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Chapter 4

Frontotemporal dementia mutation carriers: 
symptom onset prediction using MRI-based and 
cognitive features

Published in Brain Communications 2020;2(2):fcaa079 as:

Classifi cation using fractional anisotropy predicts conversion in genetic 
frontotemporal dementia, a proof of concept
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Abstract
Frontotemporal dementia (FTD) is a highly heritable and devastating neurodegenerative disease. 
About 10–20% of all FTD is caused by known pathogenic mutations, but a reliable tool to predict 
clinical conversion in mutation carriers is lacking. In this retrospective proof-of-concept case-
control study, we investigate whether magnetic resonance imaging (MRI-)based and cognition-
based classifiers can predict which mutation carriers from genetic frontotemporal dementia families 
will develop symptoms (‘convert’) within 4 years. 

From genetic FTD families, we included 42 presymptomatic FTD mutation carriers. We 
acquired anatomical, diffusion-weighted imaging, and resting-state functional MRI, as well as 
neuropsychological data. After 4 years, seven mutation carriers had converted to FTD (‘converters’), 
while 35 had not (‘non-converters’). We trained regularised logistic regression models on baseline 
MRI and cognitive data to predict conversion to FTD within 4 years, and quantified prediction 
performance using area under the receiver operating characteristic curves (AUC). 

The prediction model based on fractional anisotropy, with highest contribution of the forceps 
minor, predicted conversion to FTD beyond chance level (AUC = 0.81, family-wise error corrected 
p = 0.025 vs. chance level). Other MRI-based and cognitive features did not outperform chance 
level. 

Even in a small sample, fractional anisotropy predicted conversion in presymptomatic FTD 
mutation carriers beyond chance level. After validation in larger data sets, conversion prediction in 
genetic FTD may facilitate early recruitment into clinical trials.

Keywords: frontotemporal dementia; MAPT protein, human; GRN protein, human; 
C9orf72, human; diffusion tensor imaging; resting-state functional MRI; multimodal MRI; 
classification; machine learning
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Introduction

Frontotemporal dementia (FTD) is a highly heritable and devastating neurodegenerative disease 
that often occurs at a presenile age (Ratnavalli et al., 2002; Harvey et al., 2003; Hogan et al., 
2016). Patients typically present with behavioural symptoms (behavioural variant FTD; bvFTD; 
Rascovsky et al., 2011) or with language disorders (primary progressive aphasia; PPA; Gorno-
Tempini et al., 2011), but may also develop amyotrophic lateral sclerosis (ALS; Lomen-Hoerth 
et al., 2002) or parkinsonian syndromes such as corticobasal syndrome (CBS) and progressive 
supranuclear palsy (PSP; Josephs et al., 2006). About 10–20% of all FTD is caused by three known 
pathogenic mutations: microtubule-associated protein tau (MAPT), progranulin (GRN), and 
chromosome 9 open reading frame 72 (C9orf72) repeat expansion (Seelaar et al., 2008; Rohrer et 
al., 2009; Benussi et al., 2015). These mutations have a high penetrance and an autosomal dominant 
inheritance pattern. As such, roughly 50% of family members from a genetic FTD pedigree will 
develop an FTD variant. 

Uncertainty about if and when a person will develop FTD is a major burden (Riedijk et al., 2009; 
Cohn-Hokke et al., 2018), and some subjects undergo genetic testing to eliminate this uncertainty. 
However, when a mutation is found, this raises the question when symptoms will emerge. A reliable 
prognosis may provide psychological benefit, and contributes to the timely organisation of adequate 
care. Moreover, conversion prediction in genetic FTD may facilitate early recruitment into clinical 
trials for disease modifying treatments, which could lead to improved trial efficacy (Tsai & Boxer, 
2016). However, accurate conversion prediction is currently not possible. Expected time to symptom 
onset, calculated using the ages of FTD onset of family members, has been used as proxy in research 
settings (Rohrer et al., 2015; Jiskoot et al., 2018a), but these estimates are inaccurate due to the large 
variation in age of onset between and within genetic FTD families (van Swieten & Heutink, 2008; 
Jiskoot et al., 2018a). A more reliable clinical tool is needed to predict conversion in genetic FTD.

Magnetic resonance imaging (MRI-)based classification is a promising diagnostic biomarker 
for FTD (Raamana et al., 2014; Klöppel et al., 2015; Koikkalainen et al., 2016; Bron et al., 2017; 
Meyer et al., 2017; Bouts et al., 2018), and distinguishes presymptomatic FTD mutation carriers 
from controls beyond chance (Feis et al., 2019a). Classification with cognitive measures has also 
been advocated as diagnostic FTD biomarker (Wang et al., 2016). Therefore, MRI- and cognition-
based classification may be suitable candidates for conversion prediction in genetic FTD. In recent 
observational studies, FTD mutation carriers were followed up until conversion, and multimodal 
MRI data were analysed using mass univariate techniques such as voxel-based morphometry and 
diffusion tensor imaging (DTI; Jiskoot et al., 2019), or using classification scores calculated from 
multimodal MRI and a classification model based on FTD patients (Feis et al., 2019b). These 
studies suggest that brain changes as found on MRI appear relatively explosively in the final years 
before symptom onset. However, it is yet unknown whether conversion in such subjects could have 
been predicted based on pre-conversion MRI scans or neuropsychological data.

