches for this subgroup and could serve as a potential biomarker to
select patients for FGFR inhibitor treatment. These data identify a clinically relevant MPM
subgroup for consideration of FGFR therapeutics in future clinical studies.

Translational Relevance

Malignant pleural mesothelioma (MPM) has limited treatment options and a dismal
prognosis. To date, targeted therapies have proved ineffective, and no druggable genetic
alterations have been identified. Selecting compounds for further clinical evaluation in
this small and heterogeneous patient group is challenging. By combining high-throughput
drug screens, comprehensive molecular characterization and functional assays in multiple
mesothelioma models, we were able to identify an FGFR inhibitor-sensitive subgroup with
BAP1 loss as a potential predictive biomarker. Loss of BAP1 is found in up to 64% of MPM
tumors. These data suggest that a significant group of patients with mesothelioma may
benefit from FGFR inhibition.




Introduction

Malignant pleural mesothelioma (MPM) is a tumor arising from the pleural cavity and is
strongly associated with occupational exposure to asbestos. Although strict regulation is
in place in more than 50 countries, in parts of the world where there is still widespread
usage of asbestos, most notably in South America, Russia, and states of the former Soviet
Republic, China, and South-East Asia, the incidence of this disease is rising (1, 2). MPM is
highly refractory to conventional anticancer therapies, and the prognosis is poor; most
patients die within a year of diagnosis. Surgery with curative intent is only possible in
a highly selected group of patients and needs to be combined with chemotherapy.
The only approved treatment, a combination of the cytotoxic agents cisplatin and
pemetrexed, yields at best modest improvements in survival (3, 4). Despite many clinical
studies utilizing novel biological therapies, there are as yet no effective targeted therapies
for this cancer (5, 6).

A recent comprehensive genomic analysis of 216 MPM samples found BAP1, NF2, TP53,
SETD2, and CDKN2A to be recurrently mutated or structurally rearranged (7). The
landscape is thus one of mutated tumor suppressor genes and alterations in pathways
as diverse as Hippo, mTOR, and TP53, as well as histone methylation. Such loss-of-
function oncogenic events are typically considered “undruggable,” but downstream
programs of genes, activated as a consequence of such mutations, may themselves be
tractable therapeutic targets. This is illustrated by NF2-deficient tumors with activated
focal adhesion kinase (FAK). Defactinib, a FAK inhibitor, demonstrated efficacy in
NF2-deficient tumors in vitro (8) but a subsequent clinical trial in mesothelioma was
halted due to lack of efficacy. Other drugs tested to date that have failed to improve the
outcome in MPM include EGFR inhibitors (9), Bcr—Abl inhibitors (10), thalidomide (11),
bortezomib (12), and vorinostat (13). In many of these studies, a subgroup of patients
appeared to derive some benefit. However, in MPM, it has been difficult to elucidate
reproducible biomarkers that identify these sensitive subgroups. Some research
groups have demonstrated coactivation of multiple RTK pathways in MPM tumors,
which may provide a rationale for combination therapies with kinase inhibitors (14).

We aimed to utilize high-throughput chemical screening platforms alongside molecular
characterization of immortalized and early-passage cell line models of MPM to uncover
critical signaling pathways that may be amenable to therapeutic interrogation.
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Materials and Methods

Cell lines and tissue culture

Cells are grown and maintained in either RPMI or DMEM F/12 supplemented with 10% FBS
and 1% penicillin/streptomycin. Cell lines were maintained at 37° C at 5% CO>. All cell lines
have been verified by genotyping using short tandem repeat (STRs) profiling and Sequenom
profiling of a panel of 92 single-nucleotide polymorphisms.

Cell viability assays

Cells are trypsinized and counted before seeding at the optimal density for the well size
(either 96-or 384-well plates were used) and duration of the assay. Seeding density was
optimized by titration of the cells such that upon visual inspection of the control wells at
the end of the assay, a confluency of 70% to 90% was observed allowing cells to grow in
a linear phase. Adherent cell lines were seeded 24 hours before drug addition. The high-
throughput chemical inhibitor screen was carried out using 384-well plates, and viability
was measured 72 hours after drug addition with a 5-point serial fourfold concentration
range of 265 compounds. All other viability assays were carried out using 96-well plates
and a 9-point twofold dilution of the drugs. Drugs were all dissolved in DMSO, and DMSO
was used only as a control condition. At the end of the experiment, cells were fixed with
4% paraformaldehyde. Following two washes with dH20, 100 mL of Syto60 nucleic
acid stain (Invitrogen) was added to a final concentration of 1 mmol/L (a 1/5,000
stock dilution), and plates were fixed for 1 hour at room temperature. Quantification
of fluorescent signal was achieved using a Paradigm (BD) plate reader using excitation/
emission wavelengths of 630/695 nm. Data were analyzed by adjusting for background
signals and normalizing each well to the DMSO-treated control.

High-throughput screening compounds

Compounds were acquired from academic collaborators or commercial vendors. Each
compound, its therapeutically relevant target substrate and pathway, and the minimum and
maximum screening concentrations are listed in Supplementary Table S1. Compounds were
stored as 10 mmol/L aliquots at -80° C and were subjected to a maximum of 5 freeze—thaw
cycles. Each of the agents was screened at a 5-point serial fourfold dilution to provide a 256-
fold range from the lowest to highest concentration. The concentrations selected for each
compound were based on in vitro data to cover the range of concentrations known to inhibit
relevant kinase activity and cell viability.

