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Abstract

Architectural transformations play a key role in the evolution of complex systems, from design
algorithms for metamaterials to flow and plasticity of disordered media. Here, we develop a general
framework for the evolution of the linear mechanical response of network structures under discrete
architectural transformations via sequential bond swapping: the removal and addition of elastic
elements. We focus on a class of spatially complex metamaterials, consisting of triangular building
blocks. Rotations of these building blocks, corresponding to removing and adding elastic elements,
introduce (topological) architectural defects. We show that the metamaterials’ states of self stress play
acrucial role in the mechanical response, and that the mutually exclusive self stress states between two
different network architectures span the difference in their mechanical response. For our class of
metamaterials, we identify alocalized representation of these states of self stress, which allows us to
capture the evolving response. We use our insights to understand the unusual stress-steering
behaviour of topological defects.

1. Introduction

The unique properties of mechanical metamaterials emerge from the assembly of simple structural building
blocks connected by local interactions. Targeted design of such assemblies has aided the creation of
metamaterials with a broad range of responses and potential functionalities [ 1-8]. So far, most metamaterial
design has been focused on the creation of metamaterials with compatible or floppy motions: low-energy
deformations, which dominate the material’s response to external probing, and lead to unusual properties such
as negative Poisson ratio or vanishing shear modulus [9, 10]. However, incompatibility or frustration offers a
new avenue for designing material responses at higher energies, for example to produce materials with tunable
stiffness [11]. Such frustration in mechanical metamaterials is closely related to other artificial frustrated
systems, such as artificial spinice [12, 13], colloidal ice [14, 15] and colloidal antiferromagnets [16—18].
Recently, we presented a systematic strategy to introduce defects, and in particular topological defects, in a
novel class of mechanical metamaterials [19]. These consist of 2D triangular building blocks, and are a
mechanical analogue of spin systems with tunable ferromagnetic and antiferromagnetic interactions, where the
nature of the interaction is set by the orientation of the building blocks. We showed how to design a large
number of compatible structures in this class—including the well-known rotating square mechanism [19-21].
We subsequently introduced (topological) defects in our metamaterials by rotating one or more building blocks.
These architectural transformations affect the mechanical response and allow us to direct the stress
concentration in these structures [19]. Similarly, bond cutting strategies have recently been used to modify the
elastic moduli of disordered networks [22—24], and spatial deformations in allosteric networks [25]. More
widely, discrete changes in contact networks of flowing disordered media similarly lead to the evolution of
mechanical properties [26-29]. A formalism for calculating the changes in linear response under bond cutting
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Figure 1. (a) Under the same applied load (black arrows), two mechanical networks differing by a small number of bonds, highlighted
by the yellow triangles (left versus centre) differ in their stress response (colour bar). Depending on the material’s changing internal
architecture, the stress difference (Ag, right) can be either quasilocalized when an ordinary defect is introduced (a) or diffuse if a
topological defect s created (b). The same physical principles underlie both cases: the stress difference is governed by the networks’
changing states of self stress.

has been worked out recently [25, 28]. Here we extend this formalism to bond swapping, which involves the
sequential cutting and adding of bonds. We focus on rotations of building blocks for a particular class of
mechanical metamaterials [19], in which the resulting mechanical consequences are tractable.

To motivate our work, consider two examples of the response evolution under architectural
transformations, illustrated in figure 1. The examples show two architectural transformations that produce an
ordinary defect (figure 1(a)) and a topological defect (figure 1(b)) respectively. For each case, we show the stress
response under an applied load before and after transformation, and focus on the stress difference as a measure
of the evolution of the response. In the former case, where a single triangular building block is rotated, the stress
difference is localized around the rotated block (figure 1(a)). In the latter case, the stress difference spreads
throughout the system (figure 1(b)).

Our goal is to understand what controls these distinct stress differences. To do so, we study the linear
response of spring networks under architectural transformations. The possible stress fields inside such a
network form the stress space, which is composed of load-bearing states (LB-states), accessible via external
loading, and states of self-stress (SS-states), which are stress configurations with zero net force on all nodes.
Understanding the evolution of the mechanical response entails describing the evolution of these spaces [28].
For the overconstrained system at hand, the states of self-stress can be obtained in closed form, and we show how
to use this information to completely capture the response evolution. Specifically, we find that the stress field
difference between two networks as shown in figure 1, is spanned by their small number of mutually exclusive
(although not strictly orthogonal) SS-states. The presence of closed form SS-states in our metamaterials
therefore enables us to determine a priori how small modifications in network architecture affect the mechanical
response.

In the following sections, we discuss the linear mechanical formalism underlying our findings, which states
that stress distributions inside mechanical networks under external loading are spanned by LB-states, while SS-
states—which produce zero net forces—are inaccessible stress states of the network. We conclude that the stress
response difference between networks with related architectures must be spanned by their mutually exclusive
SS-states (section 2). We then present our non-periodic compatible mechanical metamaterials, consisting of
stacked anisotropic building blocks that can deform in harmony [19] (section 3), and in which the SS-space can
be represented as a set of localized states (section 4). We demonstrate how sequential building-block rotations
produce architectural changes that introduce controlled frustration, producing varying configurations of
(topological) defects (section 5). In spite of the presence of such frustration, all SS-states can still be constructed
straightforwardly (section 6.1). As a consequence, SS-states that are not shared between any two architecturally-
related networks are easily identified, and are confirmed to span the stress response difference under identical
loads (sections 6.2—6.4). Lastly, we use our knowledge of the SS-states to understand how topological defects
steer stresses into different parts of a metamaterial, illustrating that our findings may be useful for designing
metamaterials with targeted stress responses (section 7).
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2. Linear mechanics: states of self stress and floppy modes (FMs)

In order to understand the comparative response of mechanical networks with closely related architectures, we
now introduce the linear-elastic material model that underlies our findings [30, 31]. We discuss how a
mechanical metamaterial’s FM, load-bearing stresses (LB-states), and states of self stress (SS-states) naturally
arise from this theory, and show that knowledge of the SS-states suffices to understand the difference in
mechanical response of two architecturally related materials.

We model our networks as freely hinging nodes connected by Hookean springs. The network’s mechanics
are described by three linear-algebraic matrix equations that relate forces exerted by each bond—which we refer
to as stresses—to the net forces on and displacements of each node. First, node forces f are related to bond
stresses (or tensions), o via a kinematic matrix, R”, which is constructed using the network’s architectural
layout, such that f = R”o. Similarly, node displacements # map to bond elongations e via the transpose of the
kinematic matrix, known as the rigidity matrix R, so that e = Ru. Finally, bond elongations and bond stresses
are related by a Hookean constitutive law, o = Ke, where K is a diagonal matrix of spring constants, which we
will set to unity in what follows. The three matrix equations above relate all possible node forces, bond stresses,
bond elongations, and node displacements of the network, and thus govern the material’s linear mechanical
response.

In practice, we construct a material’s kinematic matrix as follows. Consider two nodes 7, jin a 2D plane,
connected by abond ij. Their linearized elongation under planar displacements of the nodes
u = (uj, Uy, Uj, uj)isthengivenbye; = [—n,, —n,, n,, n,]u, where 7 is the unit vector along the bond
running fromitoj. The4 X 1kinematic matrixis then givenby RT = [—n,, — My My, n),]T, and maps the
bond’s stress due to bond elongation, s;; = Ke;;, to node forces f = (f,,, fiy R fjx, ij) = RTsij. Extending this 2D
network to include N,, nodes and N, bonds produces a2N,, X N kinematic matrix, where each of the columns
corresponds to a particular bond’s connection between two end nodes, as above. Therefore, the domain of the
kinematic matrix is an N,-dimensional space of stress vectors, in which each vector component corresponds to
abond.

The vector subspaces of the kinematic matrix—its kernel and row space, which form the domain, and its
cokernel and column space, which form the codomain—have a particular insightful physical interpretation
[31]. First, the row space is spanned by the LB-states, symbolized by &, or stress eigenvectors that produce finite
node forces. Secondly, if the system is overconstrained [32], the kinematic matrix’s kernel is nontrivial and
spanned by a finite number of zero eigenvectors, or bond stress configurations that lead to zero net node forces.
These are the network’s SS-states, symbolized by 7. Similarly, if the network is underconstrained, the cokernel
consists of FM, node displacement vectors that produce no bond elongations and thus cost no elastic energy. In
two dimensions, these FM include a total of three rigid-body motions, a rotation and two translations. Lastly, the
column space contains all displacement vectors that produce finite bond elongations: this column space
corresponds one-to-one to the LB-states of the row space. Thus, the SS-space and LB-space together span the
entire space of possible bond stress configurations—the former being inaccessible states, and the latter
supported states—and they therefore govern the network’s response to external loading.

While the subspaces’ bases are often not simple to determine, their dimensions follow directly from the
rank-nullity theorem that relates the subspace dimensions of the network’s kinematic matrix [30, 33-36]. The
rank-nullity theorem states that the sum of the number of independent FM (Ngy;) and the number of
independent LB-states is equal to 2N,,, while the sum of the number of independent SS-states (Nsgs) and LB-
states must be equal to Nj. Therefore, the difference between the number of SS-states and FM has a consistent
expression for all 2D spring network materials:

v = Npy — Nsss — 3 = 2N, — N, — 3, e))

where the final term of —3 represents the three trivial rigid-body motions in 2D, so that Ngy includes only
internal floppy deformations of the structure.

The above linear-elastic model helps understand the difference in stress response between two networks
with closely related architectures that differ by a small number of bonds, but have the same number and spatial
configuration of nodes. In either network, the SS-space and LB-space together span the entire space of possible
bond stress configurations. Some SS-states and LB-states are shared between the two materials, while others are
unique to either of the pair. Any SS-state unique to one network must be an LB-state—up to stresses on the
networks’ distinct bonds—in the other structure. Since the stress response of any network is a linear
combination of its LB-states, the stress response difference between the two networks must therefore lie in the
space spanned by their unique, non-shared SS-states. In other words, with knowledge of the mutually exclusive SS-
states of two mechanical networks, we can a priori determine how their stress response differs under arbitrary external
loading.
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Figure 2. (a) Our mechanical building block, or supertriangle, consists of three corner nodes (black circles) and three internal nodes
(purple), connected by a perimeter of edge bonds (grey lines). The internal nodes are connected by two internal bonds (black). (b)
Internal node motions and internal bonds map to Ising spins and antiferromagnetic interactions. Compatible deformations of the
supertriangle correspond to ground states of this Ising model. The correspondence between spin states (‘in’ and ‘out’, indicated with
blue and red arrows) and motion of the internal nodes is opposite for upward- and downward-pointing building blocks. (c)
Supertriangles (yellow triangle) are stacked together to create a superhexagon. Superhexagons contain a closed local loop of internal
bonds (bold black lines). The metamaterial deforms harmoniously only when a spin ground state exists that satisfies all
antiferromagnetic constraints simultaneously. Local loops with an even number of bonds satisfy this requirement (left): the
superhexagon is compatible. Incompatible superhexagons have loops containing an odd number of bonds (right) that frustrate at least
one antiferromagnetic interaction (purple cross). The odd local loop represents a defect in the system. (d) The eight possible even local
loop shapes (number of bonds indicated) in a compatible superhexagon are shown (bold black lines). Internal bonds outside the local
loop were chosen arbitrarily, and the corresponding FMs are illustrated as deformations of the superhexagons. (e) A large compatible

metamaterial is created by stacking building blocks, ensuring that the local loops inside each superhexagon (orange hexagon) contain
an even number of bonds. The compatible metamaterial deforms harmoniously (zoom-in).