Here, we study whether MRI-based features and cognitive measures have predictive value for 
FTD conversion in genetic FTD. To this end, we train prediction models on MRI-based features 
and cognitive features to predict which presymptomatic FTD mutation carriers develop symptoms 
within 4 years (‘converters’), and which mutation carriers do not (‘non-converters’).
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Methods

Participants
This retrospective case-control study included FTD mutation carriers from the FTD-Risk Cohort 
(FTD-RisC; Dopper et al., 2014; Meeter et al., 2016a; Papma et al., 2017; Jiskoot et al., 2016, 
2018b, 2019), a longitudinal study that follows healthy, 50% at-risk family members of genetic 
FTD patients on a 2-year basis. For the current study, we included the data of 43 FTD mutation 
carriers, who entered FTD-RisC between May 2010 and November 2014. Inclusion criteria were 
age at MRI scan between 40 and 70 years old, availability of a 3-dimensional T1-weighted MRI 
(3DT1w) scan, a diffusion-weighted imaging (DWI) data set, a resting-state functional MRI T2*-
weighted (rs-fMRI) scan, and availability of clinical follow-up after 2 and 4 years. Genotyping, 
as described in previous work (Dopper et al., 2014; Jiskoot et al., 2016), revealed nine MAPT 
mutation carriers, 28 GRN mutation carriers, and six C9orf72 repeat expansion carriers. For seven 
FTD mutation carriers who had converted to FTD (four MAPT and three GRN mutation carriers; 
‘converters’; see ‘Conversion’ section below), we included the MRI data of their last visit before 
conversion. For one converter (MAPT mutation carrier), these MRI data were excluded due to the 
presence of artefacts, and we included MRI data of the previous visit. The time between MRI and 
conversion ranged between 11 and 41 months (mean = median = 22 months, SD = 10.5 months). 
More details on this group’s demographics are provided in there results. The remaining mutation 
carriers were confirmed to be asymptomatic after 4 years follow-up in accordance with established 
diagnostic criteria for bvFTD (Rascovsky et al., 2011), PPA (Gorno-Tempini et al., 2011), and ALS 
(Ludolph et al., 2015), and were termed ‘non-converters’. Follow-up after 6 years was not complete 
for this group: 25 non-converters were followed up after 6 years and all remained asymptomatic at 
that point. For non-converters, we included the FTD-RisC baseline MRI data. One non-converter 
with a GRN mutation was excluded due to incomplete neuropsychological data. Other exclusion 
criteria were: current or past neurologic (other than dementia) or primary psychiatric disorders, 
history of drug abuse, large image artefacts, and gross brain pathology other than atrophy.

Standard protocol approvals, registrations, and patient consents
Participants and clinical investigators were blinded to the participants’ genetic status, except for 
those that underwent predictive testing at their own request. For converters, genetic counselling 
was offered to the patient and family members, and genetic status was unblinded to confirm 
the presence of the pathogenic mutation. The study was conducted in accordance with regional 
regulations and the Declaration of Helsinki. The Erasmus Medical Centre and Leiden University 
Medical Centre local medical ethics committees approved the study, and every participant provided 
written informed consent (Feis et al., 2019b).

Conversion
Conversion was determined in a multidisciplinary consensus meeting of the Erasmus Medical 
Centre FTD Expertise Centre, involving neurologists ( JCvS), neuropsychologists ( JLP, JMP, LCJ), 
neuroradiologists, a clinical geneticist, and a care consultant (Feis et al., 2019b). In the consensus 
meetings, information from the medical history, neuropsychological assessment, and MRI of the 
brain were reviewed. The timing of symptom onset was estimated from heteroanamnestic information 
provided by knowledgeable informants (e.g., siblings, spouses). After the clinical diagnosis was 
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made, and if the subject and family agreed, genetic status was unblinded for confirmation. Four 
MAPT mutation carriers and one GRN mutation carrier converted to bvFTD, while two GRN 
mutation carriers converted to non-fluent variant PPA (nfvPPA). BvFTD converters presented with 
progressive behavioural deterioration, functional decline, and frontal and/or temporal lobe atrophy 
on structural MRI, fulfilling the international diagnostic consensus criteria for bvFTD with definite 
frontotemporal lobar degeneration pathology (Rascovsky et al., 2011). The two nfvPPA converters 
presented with isolated language difficulties and no impairment in daily living activities. Both 
showed a non-fluent, halting speech with sound errors and agrammatism, fulfilling the diagnostic 
criteria for nfvPPA (Gorno-Tempini et al., 2011). For more detailed information on conversion 
criteria, and for a full description of the converters’ clinical profile, see Jiskoot et al. (2018b, 2019).

