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C O S M O L O G I C A L C O N S T R A I N T S O F A
B E Y O N D - H O R N D E S K I M O D E L

4.1 introduction

As mentioned in 1.3.1 it is possible to construct healthy theories be-
yond Horndeski gravity free from Ostrogradski instabilities. In Gleyzes-
Langlois-Piazza-Vernizzi (GLPV) theories [39], for example, there are
two extra Lagrangians beyond the Horndeski domain without increas-
ing the extra propagating DOFs [38, 166]. GLPV theories have several
peculiar properties: the propagation speeds of matter and the scalar
field are mixed [59, 167–169], a partial breaking of the Vainshtein
mechanism occurs inside astrophysical bodies [170–175], and a conical
singularity can arise at the center of a spherically symmetric and static
body [176, 177]. We note that there exist also extensions of Horndeski
theories containing higher-order spatial derivatives [178–180] (encom-
passing Horava gravity [181]) and degenerate higher-order scalar-tensor
theories with one scalar propagating DOF [40, 41, 182, 183].

The detection of the gravitational wave (GW) signal GW170817 [61]
accompanied by the gamma-ray burst event GRB170817A [184] shows
that the speed of GWs ct is constrained to be in the range −3× 10−15 ≤
ct − 1 ≤ 7× 10−16 [62] at the redshift z ≤ 0.009, where we use the
unit in which the speed of light c is equivalent to 1. The Horndeski
Lagrangian, which gives the exact value ct = 1 without the tuning
among functions, is of the form L = G4(φ)R + G2(φ, X) + G3(φ, X)�φ,
where G4 is a function of the scalar field φ, R is the Ricci scalar, and
G2,3 depend on both φ and X = ∂µφ∂µφ [69–71, 75]. There are also
dark energy models in which the GW speed consistent with the above
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102 cosmological constraints of a beyond-horndeski model

observational bound of ct can be realized [185–187]. In GLPV theories
with the X dependence in G4, it is also possible to realize ct = 1 by the
existence of an additional quartic Lagrangian beyond the Horndeski
domain [188].

In addition to the bound on ct, the absence of the decay of GWs
into dark energy at LIGO/Virgo frequencies ( f ∼ 100 Hz) may imply
that the parameter α H characterizing the deviation from Horndeski
theories (and whose definition can be found below) is constrained to
be very tiny for the scalar sound speed cs different from 1, typically
of order |α H| . 10−10 today [189]. If we literally use this bound,
there is little room left for dark energy models in beyondHorndeski
theories [190, 191]. If cs is equivalent to 1, the decay of GWs into dark
energy is forbidden. However, it was argued in Ref. [189] that power-
law divergent terms would appear, leading to the conclusion that the
operator accompanying α H must be suppressed as well [189].

We note that the LIGO/Virgo frequencies are close to those of the
typical strong coupling scale or cut-off Λc of dark energy models con-
taining derivative field self-interactions [78]. Around this cut-off scale,
we cannot exclude the possibility that some ultra-violet (UV) effects
come into play to recover the propagation and property of GWs similar
to those in General Relativity (GR). If this kind of UV completion
occurs around the frequency f ∼ 100 Hz, the aforementioned bounds
on ct and α H are not applied to the effective field theory of dark en-
ergy exploited to describe the cosmological dynamics much below the
energy scale Λc. Future space-based missions, such as LISA [192], are
sensitive to much lower frequencies ( f ∼ 10−3 Hz), so they will offer
further valuable information on the properties of GWs with different
frequencies.

In GLPV theories, there are constraints on the parameter α H arising
from the modifications to gravitational interactions inside astrophys-
ical objects. For example, the consistency of the minimum mass for
hydrogen burning in stars with the red dwarf of lowest mass shows
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that |α H| is at most of order 0.1 [172, 173, 193, 194]. By using X-ray
and lensing profiles of galaxy clusters, similar bounds on α H were
obtained in Ref. [174]. From the orbital period of the Hulse-Taylor
binary pulsar PSR B1913+1, the upper bound of |α H| is of order 10−3

[195]. Cosmological constraints on α H were derived by using particular
parametric forms of dimensionless quantities appearing in the effective
field theory of dark energy to describe their evolution. In this case, the
constraints from CMB and large scale structure data on |α H| are of
order O(1) [196].

In this chapter, we place observational bounds on the beyond Horn-
deski (BH) dark energy model proposed in Ref. [188] and study how
the parameter α H is constrained from the cosmological datasets of
CMB temperature anisotropies, baryon acoustic oscillations (BAO),
supernovae type Ia (SN Ia), and redshift-space distortions (RSDs). We
decide to study also the limit α H → 0 of our theory, which we refer to
as Galileon ghost condensate (GGC).

For the likelihood analysis, we will use the publicly available Effective-
Field-Theory for CAMB (EFTCAMB) code1 [52, 53]. In our investigation the
gravitational theory is completely determined by a covariant action,
while the analysis in Ref. [196] follows a parameterized approach to
GLPV theories. In this respect, the two cosmological models considered
are completely different and the constraint on α H obtained in this work
cannot be straightforwardly compared to the results in Ref. [196].

The chapter is organized as follows. In Sec 4.2, we briefly review the
basics of the BH dark energy model introduced in Ref. [188]. In Sec. 4.3,
we show how this model can be implemented in the EFT formulation
and derive the background equations of motion together with theo-
retically consistent conditions. In Sec. 4.4, we discuss the evolution of
cosmological perturbations in the presence of matter perfect fluids and
investigate the impact of our model on observable quantities. In Sec. 4.5,
we present the Monte-Carlo-Markov-Chain (MCMC) constraints on

1 Web page: http://www.eftcamb.org

http://www.eftcamb.org


104 cosmological constraints of a beyond-horndeski model

model parameters and compute several information criteria to discuss
whether the BH model is favored over the ΛCDM model. Finally, we
conclude in Sec. 4.6.

4.2 dark energy model in glpv theories

The dark energy model proposed in Ref. [188] belongs to the quartic-
order GLPV theories given by the action

S =
∫

d4x
√
−g

4

∑
i=2

Li + SM[gµν, χM] , (4.1)

where g is the determinant of metric tensor gµν, SM is the matter action
for all matter fields χM, and the Lagrangians L2,3,4 are defined by

L2 = G2(φ, X) ,

L3 = G3(φ, X)�φ ,

L4 = G4(φ, X)R− 2G4,X(φ, X)
[
(�φ)2 − φµνφµν

]
+ F4(φ, X)ε

µνρ
σεµ′ν′ρ′σφµ′φµφνν′φρρ′ , (4.2)

where G2,3,4 and F4 are functions of the scalar field φ and X = ∇µφ∇µφ,
R is the Ricci scalar, and εµνρσ is the totally antisymmetric Levi-Civita
tensor satisfying the normalization εµνρσεµνρσ = +4!. We also define
Gi,X ≡ ∂Gi/∂X and use the notations φµ = ∇µφ and φµν = ∇ν∇µφ for
the covariant derivative operator ∇µ. We assume that the matter fields
χM are minimally coupled to gravity.

The last term containing F4(φ, X) in L4 arises beyond the domain of
Horndeski theories [39]. The deviation from Horndeski theories can be
quantified by the parameter

α H = − X2F4

G4 − 2XG4,X + X2F4
, (4.3)
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which does not vanish for F4 6= 0. The line element containing intrinsic
tensor perturbations hij on the flat Friedmann-Lemaître-Robertson-
Walker (FLRW) space-time is given by

ds2 = − dt2 + a2(t)
(
δij + hij

)
dxi dxj , (4.4)

where a(t) is the time-dependent scale factor, and hij satisfies the trans-
verse and traceless conditions (∇jhij = 0 and hi

i = 0). The propagation
speed squared of tensor perturbations is [39, 167, 168]

c2
t =

G4

G4 − 2XG4,X + X2F4
. (4.5)

In quartic-order Horndeski theories (F4 = 0), the X dependence in G4

leads to the difference of c2
t from 1. In GLPV theories, it is possible to

realize c2
t = 1 for the function

F4 =
2G4,X

X
, (4.6)

under which α H = −2XG4,X/G4.
Here we will study observational constraints on the model proposed

in Ref. [188]. This is characterized by the following functions

G2 = a1X + a2X2 , G3 = 3a3X ,

G4 =
m2

0
2
− a4X2 , F4 = −4a4 , (4.7)

where m0 and a1,2,3,4 are constants. This beyondHorndeski model, here-
after BH, satisfies the condition (4.6), and hence c2

t = 1. When a4 = 0,
all the departures from Horndeski are suppressed. We refer to this
limit of BH as Galileon Ghost Condensate (GGC) model. Taking the
limits a2 → 0 and a3 → 0, GGC recovers the cubic covariant Galileon
[28, 141] and ghost condensate [197], respectively.