We note here that our analysis concerns the material’s response under an applied supportedload: external
forces that actuate a floppy motion of the material lead to an indeterminate response [30], which we do not
consider here.

3. Structurally complex mechanical metamaterials

We now demonstrate the efficacy of predicting the stress response difference using SS-states—an approach valid
for any mechanical network architecture—in a particular class of structurally complex mechanical
metamaterials [19]. Their specific architecture allows us to easily enumerate and construct a basis of SS-space
consisting of highly spatially localized states, and we show later that this complete description of SS-space
produces a direct prediction of the stress response difference between two networks of differing designs under
identical, external, supported loads.

Our complex mechanical metamaterials are assembled by stacking together copies of an anisotropic
triangular building block [19] (figure 2(a)) that we will refer to as a supertriangle. The supertriangle consists of six
Hookean edge bonds, connected in a triangular shape. Three freely pivoting corner nodes connect the bonds at the
triangle’s corners, while three internal nodes connect the sides. The supertriangle is made anisotropic by
connecting two of the internal node pairs with two additional Hookean internal bonds, leaving the third pair
unconnected. This building block exhibits a local FM: a compatible internal deformation that does not deform
any of the rigid bonds (figure 2(b)).

The smallest nontrivial structure, made with six supertriangles, is a hexagonal stack or superhexagon
(figure 2(¢)). Such stacks are called compatible when there is a collective FM, such that all individual
supertriangles can deform according to their local FM simultaneously; otherwise, the stack is incompatible or
frustrated. Evidently, even though the number of nodes and bonds of compatible and incompatible
superhexagons are identical (N,, = 19 and N;, = 8), they show distinct mechanical behaviour. Using
equation (1), we find that incompatible superhexagons have no FM and a single SS-state, while compatible
superhexagons have a single FM and two SS-states.

To obtain clear design rules for compatibility, we map the local FM of a supertriangle to the ground state of
an Ising model with antiferromagnetic interactions [19]. Specifically, each internal node corresponds to a spin
site, while each internal bond represents an antiferromagnetic interaction. Spins may be in an ‘out’ state or an
‘in’ state; mechanically, this corresponds to an outward or inward motion of the internal nodes with respect to
the centre for upward-pointing supertriangles (and vice versa for downward-pointing supertriangles) indicated
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by the red and blue arrows in figure 2(b). The supertriangle’s mechanical FM then corresponds uniquely to a
spin configuration that satisfies both antiferromagnetic interactions: the internal bonds connect spin sites at two
internal nodes in opposite states, while nodes not connected by an internal bond both move inward (or both
outward), representing two ferromagnetically interacting spins.

For a compatible superhexagon, the spin orientations of all adjacent supertriangles have to match up exactly.
Figure 2(c) demonstrates that the internal bonds inside a superhexagon form a closed local loop corresponding to
aring of antiferromagnetic interactions. The supertriangles collectively deform harmoniously and compatibly if,
and only if, the corresponding antiferromagnetic Ising model is in a ground state, so that each antiferromagnetic
interaction connects two spins in opposite states. This requirement is only met if the local loop contains an even
number of interactions. Hence, a superhexagon is only compatible if the local loop contains an even number of
internal bonds (figure 2(¢), left).

By contrast, when the local loop has an odd number of internal bonds, the superhexagon is geometrically
frustrated and incompatible [37, 38]. In the Ising model language, there is then always an antiferromagnetic
interaction that cannot be satisfied (figure 2(c), right), so that the odd local loop represents a defect in the
mechanical system. Similar issues of compatibility and defects have been studied in lattice tiling models [39].

We note here that this mapping to an Ising model with binary states is complete only for compatible
metamaterials which posses a FM in which displacements alternate in direction and all have the same
magnitude. As we will show below, in incompatible situations, the magnitude of the displacements varies
continuously with position and then this mapping to the Ising model serves only to demonstrate whether or not
there exists a compatible deformation.

In figure 2(d), we show the FM in compatible superhexagons for each of the eight possible even local loop
shapes (with six, eight, ten or twelve bonds, bold black lines); the FM is present independently of the choice of
internal bonds outside the local loop (thin black lines).

Metamaterials consisting of large stacks containing many supertriangles (figure 2(e)) typically contain many
superhexagons, each sporting a local loop of internal bonds. Designing the material so that there are only even
localloops in the system ensures that all superhexagons are compatible, the material has a single global FM, and
can deform harmoniously. Conversely, odd local loops generate geometric frustration and incompatibility,
resulting in the absence of a global FM. As shown in previous work [19], there is an extensive number of
metamaterial designs made of these supertriangular building blocks. Moreover, we can design a wide array of
geometries with varying isotropy, auxeticity, and periodicity. Here, we explore the evolving mechanical response
under architectural changes in this class of spatially complex metamaterials, and our findings thus hold for
metamaterials with a wide range of mechanical properties.

4. States of self stress in superhexagons and larger metamaterials

We now show how to identify the dimension and shape of the SS-space in our complex metamaterials, which
governs the differential response of architecturally related networks. Our compatible metamaterials have one
global FM by construction, while frustrated ones have none. Hence, to obtain the number of independent SS-
states from equation (1), it suffices to calculate the index . We show below that v follows directly from the
number H of superhexagons contained inside our metamaterial, and that each compatible (incompatible)
superhexagon contains two (one) localized SS-states that can be explicitly and straightforwardly constructed.

To count the number of superhexagons in a metamaterial, we first focus on the structure’s scaffold that
consists of corner nodes connected by a triangular lattice (figure 3(a)). If such a scaffold contains T triangles and
a perimeter of Pbonds, it contains

H:T_P

+1 )

full hexagons of six triangles, each surrounding a distinct bulk corner node (orange hexagon and bold black dots
in figure 3(a)). This expression is derived as follows: a single triangle has T = 1, a perimeter of P = 3and H = 0
hexagons. Adding a triangle to an existing system increases the number of triangles by one (T — T + 1), and
either increases the perimeter by two bonds and produces no new hexagon (P — P + 2, H — H), or increases
the perimeter by one bond and produces a new hexagon (P — P + 1,H — H + 1). Byinduction, equation (2)
then holds for all lattices.

We now use this information to determine a general expression for v in our metamaterials. Adding two
internal bonds and three internal nodes to every triangle in the scaffold—thus creating a stack of T'supertriangles
—generates a metamaterial (figure 3(b)). Since the triangular scaffold contains a total of N;, = 3T2+ P bonds, the
metamaterial will contain 3T + P edge bonds and an additional two internal bonds per triangle, yielding a total
of N, = 5T + Pedge and internal bonds. In addition, the scaffold contains N, = # 4+ 1 corner nodes; the
metamaterial has an additional three internal nodes that are shared between two triangles, unless they lie on the
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(a) (b)
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Figure 3. The number of nodes and bonds in a metamaterial can be counted exactly. (a) Starting from a network of T adjacent
triangular cells (yellow triangle) with a perimeter of Pbonds and P nodes (orange lines and circles), the number of nodes and bonds N,,
and Ny, can be counted exactly. Each internal lattice point (black circles) is surrounded by a hexagon of six triangular blocks (orange
hexagon). (b) Each block is decorated with two internal bonds and three internal nodes, producing a supertriangle. (c) This decoration
produces a metamaterial. The number of nodes and bonds increases to N,, + N, and 2N, + 2T.
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Figure 4. States of self stress (SS-states) are localized in superhexagons. (a) The eight possible even local loop shapes in a compatible
superhexagon are shown (black lines). The number of bonds in each loop is indicated. Internal bonds outside the local loop may be
chosen freely (not shown here for clarity), while the triangular scaffold (grey solid lines) is always present. (b) The compatible
superhexagons contain two non-orthonormal SS-states (colours): a radial SS-state localized on the triangular scaffold (left), and a loop

SS-state fully localized on internal bonds in the local loop and the triangular scaffold. (c) Incompatible superhexagons contain odd
local loops that come in five distinct shapes (red lines). These structures each support only the radial SS-state.

(©)

structure’s perimeter. This yields atotal of N,, = 2T + P + 1 corner and internal nodes in the metamaterial
(figure 3(c)). The metamaterial’s index v is thus equal to

v=1-2H. 3)

From equation (1), and using the fact that the number of FM in a metamaterial is either one or zero, we
obtain an exact expression for the dimension of SS-space in our metamaterials: Nggs = 2H in compatible
systems, and Nsss = 2H — 1 inincompatible ones. This expression is consistent with our finding in section 3
that a compatible superhexagon contains two SS-states, while an incompatible superhexagon has one SS-state.
Thus, in a compatible metamaterial with H hexagons, we can identify 2H independent SS-states localized within
each of the metamaterial’s superhexagons; these SS-states exactly span the 2H-dimensional SS-space. Therefore,
all independent SS-states of a compatible metamaterial can be constructed as localized states within each of the larger
metamaterial’s superhexagons.

We illustrate the compact, superhexagon-localized representation of all independent SS-states in figure 4.
Consider a metamaterial consisting of a single, compatible superhexagon. Its local loop contains an even
number of internal bonds; the structure has a single FM, and two SS-states. Figure 4(a) enumerates the eight
possible even local loop shapes (up to rotations and reflections); internal bonds outside of the local loop do not
carry stress in any of the SS-states, and are not shown for clarity. Due to the network’s highly regular geometry,
the SS-states are found by inspection to have a simple structure: one radial SS-state is independent of the
superhexagon’s internal bonds and is purely supported on edge bonds, while the other loop SS-state involves the
internal bonds of the local loop (figure 4(b)). The location of internal bonds that are not part of the local loop are
irrelevant for both the radial and loop SS-states. Bond stresses of both radial and loop SS-states are integer
multiples of the smallest stress component, due to the underlying building blocks’ six-fold rotational symmetry.
By contrast, a single, incompatible superhexagon containing an odd local loop has no FM and only one SS-state;
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Figure 5. (a) A compatible metamaterial (no defect, A) contains only even local loops (internal bonds highlighted in black). Three
superhexagons (1, 2, 3; orange) that change parity under consecutive transformations are highlighted. Rotating a single bulk
supertriangle shared by superhexagons 1 and 2 (yellow triangle, inset) removes a bond r and adds abond p. (b) The supertriangle
rotation generates two adjacent odd local loops (red lines). These form a structural defect (B) that frustrates the compatible motion of
the material. The adjacent odd local loops are moved apart by selecting and rotating a second supertriangle in superhexagons 2 and 3
(inset). (c) Two topological defects (C), or isolated odd local loops, are created: an even local loop now separates the odd local loops. A
final rotation in superhexagon 3 (inset) removes one of the odd local loops from the material. (d) A single topological defect (D)
remains. (e) The three numbered superhexagons in the compatible metamaterial are shown, along with their central corner nodes
(black circles) and their corresponding loop SS-states 71, 74 and T? (colours). (f)—(h) Transforming the network to produce a
structural defect, two topological defects, and a single topological defect (central corner nodes of incompatible superhexagons
indicated in red) results in a sequential evolution where new SS-states are formed from linear combinations of old SS-states (arrows;
see text for detailed expressions). In panels (f) and (g), two odd local loops are present in the network, and the SS-space can no longer
be represented by purely superhexagon-localized SS-states. However, a (maximally) localized representation does exist, where an SS-
state runs over the superhexagons along the shortest path between the two odd local loops. In panel (h), there is only one incompatible
superhexagon; all SS-states are localized within distinct superhexagons.