Apoptosis assay

Cells were seeded in a flat-bottom 384 wells plate at optimal cell density. After 24 hours,
PD173074 and AZD 4547 in a concentration range between 0.007813 and 1 mmol/L were
added using a Tecan HP D300 Digital Dispenser. Five replicate wells were assayed for each

100 CHAPTER 5



condition. Phenylarsine oxide (20 mmol/L) was used as positive control condition. To assess
apoptosis, 5 mmol/L of IncuCyte caspase-3/7 green apoptosis assay reagent was added
to the cells. Confluence and apoptosis levels were quantified by IncuCyte Zoom live-cell
imaging systems from Essen Bioscience. Relative apoptosis was calculated by dividing the
confluence of fluorescent apoptotic cells by total confluence and normalized to the positive
control condition.

Western blots

Cell monolayers were lysed on ice in NP40 Cell Lysis Buffer (Invitrogen) containing fresh
protease and phosphatase inhibitors (Roche). Lysates were centrifuged at 13,000 rpm for 10
minutes and the supernatant used for analyses. Protein concentration was calculated from
a standard curve of BSA using the BCA assay (calbiotech) according to the manufacturer’s
instructions. Equal protein concentrations were loaded on pre-cast 4% to 12% Bis-Tris SDS-
PAGE Gels (Invitrogen), run at 200 V for 1 hour. Proteins were transferred onto a methanol
activated PVDF membrane at 100 V for 1 hour or overnight at 30 V. Membranes were
blocked in 5% milk for 1 hour before the addition of primary antibody at a concentration
recommended. After overnight incubation with the primary antibody at 4° C, the membrane
was washed three times in 0.1% TBS-T followed by incubation with the secondary antibody
according to the supplier’s description at 1/2,500 dilution). Immunoblots were imaged using
Pierce Supersignal Plus chemiluminescent kit on a gel imager (Syngene). Antibodies against
BAP1, pERK, ERK, pFGFR (total), and pFGFR1 (all from Cell Signaling Technologies) and the
polyclonal p-FGFR3 antibody sc-33041 (Santa Cruz Biotechnology) were used. Beta Tubulin
was used as a loading control for Western blots. Phospho-RTK arrays (RD Systems) and
caspase-Glo 3/7 assay were used according to the manufacturer’s instructions.

Establishment of early-passage primary mesothelioma tumor cell cultures

All patients whose materials were used provided written informed consent for the use and
storage of pleural fluid, tumor biopsies, and germline DNA. Diagnosis was made on tumor
biopsies according to local IHC protocols and confirmed by the Dutch mesothelioma panel,
a national expert panel of certified pathologists that evaluate all suspected mesothelioma
patient samples. Early-passage primary mesothelioma cultures were generated from tumor
cells isolated from pleural fluid of patients at the Netherlands Cancer Institute. The pleural
fluid was centrifuged at 1,500 rpm for 5 minutes at room temperature. Erythrocyte lysis
buffer was used to remove erythrocytes if many were present. Cells were resuspended
in Dulbecco’s Modified Eagle Medium (DMEM, Gibco) supplemented with peniciline/
streptomycin and 8% fetal calf serum. The cells were seeded in T75 flasks at a density of
1 x 106 cells/mL and incubated at 37° C at a humidified 5% CO2 atmosphere. Medium was
refreshed depending on cell growth, usually twice a week. At seeding and during the first
two passages, cytospins were made and stained with HE and reviewed by our pathologist
to determine the percentage of tumor cells. If the tumor percentage was over 70%, usually
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reached after one passage, living cell cultures were transported to the Wellcome Trust
Sanger Institute within 6 hours for drug screening and genetic analysis. Cells were cultured
for a maximum period of 4 weeks.

RNA interference and transfection

Lipofectamine RNAIMAX (Thermofisher) was used according to product guidelines for
transfection with siRNA against FGFR3 (Thermo Fisher Silencer Select s5167 and s5169) or
BAP1 (s15822) utilizing the protocol “forward transfection of mammalian cell lines.” KIF11
siRNA (s7902) was used as a transfection (positive) control. Viability or protein expression
was assayed as described above, at specified time points. H226 cell expressing a BAP1 stable
construct, and BAP1 C91A mutant lines were a kind gift from K Kolluri (UCL, London).

Gene expression analyses

Microarray data were generated on the Human Genome U219 96-Array Plate using the Gene
Titan MC instrument (Affymetrix). The robust multi-array analysis (RMA) algorithm (15) was
used to establish intensity values for each of 18562 loci (BrainArray v.10). We discarded
transcripts with low sample variance and consolidated duplicated genes by averaging their
expression values across duplicates. The resulting data were subsequently normalized (u=0;
o= 1) sample-wise and gene-median centered. Raw data were deposited in ArrayExpress
(accession E-MTAB-3610). The RMA processed dataset is available at www.cancerrxgene.
org/gdsc1000/GDSC1000_WebResources/Home.html. The expression-level signal of each
gene was normalized using a nonparametric kernel estimation of its cumulative density
function as described in ref. 16. Additionally, the normalized expression values were further
tissue-centered using as grouping factors the cell line tissue labels of ref. 17.