The BH model allows for the existence of self-accelerating de Sitter
solutions finally approaching constant values of X. Before approaching
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the de Sitter attractor, the dark energy equation of state w DE can
exhibit a phantom behavior (i.e., w DE < −1) without the appearance
of ghosts [188]. The cubic covariant Galileon gives rise to the tracker
solution with w DE = −2 in the matter era [29], but this evolution is
incompatible with the joint data analysis of CMB, BAO, and SN Ia
[30]. On the other hand, in both BH and GGC, the a2X2 term works
to prevent for approaching the tracker, so that −2 < w DE < −1 in the
matter era.

The BH model leads to the evolution of cosmological perturbations
different from that in GR. The late-time modification to the cosmic
growth rate arises mostly from the cubic Galileon term 3a3X�φ [188,
198].

4.3 methodology

In this section, we discuss the evolution of the background and linear
scalar perturbations in the BH model. We make use of the EFTCAMB/EFTCosmoMC
codes [52, 53], in which the EFT of dark energy and modified grav-
ity [42–45, 48] is implemented into CAMB/CosmoMC [51, 58]. The EFT
framework enables one to deal with any dark energy and modified
gravity model with one scalar propagating DOF φ in a unified and
model-independent manner.

The EFT of dark energy is based on the 3+1 Arnowitt-Deser-Misner
(ADM) decomposition of spacetime [199] given by the line element

ds2 = −N2 dt2 + hij

(
dxi + Ni dt

) (
dxj + N j dt

)
, (4.8)

where N is the lapse, Ni is the shift vector, and hij is the three-
dimensional metric. A unit vector orthogonal to the constant time
hyper-surface Σt is given by nµ = N∇µt = (N, 0, 0, 0). The extrinsic
curvature is defined by Kij = hk

i∇knj. The internal geometry of Σt is
quantified by the three-dimensional Ricci tensor Rij =

(3)Rij associated
with the metric hij.
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On the flat FLRW background, we consider the line element contain-
ing three scalar metric perturbations δN, ψ, and ζ, as

ds2 = −(1 + 2δN) dt2 + 2∂iψ dt dxi

+ a2(t)(1 + 2ζ)δij dxi dxj , (4.9)

where ∂i ≡ ∂/∂xi. We also choose the the unitary gauge in which the
perturbation δφ of the scalar field φ vanishes. Then, the perturbations
of extrinsic and intrinsic curvatures are expressed as [44, 48, 167, 179]

δKij = a2 (HδN − 2Hζ − ζ̇
)

δij + ∂i∂jψ , (4.10)

δRij = −δij∂
2ζ − ∂i∂jζ , (4.11)

where ∂2 ≡ δkl∂k∂l , and H = ȧ/a is the Hubble expansion rate, and
a dot represents a derivative with respect to t. The perturbations of
traces K ≡ Ki

i and R ≡ Ri
i are denoted as δK and δR, respectively,

with δg00 = 2δN.
In the ADM language, the Lagrangian of GLPV theories depends

on the scalar quantities N, K, KijKij, R, KijRij, and t [44]. Expanding
the corresponding action up to second order in scalar perturbations of
those quantities, it follows that

S =
∫

d4x
√
−g m2

0

{
1
2
[1 + Ω(a)] R +

Λ(a)
m2

0
− c(a)

m2
0

δg00

+ H2
0

γ1(a)
2

(
δg00)2 − H0

γ2(a)
2

δg00 δK

− H2
0

γ3(a)
2

(δK)2 − H2
0

γ4(a)
2

δKi
jδK j

i

+
γ5(a)

2
δg00δR

}
+ SM[gµν, χM] , (4.12)

where m0 is a constant having a dimension of mass, and Ω, Λ, c, γi
are called EFT functions that depend on the background scale factor a.
The explicit relations between those EFT functions and the functions
G2,3,4, F4 in the action (4.1) are given in Ref. [200].
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The first three variables Ω, Λ, c determine both the background
evolution and linear perturbations, whereas the functions γi solely
appear at the level of linear perturbations. For the matter action SM, we
take dark matter and baryons (background density ρm and vanishing
pressure) and radiation (background density ρr and pressure Pr = ρr/3)
into account. Then, the background equations are expressed as [42, 43]

3m2
0H2 = ρ DE + ρm + ρr , (4.13)

−m2
0
(
2Ḣ + 3H2) = P DE + Pr , (4.14)

where

ρ DE = 2c−Λ− 3m2
0H
(
Ω̇ + HΩ

)
, (4.15)

P DE = Λ + m2
0
[
Ω̈ + 2HΩ̇ + Ω

(
2Ḣ + 3H2)] . (4.16)

The density ρ DE and pressure P DE of dark energy obey the continuity
equation

ρ̇ DE + 3H (ρ DE + P DE) = 0 . (4.17)

In GLPV theories, there is the specific relation γ3 = −γ4. If we restrict
the theories to those satisfying c2

t = 1, it follows that γ4 = 0. Then, the
model given by the functions (4.7) corresponds to the coefficients

γ3 = 0 , γ4 = 0 , (4.18)

so that we are left with three functions γ1, γ2, γ5 at the level of linear
perturbations.

To study the cosmological evolution of our model in EFTCAMB, we
first solve the background equations of motion and then map to the
EFT functions according to the procedure given in Refs. [42–45, 48, 180,
200].
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4.3.1 Background equations in the BH model

For the model (4.7), the background equations are given by Eqs. (4.13)
and (4.14), with

Ω = −2a4φ̇4

m2
0

, (4.19)

and

ρ DE = −a1φ̇2 + 3a2φ̇4 + 18a3Hφ̇3 + 30a4H2φ̇4 , (4.20)

P DE = −a1φ̇2 + a2φ̇4 − 6a3φ̇2φ̈

− 2a4φ̇3 [8Hφ̈ + φ̇(2Ḣ + 3H2)
]

. (4.21)

The parameters c and Λ in Eqs. (4.15) and (4.16) can be expressed in
terms of quantities on the right hand sides of Eqs. (4.20) and (4.21).
Following Ref. [188], we define the dimensionless variables (density
parameters):

x1 = − a1φ̇2

3m2
0H2

, x2 =
a2φ̇4

m2
0H2

,

x3 =
6a3φ̇3

m2
0H

, x4 =
10a4φ̇4

m2
0

, (4.22)

and

Ω DE =
ρ DE

3m2
0H2

, Ωm =
ρm

3m2
0H2

, Ωr =
ρr

3m2
0H2

. (4.23)

From Eq. (4.13), we have

Ωm = 1−Ω DE −Ωr , (4.24)

where the dark energy density parameter is given by

Ω DE = x1 + x2 + x3 + x4 . (4.25)
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In terms of x4, the deviation parameter (4.3) from Horndeski theories
is expressed as

α H =
4x4

5− x4
, (4.26)

and hence α H is of the same order as x4 for |x4| ≤ 1.
The variables x1,2,3,4 and Ωr are known by solving the ordinary

differential equations

x′1 = 2x1(εφ − h) , (4.27)

x′2 = 2x2(2εφ − h) , (4.28)

x′3 = x3(3εφ − h) , (4.29)

x′4 = 4x4εφ , (4.30)

Ω′r = −2Ωr(2 + h) , (4.31)

where a prime denotes the derivative with respect to N = ln(a). On
using Eqs. (4.13) and (4.14), it follows that

εφ ≡
φ̈

Hφ̇

= − 1
qs

[
20(3x1 + 2x2)− 5x3(3x1 + x2 + Ωr − 3)

− x4(36x1 + 16x2 + 3x3 + 8Ωr)

]
,

h ≡ Ḣ
H2

= − 1
qs
[10(3x1 + x2 + Ωr + 3)(x1 + 2x2)

+ 10x3(6x1 + 3x2 + Ωr + 3) + 15x2
3

+ x4(78x1 + 32x2 + 30x3 + 12Ωr + 36) + 12x2
4] ,



4.3 methodology 111

with

qs ≡ 20(x1 + 2x2 + x3) + 4x4(6− x1− 2x2 + 3x3) + 5x2
3 + 8x2

4 . (4.32)

For a given set of initial conditions x1,2,3,4 and Ωr, we can solve
Eqs. (4.27)-(4.31) to determine the evolution of density parameters
as well as φ and H. Practically, we start to solve the above dynami-
cal system at redshift zs = 1.5× 105 and iteratively scan over initial
conditions leading to the viable cosmology satisfying the constraint
(4.24) today (z = 0). Additionally, evaluating Eq. (4.25) at present
time, we can eliminate one model parameter, for example x(0)2 , as
x(0)2 = Ω(0)

DE − x(0)1 − x(0)3 − x(0)4 , where “(0)” represents today’s quanti-
ties.

