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L A R G E - S C A L E P H E N O M E N O L O G Y O F V I A B L E
H O R N D E S K I T H E O R I E S

Ongoing and upcoming cosmological surveys will significantly im-
prove our ability to probe the equation of state of dark energy, w DE,
and the phenomenology of Large Scale Structure. They will allow us
to constrain deviations from the ΛCDM predictions for the relations
between the matter density contrast and the weak lensing and the
Newtonian potential, described by the functions Σ and µ, respectively.
The latter phenomenological functions, also known as G light/G and
G matter/G, are commonly used to parameterize modifications of the
growth of large-scale structure in alternative theories of gravity. In this
chapter, we study the values these functions can take in Horndeski the-
ories. We restrict our attention to models that are in a broad agreement
with tests of gravity and the observed cosmic expansion history. In
particular, we require the speed of gravity to be equal to the speed of
light today, as indicated by the recent detection of gravitational waves
and electromagnetic emission from a binary neutron star merger, as
shown in section 1.4. We examine the correlations between the values
of Σ and µ analytically within the quasi static approximation, and
numerically, by sampling the space of allowed solutions. In the context
of viable Horndeski theories, we confirm the conjecture made in [117]
that (Σ− 1)(µ− 1) ≥ 0 and, we check the validity of the quasi static
approximation. Finally, we derive the theoretical prior for the joint co-
variance of w DE, Σ and µ, focusing on the time-dependence at certain
representative scales. Our results show that, even with the tight bound
on the present day speed of gravitational waves, there is room within
Horndeski theories for non-trivial signatures of modified gravity at
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54 large-scale phenomenology of viable horndeski theories

the level of linear perturbations and we confirm the high degree of
correlation between Σ and µ in scalar-tensor theories. The derived prior
covariance matrices will allow us to reconstruct jointly w DE, Σ and µ

in a non-parametric way.

3.1 introduction

One of the primary goals of ongoing and future surveys of Large Scale
Structure (LSS) is testing gravity on cosmological scales and shedding
light on the nature of dark energy (DE), i.e. the mysterious component
thought to be sourcing cosmic acceleration [18, 19, 118]. To this extent,
they will provide accurate measurements of the effective equation of
state of all non-dust contributions to the Friedmann equation at late
times, w DE(z). They will also measure deviations in the phenomenol-
ogy of LSS from predictions of the standard model of cosmology,
ΛCDM. These potential deviations are commonly encoded in the phe-
nomenological functions Σ and µ that parametrize modifications of the
perturbed Einstein’s equations relating the matter density contrast to
the lensing and the Newtonian potential, respectively [119–121].

Constraining functions of redshift and, possibly, scale with data,
necessarily involves making assumptions about their properties. Such
assumptions can be manifested in a choice of a specific parametric form,
which, however, can limit the ability to capture nontrivial features and,
more generally, is prone to biasing the outcome. Alternatively, one
can reconstruct these functions non-parametrically, e.g. by binning
them in redshift. As Principal Component Analysis (PCA) studies have
shown [122–125], while the upcoming missions can constrain several
eigenmodes of w DE(z), Σ(z) and µ(z), many more will remain uncon-
strained, with values in neighbouring bins effectively being degenerate.
A partial lifting of the degeneracy, sufficient to aid the reconstruction,
can be achieved by introducing correlations between bins in the form
of prior covariances, that can be directly combined with the data co-
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variance matrix [126]. While different techniques can be employed to
construct these correlation priors [126–131], it is desirable for them to
be theoretically informed. In [128] it was derived the theoretical prior
covariance matrix for w DE predicted by Horndeski gravity [34–36]. The
final aim of this chapter is to extend this work by creating joint theo-
retical covariance matrices for w DE along with the phenomenological
functions Σ and µ: having a (weak) joint prior between them will allow
to constrain these functions jointly in a theoretically consistent way,
while not biasing the outcome.

In order to fulfil this goal we employ the EFT approach to sample the
space of Horndeski theories and create large ensembles of statistically
independent models via Monte Carlo techniques. We randomly gen-
erate the five EFT functions that enter in the models Lagrangian and
we keep those that lead to theoretically consistent and observationally
allowed solutions. This means that we require the speed of gravity to
be equal to the speed of light today, as recently indicated by the grav-
itational wave measurement from a neutron star merger [74] and we
include constraints on the gravitational coupling, coming from Cosmic
Microwave Background (CMB) and Big Bang Nucleosynthesis (BBN)
bounds as well as laboratory tests. Furthermore we also impose a weak
Gaussian prior on the background expansion history, in order to be
broadly consistent with existing cosmological distance measurements.
Finally, we impose conditions for the physical viability of the sampled
models, mainly avoiding ghost and gradient instabilities of the theory,
as introduced in section 1.3.4.

In any specific theory of gravity, the expansion history and the evo-
lution of perturbations follow from the same fundamental Lagrangian
and are not independent of each other. Given these prospects, it is perti-
nent to ask if measuring certain values of these functions could rule out
broad classes of modified gravity (MG) theories. For instance, in [117]
it was argued that one should expect to have (Σ− 1)(µ− 1) ≥ 0 in
Horndeski theories that are in agreement with the existing observa-
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tional and experimental constraints. In principle, mathematically, there
is sufficient freedom within the Horndeski class to construct theories
that would violate the conjecture. However, according to [117], it would
require a specially fine-tuned arrangement of separate sectors of the
theory. We can make use of the ensembles of Horndeski model to test
such conjecture numerically.

The latter conjecture was based on explicit expressions for Σ and
µ derived under the Quasi Static Approximation (QSA). Since our
numerical procedure allows us to compute these functions exactly,
we verify the validity of the QSA at several representative scales and
redshifts. We find that the QSA breaks down at k . 0.001 h/Mpc even
though the modes are still well-within the scalar field sound horizon,
indicating that the time derivatives of the metric and the scalar field
perturbations can no longer be neglected on those scales. Nevertheless,
we find that the (Σ− 1)(µ− 1) ≥ 0 conjecture holds very well on scales
probed by large scale structure surveys.

Finally, our simulations allow us to derive several statistical prop-
erties of the distributions of w DE, Σ and µ, such as their mean values
and distribution functions, in bins of time. Of more practical use (for
non-parametric reconstructions), we also obtain their joint covariances
and the functional forms of their correlation functions within each
subclass of model. We study the dependence of the statistical ensemble
on the imposed theoretical priors and mild observational constraints.
We also identify trends in the covariances associated to the different
sub-classes of theories, such as Generalized Brans-Dicke (GBD), i.e.
models with a standard form for the scalar kinetic term, and Horndeski
models in which the speed of gravity is the same as that of light at all
times. Generally, we confirm the high degree of correlation between Σ
and µ in scalar-tensor theories.

Our work demonstrates the complementarity of the purely phe-
nomenological Σ and µ parameterization and the EFT approach to
testing scalar-tensor theories. The latter can be used to derive the-
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oretical priors on Σ and µ, which are more directly constrained by
observations.

This chapter is organised as follows: in section 3.2 we review the phe-
nomenological description of cosmological perturbations in Horndeski
theories introducing Σ and µ. In section 3.3 we analytically examine
the conditions for violating (Σ− 1)(µ− 1) ≥ 0. In section 3.4 we de-
scribe the procedure and in section 3.5 we present the outcome of the
numerical sampling of Σ and µ in three representative subclasses of
Horndeski theories and the resulting covariance matrices. Finally, in
section 3.6 we conclude with a discussion.