MPM mouse xenograft models

All animal experiments were conducted according to institutional guidelines under protocol
approved by the animal ethics committee of the Netherlands Cancer Institute. To establish
xenografts, 3 million human mesothelioma cells (H2731 and MSTO211H) were implanted
subcutaneously into the right dorsal flank of 6- to 7-week-old female nude SCID mice. Mice
were randomized into vehicle and drugs treatment groups, and treatment was initiated
once the tumor volumes reached approximately 200 mm?3. Tumor size was measured with
calipers twice a week, and tumor volume was determined as a x b?x 0.5, where a and b were
the large and small diameters, respectively.
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Results

High-throughput chemical inhibitor screens in immortalized cell lines

A panel of 889 cancer cell lines was screened with 265 compounds that included targeted
and cytotoxic compounds (for detail see http://www.cancerrxgene.org/). It was observed
that three of 19 MPM lines (H2795, H2591, and MSTO-211H) had IC50 values among the
top 5% of cell lines showing highest sensitivity to the compound PD-173074, an FGFR1 and
FGFR3 kinase inhibitor (Fig. 1A; ref. 15). These three cell lines, together with two additional
MPM lines (NCI-H28, resistant; MPP-89, partially sensitive) and an FGFR-dependent lung
cancer cell line harboring amplification of FGFR1 (NCI-H1581), were rescreened with PD-
173074 and were as sensitive to PD-173074 as the FGFR1-dependent lung cancer line NCI-
1581 (Fig. 1B). Furthermore, this sensitivity was also seen with two more selective FGFR
inhibitors, NVP-BGJ398 and AZD4547 (Supplementary Fig. S1). Sensitivity to PD-173074 in
the MPM cell lines was confirmed by clonogenic survival assays (Fig. 1C). Although some
sensitive lines died by apoptosis, as is shown by activated caspase activity with both PD-
173074 and the multi-FGFR-targeted inhibitor AZD4547 (Fig. 1D and E), not all sensitive lines
showed a dose incremental increase in this marker. These data confirm previous findings
(18) that a subset of MPM cell lines require FGF pathway activation for growth and survival,
and that targeting this pathway could be a critical step in the control of these tumors.

Drug sensitivity in early-passage MPM cultures

To test whether these observations could be reproduced in an independent cohort of
primary mesothelioma cell lines, a panel of 11 pleural fluid-derived early-passage cultures
from patients with MPM tumors were obtained and screened for viability using a panel of
48 small molecule inhibitors including PD-173074. Most of the early-passage cultures were
resistant to virtually all agents (Supplementary Fig. S2). However, one MPM early-passage
culture (NKIO4) did demonstrate marked sensitivity to PD-173074. The sensitivity of NKIO4
to FGFR inhibition was confirmed in a longer duration clonogenic survival assay, and the
effect on cell viability was comparable with that seen in the FGFR1-amplified NCI-H1581
lung cancer cell line (Fig. 2A-C).

Molecular characterization of FGF pathway signaling in cell lines and patient samples

In order to understand the basis for the observed sensitivity to FGFR inhibition, we analyzed
whole-exome sequence and copy number array data for 21 MPM lines (http://cancer.sanger.
ac.uk/cell_lines). There was no evidence of activating mutations or whole gene amplifications
in any FGFR family member. RNA sequencing has been undertaken and shows no evidence
of a fusion transcript involving any member of the FGFR family in any of the MPM cell lines
(personal communication, M. Garnett). We then analyzed the corresponding gene expression
data and focused on differential expression of FGFR and FGF family members in PD-173074-
sensitive and -resistant MPM cell lines. Normalized expression of each of the FGF and FGFR
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Figure 1. Sensitivity to FGFR inhibition in established mesothelioma cell lines.

(A) Sensitivity to FGFR inhibitor PD173074 expressed as loglC50 value (inhibiting concentration that kills 50%
of the cells) of each different cell line. The enlargement shows the 5% most sensitive cell lines with amongst
them mesothelioma cell lines depicted in red. (B) Dose-response curves depicting the cell viability (mean %SD)
of different cell lines (y-axis) as a function of the dose of FGFR inhibitor PD-173074. NCI-H28, MPP-89, H2810, and
H2795 are mesothelioma cell lines, while NCI-H1581 is an FGFR-dependent lung cancer cell line. (C) Fourteen-day
clonogenic survival assay of selected mesothelioma cell lines (NCI-H28, MSTO-211H, H2810, and H2795), treated
with FGFR inhibitor PD-173074 at concentrations of 500 nmol/L and 1mmol/L. (D) FGFR inhibitor AZD4547 kills
mesothelioma cell lines via induction of apoptosis as is demonstrated by an increase in caspase 3/7 activity after
48 hours of treatment with different doses of AZD4547 in a panel of MPM cell lines. (E) FGFR inhibitor PD173074
kills mesothelioma cell lines via induction of apoptosis as is demonstrated by an increase in caspase 3/7 activity
after 48 hours of treatment with different doses of PD-173074 a panel of MPM cell lines.
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Figure 2. Sensitivity to FGFR inhibitors in primary mesothelioma lines.

(A) Cell viability (mean £SD) of primary mesothelioma line NKI04 after treatment with a fixed does of 48 different
small molecule inhibitors. This cell line is most sensitive to FGFR inhibition. (B) Fourteen-day clonogenic survival
assay of primary mesothelioma line NKIO4 compared with immortalized mesothelioma line NCI-H28 treated with
FGFR inhibitor PD-173074 at concentrations of 500 nmol/L and 1 mmol/L. (C) Cell viability (mean £SD) of primary
mesothelioma line NKIO4 compared with immortalized mesothelioma line NCI-H28 and FGFR-dependent lung cancer cell
line NCI-H1581 (y-axis), as a function of the concentration of FGFR inhibitor PD-173074.