MRI data acquisition
Subjects were scanned at the Leiden University Medical Centre using a 3 T MRI scanner 
(Achieva, Philips Medical Systems, Best, The Netherlands) with an 8-channel SENSE head coil 
(Feis et al., 2019a). The imaging protocol included a whole-brain near-isotropic 3DT1w sequence 
for cortical and subcortical tissue-type segmentation, a DWI sequence for assessments of white 
matter diffusivity, and rs-fMRI sequence for the calculation of functional connectivity measures. 
Participants were instructed to lie still with their eyes closed and not to fall asleep during rs-fMRI. 
Scan parameters are provided in Table 4.1.

Table 4.1  MRI sequence parameter settings
3DT1w DWIa rs-f MRI

Slices, n 140 70 38

TR, ms 9.8 8,250 2,200

TE, ms 4.6 80 30

Flip angle, ° 8 90 80

Matrix, mm 256 × 256 128 × 128 80 × 80

Voxel size, mm 0.88 × 0.88 × 1.20 2.00 × 2.00 × 2.00 2.75 × 2.75 × 2.99b

Duration, min 4.57 8.48 7.28

Scan protocol of whole-brain near-isotropic 3-dimensional T1-weighted (3DT1w), diffusion-weighted 
imaging (DWI), and resting-state functional T2*-weighted MRI (rs-fMRI) on a 3 T scanner at the Leiden 
University Medical Centre. 
TR, repetition time; TE, echo time.
a 60 directions, b = 1,000, one b0 image.
b Including 10% interslice gap.

Image preprocessing
Preprocessing of MRI scans was performed similarly to previous work (Bouts et al., 2018; Feis et al., 
2019a, b). All registration and segmentation steps were critically reviewed and errors were corrected 
accordingly.

For 3DT1w images, we performed bias field correction (N4ITK; Tustison et al., 2010), brain 
extraction (FSL BET; Smith, 2002), nonlinear registration to the MNI152 2 × 2 × 2 mm T1 
template (FNIRT; Anderson et al., 2007), tissue-type segmentation (SPM12; Friston et al., 2007), 
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and segmentation of deep grey matter structures, including the bilateral thalamus, caudate nucleus, 
putamen, globus pallidum, nucleus accumbens, amygdala, and hippocampus (FIRST; Patenaude et 
al., 2011). Our choice to use SPM segmentation was based on the segmentation tool comparison by 
Kazemi & Noorizadeh, 2014.

Preprocessing of DWI data sets included correction of motion and eddy-current induced 
distortions (eddy correct; Leemans & Jones, 2009), and voxel-wise calculation of the measures 
fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AxD; largest eigenvalue), 
and radial diffusivity (RD; average of the two remaining eigenvalues) using DTIFIT (Smith et al., 
2004). A global mean FA image was created by nonlinearly registering FA maps to the FMRIB58_
FA template, and tract-based spatial statistics (FSL TBSS; Smith et al., 2006) was used to extract 
FA, MD, AxD, and RD values using the standard FSL TBSS skeleton. The skeleton was thresholded 
at 0.2 to ensure that extracted values originate from white matter. 

For rs-fMRI data, preprocessing consisted of motion correction ( Jenkinson et al., 2002), brain 
extraction, spatial smoothing using a Gaussian kernel with a full width at half maximum of 3 mm, 
grand mean intensity normalisation, motion artefact removal, and high-pass temporal filtering 
(cut-off frequency = 0.01 Hz). Motion artefacts were removed using a single-session independent 
component analysis (ICA) to decompose the rs-fMRI data into distinct statistically independent 
components, followed by automatic identification and removal of motion artefacts using ICA-
AROMA (version 0.3 beta; Pruim et al., 2015). Registration to standard space was performed in 
two steps. First, a temporal mean image calculated from the 4D rs-fMRI volume was registered 
to the 3DT1w image using boundary-based registration (Greve & Fischl, 2009). Next, resulting 
registration parameters were concatenated to the 3DT1w-to-MNI152 template registration 
parameters to obtain the final registration parameters.

MRI feature selection
Selection of MRI features was performed as described previously (Bouts et al., 2018; Feis et al., 
2019a). 

Cortical grey matter density (GMD) and white matter density (WMD) were calculated 
as weighted means of their respective regional grey matter or white matter probability (SPM 
segmentation) weighted by the probability of a voxel belonging to a specific cortical region. Cortical 
probabilities were derived from the 48 Harvard-Oxford probabilistic anatomical brain atlas (split 
into left and right), and white matter probabilities were derived from the Johns-Hopkins University 
white matter tractography atlas for 20 white matter tracts. Voxels with atlas probability values under 
25% were excluded. We estimated these features in native space by transforming the atlas masks to 
the images’ native space using the inverted non-linear registration parameters. For deep grey matter 
regions, GMD values were calculated as the regions’ volume (FIRST segmentations) divided by 
the total intracranial volume. This resulted in a GMD feature vector of 110 weighted mean GMD 
values (48 left cortical, 48 right cortical, and 14 deep grey matter regions) and in a feature vector 
of 20 weighted mean WMD values per subject. While grey matter volume, as estimated by voxel-
based morphometry, would also be a useful feature for prediction, we chose the simpler GMD for 
generalisation purposes, as it is not reliant on a study-specific template.