RD D R

the local loop has five possible shapes (figure 4(c)), and the superhexagon supports only the single radial SS-state
(figure 4(b), left).

In compatible metamaterials consisting of H compatible superhexagons, the 2H-dimensional SS-space is
therefore spanned by H radial and H loop SS-states, each of which islocalized to a single superhexagon.
Similarly, in a metamaterial with a single incompatible superhexagon, the 2H — 1-dimensional SS-space
consists of the H radial SS-states, and the H — 1 loop SS-states in the remaining compatible superhexagons. For
larger numbers H, > 1 of incompatible superhexagons, Hradialand H — H,loop SS-states are present in the
network, with the remaining H, — 1 SS-states notlocalized to a single superhexagon.

5. Architectural defects

While we can make a large variety of compatible metamaterials (a number that grows exponentially with the
number of supertriangles in the structure) [ 19], an even larger amount of frustrated designs exist that cannot
deform harmoniously due to the presence of one or more odd local loops. The mechanical frustration induced
by such defects generally produces undesired effects when their presence is not controlled, such as decay of a
desired FM [11, 40], or structural failure when frustration-induced bond stresses exceed the bond buckling
threshold [41]. However, when frustration is introduced in a controlled and well-understood manner, it may be
harnessed to design desirable or unusual physical properties, such as localized buckling zones [2, 6, 19], or
geometric frustration in spin-ices [15, 38, 42].

We now show how to control the frustration in our mechanical metamaterials by rotating select
supertriangles in an initially compatible network. Figure 5(a) shows a compatible structure with no defects (A),
where all superhexagons have even local loops (black lines). Selecting and rotating a particular supertriangle in
the material’s bulk (figure 5(a), inset) effectively removes one of the supertriangle’s internal bonds—bond r—
from the network and replaces it with a newly added internal bond p. The bond r is part of exactly two local
loops. In general, exchanging bond r for bond p changes the parity of these two local loops. Here, since we start
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from a compatible structure, rotating a supertriangle creates two adjacent odd local loops (figure 5(b)). We will
refer to such a pair of adjacent odd local loops as a structural defect (network B), since the odd loops may be
removed by locally rotating a single supertriangle [19].

Metamaterials containing a single incompatible superhexagon can also be constructed, and have been
shown to have a topological signature [19]. Such topological defects (network C) can be generated from an initially
compatible system via a sequence of supertriangle rotations running in a chain between the defectlocus and the
system’s boundary. Specifically, we rotate a supertriangle at the edge of a structural defect, ensuring that this
supertriangle contributes an internal bond to one odd and one even local loop (figure 5(b)). As before, the
rotation changes the parity of the two local loops it contributes to. Consequently, the two odd local loops are no
longer adjacent after the transformation: they are now separated by a single even local loop. This defect
configuration, consisting of two incompatible superhexagons separated by one or more compatible ones, is a
complex of two topological defects (network C): the odd local loops can no longer be removed by a single, local
supertriangle rotation. To finally obtain a single topological defect, we repeat the above procedure to displace
one of the odd local loops closer and closer to the system’s boundary. Finally, we select a boundary supertriangle
that contributes to exactly one odd local loop, so that its rotation causes the odd loop’s parity to become even
(figure 5(c)). This transformation leaves us with an isolated incompatible superhexagon in the system’s bulk,
that can only be removed by an extensive number of supertriangle rotations, and that we therefore refer to asa
topological defect (figure 5(d)).

Supertriangle rotations thus form the minimal architectural transformations that allow us to convert one
metamaterial design to any other. By a series of sequential supertriangle rotations, we can thus obtain
metamaterial architectures with any desired number of frustrated odd local loops, starting from a compatible
structure containing only even local loops.

6. Response evolution under architectural transformations

Starting from an initially compatible metamaterial, supertriangle rotations form minimal architectural
transformations that generate predictable defect configurations. Here, we investigate how the concomitant
frustration manifests in the mechanical response. Clearly, a frustrated metamaterial cannot deform
harmoniously, so external forcing will generate stresses and elastic deformations. We want to understand where
these stresses are localized, and how they relate to the sequence of architectural transformations that generate a
given network design.

In section 2, we discussed how the mechanical response of a network is determined by its Nj,-dimensional
stress space, which can be decomposed into two mutually orthogonal sub-spaces: the Nss-dimensional SS-space,
and the Ny g-dimensional LB-space. To understand how architectural changes affect the stress response, we
therefore need to establish how the SS-space and the complementary LB-space change under architectural
modifications [28]. Our metamaterials, with their readily constructed SS-states, are especially suitable to address
such general questions.

To capture the changes of the SS- and LB-spaces due to architectural modifications, we repeatedly use a
number of basic principles that we outline here. We only consider architectural changes that consist of
sequences of supertriangle rotations, and break up each supertriangle rotation into a step-by-step process where
we first remove a bond and then add a bond at a different location, which simplifies our calculations and
generalizes easily to other network architectures.

Supertriangle rotations can mutate the compatibility of our metamaterials: there exist three different
mutation processes. First of all, in process I, a compatible system A transforms into an incompatible system B
(see e.g. figures 5(a), (b)). Secondly, process II converts an incompatible system B into a distinct incompatible
system C (see e.g. figures 5(b), (¢)), and lastly, process III converts a compatible system A into a compatible
system A’. Process I1I can only occur for specific supertriangle rotations at the edge of a metamaterial, and is
trivial from the perspective of the mechanical response; we do not consider it further here (see appendix B for
details). In process I, we start from a compatible system A, then remove abond labelled r to obtain the
intermediate system AB, and then add bond labelled p to obtain the incompatible system B. In process II, we start
from an incompatible system B, then remove a bond labelled r to obtain the intermediate system BC, and then
add bond labelled p to obtain the incompatible system C.

Now that we have broken down possible structural changes into a precise sequence of removing and adding
bonds, we can determine how the dimension of the SS- and LB-space changes in each transformation step, using
constraint counting (see section 4). First of all, in process I, step A — AB removes one SS-state, while the
number of LB-states remains constant. Step AB — B leaves the SS-states unaffected, while the number of LB-
states increases by one. Secondly, in process II, step B — BC removes one SS-state, while the number of LB-
states remains constant. Step BC — C adds one SS-state, while the number of LB-states remains constant.
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Crucially, changes to the dimensionality of the SS- and LB-spaces do not capture their full reconfiguration. As
an example, consider step A — AB, where bond ris removed from network A: while the number of LB-states
remains constant, the removal of bond r induces changes to the structure of these states. After all, LB-states may
have a finite stress on bond 7 in network A, but LB-states of network AB must have zero stress on the nonexistent
bondr.

In order to fully capture changes in the SS- and LB-spaces, we must construct appropriate bases for them, to
make their evolution tractable. As the SS-states are easier to identify than the LB-states in our particular
metamaterials, we construct an orthonormal basis for the SS-space of our metamaterials, such that removinga
bond b will affect at most one basis vector. This basis consists of (i) at most one SS-state vector that has a finite
stress on bond b, which is modified under removal of bond b, and (ii) all other basis vectors that have zero stress
onbond b [43].

The two subspaces (i)—(ii) are mutually orthogonal; moreover, the LB-space is orthogonal and
complementary to the SS-space. Hence, changes in the subspace (i) directly affect the LB-space. The LB-space
ultimately determines the metamaterial’s response under external loading. However, as we discussed at the end
of section 2, the stress response difference between two networks related by a single supertriangle rotation is
determined by their mutually exclusive SS-states. Thus, the evolution of the SS-space suffices to capture the
evolution of the metamaterial’s response, as a detailed derivation in appendices B—D confirms.

In the following, we therefore first describe how to construct all SS-states in compatible and incompatible
metamaterials as linear combinations of radial and loop SS-states in section 6.1. We consider process I in
section 6.2, identifying the changes to the SS-space, and process Il in section 6.3, again determining changes to
the SS-space. Ultimately, we establish that the evolution of SS-space under supertriangle rotations is limited to a
small and predictable span of stress vectors. We close this section with a discussion in section 6.4 of the
mechanical consequences of these SS-space changes due to supertriangle rotations.

6.1. Constructing the states of self stress

As shown in section 4, the SS-space of any compatible metamaterial is spanned by superhexagon-localized radial
and loop SS-states (see figure 4(b)). Together, the superhexagon-localized states form a complete, non-
orthogonal basis of the material’s SS-space. However, a different approach is needed to identify a complete basis
of the SS-space for incompatible metamaterials: as we will show below, in frustrated systems, some SS-states
cannot be represented as superhexagon-localized states, but must be delocalized. Here, we present an iterative
approach to construct a basis of SS-space for any metamaterial—compatible or not—and show that all
delocalized SS-states can be constructed as linear combinations of radial and loop SS-states.

Weillustrate our approach by constructing a basis of the SS-space in the four architecturally related
networks presented in figures 5(a)—(d), with network A containing no defect, Ba structural defect, C two
topological defects, and D a single topological defect, as a specific demonstration of our general strategy.

Figure 5(e) shows the three highlighted compatible superhexagons, numbered 1, 2 and 3 in the compatible
network A, that are modified during the network transformations. The three superhexagons support three radial
SS-states (see figure 4(b) above), not shown here for brevity. As the network transformations considered here
leave the scaffold of edge bonds intact, the H radial SS-states remain, irrespective of the number of supertriangle
rotations. We focus on the loop SS-states that are localized in these three superhexagons, which we will denote
7{, 74,and 74, and which are shown in figure 5(e). Rotating a supertriangle in network A that is part of both
superhexagons 1 and 2 removes one bond, r (figures 5(a), (b)). This rotation also lowers the number of SS-states
by one. First, we note that 74 does not induce a stress on bond r, so that this SS-state is retained in network B.
However, 7' and 74 do include a stress on bond r: hence, they cannot be SS-states of network B. We construct a
new SS-state for network B as a linear combination of 7;' and 74 that leaves bond runstressed: 75, = ;' + 74
(see figure 5(f)). Here we use the subscript 12 to indicate that this SS-state is delocalized: it is contained within the
two incompatible superhexagons 1 and 2. All other SS-states in network A, similar to 75 = 7, are retained in
network B.

A second supertriangle rotation in network B produces two separated topological defects in network C
(figure 5(c)), but does not change the number of SS-states. Since a distinct bond r is now removed during the
supertriangle rotation, and both 7%, and 7% produce a finite stress on bond r, these two SS-states cannot persist
in the network. By a similar superposition as above, we obtain a new SS-state 75; = 75, + 75. This SS-state
spans the connecting path between the two odd loops, since 755 = 71 4+ 72 + 75. However, to maintain the
overall number of SS-states, a new SS-state is also formed: the supertriangle rotation makes superhexagon 2
compatible, resulting in the appearance of the localized loop SS-state 75 (see figure 5(f)). In general, in a network

denoted X, the two SS-states TiX and ‘rf —with nonzero stress on the bond r that is removed due toa
supertriangle rotation—are recombined to form a new SS-state Tfj( *+1, This SS-state is found via the equation

[28]
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where 7 is abond stress vector with unity value on bond r, and zero value on all other network bonds.