family genes was correlated with sensitivity to PD-173074 to explore whether the variation
in any single family member, either ligand or receptor, was associated with response to FGFR
inhibition. We found a statistically significant correlation between elevated FGF9 mRNA
expression and response to PD-173074 (P=0.0148) and AZD4547 treatment (P=0.0098; Fig.
3A). FGF9 is a secreted, high-affinity ligand for the FGFR3 receptor, with low affinity for the
FGFR1 and FGFR2 receptors (19). To determine whether a subset of MPM exhibits elevated
expression of the FGF9 ligand in patients, we analyzed gene expression from a panel of
53 assorted MPM and matched normal lung clinical samples (Fig. 3B; ref. 20). Overall, we
observed significantly higher FGF9 transcript levels in MPM tumors compared with pleura
and lung normal tissue (P< 0.0001). Therefore, similar to our observation in the MPM cell
lines, a subset of patient samples also demonstrates high levels of FGF9 expression.
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Figure 3. FGFR inhibitor sensitivity is mediated by FGF axis signaling through FGF9 and FGFR3.

(A) Scatterplot depicting sensitivity to FGFR inhibitor PD-173074 as a function of expression of FGF9. mRNA. Y-axis
depicting log mRNA expression of FGF9 and x-axis showing centile of IC50 to PD173074 of individual MPM cell line in cell
line screen. High FGF9 gene expression is significantly correlated to high sensitivity to FGFR inhibition. Right hand
scatterplot showing FGF9 expression correlates with sensitivity to AZD4547. (B) Expression of FGF9 in a set of MPM
tumors, compared with normal lung and pleura, derived from GEO dataset GSE2549. The mean expression in MPM
tumors is significantly higher than that of normal lung and pleura. (C) Phospho-RTK array reveals phosphorylated-FGFR3
in FGFR inhibitor—sensitive cell line H2795 that is absent in two resistant lines (NCI-H28 and Met5a). (D) Cell viability
of MPM cell lines after silencing of the FGFR3 transcript demonstrates reduced viability of FGFR inhibitor—sensitive
cell lines H2795, H2810, and H2731 compared with FGFR inhibitor-resistant lines Met5A, NCI-H2052, H2818, and MPP89.
Viability at 4 days post transfection is compared with Kifl11-positive control siRNA and scrambled negative control. (E)
Modulation of pERK signaling in H2795 cell line following 6 hours of exposure to DMSO (C) or 500 nmol/L AZD4547 or
DMSO and 100 nmol/L BGJ398. (F) siRNA-mediated knockdown of pFGFR3 in H2795 and MSTO211H, showing effect on
pFGFR3 and pERK versus scrambled control.
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Modulation of FGF/FGFR function in MPM lines

A possible premise for the observed sensitivity of MPM lines that express high levels of
FGF9 would be activation of the FGFR3 receptor kinase in an autocrine loop and subsequent
engagement of prosurvival downstream signaling pathways. Indeed, a comparison of
phosphorylation status of 42 receptor tyrosine kinases between a small sample of MPM cell
lines demonstrated increased phosphorylation of FGFR3 in the sensitive line H2795 but not
in resistant lines Met-5A and NCI-H28 (Fig. 3C).

To further confirm a critical role for FGFR3, this transcript was silenced by siRNA in a panel of
MPM cell lines and the direct effect on cell viability was measured. Transient siRNA-mediated
silencing of the FGFR3 transcript reduced cell viability in all 3 FGFR inhibitor-sensitive cell
lines, but not in the FGFR inhibitor-resistant lines. This indicates a dependency on FGFR3
mediated signaling of the FGFR inhibitor-sensitive lines (Fig. 3D). As would be expected,
inhibition of FGFR3 by the specific inhibitors AZD4547 and BJG398 decreased pERK levels
(Fig. 3E), and this was also seen following siRNA-mediated silencing of FGFR3 in H2795 and
MSTO-211H (Fig. 3F). The addition of the FGF9 ligand to MPM cells lacking baseline FGFR3
activation was able to induce phosphorylation of FGFR3 and a change in the growth kinetics
of this cell line in a dose-dependent fashion (Supplementary Fig. S5).

Role of BAP1 in modulating FGF pathway signaling

Although we failed to identify genomic alterations in any member of the FGFR family that
might explain the sensitivity to FGFR inhibition, we reasoned that this dependency might
also be the consequence of other gene aberrations up- or downstream of FGFR3 signaling.
We evaluated the gene expression and mutation database for other statistical associations
explaining sensitivity to the FGFR inhibitor AZD4547 in the panel of MPM cell lines. We
focused on driver mutations or copy-number alterations in three of the most frequently
mutated genes in MPM, namely BAP1, NF2, and CDKN2A (7). We detected a weak but non-
significant association between AZD4547 sensitivity and BAP1 mutations in the sensitive
cell lines (Fig. 4A). Given that loss of BAP1 protein expression might also occur through
nonmutational mechanisms as previously described (21), we additionally characterized
BAP1 protein status in these lines by Western blot analysis (Supplementary Figs. S3 and
S4). When sensitivity to the AZD4547 was correlated with BAP1 protein expression (low/
absent vs. expressed), there was a significant correlation between loss of BAP1 expression
and sensitivity (P=0.0208; Fig. 4B).

Functional consequences of BAP1 modulation on FGFR signaling.

Because silencing FGFR3 reduced cell viability in a subset of MPM lines, we next investigated
whether this dependency on FGFR signaling was regulated by BAP1. BAP1 is a nuclear
deubiquitinating enzyme with many unelucidated functions that might include modulation
of the FGFR pathway. Silencing of BAP1 expression resulted in increased phosphorylation
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Figure 4 Loss of BAP1 protein expression is correlated to FGFR inhibitor sensitivity.

