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ABSTRACT 

Therapeutic neovascularization can facilitate blood flow recovery in patients with 

ischemic cardiovascular disease, the leading cause of death worldwide. 

Neovascularization encompasses both angiogenesis, the sprouting of new capillaries 

from existing vessels, and arteriogenesis, the maturation of preexisting collateral 

arterioles into fully functional arteries. Both angiogenesis and arteriogenesis are highly 

multifactorial processes that require a multifactorial regulator to be stimulated 

simultaneously. MicroRNAs can regulate both angiogenesis and arteriogenesis due to 

their ability to modulate expression of many genes simultaneously. Recent studies have 

revealed that many microRNAs have variants with altered terminal sequences, known 

as isomiRs. Additionally, endogenous microRNAs have been identified that carry 

biochemically modified nucleotides, revealing a dynamic microRNA epitranscriptome. 

Both types of microRNA alterations were shown to be dynamically regulated in 

response to ischemia and are able to influence neovascularization by affecting the 

microRNA’s biogenesis, or even its silencing activity. Therefore, these novel regulatory 

layers influence microRNA functioning and could provide new opportunities to 

stimulate neovascularization. In this review we will highlight the formation and 

function of isomiRs and various forms of microRNA modifications, and discuss recent 

findings that demonstrate that both isomiRs and microRNA modifications directly 

affect neovascularization and vascular remodeling. 

Keywords: microRNA; isomiRs; epitranscriptome; neovascularization; angiogenesis; 

arteriogenesis; A-to-I editing; mͶA; RNA modifications; RNA methylation 
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INTRODUCTION 

Ischemic cardiovascular disease (CVD) is the leading cause of death in worldwide 

and was responsible for approximately ͱͷ.͸ million deaths in ͲͰͱͷͱ,Ͳ. Additionally, it is 

estimated that current standard therapies are unsuitable or insufficient for ͳͰ% of 

patientsͳ,ʹ. Therefore, there is a critical need for new therapeutic treatments for 

ischemic CVD.  

A potential strategy to treat patients with ischemia is to stimulate 

neovascularization, which is the body’s natural repair mechanism to restore blood flow 

to ischemic tissues. Postnatal neovascularization is comprised of angiogenesis, the 

sprouting of new capillaries from existing vessels, and arteriogenesis, the maturation of 

preexisting collateral arterioles into fully functional arteries. Both angiogenesis and 

arteriogenesis are highly multifactorial processes that involve multiple types of 

vascular and immune cells. In order to improve neovascularization as a whole, 

therapeutic strategies which simultaneously target both angiogenesis and 

arteriogenesis are needed͵,Ͷ.  

During the last decade, microRNAs have emerged as multifactorial regulators of 

neovascularizationͷ-͹. MicroRNAs are short non-coding RNAs of approximately ͲͲ 

nucleotides that inhibit translation of messenger RNAs (mRNAs). A single microRNA 

can have hundreds of mRNAs in its ‘targetome’, often regulating an entire network or 

pathway simultaneouslyͱͰ. MicroRNAs are typically defined as one specific sequence of 

RNA nucleotides, however, recent studies have shown that this ‘canonical’ microRNA 

sequence is often altered. These microRNA alterations can be grouped into two types: 

(i) isomiRs, which are microRNAs with altered terminal sequences and (ii) biochemical 

modifications of specific nucleotides within microRNAs, which collectively are referred 

to as the microRNA epitranscriptome. Both types of microRNA variations appear 

actively regulated in response to ischemia and can directly influence 

neovascularization associated processes, as we will discuss below. The microRNA 

epitranscriptome unveils a whole new regulatory layer that could provide novel 

therapeutic options for ischemic CVD. In this review we will first briefly introduce the 

processes involved in angiogenesis and arteriogenesis, after which we will highlight 

various ways in which a microRNA can be altered, and discuss recent findings which 
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demonstrate that these microRNA alterations can affect neovascularization associated 

processes. 

NEOVASCULARIZATION—ANGIOGENESIS & ARTERIOGENESIS 

After the occlusion of a large artery, blood flow to the downstream tissues is 

hampered, causing ischemia. Blood flow towards the ischemic tissue can be restored 

by a process called arteriogenesis. Arteriogenesis is the growth and maturation of 

collateral arteries from a pre-existing arteriole network, which connects all major 

arteries in the body͵. Arteriogenesis is triggered by an increase in shear stress in the 

arterioles, which occurs after an arterial occlusion causes redirection of blood flow 

through the arterioles. The increased shear stress causes endothelial cells (ECs) in the 

arteriole wall to express adhesion molecules and secrete cytokines, leading to the 

attraction of circulating monocytes and other immune cellsͱͱ-ͱ͵. These inflammatory 

cells produce and secrete proteases, growth factors, and cytokines which enable 

remodeling of the vessel wall and stimulate migration and proliferation of vascular ECs 

and smooth muscle cells (SMCs)ͱͶ-ͱ͸. This results in an increase in vessel diameter, 

until fluid sheer stress decreases which halts the arteriogenic process. Finally, the 

vascular SMCs and fibroblasts secrete matrix components to reconstitute the vessel 

wallͱ͹,ͲͰ. 

The process of angiogenesis, on the other hand, is the sprouting of a new capillary 

from the existing vasculature in order to redistribute local blood flow towards ischemic 

areas. Unlike arteriogenesis, angiogenesis is driven by the hypoxia caused by ischemia, 

and revolves around resolving local ischemia rather than restoring arterial blood flow 

after the occlusion of a vessel. Angiogenesis is initiated when an angiogenic stimulus, 

produced by hypoxic cells, activates the vascular endothelial layer. Activated ECs will 

start to proliferate and migrate towards the stimulus, such as vascular endothelial 

growth factor (VEGF), resulting in a new capillaryͲͱ. Next to ECs, other cell types are 

important regulators of angiogenesis. Vascular SMCs, pericytes, fibroblasts and 

immune cells play key roles by supporting and modulating EC function and secreting 

the proangiogenic stimuli to start the processͲͲ-Ͳʹ. 
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Since both angiogenesis and arteriogenesis are highly multifactorial processes, the 

simultaneous stimulation of both processes requires a multifactorial regulator, like 

microRNAsͷ,͸. 