3.2 evolution of large scale structure in horndeski the-
ories

In the Newtonian gauge, scalar perturbations to the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric are the gravitational potentials Ψ and
Φ, defined via

ds2 = −(1 + 2Ψ)dt2 + a2(1− 2Φ)dx2, (3.1)

where a is the scale factor. The evolution of the metric potentials Φ and
Ψ is coupled to that of matter fields through Einsteins’ equations. As
discussed in [119, 132], non-relativistic particles respond to gradients of
Ψ, while relativistic particles “feel” the gradients of the Weyl potential,
(Φ + Ψ)/2. In ΛCDM, at epochs when the radiation density can be
neglected, one has (Φ + Ψ)/2 = Φ = Ψ. However, in alternative mod-
els, in which additional degrees of freedom can mediate gravitational
interactions, the potentials need not be equal. It will be possible to
test this by combining the weak lensing shear and galaxy redshift data
from surveys like Euclid [133] and LSST [134]. A common practical way
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of conducting such tests [121] involves introducing phenomenological
functions Σ and µ , defined as

k2(Φ + Ψ) = −8πG Σ(a, k) a2ρ∆ , (3.2)

k2Ψ = −4πGµ(a, k)a2ρ∆ , (3.3)

where ρ is the background matter density and ∆ = δ + 3aHv/k is
the comoving density contrast. Alternatively, one could use any one
of the above functions along with the “gravitational slip” [97, 119,
120, 135, 136] γ(a, k) defined via Φ = γ(a, k)Ψ. As shown in [124,
125], Σ will be well-constrained by the combination of weak lensing
and photometric galaxy counts from surveys like Euclid and LSST.
Spectroscopic galaxy redshifts will add measurements of redshift space
distortions, which probe the Newtonian potential, and will help to
measure µ [125, 137, 138]. The parameter γ is not directly probed by
cosmological observables but can be derived from the measurement of
the other two.

The functions Σ and µ are equal to one in ΛCDM, but generally
would be functions of time and the Fourier number k in models beyond
ΛCDM. When coupled to the Euler and the continuity equations for
matter, eqs. (3.2) and (3.3) form a closed system that can be solved
to obtain the phenomenology of LSS on linear scales [121]. Given a
functional form of Σ and µ, one can solve for the evolution of cos-
mological perturbations [121] using, e.g. , the publicly available code
MGCAMB [139, 140], and constrain these functions by fitting them to
data. The question one should then ask is if the measured values of the
parameters rule out certain classes of modified gravity models.

Obtaining a closed functional form of Σ and µ in a given gravity
theory is only possible under the quasi static (QS) approximation (QSA).
The QSA has been shown to hold well in certain representative classes
of scalar-tensor theories [54, 56, 141–143]. In [117], the QS expressions
for Σ and µ in the Horndeski class of scalar-tensor theories were derived
and closely examined. It was observed that there must be correlations
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between their values. In particular, one should generally expect to
have Σ− 1 and µ− 1 to be of the same sign in theoretically consistent
models that do not grossly contradict observations.

3.2.1 Background evolution and wDE

Given the EFT functions Ω(a) and Λ(a) as defined in eq. (1.62), one can
use the Friedmann equation to solve for the evolution of the Hubble
parameter H = a−1da/dτ. Namely, introducing y ≡ H2, we have(

1 + Ω +
1
2

aΩ′
)

dy
d ln a

+
(
1 + Ω + 2aΩ′ + a2Ω′′

)
y

+

(
Pma2

m2
0

+
Λa2

m2
0

)
= 0 , (3.4)

where the prime indicates differentiation with respect to the scale
factor. Given the solution for H(a), the effective DE equation of state is
defined via

w DE ≡
P DE

ρ DE
=
−2Ḣ −H2 − Pma2/m2

0

3H2 − ρma2/m2
0

, (3.5)

where ρm and Pm are the combined energy density and the pressure of
all particle species, and the over-dot denotes a derivative with respect
to the conformal time. A more detailed description of the background
solution is given in [128]. To solve for the perturbations, in addition to
Ω and Λ, one needs to specify γ1, γ2 and γ3 multiplying the second
order terms in the action. From eq. (1.62), one can work out the full set
of linearly perturbed Einstein equations for scalar, vector and tensor
modes. Functions Ω and γ3 affect both scalar and tensor perturbations.
In particular, whenever γ3 6= 0, the speed of gravity cT is different from
the speed of light, c = 1, making it a key phenomenological signature
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of Horndeski gravity. It has become conventional to parameterize this
difference as αT ≡ c2

T − 1 [47], related to the EFT functions via

αT = − γ3

1 + Ω + γ3
. (3.6)

As introduced in 1.4, such deviations have been severely constrained
by the recent detection of the neutron star binary GW170817 and its
electromagnetic counterpart GRB170817A [61–63], although one must
keep two arguments in mind. Firstly, GW170817 is at a distance of 40
Mpc, or z ∼ 0.01, while cosmological data comes from higher redshifts.
So, technically, one can have γ3 6= 0 at z > 0.01. Secondly, as pointed
out in [78], the GW170817 measurement was performed at energy
scales that are close to the cut-off scale at which EFT actions, such
as (1.62), become invalid. As explicitly shown in [78] for Horndeski
theories, one can have the speed of gravity differ from the speed of
light at energy scales relevant for cosmology, but get restored to the
speed of light at higher energies due to the terms that dominate near
the cutoff scale.

3.2.2 Σ and µ in Horndeski theories

The theoretical expressions for µ and Σ can be derived under the QSA,
where one considers the scales below the scalar field sound horizon
and ignores the time-derivatives of the scalar field perturbations and
the gravitational potentials. In Horndeski theories, they have the form
of a ratio of quadratic polynomials in k [117, 144, 145]:

µ =
m2

0
M2
∗

1 + M2 a2/k2

f3/2 f1M2
∗ + M2(1 + αT)−1a2/k2 , (3.7)

Σ =
m2

0
2M2
∗

1 + f5/ f1 + M2[1 + (1 + αT)
−1]a2/k2

f3/2 f1M2
∗ + M2(1 + αT)−1a2/k2 , (3.8)

where we defined M2 ≡ Cπ/ f1 and with the functions Cπ, f1, f3 and f5

defined in Appendix 3.8. The mass parameter M sets the scale below
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which the scalar field fluctuations contribute a fifth force, i.e. , the
Compton wavelength λC ∼ M−1. Note that, while γ1 does not enter
explicitly in the quasi static expressions for Σ and µ, it still plays a role
in determining the stability of perturbations [146].

3.3 the (Σ − 1)(µ − 1) ≥ 0 conjecture

In [117], it was conjectured that viable Horndeski models should have

(Σ− 1)(µ− 1) ≥ 0 . (3.9)

Mathematically, there is sufficient freedom in Horndeski theories to
violate (3.9). The conjecture is such that violations are unlikely, because
they require balancing the evolution of the background gravitational
coupling, i.e. the m2

0/M2
∗ pre-factor in Eqs. (3.7)-(3.16), with the change

in the speed of gravity waves (αT) and the fifth force contribution,
quantified by βB and βξ , in a rather special way. A statement about the
likeliness of something occurring necessarily depends on the choice of
the priors. In this instance, the key assumption is that the dynamics
of both the background and the perturbations are derived from the
same Lagrangian, which can be of any form consistent with (1.59). For
instance, one could imaging constructing an ensemble of Horndeski
theories by randomly sampling all functions of φ and X appearing
in (1.59), along with all possible initial conditions. Since an evolving
gravitational coupling affects both the expansion rate and the fifth force
contribution, restricting to the subset of solutions with an acceptable
H(a) reduces the probability of achieving the fine-tuning necessary to
violate (3.9).