4.3.2 Mapping

To study the evolution of scalar perturbations and observational con-
straints on dark energy models in EFTCAMB, it is convenient to use
the mapping between EFT functions and model parameters in BH.
In Sec. 4.3.1, we already discussed the mapping of the background
quantities Ω, Λ and c. The functions γ1,2,5, which are associated with
scalar perturbations, are given by

γ1 =
H2

H2
0

[
1
20
(
24x4 − hx′4 + 3x′4 − x′′4

)
+ 2x2 +

1
12
{
(h + 9) x3 + x′3

} ]
, (4.33)

γ2 =
H
H0

[
1
5
(
x′4 − 8x4

)
− x3

]
, (4.34)

γ5 =
2
5

x4. (4.35)
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The expressions of these EFT functions allow us to draw already some
insight about the contributions of each xi to the dynamics of linear
perturbations. In general, the variable γ1 cannot be well constrained
by data being its contribution to the observables below the cosmic
variance [201]. The main modification to the evolution of perturbations
compared to GR arises from γ2 and γ5, which are mostly affected by x3

and x4. The variables x1 and x2 contribute to the perturbation dynamics
through the Hubble expansion rate H in γ2.

4.3.3 Viability constraints

There are theoretically consistent conditions under which the pertur-
bations are not plagued by the appearance of ghosts and Laplacian
instabilities in the small-scale limit. For the BH model (4.7), the condi-
tions for the absence of ghosts in tensor and scalar sectors are given,
respectively, by [188]

Qt =
5− x4

10
m2

0 > 0 , (4.36)

Qs =
3(5− x4)qs

25(x3 + 2x4 − 2)2 m2
0 > 0 , (4.37)

where qs is defined in Eq. (4.32). Then, we have the following constraints

x4 < 5 , qs > 0 . (4.38)

The BH model has the property c2
t = 1, so there is no Laplacian

instability for tensor perturbations. We note that the reduced Planck
mass M pl is related to m0 according to the relation M2

pl = m2
0(1 + Ω0)

in the local environment with screened fifth forces [170], where Ω0
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is today’s value of Ω. Then, the Newton gravitational constant G N is
given by

G N =
1

8πM2
pl

=
1

8πm2
0

(
1−

x(0)4
5

)−1

, (4.39)

which is positive under the absence of tensor ghosts.
For scalar perturbations, there are three propagation speed squares

c2
s , c̃2

r , and c̃2
m associated with the scalar field φ, radiation, and nonrela-

tivistic matter, respectively. In Horndeski theories, they are not coupled
to each other, so that the propagation speed squares of radiation and
nonrelativistic matter are given, respectively, by c2

r = 1/3 and c2
m = +0.

In GLPV theories, they are generally mixed with each other, apart
from c̃2

m (which has the value c̃2
m = +0) [39, 59, 167–169]. Then, the

Laplacian instabilities of scalar perturbations can be avoided under the
two conditions

c2
s =

1
2
(
c2

r + c2
H − β H − γ H

)
> 0 , (4.40)

c̃2
r =

1
2
(
c2

r + c2
H − β H + γ H

)
> 0 , (4.41)

where

c2
H =

2
Qs

[
Ṁ+ HM−Qt −

3ρm + 4ρr

12H2(1 + α B)2

]
,

βr =
4α Hρr

3QsH2(1 + α B)2 , βm =
α Hρm

QsH2(1 + α B)2 ,

M =
Qt(1 + α H)

H(1 + α B)
, β H = βr + βm, α B = −5x3 + 8x4

2(5− x4)
,

γ H =
√
(c2

r − c2
H + β H)2 + 2c2

r α Hβr . (4.42)

When |α H| � 1 we have c2
s ' c2

H − β H and c̃2
r ' c2

r = 1/3, so the
second stability condition (4.41) is satisfied.
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Figure 4.1: The viable parameter space (in blue) for the initial values x(s)1 , x(s)2 ,

x(s)3 and x(s)4 at the redshift zs = 1.5× 105 (top panel) and today’s parameters

x(0)1 , x(0)2 and x(0)3 (bottom panel). In the viable parameter space there are
neither ghosts nor Laplacian instabilities.
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There are also constraints on today’s parameter α
(0)
H (or equivalently,

x(0)4 ) from massive astrophysical objects [172, 173, 195]. Among those
constraints, the orbital period of Hulse-Taylor binary pulsar gives the
tightest bound −0.0031 ≤ x(0)4 ≤ 0.0094 [188, 195]. If we literally use
the bound arising from the absence of the GW decay into dark energy
at LIGO/Virgo frequencies, the parameter α

(0)
H should be less than

the order of 10−10 [189]. As we mentioned in Introduction, it is still
a matter of debate whether the EFT of dark energy is valid around
the frequency f ∼ 100 Hz [78]. In this work, we will not impose such
a bound and independently test how the cosmological observations
place the upper limit of x(0)4 .

In figure 4.1, we show the physically viable parameter space (blue
colored region) for the initial conditions x(s)1 , x(s)2 , x(s)3 , x(s)4 (at redshift
zs = 1.5× 105) and today’s values x(0)1 , x(0)2 , x(0)3 (at redshift z = 0). We
find that x(0)1 is negative, while x(0)2 and x(0)3 are positive. We note that
the ghost condensate model [197] has a de Sitter solution satisfying
x1 < 0 and x2 > 0. The Galileon term x3 modifies the cosmological
dynamics of ghost condensate, but there is also a de Sitter attractor
characterized by x1 < 0, x2 > 0, and x3 > 0 [188]. As we see in fig-
ure 4.1, the parameter x(0)3 is not well constrained from the theoretically
viable conditions alone.

The parameter space of the variable x(0)4 is not shown in figure 4.1,
but it is in the range |x(0)4 | � 1 to satisfy all the theoretically consistent
conditions. As x(0)4 approaches the order 1, the scalar perturbation is
typically prone to the Laplacian instability associated with the negative
value of c2

s [188].
The above results will be used to set theoretical priors for the MCMC

analysis.
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4.4 cosmological perturbations

In this section, we discuss the evolution of scalar cosmological per-
turbations in the BH model for the perturbed line element given by
Eq. (4.9). We introduce the two gauge-invariant gravitational potentials:

Ψ ≡ δN + ψ̇ , Φ ≡ −ζ − Hψ . (4.43)

For the matter sector, we consider scalar perturbations of the matter-
energy momentum tensor Tµ

ν arising from the action SM, as δT0
0 =

−δρ, δT0
i = ∂iδq, and δTi

j = δPδi
j. The density perturbation δρ, the

momentum perturbation δq, and the pressure perturbation δP are
expressed in terms of the sum of each matter component, as δρ = ∑i δρi,
δq = ∑i δqi, and δP = ∑i δPi, where i = m, r. We introduce the gauge-
invariant density contrast:

∆i ≡
δρi

ρi
− 3H

δqi

ρi
, (4.44)

where ρi is the background density of each component. In the BH
model, the full linear perturbation equations of motion were derived
in Ref. [188].