MICRORNAS 

MicroRNAs are endogenous, small non-coding RNA molecules that inhibit 

translation of mRNAs. The microRNA’s target selection is predominantly determined 

by the microRNA’s ‘seed sequence’, nucleotides Ͳ–͸ at the ͵′-end of a microRNAͲ͵,ͲͶ, 

which bind their target mRNAs via Watson–Crick base-pairing. Due to this relatively 

small targeting sequence, a single microRNA’s ‘targetome’ can consist of hundreds of 

mRNAs, enabling microRNAs to regulate multifactorial processesͱͰ. 

The biogenesis of microRNAs starts with the transcription of the microRNA 

containing gene, yielding a primary microRNA (pri-miR) which then undergoes several 

steps of maturation to form the mature and functional microRNA (Figure ͱ)Ͳͷ. First, 

the pri-miR is cleaved in the nucleus by Drosha to generate a hairpin-shaped precursor 

microRNA (pre-miR)Ͳ͸. The pre-miR is then translocated to the cytoplasm where a 

final cleavage is performed by Dicer, yielding a microRNA duplexͲ͹. Either side of the 

duplex can associate with Argonaute proteins and become a functional mature 

microRNA after incorporation into the RNA-induced silencing complex (RISC)ͳͰ. 

Mature microRNAs are named after their side, ͵′ or ͳ′, in the pri-miR hairpin (e.g., 

miR- # -5p or -3p). 

MicroRNA biogenesis is strictly regulated, even at a microRNA-specific level, by 

numerous factors, including DNA methylation, activity modulation of key maturation 

proteins and many RNA-binding proteinsͲ͹,ͳͱ-ͳͳ. As a result, microRNA expression is 

often highly tissue specific and is dynamically regulated during key physiological 

processes, including the response to ischemiaͲ͹,ͳʹ. 

In ͲͰͰͷ, the importance of microRNAs in neovascularization was demonstrated 

for the first time when several studies showed that Dicer-dependent microRNAs were 

required for angiogenesisͳ͵-ͳͷ. Since then, microRNAs have been shown to play a 

functional role in all processes involved in neovascularization, including production 

and secretion of angiogenic stimuli, as well as EC, SMC, fibroblast and immune cell 

proliferation, migration and activation, which have recently been reviewed in 
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references͸,ͳ͸-ʹͰ. Several of these vasoactive microRNAs have also been well described 

to play an important role in vascular remodeling during ischemic cardiovascular 

diseases͸,ʹͱ.  

For example, Bonauer et al. showed that miR-͹Ͳa is highly expressed in human 

ECs and functions as negative regulator of angiogenesisʹͲ. Inhibition of miR-͹Ͳa 

increased angiogenesis in vivo and improved blood flow recovery after hindlimb 

ischemia ʹͲ. Furthermore, administration of miR-͹Ͳa inhibitors in porcine models for 

myocardial infarction demonstrated that miR-͹Ͳ inhibition prevents adverse infarct 

remodeling and ischemia/reperfusion injuryʹͳ,ʹʹ. Phase ͱ trials aimed to improve 

 

Figure ͱ. MicroRNA biogenesis and alterations that induce isomiR formation or 
microRNA nucleotide modifications. Transcription of the microRNA containing gene 
forms the primary microRNA (pri-miR). Drosha cleaves the pri-miR to generate the 
precursor microRNA (pre-miR). The pre-miR cleaved by Dicer in the cytoplasm yielding 
the microRNA duplex. Either side of the duplex can be incorporated into the RNA-
induced silencing complex (RISC) to become a functional mature microRNA. IsomiRs 
can be formed during microRNA biogenesis when Drosha or Dicer cleave in alternative 
locations, or when exonucleases or nucleotidyl transferases remove or add nucleotides to 
the ͳ′-end of the pre-miR or the mature microRNA. RNA nucleotide modifications with 
known or potential functional implications on microRNA biogenesis or functioning are 
shown in red with their ‘writers’ next to them. 
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wound healing with a future potential clinical application towards heart failure 

treatment have recently been completed for miR-͹Ͳa inhibitor MRG ͱͱͰ 

(NCTͰͳͶͰͳʹͳͱ)ʹ͵. 

Both miR-ͱͲͶ-ͳp and -͵p are also highly expressed in ECs where they promote 

angiogenesis by stimulating EC proliferation and VEGF signaling and regulating 

leukocyte adhesionʹͶ-ʹ͹. Inhibition of miR-ͱͲͶ-ͳp was shown to decrease recovery after 

myocardial infarction and hindlimb ischemia in miceʹͷ,͵Ͱ,͵ͱ. Furthermore, miR-ͱͲͶ 

levels are decreased in patients with ischemic coronary artery disease͵Ͳ. Similarly, miR-

ͱͰa also stimulates angiogenesis by promoting VEGF signaling in ECs and regulating 

their inflammatory phenotype͵ͳ-͵ͷ. 

MiR-Ͳͱ-͵p regulates proliferation and apoptosis of vascular wall smooth muscle 

cells͵͸,͵͹ and promotes fibrosis by stimulating fibroblast survival and growth factor 

secretionͶͰ. Preclinical studies have shown that inhibition of miR-Ͳͱ-͵p can prevent 

maladaptive vascular remodeling and heart failure͵͹,ͶͰ. These findings suggest that the 

miR-Ͳͱ-͵p inhibitor RG-ͰͱͲ, which is currently being tested in a phase Ͳ clinical trial to 

prevent kidney fibrosis in patients with Alport syndrome (NCTͰͲ͸͵͵ͲͶ͸), could 

potentially be used for the treatment of CVD. 