In practice, sampling the action (1.59) directly would be prohibitively
costly without making significant simplifying assumptions (e.g. see
[72]). Another option, given that we are only interested in the back-
ground and linear perturbations, is to work with (1.62) and sample
the EFT functions, treating them as being a priori independent. Since
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functions Ω and Λ (and c, which can be derived from them) in (1.62)
affect the background evolution, a posteriori restrictions on H(a) will
constrain variations in Ω(a), which is the EFT function controlling the
evolution of the gravitational coupling, making it harder to violate the
conjecture (3.9). This effect would be absent had we assumed that H(a)
was known a priori, which is the case if one samples the action (1.64) in-
stead, where H(a) is assumed to be known independently from M2

∗(a),
αB, αK and αT. The probability of seeing exceptions to (3.9) is further
lowered by constraints on the variation of the gravitational coupling
from the big bang nucleosynthesis (BBN), CMB and various fifth force
bounds [147], and the strict bound on the speed of gravitational waves
imposed by GW170817 and GRB170817A [61–63].

In the remainder of this section, we analytically examine the con-
ditions under which (3.9) can be violated, separately considering the
limiting cases of the super- and sub-Compton scales. It is reasonable to
expect the cosmological observational window to fall into one of these
limits, since the Compton wavelength is either very large (λC ∼ H−1)
in models of self-accelerating type [141], or very small (λC < 1 Mpc) in
models of chameleon type [148–156]. The exact solutions can be studied
numerically and are presented in Section 3.4. As mentioned above, in
scalar-tensor theories there is a scale, connected to the scalar field’s
Compton wavelength, that defines the range of the fifth force, which is
suppressed on scales above λC. From (3.8) we can identify this scale
with the M2 term, which sets the transition scale of the phenomeno-
logical functions: thus when k/a � M we are in the large scales (or
super-Compton) limit, while, when k/a� M we are in the small scales
(or sub-Compton) limit.
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3.3.1 The super-Compton limit

In the k/a � M limit, corresponding to scales above the Compton
wavelength, (3.7) and (3.8) reduce to

µ0 =
m2

0
M2
∗
(1 + αT), (3.10)

Σ0 =
m2

0
M2
∗

(
1 +

αT

2

)
. (3.11)

This implies that the gravitational slip on super-Compton scales is
determined solely by the speed of gravitational waves [117], i.e.

γ0 =
1

1 + αT
= c−2

T . (3.12)

The condition to have µ0 > 1 and Σ0 < 1 can be written as

(1 + αT)(1 +
1
2

αT) < Ω < (1 + αT)
2, (3.13)

where we have used Eqs. (3.50) and (3.52) to express M2
∗ in (3.11) in

terms of Ω and αT. A necessary condition for (3.13) to hold is αT > 0,
which implies Ω > 1. Similarly, to have µ0 < 1 and Σ0 > 1, we must
have

(1 + αT)
2 < Ω < (1 + αT)(1 +

1
2

αT), (3.14)

which requires αT < 0 and, hence, Ω < 1. The conditions (3.13) and
(3.14) imply that, to have an observable violation of (3.9), there has
to be a significant αT 6= 0 and a corresponding Ω 6= 1, both of which
are constrained to be close to their GR values today [157–159]. While
GW170817 and GRB170817A [61–63] require αT to vanish at z < 0.01, in
principle, there are no observational bounds on αT at high redshifts. On
the other hand, Ω is constrained to be within 10% of its today’s value



64 large-scale phenomenology of viable horndeski theories

during the BBN epoch and at the last scattering [147]. Also, Ω̇ 6= 0
implies a new interaction between massive particles mediated by the
scalar field, which is constrained by probes of structure formation.
Thus, it would be challenging to arrange for (3.9) to be violated on
super-Compton scales, and be observable.

3.3.2 The sub-Compton limit

On scales below the Compton wavelength, i.e. in the limit k/a� M,
the expressions for µ and Σ become

µ∞ =
m2

0
M2
∗
(1 + αT + β2

ξ), (3.15)

Σ∞ =
m2

0
M2
∗

(
1 +

αT

2
+

β2
ξ + βBβξ

2

)
. (3.16)

where, following [49]1, we defined

βB = −
√

2
c2

s α

αB

2
(3.17)

βξ =

√
2

c2
s α

[
−αB

2
(1 + αT) + αT − αM

]
(3.18)

α = αK +
3
2

α2
B , (3.19)

with the expression for the speed of sound of the scalar field per-
turbations, c2

s , given by Eq. (3.61) in Appendix 3.8. Stability of linear
perturbations requires α > 0 and c2

s > 0 [47, 160].
The condition to have µ > 1 and Σ < 1 is

1 +
1
2
(αT + β2

ξ + βξ βB) <
Ω

1 + αT
< 1 + αT + β2

ξ , (3.20)

1 The definition of αB in [49] differs from that in [47] by a factor of −2. We use the
original definition of [47].
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while, to have µ < 1 and Σ > 1, we must have

1 + αT + β2
ξ <

Ω
1 + αT

< 1 +
1
2
(αT + β2

ξ + βξ βB) . (3.21)

The argument made in [117] was that it would take significant fine-
tuning to arrange for the background (Ω, αT) contributions to µ and
Σ to balance the fifth force (βξ , βB) contributions in a precise way to
satisfy conditions (3.20) or (3.21).

To gain insight into the degree of fine-tuning involved in satisfying
conditions (3.20) or (3.21), we next examine the subclass of theories
with αT = 0. Such theories are simpler to analyze and are favored by
the recent bounds from GW170817 and GRB170817A [61–63].

3.3.3 Theories with unmodified speed of gravitational waves

We will refer to the sub-class of Horndeski theories with the speed of
gravity equal to the speed of light as HS. The change in the gravity
speed is given by αT, related to EFT functions via

αT = −M̄2
2/M2

∗ . (3.22)

Setting M̄2
2 = 0 within the EFT framework ensures αT = 0. In terms of

the functions in the Horndeski Lagrangian, αT is given by [47]

αT = 2X[2G4X − 2G5φ − (φ̈− Hφ̇)G5X]M−2
∗ . (3.23)

Thus, requiring αT = 0 implies G4X = G5X = G5φ = 0 as discussed
in [117] and more recently in [68, 70].
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In HS, the non-trivial EFT functions are Ω, Λ, c, M4
2 and M̄3

1. Using
the relations (3.50)- (3.54), we can write

M2
∗ = m2

0Ω (3.24)

αM =
Ω̇

HΩ
(3.25)

αB = − Ω̇
HΩ
−

M̄3
1

Hm2
0Ω

= −αM − g3, (3.26)

where we have introduced

g3 ≡
M̄3

1

Hm2
0Ω

. (3.27)

Then,

βB =

√
2

c2
s α

αM + g3

2
(3.28)

βξ =

√
2

c2
s α

[
g3 − αM

2

]
. (3.29)

Substituting these expressions into Eqs. (3.15) and (3.16), we get

µ∞ =
1
Ω
[
1 + ν(αM − g3)