(A) Sensitivity to FGFR inhibitor AZD4547—expressed as logIC50 value—of cell lines, grouped according to BAP!
mutation status. The mean loglC50 value is not significantly different between the two groups. (B) Sensitivity to
FGFR inhibitor AZD4547 according to BAP1 protein expression. Red are cell lines with low or absent BAP1 protein.
Bluelines have normal BAP1 protein expression. Sensitivity (left) is expressed asloglCs0 value (y-axis). The difference
between the two groups is statistically significant. Cell viability (right) of different mesothelioma lines (y-axis)
after treatment with FGFR inhibitor AZD4547 (x-axis). wt, wild-type; mt, mutant; high, high protein expression;
low, low protein expression; nil, no protein expression. Right-hand panel showing dose—response curves of MPM cell
lines treated with FGFR inhibitor AZD4547. Cell lines in red are lines with low or absent BAP1 protein expression.
Blue lines have normal BAP1 protein expression. (C) SIRNA-mediated depletion of BAP! in H2052 at increasing siRNA
doses of 5 and 10 nmol/L versus mock transfected (M) control. Western blot comparing pFGFR3 and BAP1 expression
at these conditions. Tubulin as loading control. (D) BAP1 overexpression in BAP1-null cell line H226. Western blot of
BAP1 construct versus parental cell line baseline pFGFR levels with tubulin as loading control. (E) Cell viability after
treatment with increasing doses of FGFR inhibitor AZD4547 in parental cell line H226 BAP1-null (red) and in the same
cell line with BAP1 construct (red). BAP1 overexpression increases cell viability after FGFR inhibition. (F) Co-occurence
of somatic mutations in BAP1 and FGFR family members in MPM tumors in the TCGA cohort.

of FGFR3 (Fig. 4C). Conversely, restoring BAP1 expression in the BAP1-null MPM line (Fig.
4D) H226 resulted in a decrease in pFGFR and a modest increase in resistance to the FGFR
inhibitor AZD4547 (Fig. 4E).
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We observed increased expression at the protein level in the BAP1 mutant cell lines of
other RTK receptor genes and their appropriate ligands also known to be important in
cell survival signaling in MPM such as PDGFRB, IGF1-R, and MET (22) using phospho-RTK
arrays (Supplementary Fig. S4A and S4B). The H226-null MPM cell line was transfected
with a wild-type BAP1 construct and a functionally inactive C91A-mutant BAP1 construct.
Gene expression analysis on these two lines was performed and Signaling Pathway Impact
Analysis (SPIA) of the data (Supplementary Table S) demonstrated that among the most
significantly activated pathways in BAP1-inactive cells is the “Bladder Cancer” pathway
including FGFR3 (arrow, Supplementary Fig. S6A) illustrated in Supplementary Figure S6B
(23). In summary, the gene expression analysis demonstrates that BAP1 loss of function is
associated with a transcriptional response upregulating not only FGFR signaling but also
other RTKs such as PDGFRB, CMET, and IGF1R, that may be important mediators of cell
growth and survival. However, only FGFR inhibitors showed a significant viability effect as
single agents. We analyzed gene expression data from a study of 51 mesothelioma tumor
samples to see if a similar effect on the FGFR pathway was seen in vivo (40 BAP1 wild-type
and 11 mutant; GEO GSE29354; ref. 24). Amongst members of the FGFR signaling family,
BAP1-mutant tumors did indeed demonstrate increased expression of FGF18, FGFR2, and
FGFR3 relative to BAP1 wild-type tumors (Supplementary Table). To explore this association
further in human tumors, we analyzed the available TCGA data and looked for the incidence
of genetic and mRNA alterations of these genes in MPM tumors by BAP1 status (Fig. 4F).
This showed the majority of dysregulation (10 of 14) events in FGF9, FGF18, and FGFR3
occurred in the context of BAP1 gene or mRNA dysregulation.

FGFR inhibition in MPM xenograjft model

To assess the in vivo efficacy of targeting FGFR in MPM, we established a xenograft model
using the FGFR inhibitor-sensitive MPM lines H2795 and MSTO-211H. Mice were treated
with AZD4547, a selective inhibitor of FGFR1/2/3, which is currently being evaluated in
clinical trials. We observed that treatment with AZD4547 resulted in significant growth
inhibition in the H2795- and MSTO-211H-derived tumors (Fig. 5A). Furthermore, AZD45457
treated tumors showed a reduction in pERK signaling by immunohistochemistry compared
with vehicle control-treated tumors (Fig. 5B), indicating target engagement by the drug in
this model. Caspase activation was also seen in drug-treated tumors suggesting apoptosis
(Supplementary Fig. S7).

Combination therapeutic screen

As the single-agent efficacy of FGFR inhibition was seen only in a subset of MPM cell lines,
and because persistent pAKT pathway activation was seen in cell lines not responsive to
FGFR inhibition, we hypothesized that a combination screen utilizing a PI3 Kinase inhibitor
may reveal useful synergies. We undertook an anchor-based combination screen in 15 MPM
cell lines using 95 small-molecule inhibitors (see Supplementary Table for details) selected
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Figure 5. Xenograft mouse model shows FGFR inhibition efficacy in vivo.