In Fourier space with the comoving wavenumber k, we relate the
gravitational potentials in Eq. (4.43) with the total matter density con-
trast ∆ = ∑i ∆i, as [119–121]

−k2Ψ = 4πG Na2µ(a, k)ρ∆ , (4.45)

−k2(Ψ + Φ) = 8πG Na2Σ(a, k)ρ∆ , (4.46)

where G N is the Newton gravitational constant given by Eq. (4.39), and
ρ = ∑i ρi is the total background matter density. The dimensionless
quantities µ and Σ correspond to the effective gravitational couplings



4.4 cosmological perturbations 117

felt by matter and light, respectively. For nonrelativistic matter, the
density contrast ∆m obeys [188]

∆̈m + 2H∆̇m +
k2

a2 Ψ = −3
(
B̈ + 2HḂ

)
, (4.47)

where B ≡ ζ + Hδqm/ρm. This means that the matter density contrast
grows due to the gravitational instability through the modified Poisson
Eq. (4.45). In GR, both µ and Σ are equivalent to 1, but in the BH
model, they are different from 1. Hence the growth of structures and
gravitational potentials is subject to modifications.

For the perturbations deep inside the sound horizon (c2
s k2/a2 � H2),

the common procedure is to resort to a quasi-static approximation for
the estimations of µ and Σ [144, 202, 203]. This amounts to picking up
the terms containing k2/a2 and ∆m in the perturbation equations of
motion. In Horndeski theories, it is possible to obtain the closed-form
expressions for Ψ, Φ, ζ [144, 204]. In GLPV theories, the additional
time derivatives α Hψ̇ and α Hζ̇ appear even under the quasi-static
approximation [169, 205], so the perturbation equations are not closed.
If |α H| is very much smaller than 1 and x4 is subdominant to x1,2,3,
we may ignore the contributions of the term x4 to the perturbation
equations. In this case, we can estimate µ and Σ in the BH model, as
[188]

µ ' Σ ' 1 +
2Qtx2

3
Qsc2

s (2− x3)2 . (4.48)

Since µ and Σ are identical to each other, it follows that Ψ ' Φ. Under
the theoretically consistent conditions (4.36), (4.37), and (4.40), we also
have µ ' Σ > 1 and hence the gravitational interaction is stronger
than that in GR. Let us note that in the following we will not rely on
this approximation and we will solve the complete linear perturbation
equations.

To understand the evolution of perturbations, we consider four dif-
ferent cases (BH1, BH2, BH3, GGC) listed in Table 4.1. The difference
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Parameters BH1 BH2 BH3 GGC

x(s)1 (·10−16) −1 −0.1 −0.01 −1

x(s)2 (·10−16) 5 0.05 0.0001 5

x(s)3 (·10−9) 1 1 0.1 10

x(s)4 (·10−6) 100 1 1 0

x(0)1 −1.37 -1.03 −0.73 -1.23

x(0)2 2.03 1.02 0.12 1.63

x(0)3 0.03 0.69 1.30 0.29

x(0)4 1 · 10−5 5 · 10−6 2 · 10−4 0

Table 4.1: List of starting values of the density parameters xi at the redshift
zs = 1.5× 105 and corresponding today’s values for three beyondHorndeski
(BH) models and the Galileon Ghost Condensate (GGC) model with x4 = 0.
The BH1, BH2 and BH3 models differ in the starting values x(s)i . All of them
satisfy theoretically consistent conditions discussed in Sec. 4.4. We study these
models for the purpose of visualizing and quantifying the modifications from
ΛCDM. The cosmological parameters (e.g., H0, Ωm, Ωr) used for these models
are the Planck 2015 best-fit values for ΛCDM [114].
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Figure 4.2: Evolution of the dimensionless variables defined in Eq. (4.22)
versus the scale factor a (with today’s value 1) for four test models listed
in Table 4.1. In this Table, the staring values of parameters xi at the initial
redshift zs = 1.5× 105 are shown for each test model. We discuss physical
implications for the evolutions of xi in Sec. 4.4.



120 cosmological constraints of a beyond-horndeski model

between these models is characterized by the different choices of initial
conditions x(s)i at the redshift zs = 1.5× 105. Among them, BH1 has

the largest initial value x(s)4 , while x4 is always zero in GGC (which
belongs to Horndeski theories). In figure 4.2, we plot the evolution of
xi from the past to today for these four different cases. In BH1, the
variable x4 dominates over other variables x1,2,3 for a . 10−2, but it
becomes subdominant at low redshifts with today’s value of order
10−5. Comparing BH1 with BH3, we observe that the initial largeness
of x4 does not necessarily imply the large present-day value x(0)4 . At
low redshifts, x4 is typically less than the order 10−3 to avoid c2

s < 0
with the amplitude smaller than x1,2,3, in which case the analytic esti-
mation (4.48) can be trustable. Indeed, for all the models given in Table
4.1, we numerically checked that the quasi-static approximation holds
with sub-percent precision for the wavenumbers k > 0.01 Mpc−1 (as
confirmed in Horndeski theories in Ref. [81, 201]). In the top panel of
figure 4.3, we plot the evolution of Ψ normalized by its initial value
Ψ(s) for the four models in Table 4.1 and for the ΛCDM. In the bottom
panel, we depict the percentage difference of Ψ for the chosen models
with respect to ΛCDM. At the late epoch, the deviations from ΛCDM
show up with the enhanced gravitational potential (around a ∼ 0.2 for
the BH2, BH3, GGC models). The largest deviation arises for BH3, in
which case the difference is more than 75 % today. As estimated from
Eq. (4.48), the modified evolution of Ψ is mostly attributed to the cubic
Galileon term x3. For larger today’s values of x(0)3 , the difference of
Ψ from ΛCDM tends to be more significant with the larger deviation
of µ from 1. In figure 4.3, we observe that the deviation from ΛCDM
increases with the order of BH1, GGC, BH2, BH3, by reflecting their
increasing values of x(0)3 given in Table 4.1.

In BH1, there is the suppression of |Ψ| in comparison to ΛCDM at
high redshifts (a . 10−2). This property arises from the dominance of x4

over x1,2,3 at early times, in which case the relative density abundances
between dark energy and matter fluids are modified. Besides this effect,
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Figure 4.3: (Top) Evolution of the gravitational potential Ψ normalized by its
initial value Ψ(s) for the wavenumber k = 0.01 Mpc−1. We show the evolution
of Ψ/Ψ(s) for four models listed in Table 4.1 and also for ΛCDM (black line).
(Bottom) Percentage relative difference of Ψ relative to that in ΛCDM. The
cosmological parameters used for this plot are the Planck 2015 best-fit values
for ΛCDM [114] (which is also the case for plots in Figs. 4.5 and 4.6). The
physical interpretation of this figure is discussed in Sec. 4.4.
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Figure 4.4: (Top) Evolution of the gravitational potential Ψ normalized by
its initial value Ψ(s) for BH1 and ΛCDM with three different wavenumbers:
k = 0.01, 0.1, 0.5 Mpc−1. In Table 4.1, we list the starting values of parameters
xi at the initial redshift zs = 1.5× 105 for the BH1 model. (Bottom) Percentage
relative difference of Ψ relative to that in ΛCDM for the same values of k in
the top panel.

the non-negligible early-time contribution of x4 to scalar perturbations
gives rise to a scale-dependent evolution of gravitational potentials,
which manifests itself in the k-dependent variation of µ(a, k) and Σ(a, k).
In figure 4.4, we plot the evolution of Ψ in BH1 for three different values
of k. For perturbations on smaller scales, the deviation from ΛCDM
tends to be more significant. In models BH2, BH3, and GGC, the early-
time evolution of Ψ is similar to that in ΛCDM, but they exhibit large
deviations from ΛCDM at late times.
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Figure 4.5: (Top) Lensing angular power spectra Dφφ
` = `(` + 1)Cφφ

` /(2π)
for ΛCDM and the models listed in Table 4.1, where C` is defined by
Eq. (4.49). (Bottom) Relative difference of the lensing angular power spec-
tra, computed with respect to ΛCDM, in units of the cosmic variance
σ` =