2] , (3.30)

and

Σ∞ =
1
Ω
[
1 + ν(αM − g3)

2 + ν(αMg3 − α2
M)
]

= µ∞ +
ν

Ω
(αMg3 − α2

M) , (3.31)

where we have defined ν ≡ (2c2
s α)−1. Conditions (3.20) and (3.21)

become

1 + ν(g2
3 − αMg3) < Ω < 1 + ν(αM − g3)

2 (3.32)



3.3 the (Σ − 1)(µ − 1) ≥ 0 conjecture 67

and

1 + ν(αM − g3)
2 < Ω < 1 + ν(g2

3 − αMg3). (3.33)

In addition, stability conditions require c2
s α ≥ 0, hence ν cannot be

negative.
At this point, we can make two observations:

1. Neither (3.32) nor (3.33) can be satisfied if αM ∝ Ω̇ = 0. Thus,
violating the conjecture generally requires a notable variation of
the background gravitational coupling, which is observationally
constrained [147];

2. Condition (3.33) cannot be satisfied if g3 = 0, implying that µ < 1
and Σ > 1 cannot happen in models with a canonical form of the
scalar field kinetic energy term, i. e. models of the generalized
Brans-Dicke (GBD) type.

To gain further insight, let us consider conditions (3.32) and (3.33)
separately.

3.3.3.1 Conditions for having µ > 1 and Σ < 1

Since ν is non-negative, a necessary condition for (3.32) to hold is
(αM − g3)2 > (g2

3 − αMg3), or

α2
M > αMg3, (3.34)

which is automatically satisfied if αM and g3 have opposite signs. In
principle, there is nothing prohibiting this from happening. However,
observational constraints on Ω and αM ∝ Ω̇, as well as constraints
on H(a) which also limit variations of Ω(a), will generally suppress
large departures from GR with µ > 1 and Σ < 1. This is, in fact, what
we see in our simulations, comparing the results before and after the
observational constraints are applied.
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3.3.3.2 Conditions for having µ < 1 and Σ > 1

Requiring stability of perturbations plays an important role in elimi-
nating solutions with µ < 1 and Σ > 1. Stability ensures that the force
mediated by the scalar field fluctuations is attractive, thus increasing
the value of the effective Newton’s constant. The only way to arrange
for µ < 1 is by making Ω > 1. But Ω is constrained to be close to unity
today [23, 142, 161], which means it would be very difficult to detect
µ < 1 at low redshifts. Having Ω > 1 would also tend to make Σ < 1,
unless the fifth force contribution to Σ is large enough to make Σ > 1,
while still being small enough to keep µ < 1, which is hard to arrange.

Mathematically, a necessary condition for (3.33) to hold is (αM −
g3)2 < (g2

3 − αMg3), or

α2
M < αMg3 . (3.35)

This is satisfied only if αM and g3 are of the same sign and α2
M < g2

3.
On the other hand, stability of perturbations requires c2

s α > 0, which,
for HS, can be written as

c2
s α = (α2

M − g2
3) + 2(αM − g3)−

2Ḣ
H2 (2 + αM + g3)

− 1
H
(α̇M + ġ3)−

ρm + Pm

M2
∗H2 > 0. (3.36)

Note that α2
M < g2

3 makes the first term on the right hand side of (3.36)
strictly negative, while the other terms could still be of either sign.
Now, imagine sampling αM and g3 from a distribution centered around
0. The strictly negative first term would skew c2

s α towards negative
values, reducing the probability of simultaneously satisfying (3.35) and
(3.36). In the next Section, we numerically confirm that imposing the
stability condition practically eliminates the solutions with µ < 1 and
Σ > 1.
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3.4 methodology : the ensemble of µ and Σ in horndeski

theories

In our analysis, we will scan the theory space of Horndeski gravity by
considering several representative combinations of EFT functions Ω,
Λ, γ1, γ2 and γ3, with their time dependence drawn from a general
ensemble. Specifically, we will consider three families of scalar-tensor
theories:

• Generalized Brans Dicke (GBD) models, i.e. theories with a
standard kinetic term for the scalar field. Jordan Brans-Dicke [162]
and f (R) [151] models are representatives of this class. Within
the EFT framework, they require specifying two functions, Λ and
Ω.

• HS: the subclass of theories in which the speed of gravity is the
same as the speed of light. The HS class includes GBD models,
and allows for non-canonical forms of the kinetic term for the
scalar field but without the higher derivative couplings. Kinetic
Gravity Braiding (KGB) [107] is an example of such models. In the
EFT language, it is described by four functions: Λ, Ω, γ1 and γ2.
We call this class of theories HS because it contains all Horndeski
models in which the modifications with respect to ΛCDM are
solely in the scalar (hence “S”) sector (up to the modification of
the friction term in the tensor equations from the non-minimal
coupling).

• Horndeski (Hor): refers to the entire class of scalar-tensor theories
with second order equations of motion [34]. It includes all terms
in the action (1.62) specified by functions: Λ, Ω, γ1, γ2 and γ3. In
Hor, the speed of gravity can be different from the speed of light,
but we only allow such deviations at earlier epochs, requiring
that γ3 = 0 today to satisfy the constraint coming from the recent
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detection of gravitational waves from a neutron star binary along
with the electromagnetic counterpart [62, 163, 164].

The above classes of theories, and the associated EFT functions, are
summarized in Table 3.1.

In order to scan the theory space, we have adopted the numerical
framework developed in [128]. It consists of a Monte Carlo (MC) code
which samples the space of the EFT functions, building a statistically
significant ensemble of viable models. For each model, it computes and
stores the values of w DE, Σ and µ at densely spaced values of redshifts.

To build the samples, we parametrize the EFT functions using a Padé
expansion of order [M, N], e.g.

f (a) = ∑N
n=1 αn (a− a0)

n−1

1 + ∑M
m=1 βm (a− a0)

m . (3.37)

We use expansions around a0 = 0 and a0 = 1, to represent models
that are close to ΛCDM in the past (thawing) or at present (freezing), re-
spectively. Since the acceptance rate is different in each case, the desired
sample size is not reached after the same number of sampled models,
leading to a different respective statistical significance. We address this
by re-weighting the samples based on the respective acceptance rate
when processing the data.

The MC sampler varies the coefficients αn and βm in the range [−1, 1].
We have investigated using broader ranges, such as [−10, 10] and
[−50, 50], and found that it did not noticeably increase the ensemble
of viable models. We attribute this to the fact that models with larger
departures from ΛCDM are less likely to satisfy the stability constraints
described below. We fix the spatial curvature to be zero, take the sum
of neutrino masses to be 0.06 eV, and impose conservative priors on the
relevant cosmological parameters. Namely, the matter density fraction
is allowed to change in the range Ωm ∈ [0, 1]. Similarly, the present
day dark energy fraction, which is not fixed by the flatness condition
in non-minimally coupled models, was allowed to span Ω DE ∈ [0, 1].
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Name Lagrangian functions in (1.59)

GBD K = X−V(φ), G4 = G4(φ)

HS K(X, φ), G3(X, φ), G4 = G4(φ)

Horndeski K(X, φ), Gi(X, φ), i = 3, 4, 5

“EFT” functions in (1.62)

GBD Ω, Λ

HS Ω, Λ, M̄3
1, M4

2

Horndeski Ω, Λ, M̄3
1, M4

2, M̄2
2(z = 0) = 0

“Unified” functions in (1.64)

GBD H, αB = −αM, αK

HS H, αB, αM, αK

Horndeski H, αB, αM, αK, αT(z = 0) = 0

Table 3.1: The three sub-classes of Horndeski theories considered in Sec-
tion 3.4, defined in alternative but equivalent ways.
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Summarising, the parameters varied in the MCMC analysis are αn, βm,
Ωm, Ω DE and H0.