Additionally, it is noteworthy that several groups of genomically clustered 

microRNAs have been identified that are able to broadly regulate neovascularization in 

response to ischemia: Knockout of the miR-ͱͷ/͹Ͳ gene cluster (located on 

chromosome ͱʹ in mice and on human chromosome ͱͳ) increased both angiogenesis 

and arteriogenesisͶͱ,ͶͲ, while the inhibition of individual microRNAs from the ͱʹqͳͲ 

microRNA cluster (located on chromosome ͱͲFͱ in mice and on human chromosome 

ͱʹ) was shown to independently stimulate both angiogenesis and arteriogenesis͹.  

ISOMIRS AND THE MICRORNA EPITRANSCRIPTOME 

Typically, microRNAs have been defined as a single sequence of RNA nucleotides, 

and are listed as such in the principle public microRNA database, miRbaseͶͳ. However, 

recent studies have shown that this ‘canonical’ microRNA sequence can be altered. 

These microRNA alterations can be separated into two types: isomiRs and RNA 

nucleotide modifications. 
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IsomiRs are microRNA sequence variants that have one or more nucleotides added 

or deleted at their ͵′- and/or ͳ′-ends compared to the canonical microRNA sequence.  

RNA nucleotide modifications are biochemical modifications of the standard RNA 

nucleotides, which are performed by enzymes present in all living organisms. Recent 

studies have demonstrated that these RNA nucleotide modifications have a functional 

regulatory role and form what has been named the ‘epitranscriptome’Ͷʹ. While many 

different RNA nucleotide modifications exist, only a few have been studied in the 

context of microRNAs: Adenosine-to-inosine editing (A-to-I editing) and NͶ-

adenosine methylation (mͶA) and Ͳ′-O-methylation (Ͳ′OMe). 

Below, we will discuss those studies that demonstrate that isomiRs and microRNA 

A-to-I editing and mͶA can be actively regulated and play a directing role in 

neovascularization, as well as other modifications (including Ͳ′OMe) that are likely to 

have a similar role. 

ISOMIRS 

IsomiRs were discovered when microRNA sequencing studies observed that many 

microRNAs had sequence variants with one or more nucleotides added or deleted from 

the ͵′- and/or ͳ′-ends compared to the ‘canonical’ microRNA sequenceͶ͵,ͶͶ. While 

initially dismissed as errors or artifacts, isomiRs have since been shown to be 

functional microRNAs which actively associate with the RISC complex and inhibit 

mRNA translation of their targetsͶͷ-ͷͰ. Furthermore, sequencing studies have shown 

that isomiRs are widespread and represent approximately ͵Ͱ% of the microRNA 

transcripts present in cells and tissueͷͱ,ͷͲ. 

IsomiRs are primarily generated by cleavage variations of either DROSHA or 

DICER during microRNA biogenesis (Figure ͱ)Ͷ͸,ͷͳ. IsomiRs with altered ͳ′-end 

sequences, ͳ′-isomiRs, can also be created by exonucleases which remove ͳ′ 

nucleotides, or by nucleotidyl transferases, which catalyze the addition of ͳ′ 

nucleotides. The number and type of isomiRs that arise from a single locus varies per 

microRNA, but approximately ͷ͵% of microRNA loci give rise to at least one isomiRͷʹ.  

In general, ͳ′-isomiRs are more abundant than ͵′-isomiRs, however, a number of 

microRNAs do have prevalent ͵′-isomiRsͷ͵-ͷ͸. Since a microRNA’s ͵′-end determines its 

seed sequence, ͵′-isomiRs have an altered targetome compared to the canonical 
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microRNA sequence and are thus functionally different (Figure Ͳ)Ͷͷ,ͷ͹-͸ͱ. While ͳ′-

isomiRs do not have an altered seed sequence, their ͳ′-end variability has been 

associated with altered microRNA stability and turnover͸Ͳ-͸Ͷ. Furthermore, recent 

findings have shown that changes in microRNA length due to ͳ′-end variation can 

affect microRNA targeting strength and activity in specific cases͸ͷ,͸͸. Combined, these 

findings highlight the importance to take isomiRs into account during microRNA 

research. 

IsomiRs in Neovascularization Associated Cells and Processes 

Due to the prevalence of isomiRs, most microRNAs that are known regulators of 

neovascularization have isomiRs. In fact, the microRNA loci with the most known 

isomiRs are miR-Ͳͱ-͵p (Figure Ͳ) and miR-ͱͰa-͵p, two microRNAs with well-

established roles in vascular biology and neovascularization͵ͳ-͵ͷ, which have at least ʹͰ 

isomiRs eachͷʹ. MiR-Ͳͱ-͵p isomiRs were found to be highly expressed in endothelial 

cells, as well as, miR-ͱͲͶ-͵p and -ͳp and their isomiRs, which are also well-established 

vasoactive microRNAs͸,͸͹-͹ͱ. Combined, the miR-Ͳͱ-͵p and miR-ͱͲͶ transcripts 

accounted for almost ʹͰ% of the total endothelial microRNA transcripts detected, 

including at least two ͵′-isomiRs with physiologically relevant abundance͸͹,͹ͱ. One of 

these studies reported that approximately ͵͵% of the total microRNA transcripts 

detected in human umbilical vein endothelial cells (HUVECs) were in fact isomiRs 

 

Figure Ͳ. Different types of isomiRs, their mechanism of formation and their 
potential functional effects. The sequence of miR-Ͳͱ and some of its isomiRs are 
shown to exemplify the different isomiR types. In each case, the seed sequence is 
underlined (red if altered) and red nucleotides are due to nucleotidyl transferase activity. 
Relative to the canonical microRNA, ͵′-isomiRs generally have an altered targetome due 
to shift in seed sequence whereas ͳ′-isomiRs can affect the microRNAs stability or 
turnover. Both types of isomiRs affect the length of the microRNA and can thus incur 
length-dependent effects. 
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originating from ͲͳͰ distinct microRNA loci͸͹. For ͳͳ of these microRNA loci, the 

isomiR variant was the most abundant form, rather than the canonical sequence. Since 

isomiRs often have altered stability and turnover͸ͳ-͸Ͷ, these abundant isomiRs could 

help regulate vasoactive microRNA expression. Furthermore, abundant ͵′-isomiRs are 

likely to be functionally important due to their altered seed sequence and thus 

targetome. 