DTI features were calculated as weighted mean FA, MD, AxD, or RD values per tract per subject. 
First, we projected each subject’s FA, MD, AxD, and RD values onto the TBSS group skeleton 
on a voxel-wise basis. Next, we weighted the mean values per tract by the probability of a voxel 
belonging to that specific tract, derived from 20 tracts of the Johns-Hopkins University white matter 
tractography atlas. Voxels with atlas probability values under 25% were excluded. This resulted in 
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four feature vectors of each 20 weighted mean values per subject.
To calculate functional connectivity features, all processed rs-fMRI images were combined 

in a temporally concatenated group-level ICA (MELODIC; Beckmann & Smith, 2004), with 
dimensionality fixed at 20 components and an ICA threshold of 0.99 (Smith et al., 2013). This 
means that each voxel included in the ICA map was 99 times more likely to be part of that component 
than to be caused by Gaussian background noise. For each subject, we calculated the mean time 
course for each component, weighted by the ICA weight map and grey matter probability of that 
component’s regions. Correlations between the mean time courses of all pairs of components were 
subsequently calculated. Functional connectivity was calculated as full correlations (FCor), and as 
sparse, L1-regularised, partial correlations (PCor) between the mean time courses of all pairs of 
components. Partial correlations were calculated using the graphical lasso algorithm ( J. Friedman 
et al., 2008). This procedure resulted in two feature vectors of each (20 × 19) ÷ 2 = 190 (partial) 
correlations per subject.

Finally, we created one multimodal feature vector by concatenating all feature vectors together. 
As such, we had nine feature vectors in total: two 3DT1w feature vectors, four DTI feature vectors, 
two rs-fMRI feature vectors, and one multimodal imaging feature vector.

Neuropsychological assessment and cognitive feature selection
We screened global cognitive functioning by means of the Mini-Mental State Examination 
(MMSE; Folstein et al., 1975). Experienced neuropsychologists ( JLP, JMP, LCJ) administered 
neuropsychological tests within six cognitive domains: language, attention and mental processing 
speed, executive functioning, social cognition, memory, and visuoconstruction. The language 
domain was assessed using the 60-item Boston naming test (BNT; Kaplan et al., 1978), verbal 
semantic association test (SAT; Visch-Brink et al., 2005), ScreeLing phonology (Doesborgh et al., 
2003), and categorical fluency (Thurstone & Thurstone, 1962). The domain of attention and mental 
processing speed was evaluated using the trail making test (TMT-)A (Army Individual Test Battery, 
1944), the mean of Stroop colour-word tests I and II (Stroop, 1935), Wechsler adult intelligence 
scale III (WAIS-III) digit span forwards (Wechsler, 2005), and letter digit substitution test (LDST; 
Jolles et al., 1995). We measured the executive functioning domain using TMT-B (Army Individual 
Test Battery, 1944), Stroop colour-word test III (Stroop, 1935), WAIS-III digit span backwards 
(Wechsler, 2005), modified Wisconsin card sorting test (WCST) concepts (Nelson, 1976), letter 
fluency (Thurstone & Thurstone, 1962), and WAIS-III similarities (Wechsler, 2005). The social 
cognition domain was assessed by means of Happé theory of mind cartoons, Happé non-theory of 
mind cartoons (Happé et al., 1999), and Ekman faces (Ekman & Friesen, 1976). We evaluated the 
memory domain using the immediate response and recall of the Dutch Rey auditory verbal learning 
test (RAVLT; Rey, 1958), and the visual association test (VAT; Lindeboom et al., 2002). Lastly, we 
tested the visuoconstruction domain by means of clock drawing (Royall et al., 1998) and WAIS-III 
block design (Wechsler, 2005). 

Raw test scores were added into one cognitive feature vector per domain. This resulted in a 
language feature vector with four features, an attention feature vector with four features, an executive 
feature vector with six features, a social feature vector with three features, a memory feature vector 
with three features, and a visuoconstruction feature vector with two features. Finally, we added 
these feature vectors together to create a multidomain feature vector, bringing the total number 
of feature vectors on seven: language, attention, execution, social, memory, visuoconstruction, and 
multidomain.
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Classifier
In order to identify future converters (n = 7) from non-converters (n = 35) at baseline, we trained 
prediction models using MRI features (n = 9) and, separately, cognitive features (n = 7). Feature 
vectors were used to train a logistic elastic net regression algorithm (Zou & Hastie, 2005; Friedman 
et al., 2010; Schouten et al., 2016; Bouts et al., 2018; Feis et al., 2019a). The elastic net regression 
procedure estimates a sparse regression model that includes only a subset of the provided features by 
imposing a penalty for including features (i.e., L1 penalty) and for the sum of the squared value of 
the coefficients (i.e., L2 penalty). This way, elastic net provides a solution for the imbalance between 
the large number of features and the small number of subjects. Age and sex were included in the 
model without penalty to ensure that estimated feature regression coefficients were conditional 
on subject age and sex. A prediction score of 0 represented a non-converter and 1 represented a 
converter. 