To compute the background evolution for a given model, the sampler
was interfaced with the Einstein-Boltzmann solver EFTCAMB.

Given a choice of EFT functions, EFTCAMB first solves for the back-
ground evolution, then checks if conditions ensuring the stability of
linear perturbations are satisfied, and then evolves such perturbations
to evaluate the CMB spectra and other observables. Given the exact
solutions for ∆, Φ and Ψ for a given model in the ensemble, we can
calculate the exact µ(a, k) and Σ(a, k) from Eqs. (3.3) and (3.2) that
define them. Alternatively, we can use EFTCAMB to perform the first two
stages, i.e. to evolve the background and perform the stability check,
and then evaluate Σ and µ using the quasi static (QS) expressions (3.7)
and (3.8). For each sampling, we will present the results for the exact
and the QS (µ, Σ). By doing it both ways we can assess the validity
of the QSA within Horndeski and also test the analytical arguments
made in the previous Section under the QSA.

In order for a model to be accepted by the sampler, it has to pass
several checks. First, the model has to pass the stability conditions,
as built in EFTCAMB. This filters out models with ghost and gradient
instabilities in the scalar and tensor sectors. Further, we require viable
models to fulfil weak observational and experimental priors on αT(a),
Ω(a) and H(a). We emphasize that it is not our aim to perform a fit to
data to derive observational bounds on Σ and µ. Instead, we want to
derive theoretical priors on their values, but we want to exclude models
that are in a gross violation of known constraints. The following priors
simply require the realizations to be broadly acceptable:

• αT(z = 0) = 0, to be consistent with the low redshift bounds on
the speed of gravitational waves from GW170817 and GRB170817A
[61–63];
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• |Ω(z = 0) − 1| < 0.1, to be broadly consistent with the non-
detection of the fifth force on Earth [23, 142, 161];

• |Ω(z = 1100) − 1| < 0.1, to comply with the BBN and CMB
bounds constraining the value of the gravitational coupling to be
within 10% of the Newton’s constant measured on Earth [147];

• H(z) to be broadly consistent with existing cosmological distance
measurements (see below for more details).

To dismiss expansion histories that are in gross disagreement with
observations, we impose a weak Gaussian prior on H(z) at several
representative redshift values corresponding to existing luminosity dis-
tance measurements from supernovae and angular diameter distance
measurements using Baryon Acoustic Oscillations (BAO). We take the
prior to be peaked at H(z) derived from the Planck 2015 best fit ΛCDM
model [114], with the standard deviation set at 30% of the peak value.
The width of the prior is deliberately chosen to be wide enough to
accommodate any tension existing between different datasets [129].
The peak values of the H(z) prior, along with the standard deviation,
are plotted in figure 3.1.

We then proceed with the MC sampling: the coefficients of the EFT
functions, as defined in (3.37), vary at each step. This ensures that we
get numerical results that go through the whole parameter space homo-
geneously. To ensure a good coverage, we enforce a minimum number
of 104 accepted Monte Carlo samples. Depending on the acceptance
rate, this results in total of ∼ 106 − 108 samples.

At each Monte Carlo step, after solving the background equations,
we evaluate the stability of the corresponding model and, if this is
found stable we compute the values of wDE(a), Σ(a, k) and µ(a, k). n
order to study the validity of the conjecture (3.9) we decide to store the
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Figure 3.1: The peak values and the standard deviation of the Gaussian
prior imposed on the evolution of the Hubble parameter, H(z). The fiducial
expansion history corresponds to the Planck 2015 best fit ΛCDM model [114].
The standard deviation is chosen to be wide enough to accommodate any
tensions that may exist between different datasets.

values of Σ and µ, both QS and exact, sampling the (a, k)-plane at the
following values:

a ∈ {0.25, 0.575, 0.9},
k ∈ {0.001, 0.05, 0.1},

where k has units of h/Mpc. By considering the three different classes
of theories in Table 3.1 we are then able to study the effect of different
EFT functions on the distribution of Σ and µ.

3.4.1 Covariance matrices

The final aim of this work is to provide theoretical prior distributions
of bins of wDE(z), Σ(z) and µ(z) that can be used in their joint recon-
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struction from data. Gaussian prior distributions can be built from
the mean values and covariances of the bins obtained using the MC
method described in the previous Section. As presented below, we
have derived them separately for the three representative subclasses
of Horndeski theories. The actual values of the means and the exact
shapes of the prior distributions are not crucial in the Bayesian recon-
struction method of [126]. The role of the prior is to gently guide the
reconstruction in regions of the parameter space poorly constrained
by data. For this reason, we also derive the approximate analytical
forms describing the correlation between the bins that can be readily
applied in practical applications without a loss of accuracy. We then
run a second set of simulations keeping the fix value k = 0.01 h Mpc−1,
which, as we will see in the following section, ensures that linear the-
ory holds well and the QSA is valid. We store wDE(a), Σ(a) and µ(a)
at 100 uniformly spaced values of a ∈ [0.1, 1], which corresponds to
z ∈ [0, 9]. Given these ensembles, we compute the mean values and the
covariance matrices of the w DE(a), Σ(a) and µ(a) bins. The covariance
matrix is defined as

Cij =
1

Nsamp − 1

Nsamp

∑
k=1

(
x(k)i − x̄i

) (
x(k)j − x̄j

)
, (3.38)

where x(k)i = x(k)(zi), x̄i is the mean value of x in the i-th redshift bin,
and k labels a member of the sample of Nsamp models in the ensemble.
The prior covariance matrices, along with the mean values, can be
used to build a Gaussian prior probability distribution function that
can be used to reconstruct [126] functions w DE(a), Σ(a) and µ(a) from
data, as was done for wDE(a) in [127, 129]. One can also define the
normalized correlation matrix as

Cij =
Cij√
CiiCjj

. (3.39)
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For practical applications, it can be useful to have analytical expres-
sions for the continuous correlation function defined as

C(a, a′) ≡
〈
[x(a)− x̄(a)][x(a)− x̄(a′)]

〉
. (3.40)

We will derive them by fitting representative functional forms to (3.39).

3.5 results of the numerical sampling

3.5.1 Numerical study of the conjecture

Figures 3.2, 3.3 and 3.4 show the numerically sampled distributions
of Σ and µ at representative values of a and k for GBD, HS and the
full Horndeski model with the speed of gravity constrained to be
unmodified today. In each figure, for the same ensemble of models,
we show both the “exact” values, (calculated by numerically solving
the full set of equations governing cosmological perturbations), as well
as the values obtained using the QS expressions for Σ and µ given
by Eqs. (3.7) and (3.8). We find that for all three models the QSA
holds extremely well at k = 0.1 and 0.05 h/Mpc. Indeed, the clouds
of exact and QS points effectively coincide for GBD and HS, while for
Horndeski there are only a few minor differences. We also see that, at
k = 0.1, 0.05 h/Mpc and at all redshifts, Σ− 1 and µ− 1 are almost
always of the same sign, following the conjecture made in [117].

