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RATIONALE 

The heart and blood vessels make up the cardiovascular system, which circulates 

blood throughout the body. This system provides every single organ access to oxygen 

and nutrients, as well as a highway to send chemical signals and relocate waste 

products. Cardiovascular disease (CVD) is the collective term used for diseases that 

affect the cardiovascular system. CVDs are the leading cause of death worldwide. In 

ͲͰͱͷ, approximately ͱͷ.͸ million deaths were caused by CVD, representing ͳͱ% of all 

global deathsͲ,ͳ. While current treatments have significantly improved the lifespan and 

wellbeing of patients, it is estimated that they are unsuitable or insufficient for ͳͰ% of 

patientsʹ,͵. Therefore, there remains a critical need for new therapeutic treatments for 

CVD. 

Although CVDs have diverse and complex pathologies, they generally result in 

local shortages in the blood supply, known as ischemia. Ischemia causes the affected 

tissues to become starved of oxygen (hypoxic) and nutrients and unable to eliminate 

waste products, which lead to tissue death if left unresolved. These consequences of 

ischemia lead to most CVD-associated symptoms and deathsͲ,ͳ. However, the body has 

an innate response mechanism that stimulates restoration of blood flow to ischemic 

tissues, known as neovascularizationͶ,ͷ. Neovascularization is comprised of 

angiogenesis, the growth of new vessels, and arteriogenesis, the maturation of pre-

existing collateral arterioles. Both angiogenesis and arteriogenesis are highly 

multifactorial processes and are regulated by a number of different factors, including 

growth factors, haemodynamic forces and small, regulatory molecules, called 

microRNAs͸.  

MicroRNAs are short non-coding RNAs of approximately ͲͲ nucleotides that 

inhibit translation of messenger RNAs (mRNAs) into proteins. A single microRNA can 

target hundreds of mRNAs which allows them to potentially regulate an entire 

network or pathway simultaneously. During the last decade, microRNAs have also 

emerged as key regulators of cardiovascular biology and neovascularization͸-ͱͰ. 

MicroRNAs are typically defined as a single sequence of RNA nucleotides. 

However, recent findings suggest that this ‘canonical’ microRNA sequence can be 

altered, potentially leading to drastic changes in the microRNA’s expression, its 
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silencing efficiency or even its targeting. As a result, these microRNA alterations 

represent a new layer for regulation of protein synthesis. Further understanding of this 

layer could potentially provide novel therapeutic options for ischemic CVDͱͱ. However, 

which cardiovascular microRNAs are altered and whether these microRNAs alterations 

can help modulate neovascularization is still unclear. Therefore, in this thesis, we 

examined the role of several different types of microRNA alterations in 

neovascularization after ischemia. 

NEOVASCULARIZATION: ANGIOGENESIS & ARTERIOGENESIS 

After an ischemic event, blood flow can be recovered by growth of new or existing 

vessels through two different types of neovascularization: angiogenesis and 

arteriogenesis (Figure ͱ). Angiogenesis is the sprouting of a new capillary from the 

existing vasculature. Angiogenesis is initiated when pro-angiogenic factors activate the 

vascular endothelial cells (ECs), which line the interior surface of blood vessels and 

form an interface between circulating blood in the lumen and the rest of the vessel 

wallͷ. The activated ECs begin to release proteases that degrade the extracellular 

matrix to allow vascular remodeling. Highly activated ECs become sprouting ‘tip cells’ 

that migrate towards the angiogenic stimulus while the neighbouring ECs become 

‘stalk cells’ which proliferate and form the lumen of the new capillary sproutͱͲ,ͱͳ. Next 

to ECs, other cell types are important regulators of angiogenesis. Vascular smooth 

muscle cells (SMCs), pericytes, fibroblasts and immune cells play key roles by 

supporting and modulating EC function and secreting the pro-angiogenic stimuliͱʹ-ͱͶ.  