Cross-validation
We trained our conversion prediction models in a stratified nested seven-fold cross-validation 
scheme to make sure that the proportion of converters and non-converters was the same in each 
fold (i.e., one converter and five non-converters per fold). In the outer loop, one part of the data 
(i.e., one of the seven folds) was set apart as a test set and served to test the generalised prediction 
performance of the elastic net regression model. The remaining parts (six of the seven folds) were 
used to train the model. Within the training set of the outer loop, we performed a nested cross-
validation to optimise the model’s hyperparameters without overestimating prediction performance 
(Varma & Simon, 2006; Kriegeskorte et al., 2009). The resulting optimal hyperparameters were 
used in the training set of the outer loop to train the model, and the prediction performance was 
then tested in the test set of the outer loop. This process was repeated seven times to make sure that 
each subject was part of the test set exactly once. Since the test set of the outer loop was neither 
used for model training, nor for parameter optimisation, we reduced the risk of overestimating the 
generalisation performance as much as possible (Kriegeskorte et al., 2009; Schouten et al., 2016; 
Bouts et al., 2018; Feis et al., 2019a). The entire prediction procedure was repeated 50 times to 
average prediction outcome variability resulting from random partitioning in training and test 
folds. All prediction analyses and evaluations were implemented in R version 3.3.2 (R core 2016, 
GLMnet package; Friedman et al., 2010).

Prediction performance
For both analyses, we quantified prediction performances using receiver operating characteristic 
curves. Receiver operating characteristic curves were calculated by shifting the threshold for 
predicting an individual as converter from 0 to 1, and plotting the true positive rate (sensitivity) 
vs. the false positive rate (1 – specificity) for each intermediate point. The area under this receiver 
operating characteristic curve (AUC) is a measure of prediction performance insensitive to the 
distribution between the groups (Fawcett, 2006). Additionally, we calculated the optimal operating 
point on the curve to calculate the model’s sensitivity, specificity, and prediction accuracy, given 
equal class distribution and equal penalty for false positive and false negative predictions. We 
averaged AUC, accuracy, sensitivity, and specificity values from the 50 times repeated nested cross-
validations (Schouten et al., 2016; Bouts et al., 2018; Feis et al., 2019a).
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Statistical analysis
Statistical group analyses of demographic data were performed using R (R Core 2016, Vienna, 
Austria). We tested for differences between converters and non-converters using unpaired t-tests 
(age and education), the Mann-Whitney U test (MMSE scores [0–30]) and the chi-square test (sex 
distribution). 

To compare MRI and cognitive prediction models’ AUC values vs. chance level, we used 
permutation tests (N = 5,000; Noirhomme et al., 2014). We used the maximum t-statistic 
method to correct for multiple comparisons within, respectively, the nine MRI-based and the 
seven cognitive prediction analyses. For each permutation, we calculated the maximum absolute 
t-statistic within the family of tests, which resulted in a maximum t-distribution of 5,000 maximum 
absolute t-statistics. The observed t-statistic of each analysis was then compared to this maximum 
t-distribution in order to obtain a family-wise error rate corrected p-value. The alpha level required 
for statistical significance was set at 0.05.

Data availability
Raw data were generated at the Leiden University Medical Centre. The derived data, as well as 
scripts, that support the findings of this study are available from the corresponding author upon 
request. 
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Results

Demographics
Seven converters and 35 non-converters met the inclusion criteria (Table 4.2). At the time of MRI 
scan, converters did not differ from non-converters in terms of age (p = 0.85), sex distribution (p = 
0.40), and MMSE scores (p = 0.50). However, converters had higher levels of education than non-
converters (p = 0.015). More information on the converter group is shown in Table 4.3.

Table 4.2  Participant demographics
  Converters (n = 7)a Non-converters (n = 35) p-value

Age, mean (SD) years 51.7 (8.8) 51.0 (8.4) 0.85

Sex, n (%) ♀ 4 (57%) 26 (74%) 0.40

Education, mean (SD) yearsb 15.2 (0.8) 13.7 (2.9) 0.015

MMSE, median (range) points 29 (27–30) 30 (24–30) 0.50

MMSE, Mini-Mental State Examination.
a 4 microtubule-associated protein tau mutation carriers, 3 progranulin mutation carriers.
b Education values were missing for one converter.

Table 4.3  Converter demographics

  Gene Mutation Age at 
MRI Sex Months to 

conversion
FTD 
variant

Prediction 
scorea

Converter 1 GRN S82VfsX174 65 Female 23 bvFTD 0.12

Converter 2 MAPT P301L 54 Female 28 bvFTD 0.31

Converter 3 MAPT P301L 57 Male 18 bvFTD 0.79

Converter 4 GRN S82VfsX174 56 Female 11 nfvPPA 0.10

Converter 5 GRN S82VfsX174 49 Female 22 nfvPPA 0.03

Converter 6 MAPT G272V 41 Male 41b bvFTD 0.56

Converter 7 MAPT G272V 42 Male 11 bvFTD 0.72

bvFTD, behavioural variant FTD; FTD, frontotemporal dementia; GRN, progranulin; MAPT, 
microtubule-associated protein tau; MRI, magnetic resonance imaging; nfvPPA, non-fluent variant primary 
progressive aphasia.
a Prediction scores based on the FA prediction model range from 0 to 1, with 0 representing non-converters 
and 1 representing converters.
b MRI data nearer to symptom onset was excluded due to artefacts for this subject.