We notice that at these scales we do not find any significant depen-
dence on k. This is because the sampled models tend to have a mass
scale M ∼ H, and thus the mass term has no effect on scales inside the
horizon. In principle, one could also find models where M� H, but
that would require a taylored sampling strategy, as this class of models
is of measure zero in our framework. Models with M � H include
f (R) and other chameleon type theories, which can be tested directly
using simpler techniques.
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Figure 3.2: Distributions of Σ and µ in GBD models, i.e. the scalar-tensor
models with a canonical kinetic term, at representative values of a and k.
Shown are results obtained by numerically solving exact equations for cos-
mological perturbations (orange dots) and by using the quasi static (black
crosses) forms of Σ and µ given by Eqs. (3.7) and (3.8).
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Figure 3.3: Same as in figure 3.2 but for the HS models, i.e. the subset of
Horndeski models in which the speed of gravitational waves is the same as
the speed of light at all redshifts.
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Figure 3.4: Same as in figures 3.2 and 3.3, but for the full class of Horndeski
models with the restriction on variation of the speed of gravitational waves
imposed only at z = 0.
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Figure 3.5: Effects of imposing the stability conditions and observational
priors on the Σ-µ distribution in the HS model for a = 0.9 and k = 0.1 h/Mpc.
The three panels correspond to samples obtained in three different runs:
sampling without any constraints (left panel), sampling with the stability
constraints (middle), and sampling with both the stability constraints and
observational priors (right). Each panel contains 104 points. The impacts of
stability and observational constraints shown here are representative of what
happens at other redshifts and scales, and in the other classes of models that
we studied.

The agreement between the exact and the QS calculations is much
worse at k = 0.001 h/Mpc, where we can see that the clouds of exact
points are more spread compared to the QS clouds. A necessary condi-
tion for the QSA to hold is the requirement for the given Fourier mode
to be inside the scalar field’s sound horizon, i.e.

k
aH(a)

> cs(a) , (3.41)

where the speed of sound is given by Eq. (3.61). In addition, the QSA
assumes that the time-derivatives of the gravitational potentials and
the scalar field perturbations are negligible compared to the spatial
derivatives. To isolate the reason for the breakdown of the QSA at
k = 0.001 h/Mpc, we checked the fraction of models that pass the
necessary condition (3.41) and found that only 1% out of the total
sample of 104 models failed it. This implies that for k . 0.001 h/Mpc
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one can no longer neglect the time-derivatives of the metric and field
perturbations even on scales within the sound horizon of the scalar
field.

In the case of GBD, as seen in figure 3.2, the majority of both the QS
and the exact values satisfy (Σ− 1)(µ− 1) ≥ 0. Only about 1% of exact
points in the k = 0.001 h/Mpc, a = 0.9 panel violate the conjecture,
with no violations seen in the other panels. For HS, the conjecture holds
very well for the QS points, but not always for the exact points. We find
that about 10% of the exactly calculated points fall in the bottom-right
quadrant at late redshifts and large scales, i.e. in the k = 0.001 h/Mpc,
a = 0.9 panel, with only a handful of points violating the conjecture at
higher redshifts for k = 0.001 h/Mpc. Finally, for the full Horndeski
sampling, we again find that the conjecture holds well under the QSA,
and for the exact points on smaller scales (k = 0.1 and 0.05 h/Mpc).
However, about 10% of the models violate the conjecture at all three
values of a for k = 0.001 h/Mpc. It is interesting to notice that, in those
cases, the conjecture is always violated in the same direction, with a
positive Σ− 1 and a negative µ− 1.

In figure 3.5, we show the effects of imposing the stability constraints
and observational priors on the distribution of Σ and µ. We consider
the case of the HS model at k = 0.1 h/Mpc and a = 0.9, which is
representative of the trends we see at other scales and redshifts and
in the other models. The three panels show samples of the HS models
without imposing any constraints (left panel), after filtering out models
with the ghost and gradient instabilities [160] (middle panel) and
after imposing both the stability constraints and observational priors
(right panel). In each case, we run the simulation until 104 “successful”
models are accumulated. From these plots, we can see that imposing the
stability conditions removes all points from the bottom-right quadrant.
As discussed in Section 3.3.3.2, this happens because stability requires
c2

s α > 0. Finally, in the right panel, we see that adding the observational
priors eliminates the models belonging to the top-left quadrant. This
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confirms the argument made in Section 3.3.3.1 according to which
getting Σ < 1 and µ > 1 would require large variations in Ω, which are
indeed strongly suppressed by the observational constraints defined
in the beginning of this Section. We note that the points in the middle
and the right panels are not simple subsets of the left panel, since we
run the simulation until the same number of points is accumulated in
each case.

From figure 3.5 we also notice that the combined effect of the stability
conditions and the observational priors is to drastically reduce the
models in the bottom-left quadrant, where µ− 1 < 0 and Σ− 1 < 0. In
the absence of ghosts, the scalar force is always attractive, thus the fifth
force contribution generally favours µ > 1. One could still have µ < 1,
driven by the 1/Ω factor in the QS expression (3.30) for µ, i.e. having
Ω that is significantly greater than 1 can result in µ < 1. However,
observational constraints restrict Ω ∼ 1 at late times, making it difficult
to get µ < 1. We see in figure 3.3 that the bottom-left quadrant has
practically no points at a = 0.9, but is more populated at earlier times,
since the observational constraint on Ω are weaker at higher redshifts.

3.5.2 The mean values of wDE, Σ and µ

The mean values of wDE(z), Σ(z) and µ(z) bins, along with the corre-
sponding 68%, 95% and 99% confidence level intervals, are shown in
figure 3.6.

We observe that the mean values of Σ and µ do not change signif-
icantly with redshift, and that for HS and Hor models they always
remain within ∼ 1σ range of their ΛCDM values of 1. For GBD, the
ΛCDM values remain in the 2σ range, with a clear trend towards val-
ues below 1. This is because, in GBD, the values of Σ and µ are largely
determined by the prefactor m2

0/M2
∗ = 1/(1 + Ω) multiplying them

both. Given a uniformly sampled Ω, this prefactor is likely to be < 1,
because 1 + Ω must remain positive to guarantee the stability of the
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Figure 3.6: The mean values (white line) and the 68%, 95% and 99% confidence
levels (solid blue lines) for µ(z), Σ(z) and wDE(z) (left to right respectively) for
the three classes of models: GBD (top row), HS (middle row) and Horndeski
(bottom row). The shaded blue regions represent the probability distribution
function (PDF) of each bin.
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background solution, hence values of Ω ∼ −1 are often rejected by the
stability filters built into the sampler. We note that, ultimately, the mean
values should not play a significant role in practical applications. The
uncertainties in the mean values are more relevant as they are linked
to the covariances between wDE, Σ and µ bins. Nevertheless, one does
need some values to put in the Gaussian prior, and it is interesting to
see what one gets from the ensembles.

In the case of wDE(z), the means are close to the ΛCDM value of
wDE = −1 at lower redshifts, where the SN data plays a role. At higher
redshifts, wDE(z) tends to approach zero because of the tendency of
the effective DE fluid to track the dominant density component [128].

3.5.3 The covariance of wDE, Σ and µ

The covariances are computed using eq. (3.38) and are shown, for each
class of theories, in figures 3.10, 3.11 and 3.12 of the Appendix B. While
it is the covariances that are used in reconstructions, for the purpose of
interpreting our results it is more informative to consider the correlation
matrices computed using eq. (3.39). They are shown in figures 3.7, 3.8
and 3.9 for the GBD, HS and Hor models, respectively. For each model,
we display the correlations between the bins of the same function as
well as the cross-correlations between different functions.