The pro-angiogenic signals required to start angiogenesis are produced by cells in 

response to ischemia. This cellular response is initiated when oxygen deprivation, or 

hypoxia, caused by ischemia stabilizes the transcription factor HIFͱα (hypoxia 

inducible factor ͱα), which is rapidly degraded in normoxic conditions7,12. HIFͱα drives 

transcription of pro-angiogenic factors such as VEGF-A (vascular endothelial growth 

factor-A)ͱͷ. VEGF is considered a key pro-angiogenic growth factor and is naturally 

secreted by most types of parenchymal cells in response to hypoxiaͷ,ͱͲ. Therefore, 

angiogenesis is driven directly by the cellular response to ischemia. 

Arteriogenesis is the growth and maturation of collateral arteries from a pre-

existing arteriole network, which connects all major arteries in the bodyͶ. Unlike 
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angiogenesis, arteriogenesis is not driven by ischemia itself, but by increased shear 

stress in arterioles and the subsequent inflammatory processesͷ,ͱͲ. This is initiated 

when an artery becomes occluded, which causes the blood flow to be redirected 

through the arterioles upstream of the occlusion. The increased shear stress stimulates 

ECs in the arteriole wall to express adhesion molecules and secrete cytokines, leading 

 

Figure ͱ: Neovascularization is comprised of angiogenesis, the growth of new vessels, 
and arteriogenesis, the maturation of pre-existing collateral arterioles. Both angiogenesis 
and arteriogenesis are highly multifactorial processes that help restoration of blood flow 
to ischemic tissues. Neovascularization is regulated by a number of different factors, 
including microRNAs. Figure is adapted from Ergul et al.ͱ 
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to the attraction, adhesion and invasion of circulating monocytes and other immune 

cellsͱ͸-ͲͲ. These inflammatory cells produce growth factors and secrete cytokines and 

proteases that (partially) degrade the extracellular matrix to enable remodelling of the 

vesselͲͳ-Ͳ͵. The secreted factors induce migration and proliferation of both vascular ECs 

and SMCs, resulting in an increase in vessel diameter until fluid sheer stress decreases 

which halts the arteriogenic process. Finally, the vascular SMCs and fibroblasts secrete 

matrix components like collagen and elastin to reconstitute the vessel wallͱͲ,ͲͶ. 

MICRORNAS REGULATE CARDIOVASCULAR BIOLOGY 

For a long time, the central dogma in molecular biology was that DNA is 

transcribed into messenger RNA (mRNA), which is processed and then translated into 

proteins. Over the last two decades, however, we have learned that more than ͸Ͱ% of 

our genome is transcribed into RNA, of which less than ͳ% encodes proteins or 

peptidesͲͷ. Many of these ‘non-coding’ RNAs are now known to be important 

regulators of protein expression. Especially the smallest class of RNAs, the microRNAs, 

have been shown to play an important role throughout life by regulating cell 

differentiation, development and homeostasis (Figure Ͳ)Ͳ͸. These microRNAs are 

approximately ͲͲ nucleotides long and their expression is tightly regulated and highly 

 

Figure Ͳ: MicroRNAs regulate protein synthesis and can be altered in several ways. 
However, whether these microRNA alterations play a role in vascular biology and 
pathology is unknown. 
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tissue specific. Deregulation of microRNAs is associated with many human diseases, 

including ischemic CVDͲ͸. 

In ͲͰͰͷ, the importance of microRNAs in neovascularization was demonstrated 

for the first time when several studies showed that microRNAs were required for 

angiogenesisͲ͹-ͳͱ. Since then, microRNAs have been shown to play a functional role in 

all processes involved in neovascularization, including production and secretion of 

angiogenic stimuli, as well as EC, SMC, fibroblast and immune cell proliferation, 

migration and activationͱͰ,ͳͲ-ͳʹ. Several of these vasoactive microRNAs have also been 

well described to play an important role in vascular remodeling during ischemic 

cardiovascular diseasesͱͰ,ͳ͵. 

For example, miR-͹Ͳa and miR-ͱͲͶ were shown to be highly expressed in human 

ECs and function as negative or positive regulator of angiogenesis, respectively. 