IsomiR expression profiles can vary based on cell type and in response to biological 

stimuli, including stimuli associated with neovascularizationͷ͵,ͷͶ,ͷ͸,͹Ͳ. For example, 

Voellenke et al. examined isomiR expression of normoxic and hypoxic human 

umbilical vein endothelial cells (HUVECs) using deep sequencing͸͹. While the study 

lacked the power to identify any statistically significant patterns, the authors did 

observe that hypoxic conditions altered isomiR expression. Furthermore, Nejad et al. 

demonstrated that treating fibroblasts with interferon-beta, a regulatory factor in both 

angiogenesis and arteriogenesis͹ͳ-͹͵, specifically decreased expression of the longer ͳ′-

isomiRs from ͱͳ microRNA loci, while the shorter isomiRs were generally 

upregulated͹Ͷ. Among the regulated microRNAs was miR-ͲͲͲ-ͳp, which has been 

shown to regulate angiogenesis and inflammation-mediated vascular remodeling͹ͷ,͹͸. 

Interestingly, the longer ͳ′-isomiRs of miR-ͲͲͲ-ͳp (>ͲͲ nt) were previously found to 

increase apoptotic activity, whereas the shorter isomiRs did not, suggesting the altered 

ͳ′-isomiR profiles could also be functionally important͸͸. However, the exact factors 

that mediate the isomiR-specific regulation remain to be uncovered. It is likely that, 

similar to canonical microRNA biogenesis, isomiR biogenesis is regulated by a 

multitude of factors, including factors which specifically regulate individual 

isomiRsͲ͹,ͳͱ,Ͷ͸. 

We have recently performed a focused study on the ͵′-isomiR of miR-ʹͱͱ-͵p from 

the vasoactive ͱʹqͳͲ microRNA cluster in order to collect direct evidence that isomiRs 

are actively regulated during ischemia-induced neovascularization͹͹. We found that 

miR-ʹͱͱ′s isomiR expression profile was tissue-specific and that canonical miR-ʹͱͱ-͵p 

was less abundant than its ͵′-isomiR in human vascular ECs, fibroblasts and in whole 

human venous tissue. We discovered that the expression of the ͵′-isomiR is decreased 

relative to canonical miR-ʹͱͱ-͵p expression in response to acute ischemia, both in cells 

and in a murine model for effective neovascularization after ischemia͹͹. Strikingly, the 
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relative ͵′-isomiR expression was upregulated instead in ischemic veins from patients 

with critical limb ischemia due to peripheral artery disease (PAD). We demonstrated 

that the ͵′-isomiR has a different targetome than the canonical miR-ʹͱͱ-͵p and inhibits 

translation of, among others, the pro-angiogenic Angiopoietin-ͱ. Finally, we showed 

that the ͵′-isomiR decreases vascular cell migration while the canonical miR-ʹͱͱ-͵p 

does not͹͹. Combined these data show that isomiR formation is indeed a functional 

pathway, which is actively regulated during ischemia, with direct implications for 

neovascularization. 

Table ͱ presents a summary of the key studies that demonstrate the prevalence 

and importance of isomiRs. 

 

Table ͱ. Key studies demonstrating the prevalence and importance of isomiRs. 

Topic  Key Findings References 

Prevalence of 
isomiRs 

 Generally, isomiRs represent ~50% of microRNA transcripts in 
cells and tissues (~55% in HUVECs) 

71,72,89,91 

 ~75% of microRNA loci can produce at least 1 isomiR 74 
   
Potential 
functional 
effect of 
isomiRs 

 5′-isomiRs have altered targetome due to a shifted seed 
sequence compared to the cannonical microRNA 

67,79-81,99 

 3′-isomiRs can have altered microRNA stability and turnover 82-86 
 isomiRs with different length can have altered targeting 

strength and activity 

87,88 

 
  

Abundant 
vasoactive 
microRNAs 
with isomiRs 

 miR-21-5p (at least 43 potential isomiRs, also in HUVECs) 74,89,91 
 miR-10a-5p (at least 41 isomiRs) 74 
 miR-126 (highly abundant in HUVECs together with miR-21-5p 

and its isomiRs) 

89,91 

 miR-222-3p (has functionally different 3′-isomiRs) 88,96 
 miR-411-5p (5′-isomiR has altered functionality and anti-

angiogenic properties)  

99 

   
Regulation of 
isomiRs 

 IsomiR expression profiles can vary based on cell type and in 
response to biological stimuli 

75,76,78,92 

  Hypoxic HUVECs display altered isomiR expression 89 

 
 Independent regulation of miR-411-5p and its 5′-isomiR in 

response to ischemia 
99 

HUVECs: human umbilical vein endothelial cells. 
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ADENOSINE-TO-INOSINE EDITING 

A-to-I editing is the biochemical modification of adenosines into inosines by 

deamination. Unlike adenosine, inosine preferentially binds to cytidine and is 

therefore generally interpreted as guanosine by the cellular machineryͱͰͰ. This form of 