(A) Xenograft mouse model using mesothelioma cell lines H2795 and MSTO211H. Mean tumor volume is depicted on the
y-axis as a function of time (x-axis). Red lines indicate tumor growth in mice treated with FGFR inhibitor AZD4547,
while the black lines indicate growth in vehicle-treated mice. (B) Immunohistochemistry of AZD4547- versus vehicle
control-treated xenograft tumors. ppERK expression in representative tumors in drug-treated versus vehicle control
groups.

to target many critical pathways in cancer, both as single agents and in combination with
a fixed dose of the PI3 Kinase inhibitor AZD6482. The resulting difference in area under
the curve (AUC) between single agent small-molecule inhibitor and the combination with
AZD6482 was used to calculate synergy. The most recurrent synergistic interactions were
seen with IGF1R inhibitor BMS-536924 and FGFR inhibitor PD-173074 (Supplementary Fig.
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S8A) with synergy observed in seven and six of 15 lines, respectively. Supplementary Fig. S8B
shows a validation dose-response curve of the FGFRi-resistant NCl H28 cell lines showing
minimal effect of BMS 536824 or AZD6482 alone, but reduced viability and pAKT reduction
with the combination. This cytotoxicity is not seen in the mesothelial control cell line Met5a,
suggesting that the synergy is not generic but cell line specific.

Discussion

Because MPM is a rare and heterogeneous tumor, it is notoriously difficult to identify and
characterize responding subgroups in clinical trials. Our work illustrates the application
and possibilities of comprehensive pharmacogenomic profiling approaches in intractable
cancers such as MPM. The finding of FGFR inhibitor sensitivity in a subgroup of immortalized
MPM cell lines represents a potentially novel therapeutic approach for this tumor type. As
immortalized cell lines may undergo genetic drift, we also confirmed our findings in primary
mesothelioma early-passage lines.

Dysregulation of the FGFR pathway has been described in many cancer types (25, 26). FGF9
signaling through FGFR3 has been shown to have a role in the development and progression
of tumor cells in mouse models for NSCLC and prostate cancer (27). In MPM cell line models,
we observed that high levels of the ligand FGF9 were strongly correlated with sensitivity
to the FGFR inhibitor PD-173074 and AZD4547. We hypothesize that the effects of FGF9
are mediated through FGFR3 signaling, as illustrated by modulation of downstream ERK
phosphorylation upon chemical inhibition with small-molecule inhibitors of FGFR3 and
knockdown of FGFR3. FGFR3 is conversely not phosphorylated in cell lines insensitive to
FGFRI, and this phosphorylation can be induced by the addition of synthetic FGF9 ligand.
Interestingly, there was variability in FGF9 mRNA expression levels among the MPM cell lines,
similar to what is observed in tumors in previously published studies. Recently, other groups
demonstrated efficacy of FGFR inhibition in preclinical models of MPM mediated by other
FGF-pathway members such as FGFR1 (18, 28, 29). We confirm the efficacy of a clinically
utilized FGFR inhibitor including AZD4547 in vivo in MPM xenograft models. Furthermore,
since undertaking these studies, early-phase clinical work with pharmacokinetic data
has been published (30, 31) on AZD4547 and BGJ398. These have confirmed that the
doses used in the in vitro work (100 nmol/L to 1 pmol/L) here are achievable in plasma
in vivo and are able to modulate the target, with pharmacodynamic end points of target
engagement with FRS2 downregulation and changes in serum phosphate levels seen.

FGF-receptors and -ligands are being targeted in clinical trials by both selective and
nonselective FGFR TKI’s and monoclonal antibodies (32) and AZD4547 has shown modest
clinical activity in tumors with FGFR-pathway aberrant activation (33). In MPM dovitinib, a
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multitargeting kinase inhibitor with activity against FGFR has been trialed and has failed in
small cohort of patients with MPM (34). Because the data across tumor types demonstrate
only a small group of patients responds to FGFR inhibition, it is crucial to find biomarkers that
predict response to FGFR inhibition. Guagnano et al. integrated genomic and transcriptomic
data of about 500 tumor cell lines with drug-sensitivity data to find predictive biomarkers
for response to FGFR inhibitor NVP-BGJ398. A genetic alteration in one of the four FGF-
receptors was found in 7% of cell lines, but only about half of the cell lines with such an
alteration was found to be sensitive (35).

We did not find any mutation, amplification, or fusion transcripts of the FGFR-family in
the inhibitor-sensitive MPM cell lines. The genes that were most recurrently altered in our
MPM cell lines include CDKN2A, BAP1, and NF2. The frequency at which these genes were
mutated is broadly similar to those previously described in clinical MPM samples (6, 7).

We show that loss of BAP1 expression was associated with sensitivity to FGFR inhibition.
This finding was further validated with modulation of pFGFR-signaling and dose-response
kinetics to FGFR inhibition following siRNA-mediated knockdown and BAP1 overexpression
in MPM cell lines. Caveats with this association were also observed: NCI-H28 was one of
the most resistant cell lines to FGFR inhibition but carried a BAP1 homozygous deletion,
suggesting that BAP1 loss may enrich for FGFR inhibitor-sensitive cell lines but that some
heterogeneity of drug response may still be observed. BAP1 (BRCA-associated protein 1) is a
nuclear deubiquinating enzyme that controls gene expression by interaction with numerous
transcription factors and other complexes, including those of the double strand DNA-break
repair machinery (36). BAP1 thus influences cell-cycle progression (37) and double-strand
DNA break repair (38). We show here that its loss may also affect gene expression of FGF
pathway members, thereby enhancing signaling through this pathway.