Inhibition of miR-͹Ͳa increased angiogenesis in vivo and improved blood flow 

recovery after hindlimb ischemia in mice, a model for peripheral artery diseaseͳͶ. MiR-

ͱͲͶ, on the other hand, was shown to promote angiogenesis by stimulating EC 

proliferation and VEGF signaling and regulating leukocyte adhesionͳͷ-ʹͰ. Inhibition of 

miR-ͱͲͶ-ͳp decreased recovery after myocardial infarction and hindlimb ischemia in 

miceͳ͸,ʹͱ,ʹͲ. 

MicroRNA genes are often located within close proximity of one another within 

the genome, forming microRNA clusters. It is noteworthy that several microRNA 

clusters have been identified that are able to broadly regulate neovascularization in 

response to ischemia. MiR-͹Ͳ, for example, is part of the miR-ͱͷ/͹Ͳ gene cluster, 

located on chromosome ͱʹ in mice and on human chromosome ͱͳ. Studies have shown 

that this cluster as a whole inhibits both angiogenesis and arteriogenesisʹͳ,ʹʹ. 

MicroRNAs from the ͱʹqͳͲ microRNA cluster, located on human chromosome ͱʹ and 

chromosome ͱͲFͱ in mice, also appear highly involved in regulating 

neovascularization. Inhibition of miR-ͳͲ͹, miR-ʹ͸ͷb, miR-ʹ͹ʹ or miR-ʹ͹͵, four ͱʹqͳͲ 

microRNAs, resulted in significantly improved blood flow recovery after hindlimb 

ischemia in each case, due to stimulation of angiogenesis and arteriogenesis͸. 

Furthermore, miR-ʹ͸ͷb was also shown to play an important role in hypertension-

induced remodelling of the aortaʹ͵. 
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MicroRNA functioning and their biogenesis  

MicroRNAs are able to exert their function by inhibiting translation of mRNAs to 

which they are complementary, allowing them to modulate protein synthesisʹͶ. Which 

mRNAs are targeted by a specific microRNA is largely dictated by nucleotides Ͳ to ͸ 

from the microRNA’s ͵’-end, known as the microRNA’s ‘seed-sequence’ ʹͷ,ʹ͸. Even 

though the inhibitory effect of a microRNA on an individual target mRNA is often 

subtle, a microRNA can have hundreds of mRNAs in its ‘targetome’ʹ͹. As a result, a 

microRNA can fine-tune protein expression levels of large sets of target genes, allowing 

it to regulate complex, multifactorial processes, including vascular remodelling͵Ͱ. 

MicroRNAs are initially transcribed as part of a longer, primary transcript known 

as the pri-miR. The pri-miR subsequently undergoes several maturation steps to 

ultimately yield a mature miR. During microRNA biogenesis, two distinct cleavage 

steps determine the ͵’- and ͳ’-ends of a microRNA pri-miR (Figure ͳA)͵ͱ,͵Ͳ. First the 

pri-miR is cleaved in the nucleus by the ribonuclease DROSHA to generate a hairpin-

shaped precursor miRNA (pre-miR)͵ͳ. The pre-miR is exported to the cytoplasm where 

it is cleaved again by DICER into a microRNA duplex͵ʹ. Finally, either strand of the 

microRNA duplex can be incorporated into the RNA-induced silencing complex (RISC) 

to become a functional mature microRNA͵͵. 

 

Figure ͳ: microRNA biogenesis (A) and alterations (B). 
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MICRORNA ALTERATIONS 

MicroRNAs have typically been defined as a single sequence of RNA nucleotides, 

and are listed as such in the principle public microRNA database, miRBase͵Ͷ. However, 

recent studies have shown that that this ‘canonical’ microRNA sequence can be 

altered. MicroRNA alterations can be separated into two types: isomiRs and RNA 

nucleotide modifications (Figure ͳB). 

IsomiRs 

IsomiRs are microRNAs with one or more nucleotides added or deleted from the 

͵′- and/or ͳ′-ends compared to the canonical microRNA sequence. While originally 

dismissed as errors or artifacts, isomiRs have since been shown to associate with RISC 

and regulate mRNA translation, and thus function like canonical microRNAs͵Ͳ,͵ͷ-͵͹. 