RNA editing can have a number of consequences on RNA functioning, ranging from 

destabilizing the RNA molecules’ secondary structure to altering a protein amino acid 

sequence due to editing of the mRNA’s coding sequenceͱͰͱ-ͱͰͳ. In mammals, A-to-I 

editing accounts for more than ͹Ͱ% of all RNA editing events and is catalyzed by 

either ADARͱ or ADARͲ (adenosine deaminase acting on RNA ͱ or Ͳ), which are 

expressed throughout the bodyͱͰʹ-ͱͰͶ. The removal of the editing activity of either 

ADARͱ or ADARͲ in mice leads to premature lethality, demonstrating that A-to-I 

editing is of vital importanceͱͰͷ-ͱͰ͹. However, the precise regulatory mechanisms 

governing this critical cellular process have yet to be fully elucidatedͱͱͰ. Changes to 

ADAR levels or its activity were shown to affect global editing, but these observations 

do not always correlate well with frequencies of individual editing eventsͱͱͱ,ͱͱͲ. 

Therefore, it is evident that additional regulatory mechanisms exist that modulate A-

to-I editing in a site-specific manner. 

ADARs specifically target double stranded RNA structures, including those found 

in pri-miRs (Figure ͱ). The editing of a pri-miR can profoundly influence microRNA 

maturation, resulting in changes in mature microRNA expressionͱͱͳ-ͱͱ͵. However, when 

editing alters the microRNA’s seed sequence, this can completely change the mature 

microRNA’s target selection, resulting in the regulation of a different targetome116. 

MicroRNA A-to-I Editing in Neovascularization 

MicroRNA editing is a widespread phenomenon which also affects many 

vasoactive microRNAs, as demonstrated recently in a study by Li et al. The authors 

mapped microRNA A-to-I editing at an unprecedented scale and found Ͳͷͱͱ potential 

pri-miR editing sites within approximately ͸Ͱ% of all human pri-miRsͱͱͷ. MicroRNA 

editing profiles were also found to be tissue-specific, which is in agreement with 

previous findings ͱͱͳ,ͱͱ͵,ͱͱ͸. Furthermore, ͳͶͷ potential editing sites were found within 

human mature microRNAs, often located in the seed sequenceͱͱͷ.  
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In the field of cancer research, several microRNA editing events were shown to 

have a functional effect on cell migration and/or proliferationͱͱ͹-ͱͲͱ, which are also 

crucial processes in both angiogenesis and arteriogenesisͲͰ,Ͳͱ. For example, seed 

sequence editing of miR-ʹ͵͵-͵p was shown to alter its targetome, causing edited miR-

ʹ͵͵-͵p to decrease tumor cell proliferation and migration, while the unedited version 

had the opposite effectͱͲͲ. Furthermore, editing of the seed sequence of miR-ͲͰͰb 

enhanced tumor cell proliferation and migration, in contrast to the unedited 

versionͱͲͰ. Interestingly, higher miR-ͲͰͰb editing levels were associated with a poorer 

prognosis in cancer patients, highlighting the possibility that microRNA editing can be 

clinically relevant as a biomarker or therapeutic target.  

We have recently demonstrated that microRNA-editing can also directly regulate 

neovascularization. We showed that A-to-I-editing of miR-ʹ͸ͷb-ͳp, another 

microRNA from the vasoactive ͱʹqͳͲ microRNA cluster, is increased in ischemic 

muscle tissues undergoing neovascularization after induction of hindlimb ischemiaͱͲͳ. 

MiR-ʹ͸ͷb-ͳp editing was also found in all human vascular ECs, SMCs, and fibroblasts. 

The edited mature miR-ʹ͸ͷb-ͳp has a unique targetome and promotes angiogenesis, 

in contrast to the canonical miR-ʹ͸ͷb-ͳpͱͲͳ. In a follow-up study, we demonstrate that 

vasoactive microRNA editing is a widespread phenomenon that enhances 

neovascularization in response to ischemia (manuscript submitted). 

N6-ADENOSINE METHYLATION 

The modification of adenosine to NͶ-methyladenosine (mͶA) is perhaps the most 

prevalent RNA nucleotide modification in eukaryotic cells and is present in more than 

Ͳ͵% of human transcriptsͱͲʹ,ͱͲ͵. mͶA is installed by the methyltransferase complex 

containing ‘writer’ METTLͳ (Methyltransferase Like ͳ) and RNA-binding platform 

METTLͱʹͱͲͶ, supported by cofactors WTAP (Wilms’ tumor ͱ-associating protein) and 

KIAAͱʹͲ͹ͱͲͷ,ͱͲ͸. Strikingly, mͶA levels are dynamically regulated throughout all stages 

of life, with the help of mͶA demethylases, or ‘erasers’, FTO (fat mass and obesity-

associated protein), and ALKBH͵ (alkB homolog ͵)ͱͲ͹,ͱͳͰ. mͶA methylation has been 

shown to affect almost every aspect of RNA metabolism, from expression and 

processing in the nucleus to translation and degradation in the cytoplasmͱͳͱ-ͱͳͳ. The 

importance of its functions is illustrated by studies that demonstrate that individual 
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knockout of either METTLͳ, METTLͱʹ or WTAP causes prenatal lethality in miceͱͳʹ-ͱͳͶ. 

While mͶA can alter RNA folding and structureͱͳͷ,ͱͳ͸, most of mͶA’s biological 

functions are mediated through a group of ‘reader’ proteins that specifically recognize 

the methylated adenosine on RNA, including the YTHD (YT͵Ͳͱ-B homology domain) 

and the IGFͲBP (insulin-like growth factor-Ͳ mRNA-binding protein) familiesͱͲͷ,ͱͳ͹-ͱʹͱ. 

While most mͶA research has focused predominantly on mRNAs, several studies 

have demonstrated that mͶA is important for microRNA biogenesis. Alarcon et al. 

demonstrated that pri-miRs are marked by the METTLͳ-dependent mͶA (Figure ͱ). 