The BAP1 gene is inactivated by somatic mutation in 23% to 64% of patients with MPM and
between 1% and 47% in other tumor types (24, 39-43). Furthermore, BAP1 protein levels
are undetectable in about 25% of MPM with normal BAP1 gene status, likely by epigenetic
modification (24). BAP1 loss was observed to enrich for FGFR inhibitor-sensitive MPM lines,
and expression of C91 hydrolase inactive mutant versus wild-type BAP1 protein in the H226
cell line induced activation of FGFR3 signaling. We hypothesize that inactivation of BAP1
in MPM, possibly through its function as a ubiquitin hydrolase, induces changes in gene
expression of both FGF-family ligands and receptors to stimulate cell growth and survival.

We performed a combination drug screen to assess the impact of novel combinations
of targeted therapies on MPM cell lines. On the 15 MPM cell lines screened, we found
that FGFR and IGF1R inhibitors were the most recurrently synergistic with the PI3-Kinase
inhibitor AZD6482. This is the first time, to our knowledge, that both a single agent and
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combination therapeutic screen have been performed, which point to the primacy of the
FGFR signaling pathway in MPM. Interestingly, one of the most resistant cell lines to FGFR
inhibition was amenable to treatment with AZD6482 plus IGF1R inhibition with evidence
of ablation of pAKT with the combination of drugs but not with either alone, implying true
synergy. Previous studies have identified that multiple RTK’s are active in MPM (14), and
this has provided some rationale to consider combination therapies to overcome innate
resistance to targeted therapies. It is also interesting to speculate as to whether IGF1R plus
Pi3K inhibition would be of use in acquired resistance to FGFR inhibitors.

Conclusion

High-throughput drug screening revealed a subset of both immortalized and primary
mesothelioma cell lines to be highly sensitive to FGFR inhibition. This sensitivity was
mediated through FGFR3 and was associated with loss of BAP1 protein expression. The high
incidence of BAP1 protein loss in MPM tumors implies potential benefit from FGFR inhibition
for a substantial subset of this patient group. In addition, our anchor-based screens revealed
synergistic combinations that helped to overcome innate resistance to FGFR inhibition.
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Figure. S1. A subset of MPM cell lines respond to FGFR inhibition.

Cell viability of selected mesothelioma cell lines (NCI-H28, H2810, H2795, MSTO-211H and MPP-89) after 72 hours
of treatment with (A) AZD4547 at a fixed dose of 500 nmol/L and (B) BGJ398 at a fixed dose of 300 nmol/L
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Figure. S2. A subset of pleural fluid derived early passage primary cultures (EPL) respond to FGFR inhibition.

Cell viability of 11 early passage primary cultures (columns) after treatment with a fixed dose of 48 small molecule
inhibitors (rows), depicted in a color scale (green: 100% cell viability; red: 0% cell viability).
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Figure. S3. BAP1 mutation status does not correlate fully with protein expression.

(A) Western Blot showing BAP1 protein expression in several MPM cell lines, both BAP1 wild type (black) and
mutant lines (red). Beta-tubulin represents the protein loading control. (B) List of somatic mutations in BAP1 seen

in MPM cell lines.
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Figure. S4. BAP1 null cell lines show increased activity of multiple tyrosine kinases.

(A) Western Blot showing BAP1 protein expression in several MPM cell lines as well as activation in IGFR, MET and
FGFR. (B) Phospho-RTK array panel showing baseline RTK-activation of BAP1 mutant (highlighted in red) versus wild
type mesothelioma cell lines.
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Figure. S5. FGF9 activated FGFR3 modulates growth and phenotype.
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(A) Western Blot of pFGFR in serum-starved H2052 MPM cell line at baseline and following the addition of
recombinant FGFR9 ligand (50 ng/mL ) after 1 hour. (B) Light microscopy at 10x and 20x magnification of H2052
cell line under serum-starved conditions and with the addition of FGF9 ligand at 2 concentrations. (C) Comparative
viability of H2052 by SYTOG60 assay at baseline and following the addition of FGF9 ligand at 50ng/mL and 200ng/mL.
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Figure. S6. BAP1 modulation and FGFR pathway activation by gene expression.
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(A) Gene expression analysis of H226 cell line (BAP1 null) transfected with wild type BAP1 construct versus BAP1
inactive (C91A) construct. SPIA pathway analysis of C91A versus wild type cell line revealed the KEGG ‘bladder
cancer’ pathway to be significantly activated in C91A cell line. (B) ‘Bladder cancer’ pathway showing genes that are

overexpressed in the C91A line in red.
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Figure. S7. Xenograft tumor immunohistochemistry.

Immunohistochemistry for Caspase3 and Ki67 in MPM xenograft tumors AZD4547-treated conditions compared
to vehicle control.
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Figure. S8. Combination drug screen of PI3Kinase inhibitor plus drug library in MPM cell lines.

(A) Bar chart showing recurrent synergistic events in a combination screen with PI3K inhibitor AZD6482 plus 95
small molecule inhibitors across 15 MPM cell lines. (B) Validation of synergy between IGF1-R inhibitor BMS-536924
and PI3K inhibitor AZD6482 in NCO-H28 (FGFRi resistant cell line). Dose-response kinetics of BMS-536924 alone
(blue) or with fixed dose (2uM) of AZD6482 (red). (C) Immunoblot of NCI-H28 FGFRi resistant cell line treated with
a combination of IGF-1R inhibitor BMS-536924 and PI3K inhibitor AZD6482 showing loss of pAKT with combination
treatment. (D) Cell Titer Blue quantification of 2 week clonogenic survival assay of 5 MPM cell lines with of IGF-1R
inhibitor BMS-536924 alone and in combination with PI3K inhibitor AZD6482.
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Table S2. SPIA pathway analysis performed highlighting significantly upregulated/downregulated pathways

between BAP1 mutant and BAP1 wild type lines.