Finally, rotating a last supertriangle in network C produces network D that contains a single topological
defect; the number of SS-states remains the same. The delocalized state Tlcz3, with its nonzero stress on the
removed bond r, is no longer an SS-state; however, the loop SS-state ‘rg is retained, and a new loop SS-state ’T3D
arises in the newly formed compatible superhexagon (see figure 5(h)). Note that the SS-states of network D, with
its single incompatible superhexagon, can be identified directly. Since this network is incompatible, it has
2H — 1SS-states; H of these are radial SS-states that are localized in all superhexagons, and H — 1 SS-states are
localized onthe H — 1 compatible superhexagons.

In general, a complete basis of SS-space can be obtained for any H-superhexagon incompatible metamaterial
with H, > 1 oddloops (see appendix A) by constructing the H, — 1 delocalized SS-states (section 4) via the
steps shown in figures 5(e)—(g). Thus, an independent, yet non-unique and non-orthogonal basis of SS-space
can be constructed in each of our mechanical metamaterials.

This procedure illustrates that in all cases, whether the metamaterial contains no, one, or more local odd
loops, the SS-space is spanned by a complete basis consisting of radial SS-states; loop SS-states localized in
compatible superhexagons; and delocalized linear combinations of loop SS-states running between
incompatible superhexagons. Such extended SS-states are reminiscent of flux lines that connect pairs of defects
in artificial spin-ice models [44].

6.2. Process I: supertriangle rotation from a compatible to an incompatible geometry

Now that we are able to construct bases of the SS-spaces of our metamaterials, we are in a position to understand
how the SS-spaces change under architectural transformations, beginning with process I that converts a
compatible to an incompatible metamaterial.

We first construct a suitable orthogonal basis for the SS-space for a compatible network A. Our goal is to
identify the unique SS-state in network A, 7;*, that has a finite stress on bond rand that therefore is not present in
network AB; and to construct the set of 2H — 1 orthonormal basis vectors {71} that have zero stress on bond 7,
are perpendicular to 7!, and remain present in network AB. Here, the symbol 7 indicates an SS-state; the
superscript A indicates the network; and the subscripts r or zr indicate whether the vector has nonzero or zero
stress on bond r, respectively.

We construct 7 and {7} as follows, as shown in figure 6. First, as bond ris shared between exactly two
even local loops in A (figure 6(a)), there are two unique loop SS-states 71 and 74 with nonzero stress on r
(figure 6(b)), and 2H — 2 loop SS-states (rh #H-2 with zero stress on . We construct an additional SS-state
with zero stress on r by taking a linear combination of 7' and 75 (figure 6(c)):

S

A
>

S

M .
To=T1 — 4 ~T» ©)

where 7 is the unit bond stress vector with unity value on bond r, and zero stress elsewhere. The SS-state 7{ is, by
construction, the only state in our SS-space basis {71, 715, {7} ?f1,} with nonzero stress on . We now perform
asequential Gram—Schmidt (GS) process on the ordered set (left to right) of SS-states to orthonormalize the
basis:

A 21 = GSHHTA 2, 8, 71, 6)

where the bar and hat in 7 indicate orthogonality and normality respectively. The first two SS-states of the basis
are illustrated in figure 6(d). Going from network A to AB by removing bond r removes one SS-state, which must
be 72',A (figure 6(d)), while the remaining {?—Zf} span the SS-space of network AB. Going from network AB to B by
adding bond p leaves the SS-space unaffected.

For completeness, the evolution of the complementary LB-space is presented in appendix B via a similar
strategy.

In summary, when a compatible metamaterial A is converted to an incompatible architecture B according to
process I, the evolution of the SS-space is simple once an appropriate basis is constructed. The SS-spaces of
architecturally related networks A and B are identical up to the SS-state %,A, present in network A, butnotin B, as
illustrated schematically in figure 7.

6.3. Process II: supertriangle rotation from an incompatible to another incompatible geometry

We now discuss the stress space changes of process II, converting an incompatible network B to an intermediate
network BC and finally to a distinct incompatible network C, as shown in figure 8(a). There are two calculations
necessary to understand process II, and they are shown schematically in figure 8(b). With minor modifications,
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Figure 6. We identify the unique state of self stress (SS-state) ?—,A that is modified under a supertriangle rotation in an initially
compatible network A. (a) We transform the network by rotating a certain supertriangle (yellow triangle), such that bond r (zoom-in)
is removed from the network. Bottom: the Nj,-dimensional space of bond stress states is schematically represented as a space consisting
of LB-states (blue, represented as a one-dimensional line) and SS-states (pink). (b) Only the two loop SS-states 7 and 74 witha
nonzero stress on bond 7 need to be considered. Bottom: the non-orthogonal SS-states 7' and 74 lie in the SS-space plane (pink
vectors), while the stress vector # (purple vector), with nonzero stress on bond r, overlaps with both SS-space and LB-space (dashed
lines). Both SS-states overlap with 7. (c) The two SS-states are recombined to yield the vectors 7' and T3, so that 7 is the only SS-
state with nonzero stress on bond . Bottom: the SS-states are recombined so that 75 is orthogonal to #,and only 7 overlaps with
7. (d) The two SS-states are orthogonalized with respect to all other (superhexagon-localized) SS-states via a GS process. Two SS-states
?',A and ‘?-Zél are obtained, such that only the former has nonzero stress on bond . Thus, ?',A islost after the supertriangle rotation that
removes bond r. Bottom: orthogonalization produces the SS-state ‘?',A, orthogonal to all LB-states and the remaining SS-states, and
uniquely overlapping with 7.

(a) A AB B

add p

remove 7r
R — —

(b) -4
SS-space T,

Figure 7. Evolution of the SS-space under a supertriangle rotation according to process I. (a) A compatible network A is transformed
to an incompatible network B via an intermediate network AB, by first removing bond r and then adding bond p (insets). (b) For
network A, we construct orthogonal bases for the SS-space that contain the states {‘?'z/: } that have zero stress on bond r and that remain
in the SS-spaces of network AB as well as B. The full basis of network A additionally contains an SS-state ?—,A that is removed during the
architectural transformation (see text). Black square signifies orthogonality, and arrows with numbers indicate changes in the
dimensions of the SS-space.

these calculations follow the strategy developed for process I above. We again denote the removed and added
bonds by rand p, although we note that these refer to different bonds than in process I.

(i) We construct an orthogonal basis for the SS-space of the incompatible network B by identifying its unique
SS-state, ?—rB, that has a finite stress on bond r (and is thus not present in network BC), and constructing the
remaining set of orthogonal basis vectors {72'5} that have zero stress on bond r (and thus remain present in
network BC). To do this, we use the same method as for process I, step (i) above: we first construct 75, create a
basis {7, 75, {75} #,}, and perform a sequential GS process (equation (6)) to obtain the orthogonal basis
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Figure 8. Evolution of the SS-space under a supertriangle rotation according to process II. (a) An incompatible network Bis
transformed to an incompatible network C via an intermediate network BC, by first removing bond r and then adding bond p (insets).
(b) For network B, we construct orthogonal bases for the SS-space that contain the states {7} that remain in the SS-space of network
BCaswell as in that of C. The full bases of networks B and C additionally contain the respective SS-states %,B and ?',C that are removed
and added during the architectural transformation (see text). Black squares signify orthogonality, and arrows with numbers indicate
changes in the dimensions of the SS-space.

{ {72'5} , 72',3}. Going from network B to BCby removing bond r, the SS-state 72',3 is removed from the SS-space (see
figure 8(b), left).

(if) To go from network BC to network C, we add bond p, which increases the dimension of the SS-space by
one. To construct a basis for the new SS-space, we use an inverse procedure and start from network C,
constructing a basis suitable for removing bond p to obtain network BC. We use the same procedure as in step (i)
above, and we readily obtain a basis { {72'5,} , 7°-pC }. Noting that removing bond p from network Cand removing

bond r from network B produces the same network BC, it trivially follows that {72';} = {72'213}. Hence, the step

from network BCto C simply adds the basis vector 7£'PC to the SS-space (see figure 8(b), right).

For completeness, the evolution of the complementary LB-space is presented in appendix B following a
similar set of calculations.

Together, steps (i) and (ii) describe the evolution of the SS-space for process 11, converting an incompatible
network B to a second, distinct incompatible network C. The SS-spaces of architecturally related networks B and
Careidentical up to the SS-state 72',3, present in network B, but not in C; and the SS-state 7°'C, present in network
C,butnotinB.

6.4. Mechanical interpretation and consequences

The above results show how the SS-space changes under a supertriangle rotation. Specifically, we constructed
the mutually exclusive (although not strictly orthogonal) SS-states of two architecturally related networks. There
is one such SS-state for a network pair where the dimension of the LB-space changes (process I), two such SS-
states for networks where the dimension of the LB-space does not change (process II), and no such SS-states for
process II1.

Due to the linear-algebraic structure of our model, the SS-space evolution between two architecturally
related metamaterials governs their difference in stress response [25]. After all, the stress response of both
metamaterials must be perpendicular to their respective SS-spaces. This enables us to answer the following
question: when two metamaterials with distinct architectures are subjected to the same external nodal load f,what is
the difference Ao in their stress response?

We show an explicit example for the three network pairs A—B and B-Cin figures 9(a)—(b), corresponding to
processes I and II respectively. The figure illustrates the SS-states that mutate under architectural
transformations. When network A is transformed into network B, the only difference between the two respective
SS-spaces is the SS-state iA (figure 9(a), bottom). Thus, the stress difference between networks A and B under
identical supported loading is parallel to ?—rA. To show this precisely, some linear algebra is necessary; details are
shown in appendix C. With this result, we can understand the localization of the stress response difference
between networks A and B, introduced in figure 1(a): the localization of the stress response difference is due to
the localization of the SS-state 72',A around the removed bond r.

Similarly, the stress response difference between the networks Band C, related via process I1, is spanned by
the changed SS-states %B and ‘f'f (figure 9(b), bottom; see appendix C for details).