Comparing figures 3.7 and 3.8, one can clearly see that the correlation
between Σ and µ and between Σ/µ and w DE is less pronounced in
HS, compared to the GBD case. This is due to the fact that more EFT
functions participate in HS. This trend continues only in part when one
compares HS and Hor in figures 3.8 and 3.9. Namely, the correlation
Σ/µ and w DE decreases, as expected, since Hor involves an additional
EFT function, γ3. However, Σ and µ are more correlated in Hor than
they are in HS. This is because γ3 (equivalently αT) plays an important
role in the stability constraints while being constrained by the condition
γ3(z = 0) = 0. The net effect of co-varying it with the other functions
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Figure 3.7: Correlation matrices for the GBD models.
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Figure 3.8: Correlation matrices for the HS models.
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Figure 3.9: Correlation matrices for the Hor models.
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is to increase the level of correlation. To check this last point, we ran
the same sampling without imposing any stability filter and found
that the correlation between Σ and µ decreases as expected when γ3 is
co-varied.

We note that, generally, the correlation between Σ and µ is always
significant, as also discussed in [81, 117]. This implies that, when
constraining them within the framework of scalar-tensor theories, it
does not make sense to fit these two functions to data independently.
On the contrary, the cross correlation between Σ and µ and wDE changes
visibly for different classes of models. It is strong (up to 60%) in the
GBD case: the two non-zero EFT functions, Ω and Λ, participate in
the evolution of both the background and linear perturbations. For
HS and Hor, in which the second order EFT functions γi affect only
the perturbations, this cross-correlation decreases. It is weak but still
visible for HS, and completely vanishes in for Hor.

3.5.4 Analytical forms of correlation functions

In order to better interpret the numerically found correlation matrices,
we fit them with simple analytical expressions. In addition to providing
insight into the time scaling of the correlations, they give a readily us-
able recipe for building correlation priors for practical applications [127,
129, 130] when the numerically found covariances may not be available.

Following the procedures of [128] we use the generalized CPZ
parametrization [122] given by

C(x, y) =
1

1 + (|x− y| /ξ)n , (3.42)

as well as other functional forms used in [128] that, as we found, did
not provide a better fit. We let the time coordinate, x and y, be either
the scale factor or ln a. We select the best fit analytical form for the
correlation by varying the exponent n and the correlation length ξ and
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The best fit forms describing the correlations

µ Σ

GBD
(

1 + (|δa| /0.65)2.25
)−1 (

1 + (|δa| /0.7)2.2
)−1

HS

(
1 + (|δa| /0.32)1.72

)−1 (
1 + (|δa| /0.35)1.67

)−1

Hor
(

1 + (|δa| /0.31)1.74
)−1 (

1 + (|δa| /0.38)1.7
)−1

wDE

GBD
(

1 + (|δ ln a| /0.29)3
)−1

HS

(
1 + (|δ ln a| /0.3)2.9

)−1

Hor
(

1 + (|δ ln a| /0.3)2.9
)−1

Table 3.2: The best fit analytical expressions of correlations of µ, Σ and w DE
for the three classes of models. For Σ and µ, the correlations depend on
|a− a′|, while for w DE they scale with | ln a− ln a′|, for the reasons explained
in Sec. 3.5.4.
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minimizing the χ2. The CPZ form (3.42), which happens to capture the
features of our numerically found correlation matrices quite well, was
designed to act as a low-pass Wiener filter. Namely, it assumes no prior
correlation on widely separated time scales (|x − y| > ξ), allowing
any slow, low-frequency, variations of the functions to pass through
unbiased. On shorted time scales (|x − y| < ξ), however, any high-
frequency variations will be suppressed, as the prior implies strong
correlations between the neighbouring bins.

In the application of the correlation priors, the most important feature
is their behaviour around the peak of the prior distribution. For this
reason, for correlations of Σ and µ, we do not attempt to model the tails,
and only fit the correlation C in the range [xp − ∆x, xp + ∆x], where
xp corresponds to the peak of the correlation at each value of y and
∆x was chosen to be ∆a = 0.2. We do not fit the cross-correlations
between different functions. In the case of Σ and µ, it is clear from
figures 3.7, 3.8 and 3.9 that their cross-correlations will have roughly
the same functional form as the correlations. On the other hand, the
cross-correlation between w DE and Σ/µ is only relatively strong for
GBD and can probably be ignored in practical applications when the
numerically found covariances (shown in the Appendix 3.9) are not
available.

The best fit functional forms of the correlations are shown in Table 3.2.
We notice that the time scaling for Σ and µ correlations is in terms
of a, while the correlations for wDE scale with ln a. This difference in
scaling can be explained by observing that our sampling of the EFT
functions is more or less uniform in a. The correlations of Σ and µ

retain the uniformity in a because they directly depend on the EFT
functions. In the case of wDE, however, the non-minimal coupling of
the scalar field leads to a tracking behaviour of the effective DE fluid,
with its evolution dependent on the matter density ρm ∝ a−3. With
the effective DE scaling as a power law of a, the correlations of its
equation of state scale with ln a. This scaling was also observed in [128],
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where it was also shown that for the minimally coupled scalar field, i.e.
the quintessence, the correlations scale as a, consistent with the above
explanation.

In the case of w DE correlations, the CPZ parameters ξ and n are
approximately the same in the three classes of models, at ξ ≈ 0.3
and n ≈ 3. This is because the sampling of the background evolution
depends mostly on the EFT functions Ω and Λ in all three cases,
and only indirectly depends on the γi through the effect of stability
conditions on model selection.

For Σ and µ correlations, there is a clear trend for correlations to
become shorter range as one goes from GBD to HS and Hor. The
correlation length is ξ = 0.65 for GBD, but ξ ≈ 0.3 for HS and Hor.
There is also a small change in the exponent from n ≈ 2.2 to n ≈ 1.7.
The fact that the best fit forms of the correlation functions for HS and
Hor are so similar suggests that the minor visible differences between
figures 3.8 and 3.9 concern mostly the tails of the correlation matrix,
whereas our fits were performed near the peaks.

3.6 discussion

We studied the statistical distributions of the effective DE equation
of state w DE and the phenomenological functions Σ and µ within the
Horndeski class of scalar-tensor theories. In order to do so, we worked
within the unifying EFT framework and generated large ensembles
of statistically independent models using Monte Carlo methods. Such
models were filtered in order to pass the no-ghost and no-gradient
instability constraints, as well as a set of weak observational constraints.

We have considered three types of Horndeski theories summarized in
Table 3.4: the Generalized Brans-Dicke (GBD) models, i.e. models with
a canonical form of the scalar field kinetic energy term, the HS class
of models, with the unchanged speed of gravitational waves, and the
full class of Horndeski models with the speed of gravity constrained
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to be the same as the speed of light at present epoch, to comply with
the strict bound on the gravitational wave speed at z < 0.01 from
GW170817 and GRB170817A [61–63].

For each model, we computed Σ and µ by numerically solving the
exact equations for cosmological perturbations, and also by using
the analytical expressions of Σ and µ derived under the QSA. This
allowed us to check the validity range of the quasi static approximation
(QSA), as well as the validity of the conjecture made in [117] that
(Σ− 1)(µ− 1) ≥ 0 in viable Horndeski theories.