Prediction performance 
Prediction with MRI features yielded mixed results (Table 4.4). The model based solely on FA 
features (FA model) significantly outperformed chance level with an AUC of 0.81 (p = 0.025 vs. 
chance level). For the FA model, subjects’ prediction scores are shown in Figure 4.1. Converters 
with a MAPT mutation seemed to have higher conversion prediction scores than those with a GRN 
mutation. Similarly, male mutation carriers seemed to have higher prediction scores than female 
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mutation carriers. There seemed to be no clear correlation (Pearson’s r = 0.02) between conversion 
prediction scores and time from MRI to conversion. However, the above three observations should 
be noted with care, since the small sample size did not permit for meaningful statistical testing. 

The FA model’s beta weights for the 50 cross-validation repeats are shown in Figure 4.2. The 
highest beta weights were found in the forceps minor. Other white matter tracts with above average 
beta weights included the forceps major, right corticospinal tract, right inferior longitudinal 
fasciculus, right anterior thalamic radiation, and right uncinate fasciculus. For the two WM tracts 
with the largest beta weights (i.e., forceps minor and major), we plotted subjects' mean FA value 
across the tract in Figure 4.3. Corresponding with the beta weights, the differences between 
converters and non-converters were larger for the forceps minor than for the forceps major.

The other DTI features (i.e., MD, AxD, RD) did not outperform chance level, nor did grey and 
white matter density features, and functional connectivity features (i.e., FCor, PCor). Concatenating 
all features together in a multimodal MRI model did not improve performance compared to the FA 
model (AUC = 0.63, p = 0.55 vs. chance level). 

Prediction with cognitive features resulted in poor performances (Table 4.5). The best 
performing cognitive model was based on the executive domain (AUC = 0.35). Adding multiple 
domains together in a multidomain cognitive model did not improve performance (AUC = 0.34).

Table 4.4  MRI features’ performance

MRI modality AUC  Min – max Sensitivity Specificity Accuracy FWERC p-value 
(AUC > chance)

GMD 0.668 0.563 – 0.731 0.746 0.599 0.623 0.375

WMD 0.438 0.306 – 0.567 0.571 0.517 0.526 0.976

FA 0.812 0.608 – 0.906 0.769 0.761 0.762 0.025

MD 0.677 0.616 – 0.743 0.711 0.693 0.696 0.322

AxD 0.435 0.327 – 0.563 0.626 0.491 0.514 0.977

RD 0.625 0.465 – 0.722 0.689 0.630 0.640 0.590

FCor 0.336 0.204 – 0.449 0.446 0.513 0.501 1.000

PCor 0.403 0.233 – 0.502 0.514 0.527 0.525 0.996

Multimodal 0.626 0.547 – 0.710 0.557 0.781 0.744 0.552

Converters (seven presymptomatic FTD-RisC mutation carriers that developed symptoms within 4 years 
after assessment) vs. non-converters (35 presymptomatic FTD-RisC mutation carriers that remained 
cognitively healthy after 4 years). Multimodal represents a combination of all MRI features. Min – max 
AUC values represent the variance across the 50 repeats. Italic: mean AUC significantly higher than chance 
level after family-wise error rate correction.
AUC, area under the receiver operating characteristic curve; FA, fractional anisotropy; FCor, full correlations 
between 20 ICA components; FTD-RisC, frontotemporal dementia Risk Cohort; FWERC, family-
wise error rate corrected; GMD, grey matter density; ICA, independent component analysis; MD, mean 
diffusivity; PCor, L1-regularised partial correlations between 20 ICA components; RD, radial diffusivity; 
WMD, white matter density.
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Figure 4.2  FA model beta weights
Box plots show the FA model’s standardised beta weights for the 50 cross-validation repeats. Demographics (age and sex, in 
blue) were included in the model without penalty, while the FA features (red) were regularised. 
ATR, anterior thalamic radiation; CST, corticospinal tract; CGC, cingulum in the cingulate gyrus area; CGH, cingulum in 
the hippocampal area; FA, fractional anisotropy; FMA, forceps major; FMI, forceps minor; IFOF, inferior fronto-occipital 
fasciculus; ILF, inferior longitudinal fasciculus; L, left; R, right; SLF, superior longitudinal fasciculus; TSLF, temporal 
projection of the SLF; UF, uncinate fasciculus.