Name ID pSize NDE pNDE tA pPERT pG
Complement and coagulation cascades 4610 67 1 0,239757502 16,87317213 0,004 0,007623894
Gap junction 4540 85 2 0,047099152 6,9486621 0,03 0,010684996
MAPK signaling pathway 4010 260 5 0,004188945 1,872639843 0,393 0,01219752
Glioma 5214 62 2 0,026481172 5,769688959 0,125 0,022213608
Prostate cancer 5215 88 2 0,05011322 5,902911432 0,068 0,022769284
Melanoma 5218 71 2 0,033994969 7,652553716 0,169  0,035386672
Protein processing in endoplasmic reticulum 4141 161 1 0,483342609 2,760670737 0,025 0,06544349
Focal adhesion 4510 198 2 0,193196516 5,353545369 0,141 0,125390148
HTLV-I infection 5166 259 2 0,284858199  2,25223501 0,151 0,178344625
Cytokine-cytokine receptor interaction 4060 248 2 0,268225286 1,4263907 0,163 0,180563656
Bladder cancer 5219 40 1 0,150861921  0,28656377 0,294  0,182539356
Regulation of actin cytoskeleton 4810 212 3 0,055678487 -1,134243636 0,798 0,182782389
Neurotrophin signaling pathway 4722 117 2 0,082459008 -2,062560979 0,586 0,194728203
Pancreatic cancer 5212 69 1 0,24596437 1,146255078 0,256  0,237079519
Endometrial cancer 5213 52 1 0,191570826 0,764170052 0,339  0,242511753
Pathways in cancer 5200 321 2 0,377272508 3,238496438 0,188 0,258607838
Non-small cell lung cancer 5223 54 1 0,198165792 0,818753627 0,381 0,270566523
ErbB signaling pathway 4012 86 1 0,29674309 1,152623162 0,262  0,276335005
Oocyte meiosis 4114 106 1 0,352175452 -2,13630758 0,242  0,295091787
Cell cycle 4110 122 1 0,393397279 1,022863241 0,41 0,45557714
Apoptosis 4210 87 1 0,299622651 -1,11934781 0,547 0,46030136
Vasopressin-regulated water reabsorption 4962 44 1 0,164651424 0 1 0,461670182
Hepatitis C 5160 129 1 0,410607473  0,28656377 0,452  0,498171235
Mineral absorption 4978 51 1 0,188253298 0 1 0,502630073
Tuberculosis 5152 171 1 0,504199822 0,780592299 0,377 0,505677304
Amyotrophic lateral sclerosis (ALS) 5014 52 1 0,191570826 0 1 0,508141173
Insulin signaling pathway 4910 134 1 0,422604562 1,11934781 0,46 0,512792474
Axon guidance 4360 127 1 0,405740054 2,22E-16 0,535 0,548653527
Adipocytokine signaling pathway 4920 68 1 0,242867213 0 1 0,586582712
PPAR signaling pathway 3320 70 1 0,249049025 0 1 0,595253447
Phosphatidylinositol signaling system 4070 77 1 0,270295671 0 1 0,623906966
Lysosome 4142 119 1 0,385870539 0 1 0,753317055
Measles 5162 127 1 0,405740054 0 1 0,771734861
Alcoholism 5034 129 1 0,410607473 0 1 0,776096401
RNA transport 3013 146 1 0,450423166 0 1 0,809666166
Transcriptional misregulation in cancer 5202 156 1 0,47259166 0 1 0,826810244
Herpes simplex infection 5168 173 1 0,508270435 0 1 0,852238193
Calcium signaling pathway 4020 178 1 0,51830324 0 1 0,858929435
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pGFdr pGFWER Status KEGGLINK
0,154501919 0,289707958 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa04610+7035
0,154501919 0,406029842 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa04540+1950+5154
0,154501919 0,463505756  Activated http://www.genome.jp/dbget-bin/show_pathway?hsa04010+4915+8912+5154+1950+51347
0,173046556 0,844117116 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa05214+1950+5154
0,173046556 0,865232778 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa05215+1950+5154
0,224115586 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa05218+1950+5154
0,355264658 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa04141+258010
0,569205517 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa04510+1950+5154
0,569205517 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa05166+9184+5154
0,569205517 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa04060+1950+5154
0,569205517 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa05219+1950
0,569205517 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa04810+10152+1950+5154
0,569205517 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa04722+4915+397
0,5833739 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa05212+1950
0,5833739 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa05213+1950
0,5833739 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa05200+1950+5154
0,5833739 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa05223+1950
0,5833739 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa04012+1950
0,590183573 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa04114+9748
0,721707926 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa04110+9184
0,721707926 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa04210+5575
0,721707926 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa04962+397
0,721707926 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa05160+1950
0,721707926 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa04978+26872
0,721707926 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa05152+9902
0,721707926 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa05014+4747
0,721707926 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa04910+5575
0,744601216 1 Activated http://www.genome.jp/dbget-bin/show_pathway?hsa04360+64221
0,7539877 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa04920+2182
0,7539877 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa03320+2182
0,764789184 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa04070+3628
0,858929435 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa04142+2581
0,858929435 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa05162+9367
0,858929435 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa05034+4915
0,858929435 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa03013+9939
0,858929435 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa05202+5154
0,858929435 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa05168+6431
0,858929435 1 Inhibited http://www.genome.jp/dbget-bin/show_pathway?hsa04020+8912
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