Pri-miR mͶA marks are read by mͶA-binding protein hnRNPAͲBͱ that, in turn, 

stimulates initiation of DICER-mediated processing through recruitment of DICER’s 

cofactor DGCR͸ͱʹͲ,ͱʹͳ. Intriguingly, a study by Berulava et al. demonstrated that well 

over ͲͰͰ mature microRNAs contain mͶA in a human embryonic kidney cell line 

(HEKͲ͹ͳ). While mͶA does not affect canonical base pairing, several studies have 

suggested that it may block the noncanonical A:G base pairing, which could affect 

mRNA-microRNA interaction strengthͱͳ͸,ͱʹʹ. This is supported by a recent study that 

found that an mͶA modified miR-ͲͰͰc-ͳp resulted in significantly less suppression of 

its target genes than unmethylated miR-ͲͰͰc-ͳpͱʹ͵. Furthermore, recent studies also 

suggest that mͶA of mRNAs can influence their ‘targetability’ by microRNAs by 

promoting or preventing the binding of certain RNA-binding proteins that block 

microRNA-mediated transcript destabilizationͱʹͱ,ͱʹͶ. 

Importance of mͺA in the Cardio-Vasculature and in Vasoactive MicroRNAs 

Two recent studies have demonstrated the importance of mͶA in cardiovascular 

homeostasis. Dorn et al. demonstrates that METTLͳ-dependant mͶA helps modulate 

cardiac homeostasis and hypertrophic stress responses in miceͱʹͷ. The overexpression 

of METTLͳ was shown to cause spontaneous hypertrophy, whereas METTLͳ 

knockdown leads to maladaptive remodeling and signs of heart failure. Mathiyalagan 

et al. demonstrated that mͶA is increased in failing mammalian hearts and in hypoxic 

cardiomyocytesͱʹ͸. Furthermore, increasing the expression of mͶA eraser FTO in 

ischemic mouse hearts attenuates the ischemia-induced increase in mͶA and decrease 

in cardiac contractile function. These findings highlight a key role for mͶA in ischemic 

cardiovascular disease.  
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Pri-miR mͶA marks were shown to be required for the appropriate processing of 

most pri-miRs to mature miRNAs, including vasoactive microRNAsͱʹͲ,ͱʹͳ. Furthermore, 

mͶA of the above mentioned vasoactive miR-ͱͲͶ and miR-ͲͲͲ was shown to affect cell 

migration and/or proliferation in cancer cells. A study by Ma et al., demonstrated that 

the pri-miR of miR-ͱͲͶ undergoes METTLͱʹ-dependent mͶA, which facilitates its 

processing to mature miR-ͱͲͶͱʹ͹. Decreased METTLͱʹ-dependent mͶA of pri-miR-ͱͲͶ 

led to the reduced expression of miR-ͱͲͶ, which in turn increased cancer cell migration 

and invasionͱʹ͹. Han et al. showed that METTLͳ-dependant mͶA of pri-miR-ͲͲͲ 

increases its maturation to mature miR-ͲͲͲ, resulting in the reduction of PTEN, and 

ultimately leading to the proliferation of bladder cancerͱ͵Ͱ. Furthermore, METTLͳ was 

increased in bladder cancer and correlated with poor patient prognosisͱ͵Ͱ. 

Combined, the abundance of mͶA, its importance in microRNA biogenesis and 

functioning, and the dysregulation of mͶA during ischemia and cardiovascular disease, 

suggest that mͶA of microRNAs could play an important role in ischemic 

cardiovascular disease and neovascularization. 

OTHER MODIFICATIONS IN THE MICRORNA EPITRANSCRIPTOME 

As mentioned above, numerous other RNA nucleotide modifications exist, 

however, their presence and function in small RNAs (ͱͶ–Ͳ͸ nucleotides long), which 

consist mostly of microRNAsͱ͵ͱ, remains understudiedͱ͵Ͳ. An important reason for this 

is that conventional methods to detect RNA modifications are often unsuitable for 

small RNAsͱ͵Ͳ,ͱ͵ͳ. Recently, Lan et al. optimized a screening based on mass 

spectrometry which allowed them to provide the first overview of RNA nucleotide 

modifications in mammalian small RNAs using human HEKͲ͹ͳT cellsͱ͵ʹ. Besides 

inosine and mͶA, ͲͲ additional distinct nucleotide modifications were found, ͱͳ of 

which consisted of different types or combinations of RNA methylationsͱ͵ʹ. While little 

is known about the effect of these RNA nucleotide modifications on the functioning of 

small RNA, and thus microRNA, several have been studied in other RNA types.  

Below, we will report the key findings of these studied RNA modifications and 

highlight which properties could potentially affect microRNA function. Furthermore, 

the discussed nucleotide modifications and their potential effects on microRNAs are 

summarized in Table Ͳ. 
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Pseudouridine (Ψ) 

Pseudouridine (Ψ) is one of the most abundant RNA modifications155,156. Ψ is 

highly conserved and is generated from isomerization of uridine, catalyzed by 

pseudouridine synthases (PUSs)ͱ͵͵,ͱ͵Ͷ. Recent advances in high-resolution detection 

methods have demonstrated that Ψ-nucleotides are found in many, if not all, species 

of RNAͱ͵Ͷ,ͱ͵ͷ. Pseudouridylation was shown to be important for ribosomal RNA 

biogenesis, pre-mRNA splicing, and translation fidelityͱ͵͵,ͱ͵Ͷ. Compared to a uracil, Ψ 

forms a stronger base pairing interaction with adenosine, which allows it to alter RNA 

Table Ͳ. Known or postulated effects of nucleotide modification within microRNAs. 