√
2/(2`+ 1)CΛ CDM

` .
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Figure 4.6: (Top) Evolution of the time derivative Ψ̇ + Φ̇ for ΛCDM and the
models listed in Table 4.1, computed at k = 0.01 Mpc−1. (Bottom) Relative
difference of Ψ̇ + Φ̇, computed with respect to ΛCDM. See the discussion
after Eq. (4.53) for the physical interpretation of this figure.
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At low redshifts, the lensing gravitational potential φ len = (Ψ +

Φ)/2 evolves in a similar way to Ψ, by reflecting the property µ ' Σ
for x(0)4 � 1. The lensing angular power spectrum can be computed by
using the line of sight integration method, with the convention [206]

Cφφ
` = 4π

∫ dk
k
P(k)

[∫ χ∗

0
dχ Sφ(k; τ0 − χ)j`(kχ)

]2

, (4.49)

where P(k) = ∆2
R(k) is the primordial power spectrum of curvature

perturbations, and j` is the spherical Bessel function. The source Sφ is
expressed in terms of the transfer function

Sφ(k; τ0 − χ) = 2Tφ(k; τ0 − χ)

(
χ∗ − χ

χ∗χ

)
, (4.50)

with Tφ(k, τ) = kφ len, χ is the comoving distance with χ∗ correspond-
ing to that to the last scattering surface, τ0 is today’s conformal time
τ =

∫
a−1 dt satisfying the relation χ = τ0 − τ. In figure 4.5, we show

the lensing power spectra Dφφ
` = `(`+ 1)Cφφ

` /(2π) and relative differ-
ences in units of the cosmic variance for four models listed in Table
4.1. Since Σ > 1 at low redshifts in BH and GGC models, this works
to enhance Dφφ

` compared to ΛCDM. We note that the amplitude of
matter density contrast δm in these models also gets larger than that in
ΛCDM by reflecting the fact that µ > 1. In figure 4.5, we observe that,
apart from BH1 in which Σ is close to 1, the lensing power spectra in
other three cases are subject to the enhancement with respect to ΛCDM.
Since today’s values of µ and Σ increase for larger x(0)3 , the deviation
from ΛCDM tends to be more significant with the order of GGC, BH2,
and BH3.

Let us proceed to the discussion of the impact of BH and GGC
models on the CMB temperature anisotropies. The CMB temperature-
temperature (TT) angular spectrum can be expressed as [207]

C TT
` = (4π)2

∫ dk
k
P(k)

∣∣∣∆ T
` (k)

∣∣∣2 , (4.51)
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Figure 4.7: (Top) CMB TT power spectra D TT
` = `(`+ 1)C TT

` /(2π) for the
test models presented in Table 4.1, compared with data points from the Planck
2015 release. (Bottom) Relative difference of TT power spectra, computed with
respect to ΛCDM in units of the cosmic variance σ` =

√
2/(2`+ 1)CΛ CDM

` .
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where

∆ T
` (k) =

∫ τ0

0
dτ eikµ̃(τ−τ0)S T(k, τ)j`[k(τ0 − τ)] , (4.52)

with µ̃ being the angular separation, and S T(k, τ) is the radiation trans-
fer function. The contribution to S T(k, τ) arising from the integrated-
Sachs-Wolfe (ISW) effect is of the form

S T(k, τ) ∼
(

dΨ
dτ

+
dΦ
dτ

)
e−κ , (4.53)

where κ is the optical depth. Besides the early ISW effect which occurs
during the transition from the radiation to matter eras by the time
variation of Ψ + Φ, the presence of dark energy induces the late-time
ISW effect. In the ΛCDM model, the gravitational potential −(Ψ + Φ),
which is positive, decreases by today with at least more than 30 %
relative to its initial value (see figure 4.3). As we observe in figure 4.6
we have Ψ̇ + Φ̇ > 0 in this case, so the ISW effect gives rise to the
positive contribution to Eq. (4.51). In figure 4.7, we plot the CMB TT
power spectra D TT

` = `(`+ 1)C TT
` /(2π) for the models listed in Table

4.1 and ΛCDM. In BH1 the parameter Σ is close to 1 at low redshifts
due to the smallness of x(0)3 , so the late-time ISW effect works in the
similar way to the GR case. Hence the TT power spectrum in BH1 for
the multipoles ` . 30 is similar to that in ΛCDM.

In the GGC model of figure 4.7, we observe that the large-scale ISW
tail is suppressed relative to that in ΛCDM. This reflects the fact that
the larger deviation of Σ from 1 leads to the time derivative Ψ̇ + Φ̇
closer to zero, see figure 4.6. Hence the late-time ISW effect is not
significant, which results in the suppression of D TT

` with respect to
ΛCDM. As the deviation of Σ from 1 increases further, the sign of
Ψ̇ + Φ̇ changes to be negative (see figure 4.6). The BH2 model can be
regarded as such a marginal case in which the large-scale ISW tail is
nearly flat. In BH3, the increase of Σ at low redshifts is so significant
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Figure 4.8: Evolution of the relative Hubble rate for the models listed in Table
4.1 compared to ΛCDM. The solid lines correspond to a positive difference,
whereas the opposite holds for the dashed lines. For BH1 the largest difference
from ΛCDM occurs in the early cosmological epoch, in which case the CMB
acoustic peaks shift toward lower multipoles.
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that the largely negative ISW contribution to Eq. (4.51) leads to the
enhanced low-` TT power spectrum relative to ΛCDM.

The modified evolution of the Hubble expansion rate from ΛCDM
generally leads to the shift of CMB acoustic peaks at high-`. In figure 4.8,
we observe that the largest deviation of H(a) at high redshifts occurs
for BH1 by the dominance of x4 over x1,2,3. This leads to the shift
of acoustic peaks toward lower multipoles (see figure 4.7). We also
find that BH3 is subject to non-negligible shifts of high-` peaks due
to the large modification of H(a) at low redshifts, in which case the
peaks shift toward higher multipoles. Moreover, there is the large
enhancement of ISW tails for BH3, so it should be tightly constrained
from the CMB data. We note that the shift of CMB acoustic peaks is
further constrained by the datasets of BAO and SN Ia. For BH2 and
GGC the changes of peak positions are small in comparion to BH1 and
BH3, but still they are in the range testable by the CMB data. Moreover,
the large-scale ISW tail is subject to the suppression relative to ΛCDM
in BH2 and GGC.

In BH1, we also notice a change in the amplitude of acoustic peaks
occurring dominantly at high `. This is known to be present in models
with early-time modifications of gravity [208, 209]. The modification of
gravitational potentials affects the evolution of radiation perturbations
(monopole and dipole) through the radiation driving effect [208, 210],
thus resulting in the changes in amplitude and phase of acoustic peaks
at high `.

The modified time variations of Ψ and Φ around the recombination
epoch also give a contribution to the early ISW effect. This is impor-
tant on scales around the first acoustic peak, corresponding to the
wavenumber k ' 0.016 Mpc−1 for our choice of model parameters. To
have a more qualitative feeling of this contribution, we have estimated
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the impact of the early ISW effect on D TT
` by using the approximate

ISW integral presented in Ref. [210]:∫ τ0

τ∗
dτ

(
dΨ
dτ

+
dΦ
dτ

)
j` [k(τ0 − τ)] ' [Ψ + Φ] |τ0

τ∗ j`(kτ0) , (4.54)

where τ∗ is the conformal time at the last scattering. Then, we find a
negative difference of about 4.9 % between BH1 and ΛCDM. This is in
perfect agreement with the change in amplitude of the first acoustic
peak shown in figure 4.7. Thus, the BH models in which x4 is the
dominant contribution to the dark energy dynamics at early times can
be severely constrained from the CMB data.

We stress that, in the late Universe, x4 is typically suppressed com-
pared to x1,2,3 for the viable cosmological background, so the main
impact on the evolution of perturbations comes from the cubic Galileon
term x3. The analytic estimation (4.48) is sufficiently trustable for study-
ing the evolution of gravitational potentials and matter perturbations
at low redshifts. However, we solve the full perturbation equations of
motion for the MCMC analysis without resorting to the quasi-static
approximation.