As a consequence, we can make an inductive statement about the stress response difference between a pair of
networks related by multiple, consecutive block rotations, such as the network pair A—D shown in figure 1(b).
The stress response difference between the two networks must be limited to the span of SS-states that have
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Figure 9. Examples of the reconfiguration of a metamaterial’s SS-states under a sequence of supertriangle rotations, shown for
network pairs A—B, B-C, and C-D. (a) A compatible network A (left) is transformed to exhibit a structural defect in network B (right)
by rotating a supertriangle, effectively removing bond r and adding bond p (inset). Local loops whose parity is modified are indicated
(see figure 4). The unique SS-state ‘?'IA with nonzero stress on bond r that is not an SS-state of network B is shown. (b) Network Bis
transformed into network C, which contains two topological defects. The evolution of the SS-space is set by the two mutually exclusive
SS-states 7" and ?’PC .(c) Network Cis converted to network D containing a single topological defect. The SS-space is modified such
that only the two SS-states ?—,C and %7 are not shared by the two networks. (d) The stress response difference Ao between networks A
and D under identical loading is a linear combination of the five mutually exclusive SS-states. Ao is calculated for all independent
normal modeloads f ::. of network A (see text), as well as the load illustrated in figure 1(b). The overlap of the normalized stress
difference with the five SS-states is shown; it has no component outside of their span.

changed during the sequential transformations. The network with a topological defect (D) is related to the
compatible network (A) by a minimal number of three architectural transformations, shown in figures 9(a)—(c),
that correspond to processes I, II, and Il respectively. As a consequence, the stress response difference between
networks A and D should be contained in a five-dimensional stress subspace of changed SS-states (figures 9(a)—
(c), bottom). To confirm this, we calculate the stress response difference between networks A and D under all
N, — Ngsindependent supported loads of network A. We choose the independent supported loads to be the
supported normal loads f n? (i.e. left singular vectors with nonzero singular values of the kinematic matrix of

network A). The overlap of the resulting normalized stress response differences Ao with the five normalized SS-
states is shown in figure 9(d). The data demonstrate that the stress response difference is a linear combination of
only the five mutually exclusive SS-states for any applied load, with zero projection on any other stress states.
Results are also shown for the particular stress response difference under the loading illustrated in figure 1(b)
(right). Thus, the stress response difference shown in figure 9(d) is confirmed to be a linear combination of the
five SS-states, each of which is concentrated in a different part of the network. Since the stress response
difference is a linear combination of mutated SS-states with different localizations, the total stress response
difference is diffuse.
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Figure 10. (a) An initially compatible metamaterial under loading at the network’s leftmost corners (arrows, length multiplied by a
factor 100 for clarity) concentrates stresses o (colours) along the shortest path between the two probing points. Nine sequential
supertriangle rotations (yellow triangles) introduce a topological defect from the left boundary and guide it to the right. (b) Once the
topological defect has been moved to the right boundary, the stress field o is diverted to run between the two probing points and
along the right side of the topological defect (odd local loop highlighted with red infill). (c) The differential stress response Ao of the
two networks is such that stresses on the left of the system are decreased, while stresses on the right increase. Ao is alinear
combination of the 17 SS-states that have changed during the nine sequential architectural transformations. (d) The stress response
and stepwise stress response differences for the first three intermediate steps is shown. Intermediate stress response difference are
linear combinations of SS-states that are quasilocalized near the rotated supertriangles. The SS-states produce a typical stress re-
steering that affects stress magnitudes near the moving topological defect: stresses to the left are decreased, while stresses on the right
increase.

7. Re-steering a stress response with architectural transformations

In this section, we show that our understanding of SS-space modifications during architectural transformations
allows us to explain how the inclusion of a topological defect affects the stress response field of a metamaterial.

In previous work, we have shown that metamaterials containing a single topological defect show unusual
stress-localizing behaviour when compared to a compatible metamaterial [19]. Specifically, consider a
compatible network; an example of a large compatible network containing 95 superhexagons is shown in
figure 10. We pick two supertriangles at the left top and bottom corners for actuation. To make sure that we have
asupported load, and for simplicity, we force both supertriangles with load dipoles that actuate their local FM,
but whose simultaneous actuation is not compatible with the network’s global FM. This therefore constitutes a
supported load. Under this driving, stresses are concentrated along the leftmost sample edge, running along the
shortest path between the two actuation points (figure 10(a)). When the metamaterial undergoes a particular
sequence of supertriangle rotations to generate a topological defect that progressively moves from left to right
through the system, the same loading conditions produce a stress field that runs along the rightmost edge of the
network instead (figure 10(b)). The differential stress response is concentrated on the right side of the system
(figure 10(c)). Based on the evolution of SS-space during each supertriangle rotation, we can understand why
this unusual stress-localizing behaviour takes place.

Starting from the compatible structure, we rotate a supertriangle at the leftmost edge to locally create a
topological defect. This removes a SS-state at the leftmost edge of the system (figure 10(d), left). The particular
removed SS-state is structured so that the stress response of the new network is reduced at the left and increased
to the right of the newly created topological defect. In the next transformation step, we shift the topological
defect to the right by rotating a supertriangle on the right side of the topological defect. This transformation
locally modifies the SS-states, which are again configured such that the stress response is decreased to the left and
increased to the right, so that stresses are steered along the right edge of the topological defect. Repeating this
process leads to the path of highest stress concentration to be pushed farther and farther towards the right side of
the system, ahead of the direction of ‘motion’ of the topological defect (figure 10(d), middle). Finally, after the

14



10P Publishing

New J. Phys. 22 (2020) 023030 A S Meeussen et al

transformation sequence is complete, the topological defect is located at the rightmost side of the network; the
stress field runs between the two actuation points around the defect along the right edge, leaving the left edge
with alowered stress response (figure 10(d), right). SS-states that are modified during such transformations fully
determine the difference in stress response under an equal applied load.

8. Conclusions and outlook

In previous work, SS-states have been used to design localized mechanical responses in materials with a
topologically nontrivial band structure [45—49], or to investigate the structure and mechanical response of
mechanical networks [6, 43, 50] and jammed particle packings [26-29, 34, 51-55]. In contrast, here we have
worked out in detail how architectural transformations govern the evolution of the SS-states, LB-states, and
mechanical response of a complex mechanical metamaterial [19].

In particular, we started from a linear-algebraic description of network mechanics, which dictates that the
stress difference of architecturally related networks under identical loading is governed by the networks’
differing SS-spaces. It should be noted here that this result holds not only for the metamaterial architectures
presented in this work, but for any network material whose architecture is transformed by removing a bond [28],
and then adding a bond at another position: under identical supported loads, the response difference between
the two architecturally related networks is governed by their mutually exclusive SS-states.

For the specific family of metamaterials considered here, closed-form SS-states spanning the full SS-space
were constructed straightforwardly, due to the regular geometry of the underlying supertriangles. We then
considered rotations of a single supertriangle as the fundamental architectural transformations that can
introduce (topological) defects into formerly compatible designs [19]. These rotations were shown to lead to
distortions of the SS-space that we calculated explicitly. In turn, since changes in the SS-space govern the
evolution of the metamaterial’s stress response under externally applied loads, we were able to explicitly
calculate how the response of a metamaterial evolves under architectural transformations. Finally, we
demonstrated how these insights clarify how topological defects steer stress fields.

While our approach helps understand the steering of stresses in the particular case of a moving topological
defect, designing a target stress response with an inverse procedure is more complex. Suppose, for example, that
we aim to construct a sequence of architectural transformations to generate a given target stress response,
starting from a particular metamaterial design and loading conditions. In general, this requires an in-depth
analysis of the evolution of the SS-states to ensure their cumulative contribution leads to the desired stress
response. Nevertheless, our approach suggests a systematic pathway to do so. Moreover, metamaterial designs
may be constructed where the SS-states are a priori known or more easy to construct, simplifying the practical
implementation of our approach to design the (differential) stress response of complex metamaterials.
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Appendix A. Constructing delocalized SS-states

We show how to construct the H, — 1 delocalized SS-states for any H-superhexagon metamaterial with H, > 1
oddlocal loops. We consider the schematic shown in figure A1, which illustrates how delocalized SS-states can
be constructed iteratively. The network shown contains H, = 5 odd local loops (numbered 1-5) that contains
H, — 1 = 4delocalized SS-states (figure A1(a)).

We first show how to create a delocalized SS-state running between a pair of two odd local loops (numbered
1,2). We start by identifying a small subsection of the network to construct the SS-state in, consisting of the two
incompatible superhexagons containing the odd local loops, and an arbitrary string of compatible
superhexagons that connects the pair (figure Al(a), orange infill). We then transform this metamaterial strip
into a compatible structure—in which all SS-states are known exactly—via a series of supertriangle rotations
(figure A1(b), yellow triangles, arrows) that sequentially flip the parity of the local loops. We are left with a
compatible structure in which all loop and radial SS-states are found by inspection (figure A1(c), radial SS-states
not shown for clarity). As explained in figures 5(e)—(g), these loop SS-states may then be recombined via
sequential application of equation (4) under inversion of the applied supertriangle rotations, analogous to the
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Figure Al. (a) An incompatible metamaterial architecture containing H, = 5 odd local loops (numbers 1-5, red bold lines) and

H — H, = 72 even ones (black bold lines). The metamaterial contains H, — 1 = 4 delocalized SS-states, which are constructed on
metamaterial paths connecting four independent pairs of incompatible hexagons (infills in orange, 1-2; yellow, 2—-3; green, 3—4; and
blue, 4-5). (b) The incompatible metamaterial strip between superhexagons 1, 2 is made compatible by sequential supertriangle
rotations (yellow triangles, arrows) that change the parity of local loops. (c) The compatible metamaterial’s SS-states are spanned by
radial (not shown) and loop SS-states (colour bar). (d) The loop SS-states are recombined into a delocalized SS-state of the
incompatible metamaterial strip using equation (4) (arrows), yielding a delocalized SS-state between the incompatible superhexagons
1 and 2. (e) With the procedure demonstrated in (b)—(d), the other three delocalized SS-states are constructed between the remaining
pairs of odd local loops.

construction discussed in section 6.1. The linear combination of loop SS-states thus produces a delocalized SS-
state of the metamaterial strip with the two odd local loops 1 and 2 (figure A1(d), arrows).

In a metamaterial with H, odd loops, we can find H, — 1 independent delocalized states using the above
procedure. Independence is ensured by selecting H, — 1 independent pairs of incompatible superhexagons
(such that each is selected at least once), with strings of compatible superhexagons running between them.
Figure A1(e) demonstrates the three remaining delocalized SS-states found between defect pairs (2, 3), (3,4), and
(4,5) in our example.

It should be noted that the delocalized states are not unique: their shape depends on the path between each
defect pair, and the choice of supertriangle rotations. However, the space spanned by the resulting basis of SS-
states does not depend on the path choice. In particular, this procedure renders an independent, non-
orthogonal set of H, — 1 delocalized SS-states. Together with the known radial and loop SS-states, which are
identified by inspection, a complete and independent basis of SS-space can be found for our metamaterials with
any defect configuration.

Appendix B. Evolution of LB-spaces under architectural transformations

In section 6, we discussed the evolution of a metamaterial’s stress space (consisting of the SS- and
complementary LB-space) under architectural transformations. We demonstrated that the evolution of the SS-
space is limited to one, two, or no changing SS-states for distinct types of supertriangle rotations, denoted
process I, process II, and process I, respectively. Here, we derive the concomitant evolution of the
metamaterial’s LB-space for all three processes.

B.1. Process I: compatible to incompatible metamaterial
We now describe the evolution of the LB-space when a compatible network A is transformed into an
incompatible network B; this evolution is shown schematically in figure B1(a). The architectural transformation
occurs via a supertriangle rotation that removes abond rand adds abond p (see figure 7(a)). The LB-space
evolution is closely related to the evolution of the SS-space discussed in section 6.2 (see figure 7(b)), and involves
three separate calculations (i)—(iii) below.