Nucleotide 
Modification 

Abbrevi
ation 

Writers Erasers Potential Effects on microRNAs 

Adenosine-to-
inosine editing 

A-to-I 
editing 

ADAR1 or 
ADAR2 

-  pri-miR editing can profoundly 
influence maturation 

 seed sequence editing can alter 
targetome 

     
N6-methyl-
adenosine 

m6A METTL3/14 ALKBH5 
FTO 

 regulates pri-miR processing 
 hampered nonstandard A:G base 

pairing may affect silencing activity 
     
Pseudouridine Ψ PUSs -  stronger base pairing with adenosine 

might affect silencing activity* 
     
2′-O-methyl-
nucleosides 

2′OMe Methyl-
transferases 

-  may protect from A-to-I editing* 
 may affect stability and turnover* 
 enhanced RNA-RNA duplex stability 

might affect silencing activity* 
     
N1-methyl-
adenosine 

m1A TRMT6 & 61 ALKBH3  positive charge can dramatically alter 
interactions with proteins* 

 disrupts RNA base pairing which can 
affect silencing activity* 

     
N5-methyl-
cytosine 

m5C NSUNs 
DNMT2 

-  may enhance stability* 

     
N2-methyl-
guanosine  

m2G unclear -  allows noncanonical base pairing 
which may affect silencing activity* 

* effects are postulated effects based on observations in other RNA types. 
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secondary structures, suggesting that microRNA pseudouridylation could affect mRNA 

silencingͱ͵͸,ͱ͵͹. Furthermore, transcriptome wide pseudouridylation was shown to 

increase under stress conditions, including serum deprivation, a key component of 

ischemiaͱͶͰ. 

Ͷ′-O-Methylnucleosides 

It is known that Ͳ′-O-methylation (Ͳ′OMe) can reside on all four ribonucleosides 

and is widely conservedͱͶͱ,ͱͶͲ. Furthermore, Ͳ′OMe is performed by methyltransferases 

like Fibrillarin and many, if not all, Ͳ′OMe-events are directed by small nucleolar 

RNAsͶʹ,ͱͶͳ,ͱͶʹ. Ͳ′OMe appears essential in processing ribosomal RNAs, small nuclear 

RNAs, and transfer RNAs, but it has also been found in mRNAs and even in 

microRNAs, by our group among othersͱͲͳ,ͱͶͱ,ͱͶ͵. While the precise location and 

function of Ͳ′OMe sites in many RNA types are currently unclear, Ͳ′OMe in general has 

a stabilizing effect and can influence interactions with proteins or other RNAsͱͶͱ,ͱͶͲ. 

Ͳ′OMe may in fact protect adenosine residues from A-to-I editingͱͶ͵-ͱͶͷ. Interestingly, 

we found that both Ͳ′OMe and A-to-I editing of the same adenosine residue in pri-

miR-ʹ͸ͷb are increased simultaneously under ischemiaͱͲͳ. However, further studies 

are required to examine whether both RNA modifications can be found on a single 

copy of miR-ʹ͸ͷb-ͳp. Finally, Ͳ′OMe also greatly enhances the stability of RNA-RNA 

duplexes, a quality that is often utilized to enhance the stability and specificity of 

synthetic antisense RNA-oligonucleotides, with similar implications for Ͳ′OMe of 

microRNAsͱͶ͸-ͱͷͱ. 

N͵-Methyladenosine (m͵A) 

Recent methodological advances have demonstrated that mͱA is a transcriptome-

wide modificationͱͷͲ,ͱͷͳ. Several members of the TRMT family (tRNA methyltransferase 

family) have already been shown to be mͱA writers and additional writers are thought 

to existͱͷͲ-ͱͷʹ. Similar to mͶA, mͱA is reversible and can be demethylated by erasers 

ALKBHͱ and ͳ (alkB homolog ͱ and ͳ)ͱͷͳ,ͱͷ͵. Furthermore, mͱA levels are dynamically 

regulated by various types of cellular stress and correlate with upregulation of 

translation in generalͱͷͲ,ͱͷͳ. This modification carries a positive charge and can 

therefore alter both protein–RNA interactions and RNA secondary structures 

dramaticallyͱͳͱ, which can potentially lead to disruption of microRNA biogenesisͲ͹. 
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Furthermore, mͱA appears to disrupts RNA base-pairing and induces local RNA duplex 

melting, suggesting that mͱA may also affect microRNA-target interactionsͱͳͲ,ͱͷͶ. 

N͹-Methylcytosine (m͹C) 

While best known as a DNA modification in the epigenome, m͵C can be installed 

on RNAs too by members from the NSUN family (nucleolar protein/sun RNA 

methyltransferase family) and by DNMTͲ (DNA methyltransferase-Ͳ) and is therefore 

also part of the epitranscriptomeͱͷͷ-ͱ͸ͱ. m͵C has been found in both noncoding and 

coding RNAs in mammals and a few studies have shown that m͵C has functional 

implicationsͱͷͷ,ͱ͸Ͳ,ͱ͸ͳ. For example, m͵C of tRNAs was shown to protect tRNAs against 

stress-induced cleavageͱ͸Ͱ,ͱ͸ʹ,ͱ͸͵. Furthermore, the depletion of m͵C methyltransferase 

Nsunͷ in mice resulted in a concomitant decrease of expression of specific non-coding 

RNAs, suggesting m͵C marks can enhance RNA stabilityͱ͸Ͷ. 

NͶ-Methylguanosine (mͶG) 

In tRNAs and rRNAs, mͲG is a relatively common RNA modification, however, 

which mͲG writers are responsible in humans remains unclearͱ͸ͷ,ͱ͸͸. Interestingly, the 

study by Lan et al. demonstrated that mͲG is also relatively common in small RNAsͱ͵ʹ. 