4.5 observational constraints

We place observational bounds on the BH model by performing the
MCMC simulation with different combinations of datasets at high and
low redshifts.

4.5.1 Datasets

For the MCMC likelihood analysis, based on the EFTCosmoMC code,
we use the Planck 2015 [91, 114] data of CMB temperature and po-
larization on large angular scales, for multipoles ` < 29 (low-` TEB
likelihood) and the CMB temperature on smaller angular scales (PLIK
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TT Likelihood). We also consider the BAO measurements from the 6dF
Galaxy Survey [211] and from the SDSS DR7 Main Galaxy Sample [212].
Moreover, we include the combined BAO and RSD datasets from the
SDSS DR12 consensus release [213] and the JLA SN Ia sample [214].
We will refer to the full combined datasets as “Full”.

Finally, we impose the flat priors on the model parameters: x(s)1 ∈
[−10, 10] × 10−16, x(s)3 ∈ [−10, 10] × 10−9, and x(s)4 ∈ [0, 10] × 10−6.
Even by increasing the prior volume by one order of magnitude, we
confirmed that the likelihood results are not subject to the priors choice.

4.5.2 Constrained parameter space of BH

In this section, we show observational constraints on model parameters
in the BH model. We use the datasets presented in Sec. 4.5.1 with two
combinations: (i) Planck and (ii) Full. For reference, we also present the
results of the ΛCDM model.

In Table 4.2, we show the marginalized values of today’s four density
parameters x(0)i with 95 % confidence level (CL) limits. In figure 4.9, we
plot the observationally allowed regions derived by two combinations
of datasets with the 68% and 95% CL boundaries. The best-fit values of
x(0)1 and x(0)2 constrained by the Planck data are not affected much by
including the datasets of BAO, SN Ia, and RSDs. In the observationally
allowed region we have x(0)1 < 0 and x(0)2 > 0, but there are neither
ghosts nor Laplacian instabilities in the constrained parameter space
(as in the ghost condensate model [197]).

With the Planck data alone, the 95 % CL upper bound on x(0)3 is close
to 1, but the Full datasets give the tighter limit x(0)3 ≤ 0.27 at 95 % CL.
The maximum likelihood value of x(0)3 derived with the Planck data is
0.34, which is similar to the corresponding value 0.27 constrained with
the Full dataset. The non-vanishing best-fit value of x(0)3 is attributed to
the facts that, relative to ΛCDM, (i) the Galileon term can suppress the
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Parameters Planck Full

x(0)1 −1.32+0.21
−0.12 (−1.25) −1.35+0.01

−0.06 (−1.25)

x(0)2 1.85+0.33
−0.69 (1.62) 1.98+0.14

−0.29 (1.68)

x(0)3 0.16+0.54
−0.18 (0.34) 0.07+0.2

−0.1 (0.27)

x(0)4 (·10−6) 0.7+2.2
−1.8 (0.15) 0.3+0.7

−0.6 (0.54)

Table 4.2: Marginalized values of the model parameters x(0)i and their 95 %
CL bounds, derived by Planck and Full datasets. In parenthesis, we also show
the maximum likelihood values of these parameters.

large-scale ISW tale, and (ii) the modified background evolution gives
rise to the TT power spectrum showing a better fit to the Planck CMB
data at high-`. In figure 4.10, these properties can be seen in the best-fit
TT power spectrum of the BH model. Increasing x(0)3 further eventually
leads to the enhancement of the ISW tale in comparison to ΛCDM. As
we see in BH3 of figure 4.7, the models with large x(0)3 do not fit the TT
power spectrum well at high-` either. Such models are disfavored from
the CMB data (as in the case of covariant Galileons [32, 33]), so that
x(0)3 is bounded from above. The RSD data at low redshifts can be also
consistent with the intermediate values of x(0)3 constrained from CMB.

In figure 4.11, we show the evolution of w DE for the best-fit BH model.
As discussed in Ref. [188], the existence of x2 besides x3 prevents the
approach to a tracker solution characterized by w DE = −2 during the
matter-dominated epoch. The best-fit background solution first enters
the region −2 < w DE < −1 in the matter era and finally approaches
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Figure 4.9: Two-dimensional observational bounds on the combinations of
today’s density parameters (x(0)1 , x(0)2 ) and (x(0)3 , x(0)4 ). The colored regions
correspond to the parameter space constrained by the Planck (red) and Full
(blue) datasets at 68% (inside) and 95% (outside) CL limits.

a de Sitter attractor characterized by w DE = −1. Thus, the BH and
GGC models with x2 6= 0 alleviate the observational incompatibility
problem of tracker solutions of covariant Galileons [30]. For the best-
fit BH model, there is the deviation of w DE from −1 with the value
w DE ≈ −1.1 at the redshift 1 < z < 3, so the model is different from
ΛCDM even at the background level.

From the Full datasets, today’s value of x4 is constrained to be

x(0)4 = 0.3+0.7
−0.6 × 10−6 (95 % CL), (4.55)

so that |x(0)4 | is at most of order 10−6. With the Planck data alone,
the upper bound of |x(0)4 | is also of the same order. This means that
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Figure 4.10: (Top) Best-fit CMB TT power spectra D TT
` = `(`+ 1)C TT

` /(2π)
for BH and ΛCDM, obtained with the Planck dataset. The model parame-
ters used for this plot are given in Tables 4.2 and 4.3. For comparison, we
plot the data points from the Planck 2015 release [114]. (Bottom) Relative
difference of the best-fit TT power spectra, in units of the cosmic variance
σ` =

√
2/(2`+ 1)CΛ CDM

` . See Sec. 4.5.2 for the difference between the best-fit
BH and ΛCDM models.
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Figure 4.11: Best-fit evolution of the dark energy equation of state w DE for
BH and ΛCDM, obtained from the Full analysis. The model parameters used
for this plot are given in Tables 4.2 and 4.3. In the best-fit BH, w DE first enters
the region w DE < −1 and then it finally approaches the asymptotic value
w DE = −1.
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the upper limit of x(0)4 is mostly determined by the CMB data. As
we discussed in Sec. 4.4, the CMB TT power spectrum is sensitive to
the dominance of x4 over x1,2,3 in the early cosmological epoch. Then,
today’s value of x4 is also tightly constrained as Eq. (4.55), which
translates to the bound

|α(0)
H | ≤ O(10−6) . (4.56)

Apart from the constraint arising from the GW decay to dark energy
[189], the above upper limit on α

(0)
H is the most stringent bound derived

from cosmological observations so far.
In Table 4.3, we present the values of H0, σ

(0)
8 , and Ω(0)

m constrained
from the Planck and Full datasets for the BH and ΛCDM models. The
bounds on H0, σ

(0)
8 , and Ω(0)

m derived with the Full dataset are similar
to those in ΛCDM. In figure 4.12, we also plot the two-dimensional
observational contours for these parameters constrained by the Planck
data. The direct measurements of H0 at low redshifts [215] give the

Parameter Model Planck Full

BH 68.7+3.2
−2.8 (69.6) 68.0+1.1

−1.1 (68.2)
H0

ΛCDM 67.9± 2.0 (67.6) 68± 1 (68)

BH 0.849+0.037
−0.035 (0.87) 0.84± 0.03 (0.84)

σ
(0)
8

ΛCDM 0.841± 0.03 (0.83) 0.84± 0.03 (0.84)

BH 0.300+0.033
−0.034 (0.28) 0.306+0.014

−0.014 (0.30)
Ω(0)

m
ΛCDM 0.30± 0.03 (0.31) 0.31± 0.01 (0.31)

Table 4.3: Marginalized values of H0, σ
(0)
8 , and Ω(0)

m and their 95% CL bounds
in the BH and ΛCDM models, derived by Planck and Full datasets. The unit
of H0 is km sec−1 Mpc−1. In parenthesis, we also show maximum likelihood
values of these parameters.
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Figure 4.12: The 68 % and 95 % CL two-dimensional bounds on (H0, Ω(0)
m )

(top) and (σ
(0)
8 , Ω(0)

m ) (bottom) constrained by the Planck 2015 data, with H0
in units of km sec−1 Mpc−1. The observational bounds on BH and ΛCDM
models are shown as the red and black colors, respectively. In the top panel,
the grey bands represent the 68 % and 95 % CL bounds on H0 derived by its
direct measurement at low redshifts [215]. See the last paragraph of Sec. 4.5.2
for the discussion of likelihood results.
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bound H0 > 70 km sec−1 Mpc−1, whereas the Planck data tend to favor
lower values of H0. Thus, as in the case of ΛCDM, the BH model does
not alleviate the tension of H0 between the Planck data and its local
measurements. A similar property also holds for σ

(0)
8 , where the Planck

data favor higher values of σ
(0)
8 than those constrained in low-redshift

measurements. We can also put further bounds on σ
(0)
8 by using the

datasets of weak lensing measurements, such as KiDS [86, 112, 216].
For this purpose, we need to take non-linear effects into account in the
MCMC analysis, which is beyond the scope of the current chapter.