(i) We aim to construct a basis for the LB-space of network A that consists of one LB-state, 3',A, thathasa
finite stress on bond r, and a remaining set of orthogonal vectors { 3’2} that have zero stress om bond r
(figure 7(c), left). Under removal of bond r, only the LB-state 3}A will be modified. Since the set {3';:} is

16



10P Publishing

New J. Phys. 22 (2020) 023030 A S Meeussen et al

a
@ eset PYSING . (ii) . (i)
LB-space O [o gy
+0 +1
- —> - — -
A {64 —\ {64} —\ {64}
&
7
(b)
Process 1I (i) (i)
LB-space 68 +0 +0 o {6¢
—> —> oy -

T n N e X

a0 {65

", w A so
65 / \_‘5

~7 {655} iy {&%5,
a7

Figure B1. Evolution of the LB-space under a supertriangle rotation according to processes I and I1. (a) Process I: a compatible
network A is transformed to an incompatible network B via an intermediate network AB, by first removing bond rand then adding
bond p (see figure 7). For network A, we construct an orthogonal basis for the LB-space that contains those states {3’;: } that remainin
network AB as well as B. The full bases of networks A and B additionally contain a state that is added (3'; ) and a state that is modified
(c:r,A to 3;:3) during the architectural transformation; for details on the execution of steps (i)—(iii), see text. (b) Process II: an
incompatible network Bis transformed to an incompatible network Cvia an intermediate network BC, by first removing bond rand
then adding bond p (see figure 8). For network B (P), we construct an orthogonal basis for the LB-space that contains states {5}

{ é'ch}) without stress on r (p), and 3;3 (3';; ) with finite stress there. We construct a suitable basis of LB-space for the intermediate
network BC (with no stress on p or r) via an orthogonalization procedure, which produces LB-states { 3Z€ZCP} that are shared with

Z‘;C p and 3'26, in networks B and Crespectively. For details on the
execution of steps (i)—(v), see text. Black squares signify orthogonality, and arrows with numbers indicate changes in the dimensions of
the LB-space.

networks Band C, and states &, &.° that are modified to states &5

. . . .. . ops a A
unaffected by removing r and adding p, we do not need to construct it explicitly, and focus on identifying o,
instead. To construct this unique LB-state with nonzero stress on bond , note that the stress state # must be a
linear combination of the SS-state ?',A (see section 6.2) and 3',A—the only two stress states with nonzero stress on
r—andsince 7. and & are perpendicular, we find
2 A con 2A
o, x Rej(#, 7)), (B1)

as shown in figure B1(a), left. Here, we define the vector rejection Rej( ) to be the complement of vector
projection: Proj(u, v) = %v and u = Proj(u, v) + Rej(u, v),sothat Rej(u, v) := u — %v

(if) When bond ris removed from network A, the LB-state &rA must disappear; the LB-states { 8‘;:} remain.
However, as the number of LB-states in AB is the same as in network A (see above), the intermediate network AB
must contain a new LB-state, 3';:3, with zero stress on bond r. This state must be perpendicular to the SS-space
spanned by {7}, and to the LB-states {5, }. However, &.." does not need to be perpendicular to the state 7, so
that we can construct & from the states 7. and #:

2 AB oA A
o, o Rej(t,, 1), (B2)
as shown in figure B1(a), middle.

(iii) Finally, when network AB evolves to network B by adding bond p, a new LB-state 3’5 must appear. The

new LB-state is perpendicular to both the SS-space spanned by {73_2/:} as well as the LB-space spanned by
{{ 3;: } 3Z/:B}, and has a finite stress on bond p. It is easy to check that the stress state p uniquely satisfies these
criteria: 3';3 = p (figure B1(a), right).

In summary, as we illustrate in figures B1(a) and 7, the stress spaces of architecturally related networks A and
Bare identical up to the following four independent vectors: the SS-state %A, present in network A, but notin B;
the LB-state p, presentin Bbut notin A; and the LB-state é'rA in network A that changes to the LB-state 3'23 in
network B. These four vectors are spanned by the set {?—,A, 7, p} consisting of the mutated SS-state and the pure
stress vectors on bonds p and r.
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B.2. Process II: incompatible to incompatible metamaterial

We now describe the evolution of the LB-space when an incompatible network B is transformed into a distinct

incompatible network Cas shown in figure B1(b), via a supertriangle rotation that removes abond rand adds a
bond p (see figure 8(a)). This evolution is closely related to the evolution of the SS-space discussed in section 6.3
(see figure 8(b)), and involves five separate calculations (i)—(v) below.

We can construct the LB- spaces of networks Band C, analogous to step (ii) in process I. This readily yields
bases (i) { {3’Z 1, o, } and (ii) {{&; p} 0' } (figure B1(b), left and right). However, as the sets {0' }and {&; p} are
not the same, the bases are not suitable to compare the LB-spaces.

(iil) We now construct an appropriate basis for the LB-space of network BC, which contains a set { ﬁjch} that
is shared with the LB-spaces of network Band C (figure B1(b), middle). First we can start from the LB-basis (i),

remove bond r, and analogous to step (ii) of process I, obtam abasis {{&, ,} , } Second, starting from the LB-
basis (ii) and removing bond p we obtain a basis { { p} } These two bases both span the LB-space of
55¢

network BC. We now use this to construct the appropriate bas1s of the LB-space, { &, zp , 0, 5 {0, ZPZ,} }, so that

the set {& pZr} is shared with the LB-spaces of network B and C. We first perform a GS process on the ordered set

{&Zic, &Zlic, {o, } }, and then define {o; ZPZ,} asthelast N, — 2H — 1 vectors of the resulting orthonormal basis.

To facilitate comparlson with networks B and C, we obtain a full LB-space basis of network BC by adding the
vectors 0'1; and 6 cr .+ »s0 thatall but the first two basis vectors are orthogonal.

We now obtain appropriate bases for the LB-spaces of networks B and C as follows (see figure B1(b), left and
right).

(iv) We construct a basis for the LB-space of network B by ensuring the orthogonality of the LB-space basis of

network BC, {6 ZI;C, o Iic, {0 IZS,} }, with the SS-space of network B. We do this by rejecting each vector on the SS-

state ‘r , thatis present in network B but not in BC. This rejection procedure results in an LB-space basis of
N
network B: {55, &, (5551},

WA srmrlar procedure results in an analogous LB-space basis for network C: {&; Zr, p , {0, ZPZ,} }.
In summary, as shown in figures B1(b) and 8, the stress spaces of architecturally related networks B and Care
identical up to the following vectors: the SS-state 7, , present in network B, but not in C; the SS-state 7, present

in network C, but notin B (see section 6.3); the LB-state o' in network B that changes to the LB-state 0' in
network C; and the LB-state 0' in network C that changes to the LB-state o' in network B. These four

independent vectors are spanned by the set { , 7, p} consisting of the mutated SS-states and the pure stress
vectors on bonds pand r.

B.3. Process III: compatible to compatible metamaterial

A compatible network A may be transformed to a distinct compatible network A’ by some supertriangle
rotations that remove abond rand add a bond p. Only supertriangle rotations at the system’s edge that do not
change the parity of anylocal loops (see section 5) can generate such a network pair. By construction, these
special architectural transformations do not change the shape of any local loops, and thus do not affect the SS-
space (see section 6.1). As a consequence, under an externally applied load that is supported by both networks A
and A/, the stress response of both networks must be identical. Since only the bonds r and p differ between the
two networks, the stress spaces of networks A and A’ are identical up to the following vectors: the LB-state

2 A

. . . A A A . . .
o0, = f,presentinnetwork Abutnotin A’,and the LB-state 3, = p, presentin A’ but notin A. Since the stress
response to external loading that is supported by both networks must be identical, the LB-states # and p will
therefore not contribute to the network’s mutual supported stress responses: the bonds rand p remain

unstressed.

Appendix C. Mechanical interpretation of evolving LB-states

Having discussed the evolution of LB-space under supertriangle rotations in appendix B, we now present the
mechanical interpretation of the mutated LB-states. We show here that the few stress states that are added,
removed, or modified in processes I and II (sections 6.2 and 6.3) correspond to the metamaterials’ stress
response to well-defined external nodal loads. In particular, we show below that all mutated LB-states
correspond to nodal load dipoles along the two bonds r, p that are mutually exclusive between the post- and pre-
transformation networks. A nodal load dipole generates equal and opposite forces at two nodes, and is oriented
along the connecting line between the two nodes. The mutating LB-states either generate a large stress on a single
bond and a diffuse field around it, or an extended stress field around a missing bond, as illustrated in figure C1.
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Figure C1. Mechanical interpretation of the LB-states that change under a supertriangle rotation for processes Iand II. (a) A
compatible network A transforms into an incompatible network B according to process I. One LB-state 3',A (colour bar) changes to
3';23 under the transformation; both LB-states map to the same nodal load dipole /2 fr alongbond r (arrows). One LB-state 3‘5 is
added in network B: it maps to the nodal load dipole /2 f; alongbond p, which load is not supported in network A. (b) An
incompatible network B transforms into an incompatible network Caccording to process II. The LB-state 3;3 in network B changes to
35, in network C. Both LB-states map to the same nodal load dipole /2 fr alongbond r (arrows). In addition, the LB-state 3'; in

network C changes to 3;; in network B. Both LB-states map to the same nodal load dipole /2 f; alongbond p (arrows).

We first consider the stress response evolution of process I, when a compatible material A is transformed
into an incompatible material B (figure C1(a)). During this transformation, the LB-state & of network A
changes. The physical interpretation of this stress state is as follows. The state & is alinear combination of the
SS-state 72',A and the unit bond stress 7, such that the final LB-state is orthogonal to the SS-state (equation (B1)).
The unit bond stress corresponds via Hooke’s law to a nodal load dipole v/2 f;: that is, the two nodes connected
bybond rundergo an equal and opposite force, extending the bond (here, the prefactor /2 is a consequence of
normalization). The SS-state, by definition, generates no nodal loads. Thus, the stress state & in network A

must map to the nodal load state /2 fr:

' =

A 2A2A Yy
—@F-T)T > \/Ef, (CD)
In network B, the LB-state & is replaced by a new LB-state &A%, It is a linear combination of the SS-state ?—rA and
the unitbond stress # such that any stress on r is cancelled out (see equation (B2)). Here, again, the unit bond

stress # maps to the nodal load V2 fr, while the SS-state ?',A generates no load. Hence, in network B,

=~

N 1 2 7
it = - ——%" o V2f. (€2)
r-T,

Lastly, process I introduces a new LB-state 3’5 = p in network B. Using the same arguments as above, we find

that the new LB-state corresponds to a load dipole /2 f; alongbond p:
&y = p — V2f,. (C3)
This LB-state has no counterpart in network A: there, the nodal load ~/2. fp activates the compatible material’s

FM, and is not supported. The remaining LB-states { 3';,‘ }, that are shared between networks A and B, are
unchanged; they map to identical loads in both networks. An overview of the mutated LB-states, and the nodal
loads corresponding to the latter, is shown in figure C1(a).

Secondly, we treat the stress response evolution of process II, where an incompatible material B is mutated
into an incompatible material C (figure C1(b)). There are two LB-states that are modified during this
transformation: 3',3 and g.zl;C in network B are changed into c‘Arpc and 5’56 in network C. Using an analogous

argument as for process I, the LB-state 3}3 in network B maps to the nodal load /2 fr:

P=i— G- #HE o 2f. (C4)
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In intermediate network BC:
A 1 2~ P,
gl =t - —=% < 2f (C5)
FoT
and finally in network C:
(A C R OF o
a5 = Rej(alC, #7) = # — —— L2 o Df. (Ceé)
r-T,
Similarly, the LB-state é'pc maps to the nodal load v/2 fp in network C:
_ ~ A aC2aC by
Upczp—(p~7'p)1'p<—>\/§fp. C7)
In intermediate network BC:
— A 1 2C P,
oy =b — —7 = V2, (€8)
p- Ty
and finally in network B:
1£_C _ (7¢_C 75_3) %B
a5 =Rej(aiC, #) = p — L—L """ — \2f,. (C9)
T,
p

The remaining LB-states { &ZBCP} are unmodified and map to the same nodal loads in both networks. The mutated

1Z]
LB-states are illustrated in figure C1(b).