IsomiRs are highly prevalent and generally account for approximately ͵Ͱ% of the total 

microRNAs detected during RNA sequencing studiesͶͰ,Ͷͱ. The ͵′ and ͳ′ heterogeneity 

that characterize isomiRs is primarily generated by cleavage variations of DROSHA or 

DICER during microRNA biogenesisͶͲ-Ͷʹ. IsomiRs with altered ͳ′-end sequences, ͳ′-

isomiRs, often have altered microRNA stability and turnoverͶ͵-Ͷ͹. ͵’-IsomiRs on the 

other hand have a completely altered seed sequence, due to their altered ͵’-end, which 

can have a major impact on the microRNA’s functionality and targets definition͵ͷ,ͷͰ-ͷͲ. 

Therefore, isomiRs could potentially have a different effect on neovascularization than 

their canonical microRNA versions. 

RNA nucleotide modifications 

RNA nucleotide modifications (RNMs) are biochemical modifications of the 

standard RNA nucleotides and can be found in all living organismsͷͳ. Similar to DNA 

nucleotide modifications in the field of epigenetics, RNMs are performed by naturally 

occurring enzymes, which have been termed modification ‘writers’. In fact, more than 

ͱͰͰ different RNMs have been identified, occurring in organisms ranging from archaea 

and bacteria, to eukaryotesͷͳ. Recent studies have demonstrated that these RNMs have 

a functional regulatory role and form what has been named the ‘epitranscriptome’ͷͳ-ͷ͵. 

Furthermore, for a few specific modifications, proteins have been discovered which can 

recognize or remove this modification. These ‘readers’ and ‘erasers’ help to modulate 
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the functionality of these particular modifications and allow them to be even more 

dynamically regulatedͷͶ,ͷͷ.  

MicroRNA nucleotide modifications 

Although our knowledge on RNMs and the epitranscriptome is slowly expanding, 

there is a strong focus on modifications in longer RNA species and therefore 

microRNAs are left understudied. Nevertheless, Lan et al recently used mass 

spectrometry to demonstrate that microRNAs in human HEKͲ͹ͳT cells contain at 

least Ͳʹ distinct types of RNMsͷ͸. Moreover, whether RNMs of microRNAs play a role 

in cardiovascular disease was unknown. During our studies we focussed on ͳ abundant 

RNMs: adenosine-to-inosine editing (A-to-I editing) and NͶ-adenosine methylation 

(mͶA) and Ͳ′-O-methylation (Ͳ′OMe), which are shown in Figure 4. 

 
  

 
Figure ʹ: The RNMs we studied in microRNAs. The biochemical  

modifications of the standard RNA nucleotides are shown in red. 
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Adenosine-to-Inosine (A-to-I) Editing. In A-to-I editing, adenosines are 

deaminated to inosines by either ADARͱ and ADARͲ (adenosine deaminase acting on 

RNA ͱ or Ͳ) in mammals. Unlike adenosine (A), inosine preferentially binds to cytidine 

(C) and is therefore generally interpreted as guanosine (G) by the cellular machineryͷ͹. 

Therefore, A-to-I editing introduces specific changes in the genetic code of RNAs by 

causing certain adenosines to act like guanosines. This form of RNA editing can have a 

number of consequences on RNA functioning, ranging from destabilizing the RNA 

molecules’ secondary structure to altering a protein amino acid sequence due to 

editing of the mRNA’s coding sequence80-82. ADARs specifically target double stranded 

RNA structures, including those found in pri-miRs (Figure Ͳ). The editing of a pri-miR 

can profoundly influence microRNA maturation, resulting in changes in mature 

microRNA expression͸ͳ-͸͵. However, when editing alters the microRNA’s seed 

sequence, this can completely change the mature microRNA’s target selection, 

resulting in the regulation of a different targetome͸Ͷ. Whether microRNA editing 

events could lead to functional consequences for neovascularization was unknown. 