4.5.3 Constrained parameter space of GGC

Since the data are tightly constraining the departures from standard
Horndeski gravity (4.56) we decide to perform the same analysis of the
previous section also to the Horndeski limit of BH, the GGC model.

In figure 4.13, we plot two-dimensional observational bounds on six
parameters by including the Planck+Lensing data as well. Since the
beyond Horndeski features were suppressed in BH, we do not see any
relevant difference on the cosmological constraints between BH and
GGC. Also in this case, the Planck data alone lead to higher values
of H0 than that in ΛCDM, making the former model consistent with
the Riess et al. bound H0 = 73.48± 1.66 km s−1 Mpc−1 derived by
direct measurements of H0 using Cepheids [215]. With the Full and
CMB lensing datasets, we find that the bounds on H0, σ

(0)
8 and Ω(0)

m
are compatible between GGC and ΛCDM.

The values of x(0)1 and x(0)2 constrained from the data are of order 1,
with x(0)1 < 0 and x(0)2 > 0. We find the upper limit x(0)3 < 0.118 (68 %
CL) from the Full data. This bound mostly arises from the fact that
the dominance of x3 over x2 at low redshifts leads to the enhanced
Integrated Sachs-Wolfe (ISW) effect on CMB temperature anisotropies.
The most stringent constraints on model parameters are obtained with
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Figure 4.13: Joint marginalised constraints (68 % and 95 % CLs) on six
model parameters x(0)1 , x(0)2 , x(0)3 , H0, σ

(0)
8 , Ω(0)

m obtained with the Planck,
Planck+Lensing, and Full datasets.
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Figure 4.14: Top panel: Best-fit CMB temperature-temperature (TT) power
spectra D TT

` = `(`+ 1)/2πC TT
` at low multipoles ` for ΛCDM, GGC, and

G3 (cubic Galileons), as obtained in the analysis of the Planck dataset. The
best-fit values for G3 are taken from Ref. [32]. For comparison, we plot the
data points from Planck 2015. Bottom panel: Relative difference of the best-fit
TT power spectra, in units of cosmic variance σ` =

√
2/(2`+ 1)CΛ CDM

` .

the Planck+Lensing datasets. In figure 4.14, we plot the CMB TT power
spectra for GGC as well as for ΛCDM and cubic Galileons (G3), given
by the best-fit to the Planck data. The G3 model corresponds to x2 = 0,
so that the Galileon density is the main source for cosmic acceleration.
In this case, the TT power spectrum for the multipoles l < O(10) is
strongly enhanced relative to ΛCDM and this behavior is disfavored
from the Planck data [32].

In GGC, the a2X2 term in the action can avoid the dominance of
x3 over x2 around today. Even if x(0)3 � x(0)2 , the cubic Galileon gives
rise to an interesting contribution to the CMB TT spectrum. As we see
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Figure 4.15: Best-fit evolution of Σ (top) and |Ψ̇ + Φ̇| (bottom) versus z at
k = 0.01 Mpc−1 for ΛCDM, GGC, and G3 derived with the Full dataset.
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in figure 4.14, the best-fit GGC model is in better agreement with the
Planck data relative to ΛCDM by suppressing large-scale ISW tails.
Taking the limit x(0)3 → 0, the TT spectrum approaches the one in
ΛCDM. The TT spectrum of G3 in figure 4.14 can be recovered by
taking the limit x(0)3 � x(0)2 .

In figure 4.15, we depict the evolution of Σ and |Ψ̇ + Φ̇| for GGC,
G3 and ΛCDM, obtained from the Full dataset best-fit. In G3, the
large growth of Σ from 1 leads to the enhanced ISW effect on CMB
anisotropies determined by the variation of Ψ + Φ at low redshifts.
For the best-fit GGC, the deviation of Σ from 1 is less significant, with
Ψ̇+ Φ̇ closer to 0. In the latter case, the TT spectrum is suppressed with
respect to ΛCDM. This is why the intermediate value of x(0)3 around
0.1 with x(0)2 = O(1) exhibits the better compatibility with the CMB
data relative to ΛCDM.

As we see in figure 4.16, the best-fit GGC corresponds to the evo-
lution of w DE approaching the asymptotic value −1 from the region
−2 < w DE < −1. This overcomes the problem of G3 in which the
w DE = −2 behavior during the matter era is inconsistent with the
CMB+BAO+SNIa data [30]. This nice feature of w DE in GGC again
comes from the combined effect of x2 and x3.

4.5.4 Model Selection

The BH model has three more parameters compared to those in ΛCDM.
This means that the former has more freedom to fit the model better
with the data. In order to study whether the former is statistically
favored over the latter, we compute the Deviance Information Criterion
(DIC) [217]:

DIC = χ2
eff(θ̂) + 2p D , (4.57)

where χ2
eff(θ̂) = −2 lnL(θ̂), and θ̂ is a vector associated with model

parameters maximizing the likelihood function L. The quantity p D is
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Figure 4.16: Best-fit evolution of w DE versus z for ΛCDM, GGC, and G3

derived with the Full dataset.
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Model Dataset ∆χ2
eff ∆ DIC

BH Planck -4.7 0.25

BH Full -1.8 0.1

GGC Planck -4.8 -2.5

GGC Full -2.8 -0.6

GGC Planck+Lensing -0.9 0.80

Table 4.4: Model comparisons in terms of ∆χ2
eff and ∆ DIC. As the reference

model, we use the value χ2
eff in ΛCDM. From the definition in (4.58) ∆ DIC >

0, indicates that ΛCDM is favored, while ∆ DIC < 0 supports the extended
model (BH or GGC).

defined by p D = χ̄2
eff(θ)− χ2

eff(θ̂), where the bar represents an average
over the posterior distribution. From its definition, the DIC accounts
for the goodness of fit, χ2

eff(θ̂), and the Bayesian complexity of the
model, p D. The complex models with more free parameters give larger
p D. To compare the BH model with the ΛCDM model, we calculate

∆ DIC = DIC BH − DICΛ CDM . (4.58)

If ∆ DIC is negative, then BH is favored over ΛCDM. For positive
∆ DIC, the situation is reversed.

In Table 4.4, we present the relative differences of ∆χ2
eff and ∆ DIC in

BH and GGC models, as compared to ΛCDM. Since ∆χ2
eff are always

negative, these models provide the better fit to the data relative to
ΛCDM. In particular, we find that ∆χ2

eff constrained by the Planck
data alone are smaller than those derived with the Full dataset. This
preference of BH over ΛCDM by the Planck data arises from combined
effects of the suppressed large-scale ISW tale caused by the Galileon
term and the modified high-` TT power spectrum induced by the differ-
ent background evolution relative to ΛCDM (as shown in figure 4.10).
The former contributes by ∼ 20 % to a better χ2

eff, while the latter to
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the remaining ∼ 80 %. We note that a further lowering of the ISW tail
is limited by the shift of acoustic peaks at high-`. Such modifications
are also subject to further constraints from the datasets of BAO and
SN Ia, but the values of ∆χ2

eff constrained with the Full dataset are still
negative in both BH and GGC models.