Lastly, we discuss the stress response evolution for process I1I, where a compatible material A transformsto a
distinct compatible material A’. There are two LB-states that are modified during this transformation: # and p
are mutually exclusive LB-states of networks A and A’ respectively. Using similar arguments as above, the LB-

state # in network A maps to the nodal load dipole /2 f;:
o 2f. (C10)

Thisload dipole is not supported in network A’—it activates the global FM of the system—and there is no
counterpart to the LB-state # in network A’. Analogously, in network A’

b < Vif, (C11)

and this LB-state in network A’, being unsupported by network A, has no counterpart in the LB-space of A.

Appendix D. Derivation of the stress response difference

With our description of the stress space evolution and its physical interpretation in appendices B and C, we are
now in a position to derive exactly how a metamaterial’s stress response under external loading changes when its
architecture is changed by rotating a supertriangle. In particular, we found that the SS-space of two networks
related by a single supertriangle rotation are identical up to at most two mutually exclusive SS-states. Comparing
two networks, related by a supertriangle rotation, by calculating their stress response difference Ao under
identical supported loads, we will now show that Ao is alinear combination of only those SS-states that have
been changed by the network’s architectural transformation.

In any network, the stress response o to an arbitrary supported load f can be written as a unique linear
combination of LB-states: o = },_,(C;0;), where the set { 0;} is any linearly independent basis of stress vectors
spanning the LB-space, and the coefficients C; depend on the applied load, the material’s geometry, and the
choice of basis. The exact coefficients can be calculated using the matrix formalism discussed in section 2. We
use this representation to find an expression for the stress response difference between two networks, related via
process L, IT, or I11, under identical supported loads.

We first consider networks A and B, related via process I. When structure A is subjected to a supported load

f—that s, aload that does not excite the FM of network A—the stress response o is written in a
straightforward way:
Ny—2H-1
o= Y (Cé&L)+Ca, (D1)
i=1

where we have chosen a basis of LB-space such that the LB-states { 3';:} are shared between the two networks, and
the LB-state &, is unique to network A (see appendix B). As discussed in appendix C, when a supertriangle is
rotated in network A to produce network B, the nodal load dipole generated by the stress state & in network A is

supported instead by the stress state &A% in network B; in addition, the basis of LB-space now contains an extra
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LB-state p that maps to aload dipole along bond p. For network B, the stress response to the same external
loading f is then written as:
N,—2H—-1
of = 3 (C&,) + Calt + Cop. (D2)
i=1
Comparing equations (D1) and (D2), we note that the LB-states {3';2,1-} are shared between networks A and B,
and map to identical loads, so that the coefficients C; are equal. Furthermore, C, = 0 by necessity, since the load
dipole along bond p excites the FM of network A and cannot be part of our load f, which must be supported by
both networks. Lastly, the stress field &/:% corresponds to the stress field &;*—both mapping to the load dipole
V2 f;—so that the coefficient C, in both equations is equal. Using equations (C1)—(C2) and (D1)-(D2), we find
the following expression for the stress response difference between networks A and B:
—1+ ¢ 7
A 2A

7T

Ao =08 —ot=C, 4 e sp(EM. (D3)
Equation (D3) shows that the stress response difference between the two networks is parallel to the single
mutated SS-state '?',A. We confirm this finding via numerical calculations: the stress response difference between
network A with no defect and network B with a structural defect, illustrated in figure 1(a) (right) corresponds
exactly to the lost state of self stress shown in figure 9(b) (top), resulting in a differential stress response that is
localized near the defect.
A similar procedure allows us to find the stress response difference between two distinct incompatible
networks B and C, related via process II. The stress response of network B may be written as:
N,—2H-1
of= Y (Cibpe) + C5P + Cpal, (D4)

i=1
while the stress response of network Cis given by:
Ny—2H-1 s
2 el =~ C
oB = Z (Ci0y ) + CrG, + Cp5,. (D5)
i=1
Here, the LB-states { flef,fr} are shared between networks B and C, while the LB-states 6',3 and 6'21;, that map to

load dipoles /2. f'r and /2 fp in network B, are replaced by their commensurate counterparts & and 6'PC in
network C, consistent with appendix C. Using equations (D4)—(D5) and (C4)—(C9), the stress response
difference between the two structures then reduces to the following equation:

Ao =0¢— b
~ 2B 2B aC
R —1+ - 7)? -7 -7
:T,B C, —A(AB’) + G 7Ar ACP
r-T, P
A 2 2B aC\]
. 1—(p-7,)° T
+ 2| Cp| ————2—| + | =L
b7 T
2B 2C
€ Sp(%, 7). (Dé6)

Once again, the two networks’ stress response difference is contained in the space spanned by their two mutually
exclusive SS-states, %rB and #$. Note that the stress response difference of equation (D3) (process I) is a special
case of the general expression in equation (D6) for process IL.

Consider finally the two compatible networks A and A’, related via process III. With the same procedure as
for processes I and I1, we can write:

Ny 2H-1
ot= 3 (Cd,)+ Ci, D7)
i=1
while the stress response of network Cis given by:
N 2H-1
ol = Y (Ciay) + Cop. (D8)
i=1

By definition, under aload that is supported in both networks, the coefficients C, and C, must be zero (see
appendix C); and hence, there is no stress response difference between the two structures A and A’ under
identical, supported loads. Again, the stress response difference for process I11 is a special case of equation (D6)
for processI1.
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In conclusion: the stress response difference between two networks (related by a single supertriangle
rotation) under identical, supported loading is contained in the span of the structures’ mutually exclusive SS-
states. There may be zero, one, or two such states, corresponding to processes I1I, I, and II respectively. The
precise magnitude of the stress response difference can be found using equations (D3) (process I) and (D6)
(process II); the stress response difference for process I11 is trivially zero.

ORCIDiDs

A SMeeussen ©® https://orcid.org/0000-0003-1243-0318
Y Shokef ® https://orcid.org/0000-0002-1195-4614

References

[1] Overvelde] T etal 2016 A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom
Nat. Commun. 7 1-8
[2] KangSH etal2014 Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures
Phys. Rev. Lett. 112 1-5
[3] Silverberg] L etal2014 Using origami design principles to fold reprogrammable mechanical metamaterials Science 345 64750
[4] CelliP et al 2018 Shape-morphing architected sheets with non-periodic cut patterns Soft Matter 14 9744-9
[5] Dudte LH, VougaE, Tachi T and Mahadevan L 2016 Programming curvature using origami tessellations Nat. Mater. 15 583-8
[6] Paulose ], Meeussen A S and Vitelli V 2015 Selective buckling viastates of self-stress in topological metamaterials Proc. Natl Acad. Sci.
USA 1127639-44
[7]1 Schumacher C et al 2015 Microstructures to control elasticity in 3D printing ACM Trans. Graph. 34 136:1-136:13
[8] Bartlett N'W et al 2015 A 3D-printed, functionally graded soft robot powered by combustion Science 349 161-5
[9] LakesR S 1987 Foam structures with a negative Poisson’s ratio Science 235 1038—40
[10] Kadic M, Biickmann T, Stenger N, Thiel M and Wegener M 2012 On the practicability of pentamode mechanical metamaterials Appl.
Phys. Lett. 100 191901
[11] Coulais C, Kettenis C and Van Hecke M 2018 A characteristic length scale causes anomalous size effects and boundary programmability
in mechanical metamaterials Nat. Phys. 14 40—4
[12] WangRF eral 2006 Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands Nature 439 3036
[13] Nisoli C, Moessner Rand Schiffer P 2013 Colloquium: artificial spin ice: designing and imaging magnetic frustration Rev. Mod. Phys. 85
1473-90
[14] Libal A, Reichhardt C and Reichhardt CJ O 2006 Realizing colloidal artificial ice on arrays of optical traps Phys. Rev. Lett. 97 228302
[15] Ortiz-Ambriz A and Tierno P 2016 Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices Nat.
Commun. 710575
[16] HanY et al 2008 Geometric frustration in buckled colloidal monolayers Nature 456 898-903
[17] ShokefY, Souslov A and Lubensky T C 2011 Order by disorder in the antiferromagnetic Ising model on an elastic triangular lattice Proc.
Natl Acad. Sci. USA 108 11804—9
[18] Leoni Fand ShokefY 2017 Attraction controls the inversion of order by disorder in buckled colloidal monolayers Phys. Rev. Lett. 118
218002
[19] Meeussen A S, Oguz E C, Shokef Y and van Hecke M 2019 Topological defects produce exotic mechanics in complex metamaterials
Nat. Phys. arXiv:1903.07919
[20] Grima] N and Evans K E 2000 Auxetic behavior from rotating squares J. Mater. Sci. Lett. 19 1563—5
[21] Mullin T, Deschanel S, Bertoldi K and Boyce M C 2007 Pattern transformation triggered by deformation Phys. Rev. Lett. 99 1-4
[22] Ellenbroek W G, Zeravcic Z, van Saarloos W and van Hecke M 2009 Non-affine response: jammed packings versus spring networks
Europhys. Lett. 87 34004
[23] Ellenbroek W G, Hagh V F, Kumar A, Thorpe M F and van Hecke M 2015 Rigidity loss in disordered systems: three scenarios Phys. Rev.
Lett. 114 135501
[24] Goodrich CP,Liu A Jand Nagel SR 2015 The principle of independent bond-level response: tuning by pruning to exploit disorder for
global behavior Phys. Rev. Lett. 114225501
[25] Rocks ] W eral 2017 Designing allostery-inspired response in mechanical networks Proc. Natl Acad. Sci. USA 114 25205
[26] Sussman D M, Goodrich CP and Liu A J 2016 Spatial structure of states of self stress in jammed systems Soft Matter 12 3982-90
[27] Hexner D, Liu A ] and Nagel S R 2018 Role of local response in manipulating the elastic properties of disordered solids by bond removal
Soft Matter 14312—8
[28] Hexner D, Liu A J and Nagel S R 2018 Linking microscopic and macroscopic response in disordered solids Phys. Rev. E 97 063001
[29] Bassett D S, Owens E T, Porter M A, Manning M L and Daniels K E 2015 Extraction of force-chain network architecture in granular
materials using community detection Soft Matter 11 273144
[30] Pellegrino S and Calladine C 1986 Matrix analysis of statically and kinematically indeterminate frameworks Int. J. Solids Struct. 22
409-28
[31] Pellegrino S 1993 Structural computations with the singular value decomposition of the equilibrium matrix Int. J. Solids Struct. 30
3025-35
[32] GuestSD and Hutchinson ] W 2003 On the determinacy of repetitive structures J. Mech. Phys. Solids 51 383-91
[33] Maxwell ] C 1864 On the calculation of the equilibrium and stiffness of frames Phil. Mag. 4 27 294-9
[34] Lubensky T C, Kane CL, Mao X, Souslov A and Sun K 2015 Phonons and elasticity in critically coordinated lattices Rep. Prog. Phys. 78
1-38
[35] Calladine C 1978 Buckminster Fuller’s ‘Tensegrity’ structures and Clerk Maxwell’s rules for the construction of stiff frames Int. J. Solids
Struct. 14161-72
[36] Connelly R 1982 Rigidity and energy Invent. Math. 66 11-33
[37] Wannier G H 1950 Antiferromagnetism. the triangular Ising net Phys. Rev. 79 357-64