Figure 4.1  Converters’ and non-converters’ conversion prediction scores
Box and scatter plot of each subject’s conversion prediction score on a scale from 0 (representing non-converter) to 1 
(representing converter) after applying the FA model. Different gene mutations were represented with different shapes. The 
converter with the longest time between MRI and conversion (i.e., 41 months) was annotated with increased size. These 
conversion prediction scores result in a performance of 0.81 AUC for the FA model (p = 0.025 vs. chance level). 
C9orf72, chromosome 9 open reading frame 72; FA, fractional anisotropy; GRN, progranulin; MAPT, microtubule-
associated protein tau.  
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Table 4.5  Cognitive features’ performance

Cognitive domain AUC  Min – max Sensitivity Specificity Accuracy FWERC p-value 
(AUC > chance)

Language 0.282 0.180 – 0.371 0.394 0.515 0.495 0.999

Attention 0.343 0.208 – 0.441 0.517 0.451 0.462 0.992

Executive 0.349 0.184 – 0.482 0.534 0.439 0.455 0.987

Social 0.344 0.208 – 0.449 0.474 0.488 0.486 0.992

Memory 0.272 0.143 – 0.359 0.491 0.414 0.427 0.999

Visuoconstruction 0.288 0.186 – 0.424 0.429 0.477 0.469 0.999

Multidomain 0.340 0.208 – 0.449 0.477 0.481 0.480 0.994

Converters (seven presymptomatic FTD-RisC mutation carriers that developed symptoms within 4 years 
after assessment) vs. non-converters (35 presymptomatic FTD-RisC mutation carriers that remained 
cognitively healthy after 4 years). Multidomain represents a combination of all cognitive features. Min – max 
AUC values represent the variance across the 50 repeats. 
AUC, area under the receiver operating characteristic curve; FTD-RisC, frontotemporal dementia Risk 
Cohort; FWERC, family-wise error rate corrected.

A

B

Figure 4.3  Mean FA values in two white matter tracts
Box and scatter plot of each subject's mean FA value in the forceps minor (A), and forceps major (B). Different FTD gene 
mutations were represented with different shapes. The converter with the longest time between MRI and conversion (i.e., 41 
months) was annotated with increased size. 
C9orf72, chromosome 9 open reading frame 72; FA, fractional anisotropy; GRN, progranulin; MAPT, microtubule-
associated protein tau.
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Discussion

This study describes conversion prediction within 4 years in FTD mutation carriers using MRI-
based and cognitive measures. We found that it was possible to distinguish converters from non-
converters beyond chance level with an AUC of 0.81 using FA. Other MRI-based and cognitive 
measures did not outperform chance level. 

The FA model’s performance reaffirms the potential of diffusion scans for early FTD diagnosis. 
Group differences in FA and other DTI metrics exist in presymptomatic FTD mutation carriers 
compared to controls (Borroni et al., 2008; Dopper et al., 2014; Pievani et al., 2014; Lee et al., 2017; 
Papma et al., 2017; Bertrand et al., 2018; Jiskoot et al., 2018a, 2019). More specifically with regard 
to conversion, two recent FTD-RisC studies observed how mass univariate MRI measures and 
MRI-based classification scores develop as subjects approach conversion, as compared to subjects 
who did not convert during follow-up. Jiskoot et al. found that grey matter atrophy and white 
matter DTI changes become noticeable around two years before symptom onset, and longitudinal 
FA decline was primarily located in the genu of the corpus callosum ( Jiskoot et al., 2019), the area 
with the higest beta values in our current study. Feis et al. combined multimodal MRI to calculate a 
single classification score at each time point using a classification model that was trained on bvFTD 
patients and controls. They found that the classification scores of presymptomatic mutation carriers 
and non-carriers did not differ over time, but that the classification scores of converters rose faster 
than those of non-converting mutation carriers (Feis et al., 2019b). Together, these studies suggest 
that FTD-related deterioration on MRI accelerates when subjects are near conversion. However, 
they fail to address the most important question: is it possible, using presymptomatic cross-sectional 
data, to predict future conversion in individual FTD mutation carriers? We expand on this by 
showing that individual differences in FA have predictive value for FTD onset within 4 years in 
FTD mutation carriers. 

Within the FA model, the forceps minor feature had the highest beta weights across 50 repeats, 
suggesting that this area was important for prediction. Accordingly, the difference in mean FA 
between converters and non-converters was larger in the forceps minor than in other tracts, e.g., the 
forceps major. The genu of the corpus callosum (i.e., part of the forceps minor) was recently found 
to be the most consistent white matter region in terms of DTI changes across FTD subtypes (Elahi 
et al., 2017). As our converter group included both bvFTD and nfvPPA converters, this might 
explain why the forceps minor had high beta weights, and could provide biological support for 
our model. Forceps minor changes may therefore be a promising marker for early FTD detection, 
although it might not discriminate between the different FTD subtypes. Other white matter tracts 
are affected more specifically in the different clinical syndromes. BvFTD is generally characterised 
by DTI changes in the anterior thalamic radiation, cingulum, and uncinate fasciculus (Zhang 
et al., 2011; Mahoney et al., 2014; Möller et al., 2015; Daianu et al., 2016), while the superior 
longitudinal fasciculus and corticospinal tract are typically affected in nfvPPA (Whitwell et al., 
2010; Galantucci et al., 2011; Omer et al., 2017), and the inferior longitudinal and uncinate fasciculi 
show DTI changes in svPPA (Whitwell et al., 2010; Galantucci et al., 2011; Tu et al., 2015). Future 
studies should investigate whether this combination of shared and different white matter DTI 
changes between the FTD subtypes facilitate hierarchical classification. Although it is interesting 
to examine which features were important for prediction, care must be taken not to overinterpret 
the beta weights. Contrary to explanatory regression models, the beta weights of our regularised 
prediction model do not designate direct relationships between the features and prediction score, 
nor do they reflect mean differences between the groups (Shmueli, 2010). Each feature’s effect is 
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conditional on the effects of all other features in the model, and multicollinearity between features 
may result in suppression of the effect of some features. For example, we cannot be sure whether 
the higher beta weights in the FA model for right hemispheric white matter tracts point towards 
asymmetric effects—such as are reported in GRN mutation carriers ( Jiskoot et al., 2018a)—or 
whether the corresponding regions in the left hemisphere added redundant information, and were 
therefore suppressed in the model.