According to the DIC, the BH model is slightly disfavored over
ΛCDM with the Full dataset. The GGC model, which has one parameter
less than those in BH, is favored over ΛCDM with both Planck and
Full dataset. In order to investigate this further, we also make use
of the Bayesian evidence factor (log10 B) along the line of Refs. [218,
219] to quantify the support for GGC over ΛCDM. A positive value of
∆ log10 B indicates a statistical preference for the extended model and
a strong preference is defined for ∆ log10 B > 2. The values that we get
are log10 B = 4.4 for Planck, log10 B = 5.1 for Full and log10 B = 1.6
for Planck+Lensing. For Planck and Full both ∆ DIC and ∆ log10 B
exhibit significant preferences for GGC over ΛCDM. This suggests that
not only the CMB data but also the combination of BAO, SNIa, RSD
datasets favors the cosmological dynamics of GGC like the best-fit case
shown in Figs. 4.15 and 4.16. With the Planck+Lensing data the χ2

eff
and Bayesian factor exhibit slight preferences for GGC, while the DIC
mildly favours ΛCDM (∆ DIC = 0.8) . The model selection analysis
with the CMB lensing data does not give a definite conclusion for
the preference of models. We note that, among the likelihoods used
in our analysis, the CMB lensing alone assumes ΛCDM as a fiducial
model [220]. This might source a bias towards the latter.

This implies that the existence of an additional parameter x4 does
not contribute to provide better fits to the data. Indeed, today’s value
of x4 is severely constrained as Eq. (4.55) mostly from the CMB data.
At the same time, this implies that there are no observational signa-
tures for the deviation α H from Horndeski theories. It is interesting to
note that the GGC model, which belongs to a sub-class of Horndeski
theories, is statistically favored over ΛCDM even with two additional
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parameters, but this property does not persist in the BH model due to
the extra beyondHorndeski term α H modifying the cosmic expansion
and growth histories.

4.6 conclusion

We studied observational constraints on the BH model given by the
action (4.1) with the functions (4.7). This model belongs to a sub-
class of GLPV theories with the tensor propagation speed squared c2

t
equivalent to 1. The deviation from Horndeski theories is weighed by
the dimensionless parameter α H = 4x4/(5− x4), where x4 is defined
in Eq. (4.22). The BH model also has the a2X2 and 3a3X�φ terms in
the Lagrangian, which allow the possibility for approaching a de Sitter
attractor from the region −2 < w DE < −1 without reaching a tracker
solution (w DE = −2).

Compared to the standard ΛCDM model, the beyondHorndeski
term x4 can change the background cosmological dynamics in the
early Universe. Since the Hubble expansion rate H is modified by the
non-vanishing x4 term, this leads to the shift of acoustic peaks of CMB
temperature anisotropies at high-`, see BH1 in figure 4.7. Moreover,
as we observe in figure 4.4, the early-time dominance of x4 over x1,2,3

leads to the modified evolution of gravitational potentials Ψ and Φ in
comparison to ΛCDM, whose effect is more significant for small-scale
perturbations. This modification also affects the evolution of radiation
perturbations and the early-time ISW effect. As a result, the amplitude
of CMB acoustic peaks is changed by the x4 term. These modifications
allow us to put bounds on the deviation from Horndeski theories.

The cubic Galileon existing in the BH model leads to the modified
growth of matter perturbations and gravitational potentials at low
redshifts. Provided that x4 is subdominant to x1,2,3, the dimensional
quantities µ and Σ, which characterize the gravitational interactions
with matter and light respectively, are given by Eq. (4.48) under the
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quasi-static approximation deep inside the sound horizon. Thus, the
Galileon term x3 enhances the linear growth of perturbations without
the gravitational slip (µ ' Σ > 1). This enhancement can be seen in the
lensing power spectrum Dφφ

` plotted in figure 4.5.
For the CMB temperature anisotropies, the late-time modified growth

of perturbations caused by the cubic Galileon manifests itself in the
large-scale ISW tale. The ISW effect is attributed to the variation of the
lensing gravitational potential Ψ + Φ related to the quantity Σ. Unlike
the ΛCDM model in which the time derivative Ψ̇ + Φ̇ is positive, the
Galileon term x3 allows the possibility for realizing Ψ̇ + Φ̇ closer to
zero. In this case, the large-scale TT power spectrum is lower than that
in ΛCDM, see GGC and BH2 in figure 4.7. Moreover, the modified
background evolution at low redshifts induced by the Galileon leads to
the shift of small-scale CMB acoustic peaks toward higher multipoles.
If the contribution of x3 to the total dark energy density is increased
further, the ISW tale is subject to the significant enhancement compared
to ΛCDM, together with the large shift of high-` CMB acoustic peaks
(see BH3 in figure 4.7). These large modifications to the TT power
spectrum also arise for covariant Galileons without the x2 term, whose
behavior is disfavored from the CMB data [32, 33]. In the BH model,
the existence of x2 besides x3 can give rise to the moderately modified
TT power spectrum being compatible with the data.

We put observational constraints on free parameters in the BH model
by running the MCMC simulation with the datasets of CMB, BAO,
SN Ia, and RSDs. With the Planck CMB data, we showed that today’s
value of x4 is constrained to be smaller than the order 10−6. Inclusion
of other datasets does not modify the order of upper limit of x(0)4 , and
hence |α(0)

H | ≤ O(10−6). Apart from the bound arising from the GW
decay to dark energy, this is the tightest bound on |α(0)

H | derived so far
from cosmological observations.

The other dark energy density parameters x(0)1 , x(0)2 , x(0)3 are con-
strained in a similar way in BH and in GGC. The best-fit value of
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x(0)3 is smaller than |x(0)1 | and x(0)2 by one order of magnitude. This
intermediate value of x(0)3 leads to the CMB TT power spectrum with
modifications at both large and small scales, in such a way that the BH
model can be observationally favored over ΛCDM. The evolution of
matter perturbations at low redshifts is not subject to the large mod-
ification by this intermediate value of x(0)3 in comparison to ΛCDM,
so the BH model is also compatible with the RSD data. The best-fit
background expansion history corresponds to the case in which w DE

finally approaches −1 from the phantom region −2 < w DE < −1,
whose behavior is consistent with the datasets of SN Ia and BAO.
We also showed that, as in the ΛCDM model, the tensions in H0 and
σ
(0)
8 between CMB and low-redshift measurements are not alleviated

for the datasets used in our analysis. Future investigations including
non-linear effects and additional probes from weak lensing measure-
ments will allow us to shed light on the possibility for alleviating such
tensions in the BH model.

To make comparison between BH, GGC and ΛCDM models, we
computed the DIC defined by Eq. (4.57) penalizing complex models
with more free parameters. In BH, there are three additional parameters
than those in ΛCDM. We found that the effective χ2

eff in BH is smaller
than that in ΛCDM for two combinations of datasets (Planck and Full).
This is mostly due to both the suppressed ISW tail in BH and the
shifts of high-` acoustic peaks of the CMB TT power spectrum. These
combined effects allow the BH model to fit the Planck data better.
According to the DIC, however, there is a slight preference of ΛCDM
over BH with both Planck and Full datasets. The beyondHorndeski
term x4 generally works to prevent better fits to the data. The GGC
model, which corresponds to x4 = 0 with one parameter less than
those in BH, is statistically favored over ΛCDM both with the DIC and
with the Bayes criterion. To the best of our knowledge, there are no
other scalar-tensor dark energy models proposed so far showing such
novel properties. This surprising result is attributed to the properties
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that, for x(0)3 � x(0)2 = O(1), (i) suppressed ISW tails relative to ΛCDM
can be generated, and (ii) w DE can be in the region −2 < w DE < −1
at low redshifts.

We have thus shown that the deviation from Horndeski theories is
severely constrained by the current observational data, especially by
CMB. In spite of this restriction, the best-fit BH model gives the DIC
statistics smaller than that in ΛCDM. Moreover, the GGC model with
α H = 0 leads to bayesian preference relative to ΛCDM, even with two
additional parameters. Thus, the BH and GGC models are compelling
and viable candidates for dark energy.

Further investigations may be performed in several directions. In
this work we considered massless neutrinos, but we plan to extend the
analysis to include massive neutrinos and inquire about any degen-
eracy which can arise between such fluid components and modified
gravitational interactions. Moreover, it is of interest to investigate cross-
correlations between the ISW signal and galaxy distributions, which
can be used to place further constraints on BH and GGC models.
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