22


https://orcid.org/0000-0003-1243-0318
https://orcid.org/0000-0003-1243-0318
https://orcid.org/0000-0003-1243-0318
https://orcid.org/0000-0003-1243-0318
https://orcid.org/0000-0002-1195-4614
https://orcid.org/0000-0002-1195-4614
https://orcid.org/0000-0002-1195-4614
https://orcid.org/0000-0002-1195-4614
https://doi.org/10.1038/ncomms10929
https://doi.org/10.1038/ncomms10929
https://doi.org/10.1038/ncomms10929
https://doi.org/10.1103/PhysRevLett.112.098701
https://doi.org/10.1103/PhysRevLett.112.098701
https://doi.org/10.1103/PhysRevLett.112.098701
https://doi.org/10.1126/science.1252876
https://doi.org/10.1126/science.1252876
https://doi.org/10.1126/science.1252876
https://doi.org/10.1039/C8SM02082E
https://doi.org/10.1039/C8SM02082E
https://doi.org/10.1039/C8SM02082E
https://doi.org/10.1038/nmat4540
https://doi.org/10.1038/nmat4540
https://doi.org/10.1038/nmat4540
https://doi.org/10.1073/pnas.1502939112
https://doi.org/10.1073/pnas.1502939112
https://doi.org/10.1073/pnas.1502939112
https://doi.org/10.1145/2766926
https://doi.org/10.1145/2766926
https://doi.org/10.1145/2766926
https://doi.org/10.1126/science.aab0129
https://doi.org/10.1126/science.aab0129
https://doi.org/10.1126/science.aab0129
https://doi.org/10.1126/science.235.4792.1038
https://doi.org/10.1126/science.235.4792.1038
https://doi.org/10.1126/science.235.4792.1038
https://doi.org/10.1063/1.4709436
https://doi.org/10.1038/nphys4269
https://doi.org/10.1038/nphys4269
https://doi.org/10.1038/nphys4269
https://doi.org/10.1038/nature04447
https://doi.org/10.1038/nature04447
https://doi.org/10.1038/nature04447
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/PhysRevLett.97.228302
https://doi.org/10.1038/ncomms10575
https://doi.org/10.1038/nature07595
https://doi.org/10.1038/nature07595
https://doi.org/10.1038/nature07595
https://doi.org/10.1073/pnas.1014915108
https://doi.org/10.1073/pnas.1014915108
https://doi.org/10.1073/pnas.1014915108
https://doi.org/10.1103/PhysRevLett.118.218002
https://doi.org/10.1103/PhysRevLett.118.218002
http://arxiv.org/abs/1903.07919
https://doi.org/10.1023/A:1006781224002
https://doi.org/10.1023/A:1006781224002
https://doi.org/10.1023/A:1006781224002
https://doi.org/10.1103/PhysRevLett.99.084301
https://doi.org/10.1103/PhysRevLett.99.084301
https://doi.org/10.1103/PhysRevLett.99.084301
https://doi.org/10.1209/0295-5075/87/34004
https://doi.org/10.1103/PhysRevLett.114.135501
https://doi.org/10.1103/PhysRevLett.114.225501
https://doi.org/10.1073/pnas.1612139114
https://doi.org/10.1073/pnas.1612139114
https://doi.org/10.1073/pnas.1612139114
https://doi.org/10.1039/C6SM00094K
https://doi.org/10.1039/C6SM00094K
https://doi.org/10.1039/C6SM00094K
https://doi.org/10.1039/C7SM01727H
https://doi.org/10.1039/C7SM01727H
https://doi.org/10.1039/C7SM01727H
https://doi.org/10.1103/PhysRevE.97.063001
https://doi.org/10.1039/C4SM01821D
https://doi.org/10.1039/C4SM01821D
https://doi.org/10.1039/C4SM01821D
https://doi.org/10.1016/0020-7683(86)90014-4
https://doi.org/10.1016/0020-7683(86)90014-4
https://doi.org/10.1016/0020-7683(86)90014-4
https://doi.org/10.1016/0020-7683(86)90014-4
https://doi.org/10.1016/0020-7683(93)90210-X
https://doi.org/10.1016/0020-7683(93)90210-X
https://doi.org/10.1016/0020-7683(93)90210-X
https://doi.org/10.1016/0020-7683(93)90210-X
https://doi.org/10.1016/S0022-5096(02)00107-2
https://doi.org/10.1016/S0022-5096(02)00107-2
https://doi.org/10.1016/S0022-5096(02)00107-2
https://doi.org/10.1080/14786446408643668
https://doi.org/10.1080/14786446408643668
https://doi.org/10.1080/14786446408643668
https://doi.org/10.1088/0034-4885/78/7/073901
https://doi.org/10.1088/0034-4885/78/7/073901
https://doi.org/10.1088/0034-4885/78/7/073901
https://doi.org/10.1088/0034-4885/78/7/073901
https://doi.org/10.1016/0020-7683(78)90052-5
https://doi.org/10.1016/0020-7683(78)90052-5
https://doi.org/10.1016/0020-7683(78)90052-5
https://doi.org/10.1007/BF01404753
https://doi.org/10.1007/BF01404753
https://doi.org/10.1007/BF01404753
https://doi.org/10.1103/PhysRev.79.357
https://doi.org/10.1103/PhysRev.79.357
https://doi.org/10.1103/PhysRev.79.357

10P Publishing

New J. Phys. 22 (2020) 023030 A S Meeussen et al

[38] Toulouse G 1977 Theory of the frustration effect in spin glasses: I Commun. Phys. 2 115-9

[39] Sasa S-12012 Statistical mechanics of glass transition in lattice molecule models J. Phys. A: Math. Theor. 45 035002

[40] Filipov E T, Tachi T and Paulino G H 2015 Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials Proc.
Natl Acad. Sci. USA11212321-6

[41] Gaitanaros S, Kyriakides S and Kraynik A M 2012 On the crushing response of random open-cell foams Int. J. Solids Struct. 49 273343

[42] Nisoli C, Kapaklis V and Schiffer P 2017 Deliberate exotic magnetism via frustration and topology Nat. Phys. 13 200-3

[43] Lerner E 2018 Quasilocalized states of self stress in packing-derived networks Eur. Phys. J. E41 1-8

[44] Nascimento F S, M6l L A, Moura-Melo W A and Pereira A R 2012 From confinement to deconfinement of magnetic monopoles in
artificial rectangular spin ices New J. Phys. 14 115019

[45] Kane CLand Lubensky T C 2013 Topological boundary modes in isostatic lattices Nat. Phys. 10 39-45

[46] Paulose J, Chen B G-G G and Vitelli V 2015 Topological modes bound to dislocations in mechanical metamaterials Nat. Phys. 11 153-6

[47] ChenB G G etal2016 Topological mechanics of Origami and Kirigami Phys. Rev. Lett. 116 1-5

[48] LiuB etal2018 Topological kinematics of origami metamaterials Nat. Phys. 14 1-5

[49] Rocklin D Z et al2016 Mechanical Weyl modes in topological Maxwell lattices Phys. Rev. Lett. 116 1-5

[50] GuestSD and Fowler P W 2005 A symmetry-extended mobility rule Mech. Mach. Theory 40 1002—14

[51] JiW, Popovi¢ M, De Geus T W, Lerner E and Wyart M 2019 Theory for the density of interacting quasilocalized modes in amorphous
solids Phys. Rev. E99 1-8

[52] Wijtmans Sand Lisa Manning M 2017 Disentangling defects and sound modes in disordered solids Soft Matter 13 5649—55

[53] Snoeijer ] H, Vlugt T J H, van Hecke M and van Saarloos W 2004 Force network ensemble: a new approach to static granular matter
Phys. Rev. Lett. 92 054302

[54] Ramola K and Chakraborty B 2017 Stress response of granular systems J. Stat. Phys. 169 1-17

[55] Lois G et al 2009 Stress correlations in granular materials: an entropic formulation Phys. Rev. E 80 1—4

23


https://doi.org/10.1142/9789812799371_0009
https://doi.org/10.1142/9789812799371_0009
https://doi.org/10.1142/9789812799371_0009
https://doi.org/10.1088/1751-8113/45/3/035002
https://doi.org/10.1073/pnas.1509465112
https://doi.org/10.1073/pnas.1509465112
https://doi.org/10.1073/pnas.1509465112
https://doi.org/10.1016/j.ijsolstr.2012.03.003
https://doi.org/10.1016/j.ijsolstr.2012.03.003
https://doi.org/10.1016/j.ijsolstr.2012.03.003
https://doi.org/10.1038/nphys4059
https://doi.org/10.1038/nphys4059
https://doi.org/10.1038/nphys4059
https://doi.org/10.1140/epje/i2018-11705-9
https://doi.org/10.1140/epje/i2018-11705-9
https://doi.org/10.1140/epje/i2018-11705-9
https://doi.org/10.1088/1367-2630/14/11/115019
https://doi.org/10.1038/nphys2835
https://doi.org/10.1038/nphys2835
https://doi.org/10.1038/nphys2835
https://doi.org/10.1038/nphys3185
https://doi.org/10.1038/nphys3185
https://doi.org/10.1038/nphys3185
https://doi.org/10.1103/PhysRevLett.116.135501
https://doi.org/10.1103/PhysRevLett.116.135501
https://doi.org/10.1103/PhysRevLett.116.135501
https://doi.org/10.1038/s41567-018-0150-8
https://doi.org/10.1038/s41567-018-0150-8
https://doi.org/10.1038/s41567-018-0150-8
https://doi.org/10.1103/PhysRevLett.116.135503
https://doi.org/10.1103/PhysRevLett.116.135503
https://doi.org/10.1103/PhysRevLett.116.135503
https://doi.org/10.1016/j.mechmachtheory.2004.12.017
https://doi.org/10.1016/j.mechmachtheory.2004.12.017
https://doi.org/10.1016/j.mechmachtheory.2004.12.017
https://doi.org/10.1103/PhysRevE.99.023003
https://doi.org/10.1103/PhysRevE.99.023003
https://doi.org/10.1103/PhysRevE.99.023003
https://doi.org/10.1039/C7SM00792B
https://doi.org/10.1039/C7SM00792B
https://doi.org/10.1039/C7SM00792B
https://doi.org/10.1103/PhysRevLett.92.054302
https://doi.org/10.1007/s10955-017-1857-0
https://doi.org/10.1007/s10955-017-1857-0
https://doi.org/10.1007/s10955-017-1857-0
https://doi.org/10.1103/PhysRevE.80.060303
https://doi.org/10.1103/PhysRevE.80.060303
https://doi.org/10.1103/PhysRevE.80.060303

	1. Introduction
	2. Linear mechanics: states of self stress and floppy modes (FMs)
	3. Structurally complex mechanical metamaterials
	4. States of self stress in superhexagons and larger metamaterials
	5. Architectural defects
	6. Response evolution under architectural transformations
	6.1. Constructing the states of self stress
	6.2. Process I: supertriangle rotation from a compatible to an incompatible geometry
	6.3. Process II: supertriangle rotation from an incompatible to another incompatible geometry
	6.4. Mechanical interpretation and consequences

	7. Re-steering a stress response with architectural transformations
	8. Conclusions and outlook
	Acknowledgments
	Appendix A.
	Appendix B.
	B.1. Process I: compatible to incompatible metamaterial
	B.2. Process II: incompatible to incompatible metamaterial
	B.3. Process III: compatible to compatible metamaterial

	Appendix C.
	Appendix D.
	References