Our knowledge about this RNA modification is still very limited due to a lack of high-

throughput detection methodsͱ͸͸,ͱ͸͹. However, studies have shown that mͲG can form 

both canonical and non-canonical Watson–Crick base pairing interactions, allowing 

mͲG to regulate the stability of tRNA tertiary structures and potentially influence 

microRNA silencing activityͱ͸͸,ͱ͹Ͱ.  

DYNAMIC REGULATION OF THE EPITRANSCRIPTOME 

The epitranscriptome is dynamically regulated. This is abundantly clear for mͶA 

modifications due to the discovery of both mͶA writers and erasersͱʹͷ,ͱʹ͸. Not all 

modifications may be reversible like mͶA, but most, if not all, other modifications do 

appear to be regulated. Several studies have shown that RNA alterations are modulated 

under stress and pathological conditionsͶʹ,ͱ͹ͱ,ͱ͹Ͳ. For example, the deposition and 

distribution of mͶA were increased in response to heat shock and DNA damage ͱ͹ͳ-ͱ͹͵. 

Total transcriptomic pseudourydilation increased in response to heat shock, nutrient 

deprivation, and serum deprivationͱ͵ͷ,ͱͶͰ. Further, mͱA levels in mammalian cells also 
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increased in response to heat shock, but decreased after nutrient starvationͱͷͲ. 

Furthermore, cellular m͵C levels are decreased in response external stress and 

cytotoxic stress which affects protein translation ratesͱ͹Ͷ,ͱ͹ͷ. Additionally, the 

expression of methyltransferase Fibrillarin is increased in many cancers to facilitate 

additional Ͳ′OMe of ribosomal RNAsͱͶͲ,ͱ͹͸,ͱ͹͹, while mRNA A-to-I editing is induced by 

both hypoxia and inflammationͲͰͰ. Importantly, we have shown that both A-to-I 

editing and Ͳ′OMe also increase in microRNAs during ischemiaͱͲͳ,ͲͰͱ. These findings 

suggest that the microRNA epitranscriptome is likely to also be dynamically regulated 

and functional in pathological conditions, and could provide novel targets for 

therapeutic intervention. 

Several studies have also indicated that certain RNA nucleotide modifications 

regulate each other. As mentioned previously, Ͳ′OMe was found to protect adenosine 

residues from A-to-I editingͱͶ͵-ͱͶͷ. A different study demonstrated that replacing an 

adenosine which can be A-to-I edited by mͶA also prevents editing almost completely 

in an in vitro assayͲͰͲ. Furthermore, it was recently demonstrated that transcript mͶA 

levels are negatively correlated with the A-to-I editing levels of the transcript, even 

when they are not competing for the same nucleotideͲͰͳ. The depletion of mͶA 

resulted in upregulated A-to-I editing on the mͶA-depleted transcripts, confirming a 

transcriptome wide interplay between mͶA and A-to-I editingͲͰͳ. These findings 

highlight the complexity of the epitranscriptome and the importance of studying 

multiple RNA modifications simultaneously in order to examine known interactions 

and to identify novel interactions. 

CONCLUDING REMARKS 

During the past decade, both isomiRs and the epitranscriptome have emerged as 

novel and dynamic layers of regulation of gene expression. Both types of microRNA 

alterations have been shown to modulate key physiological responses, including 

neovascularization by affecting the microRNA’s biogenesis, stability and function. 

MicroRNAs have already been established as multifactorial regulators of both 

angiogenesis and arteriogenesisͷ-͹, and therefore this additional regulatory layer may 

provide new options for therapeutic neovascularization. The therapeutic potential of 

both isomiRs and the microRNA epitranscriptome is highlighted by the findings that 
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͵′-isomiR formation of miR-ʹͱͱ-͵p and A-to-I editing of miR-ʹ͸ͷb-ͳp are actively 

regulated in response to ischemia in vivo, resulting in novel microRNAs with anti- or 

pro-angiogenic properties, respectively͹͹,ͱͲͳ. Therefore, altered microRNAs could 

provide novel targets for therapeutic inhibition or overexpression to stimulate 

neovascularization after ischemic CVD. 

The first therapeutic small RNA (Patisiran) was granted FDA approval in ͲͰͱ͸ and 

the first phase Ͳ clinical trials with microRNA-oriented RNA therapeutics are currently 

ongoing, highlighting that microRNA therapeutics are on their way to clinical 

practiceʹ͵. Over the last decade, important advances have been made in development 

of microRNA therapeutics, however, several key issues remain, which have been 

expertly reviewed in the studies by Lucas et al. and Rupaimoole et al.ʹͱ,ͲͰʹ. These issues 

include maximizing the effect of the therapeutics’ effect on the diseased tissue, while 

minimizing the off-target binding and toxicity. Now that the prevalence and 

functionality of microRNA alterations are becoming clear, further research is 

warranted to understand which altered microRNAs could pose off-target risks during 

design and development of microRNA-based therapeutics. However, uncovering the 

intricate mechanisms which govern regulation of microRNA alterations could also 

reveal novel therapeutic targets to modulate microRNA functioning. 

Alternatively, tissue- and pathology-specific regulation of the microRNA 

alterations could potentially be used as a biomarker for cardiovascular disease, 

considering that isomiR expression profiles were found sufficient to distinguish 

between cancer subtypesͲͰ͵. 

Finally, while the abundance and function of many nucleotide modifications have 

not been studied in microRNAs yet, it is likely that most, if not all, will prove clinically 

relevant. The unique properties of certain nucleotide modifications, like for example 

mͶA, could be exploited to enhance the specificity of microRNA-therapeutics when 

targeting microRNAs carrying such modifications. It is important to note that further 

advances in technology and methodology are required to expand our knowledge of the 

microRNA epitranscriptomeͱ͵ʹ,ͲͰͶ. However, given the surge of interest in this field, we 

expect many more clinically relevant microRNA alteration events to be discovered in 

the near future. 
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