Ͷ’-O-Methylation (Ͷ′Ome). All four ribonucleotides that make up RNA can be 

subjected to Ͳ′Ome. This common RNM is installed by methyltransferases like 

Fibrillarinͷͳ. Ͳ′Ome stabilizes ‘household’ RNAs like ribosomal RNAs, small nuclear 

RNAs, and transfer RNAs and is likely to have a similar effect on microRNAs͸ͷ-͹ͱ. A few 

studies have suggested that Ͳ′Ome may protect some adenosine residues from A-to-I 

editing, however, the precise location and function of many Ͳ′Ome sites are currently 

unclear͹Ͳ-͹ʹ. 

Nͺ-Methyl-Adenosine (mͺA). mͶA is one of the most abundant RNMs in cells 

and tissues and is installed by mͶA ‘writer’ METTLͳ73. However, this RNM can also be 

removed by mͶA ‘erasers’ ALKBH͵ and FTO, which allows for highly dynamic 

regulation of mͶA levels. The biological function of mͶA modifications is often 

mediated through a group of mͶA ‘readers’. For example, mͶA in mRNAs can 

stimulate translation, direct alternative splicing or mark RNAs for decay, depending on 

which reader protein is involved. Regarding microRNAs, mͶA within the pri-miR was 

shown to impact the subsequent microRNA maturation process and could thus play an 

active role in regulation of microRNA expression͹͵. Additionally, studies have 
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suggested that microRNA mͶA might even affect microRNA silencing efficiency by 

influencing mRNA-microRNA interaction strength͹Ͷ-͹͸. However, whether microRNAs 

with a vascular function are often subject to mͶA methylation is unknown. 

OUTLINE OF THIS THESIS 

In this thesis we have assessed whether microRNA alterations can indeed be 

functionally relevant in ischemic cardiovascular disease using a focussed strategy: we 

investigated whether the ʹ described types of microRNA alterations ͱ) are present 

within specific microRNAs with a known cardiovascular function; Ͳ) are actively 

regulated in response to ischemia; and ͳ) can indeed regulate the functioning of these 

vasoactive microRNAs. 

In Chapter Ͳ we review the formation and function of isomiRs and various forms 

of microRNA modifications and discuss recent findings that suggest that these 

microRNA alterations directly affect neovascularization. Additionally, we highlight 

how this newfound regulatory layer could potentially provide novel therapeutic 

options for ischemic CVD. 

In Chapter ͳ we characterize the expression and function of the ͵’-isomiR of miR-

ʹͱͱ, a microRNA from the ͱʹqͳͲ cluster, in vascular cells and tissue. To do so we 

examine if the expression of the ͵’-isomiR is independently regulated from the 

canonical miR-ʹͱͱ in response to ischemia in a murine hindlimb ischemia model and in 

chronically ischemic human blood vessels. Additionally, we investigate whether miR-

ʹͱͱ’s ͵’-isomiR has a different effect on vascular cell functioning than miR-ʹͱͱ itself.  

In Chapter ʹ we describe that vasoactive miR-ʹ͸ͷb is subject to A-to-I editing or 

Ͳ′Ome during neovascularization in a murine model for hindlimb ischemia. 

Furthermore, we investigate whether there is a correlation between the levels of A-to-I 

editing and Ͳ′Ome of this microRNA. Additionally, we examine if A-to-I editing affects 

miR-ʹ͸ͷb’s target selection and its angiogenic properties. 

In Chapter ͵ we investigate which other vasoactive microRNAs are A-to-I edited 

in different vascular cell types and examine how editing is regulated in response to 

ischemia. We then further characterize post-ischemic A-to-I editing of ʹ abundant 

microRNA candidates in murine hindlimb tissues, cultured human veins and arteries 

and in lower limb veins from patients with CVD. Finally, we also examine whether the 
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vasoactive microRNA A-to-I editing events affect the microRNA’s target selection and 

its angiogenic properties. 

In Chapter Ͷ we studied vasoactive microRNA mͶA methylation in human 

fibroblasts and compared it to previous reports of microRNA mͶA methylation in 

kidney cells. Furthermore, we examined the effect of hypoxia on microRNA 

methylation and whether proteins that regulate mͶA methylation affect the expression 

of these vasoactive microRNAs. 

The results described in this thesis and the future perspectives are discussed in  

Chapter ͷ. 
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