Apart from the FA model, no other MRI- or cognition-based prediction model significantly 
outperformed chance. However, it would be inappropriate to draw conclusions based on the non-
significant results. Due to our small sample size, it is unclear whether these features were uninformative, 
or whether the study was underpowered to find significant results. Grey matter atrophy occurs at a 
later stage than white matter changes in MAPT and GRN mutation carriers (Borroni et al., 2008; 
Agosta et al., 2012; Rohrer & Rosen, 2013; Feis et al., 2019a; Jiskoot et al., 2019), but the question 
whether or not that precludes the use of grey matter features for early diagnosis requires further 
investigation. Similarly, we cannot comment on why the remaining diffusion features MD, AxD, 
and RD, which often yield comparable results to FA, did not outperform chance level. None of 
the cognitive features predicted conversion within 4 years. However, it should be noted that our 
selection of neuropsychological tests was arbitrary, and higher performance might be possible with 
different tests. Also, longitudinal cognitive assessments may be more specific and predictive of 
conversion than cross-sectional differences ( Jiskoot et al., 2018b). 

Important strengths of this study include the unique population and follow-up, which enabled 
the prediction of conversion in genetic FTD. Our clinical follow-up demonstrated that non-
converters remained asymptomatic even after 4 (and in 25 cases after 6) years, ensuring that the 
labels ‘converter’ and ‘non-converter’ were truly separate. Furthermore, our methods have been 
validated in previous studies concerning classification in AD and FTD (Schouten et al., 2016; 
Bouts et al., 2018). The most important limitation to this study was sample size. Our index group 
consisted of seven converters, which is a small number in neuroimaging studies, and even more so in 
machine learning. This resulted in performance estimates with a large degree of uncertainty, which 
means that relatively high performances were necessary to significantly outperform chance level. 
For example, the AUC needed to significantly outperform chance level after family-wise error rate 
correction was 0.78 for the MRI analyses, and 0.74 for cognitive analyses. Another limitation to 
this study was the sample’s heterogeneity. We included subjects from MAPT, GRN, and C9orf72 
families in order to boost our sample size, even though there is evidence that each mutation has its 
own pattern of neurodegeneration over time due to different underlying pathology (Seelaar et al., 
2011; Whitwell et al., 2012; Mann & Snowden, 2017; Jiskoot et al., 2018a). Indeed, converters with 
a MAPT mutation seemed to have higher conversion prediction scores than did converters with a 
GRN mutation, though this may also be due to sex differences. Stratification was not feasible due 
to our small sample size, but is necessary in future studies to show whether conversion prediction is 
possible in all FTD gene mutations or solely in MAPT. Just as different FTD mutations have different 
neurodegenerative profiles, so do the different clinical syndromes that constitute FTD (Seelaar et 
al., 2011; Whitwell et al., 2012; Rohrer & Rosen, 2013). Five subjects developed bvFTD, while two 
developed nfvPPA, increasing heterogeneity in our analyses. Despite these sources of heterogeneity, 
the FA-based model predicted conversion in 4 years beyond chance level, which is an important 
proof of concept that conversion prediction is possible in genetic FTD. Larger sample sizes might 
in the future facilitate hierarchical (Kim et al., 2019) or multilabel (Raamana et al., 2014; Klöppel 
et al., 2015; Koikkalainen et al., 2016; Bron et al., 2017; Canu et al., 2017) prediction to deal with 
these sources of heterogeneity. While the acquisition of a larger, similar cohort is costly and time-
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consuming, our current results indicate that the acquisition of such data is meaningful and may 
lead to more accurate conversion prediction for genetic FTD. Lastly, the timing of conversion, and, 
therefore, the time between MRI and conversion, was based on heteroanamnestic information from 
knowledgeable informants, and as such may not be fully accurate. However, it should be noted 
that an exact time of conversion is near impossible to estimate in neurodegenerative diseases due 
to the gradual increase in symptomatology, and this inaccuracy is unlikely to have influenced our 
conclusions.

Conclusion
To conclude, we showed that FA predicted conversion within 4 years in presymptomatic FTD 
mutation carriers. This proof-of-concept study underlines the potential of MRI-based prediction in 
genetic FTD to contribute to a reliable early-stage FTD diagnosis, and should be replicated when 
larger sample sizes become available to corroborate our results.
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