We find that the QSA holds really well at small and intermediate
scales, but breaks down at k . 0.001 h/Mpc. This happens despite the
fact that the Fourier modes in question are still well-within the scalar
field’s sound horizon. Instead, it is due to the time-derivatives of the
metric and the scalar field perturbations, which are neglected under
the QSA, becoming comparable to the spatial derivatives.

We find that the (Σ− 1)(µ− 1) ≥ 0 conjecture holds very well for
the GBD models. It also holds very well for the other two classes of
models within the QSA, but the exact calculations show that about
10% of HS and Horndeski models violate the conjecture at k = 0.001
h/Mpc, with Σ > 1 and µ < 1.

We analytically examined the conditions under which (Σ− 1)(µ−
1) ≥ 0 can be violated, separately considering the QS expressions for Σ
and µ on the super-Compton and sub-Compton limits. We identified
the important role played by the no ghost and no gradient instability
conditions in preventing values in the Σ > 1 and µ < 1 range. We have
also highlighted the importance of the constraints on the variation of
the gravitational coupling in ensuring the (Σ− 1)(µ− 1) ≥ 0 trend.
Since the variation of the gravitational coupling affects the background
expansion history, constraints on the latter contribute to restricting the
range of Σ and µ values. This effect was not included in an earlier study
of correlations between Σ and µ [165] that was based on a framework in
which the expansion history was assumed to be known independently
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from the functions controlling the evolution of perturbations. This
shows that, when searching for signatures of MG, the expansion history
should be co-varied with Σ and µ aided by weak theoretical priors,
which we then derived in the form of joint covariance matrices for
binned w DE, Σ and µ. These matrices can be projected onto priors on
parameters of any specific parametrization of these functions.

We spotted some notable differences in both the mean values and the
covariances of w DE, Σ and µ between the different classes of models
depending on which constraints are imposed. For instance, we found
that restrictions on the variation of the conformal coupling Ω directly
impact the mean values of Σ and µ, and less directly the shape of
wDE. Furthermore, we found that the latter condition, as well as the
constraints on the speed of gravity, have a bigger impact than the
physical viability conditions built in EFTCAMB.

We have identified simple analytical forms for the correlation func-
tions, describing the correlations of wDE, Σ and µ at different redshifts,
by fitting the CPZ parametrization (3.42) to our numerical results.
We noticed that in all the classes of models that we considered, the
correlations of Σ and µ scale with |a− a′|, while for w DE they scale
with | ln a − ln a′|. These analytical forms can be useful in practical
applications of the Bayesian reconstruction method [126].

Our study demonstrates the benefits and the complementarity of
different frameworks for testing scalar-tensor alternatives to GR. Phe-
nomenological functions such as Σ and µ are closely related to obser-
vations and can be directly fit to data using simple parameterizations.
However, there is no guarantee that their best fit values would be
consistent with theory. On the other hand, fitting the EFT functions of
(1.62) or the Unified functions of (1.64) directly to data is not practical,
as there are many degeneracies and the outcome strongly depends on
the assumed functional form.

Instead, we used the EFT framework to derive theoretical priors that
can be used to perform a joint non-parametric reconstruction of wDE,
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Σ and µ from data similarly to the case done for w DE in [127, 129].
Introducing such joint correlation priors in the analysis will be essential
in order to get significant constraints on the time evolution of the
phenomenological functions within the context of scalar-tensor theories,
while avoiding biasing the results by assuming specific functional forms.
Such unbiased reconstructions would either constrain ΛCDM further,
or perhaps point us towards an alternative theory of gravity.
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3.8 appendix a : relevant equations

Under the QSA, the equations of motion for perturbations in Horndeski
theories can be written as [43]

A1
k2

a2 Φ + A2
k2

a2 π = −ρ∆, (3.43)

B1Ψ + Φ + B3π = 0, (3.44)

C1
k2

a2 Φ + C2
k2

a2 Ψ +

(
C3

k2

a2 + Cπ

)
π = 0, (3.45)
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where

A1 = 2(m2
0Ω + M̄2

2),

A2 = −m2
0Ω̇− M̄3

1,

B1 = −m2
0Ω + M̄2

2

m2
0Ω

,

B3 = −m2
0Ω̇ + (H + ∂t)M̄2

2

m2
0Ω

,

C1 = m2
0Ω̇ + (H + ∂t)M̄2

2,

C2 = −1
2
(m2

0Ω̇ + M̄3
1),

C3 = c− 1
2
(H + ∂t)M̄3

1 + (H2 + Ḣ + H∂t)M̄2
2,

Cπ =
m2

0
4

Ω̇Ṙ(0) − 3cḢ +
3
2
(3HḢ + Ḣ∂t + Ḧ)M̄3

1

+ 3Ḣ2M̄2
2. (3.46)

The phenomenological functions µ and Σ can be written as

4πGµ =
µ

2m2
0
=

f1 + f2 a2/k2

f3 + f4 a2/k2 , (3.47)

8πGΣ =
Σ

m2
0
=

f1 + f5 + ( f2 + f6)a2/k2

f3 + f4 a2/k2 , (3.48)

where

f1 = C3 − C1B3,

f2 = Cπ,

f3 = A1(B3C2 − B1C3) + A2(B1C1 − C2),

f4 = −A1B1Cπ,

f5 = B3C2 − B1C3,

f6 = −B1Cπ. (3.49)
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The functions appearing in the “Unified” action (1.64) are related to
the functions appearing in the EFT action (1.62) via [47]

M2
∗ = m2

0Ω + M̄2
2, (3.50)

HM2
∗αM = m2

0Ω̇ + ˙̄M2
2, (3.51)

M2
∗αT = −M̄2

2, (3.52)

HM2
∗αB = −m2

0Ω̇− M̄3
1, (3.53)

H2M2
∗αK = 2c + 4M4

2. (3.54)

(3.55)

These are related to the functions in the original Horndeski Lagrangian
(1.59) via [47]

M2
∗ = 2[G4 − 2XG4X + XG5φ − φ̇HXG5X], (3.56)

HM2
∗αM =

dM2
∗

dt
, (3.57)

M2
∗αT = 2X[2G4X − 2G5φ − (φ̈− Hφ̇)G5X], (3.58)

HM2
∗αB = 2φ̇[XG3X − G4φ − 2XG4φX]

+ 8XH(G4X + 2XG4XX − G5φ − XG5φX)

+ 2φ̇XH2[3G5X + 2XG5XX], (3.59)

HM2
∗αK = 2X[KX + 2XKXX − 2G3φ − 2XG3φX]

+ 12φ̇XH[G3X + XG3XX − 3G4φX − 2XG4φXX]

+ 12XH2[G4X + 8XG4XX + 4X2G4XXX]

− 12XH2[G5φ + 5XG5φX + 2X2G5φXX]

+ 4φ̇XH3[3G5X + 7XG5XX + 2X2G5XXX]. (3.60)

The speed of sound of the scalar field perturbations is given by

c2
s =

2
α

[ (
1− αB

2

) (
αM − αT +

αB

2
(1 + αT)−

Ḣ
H2

)
+

α̇B

2H
− ρm + Pm

2M2
∗H2

]
, (3.61)
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where α = αK + 3α2
B/2.

3.9 appendix b : covariance matrices

Figure 3.10: Covariance matrices for the GBD class of models.

In practical applications of the Bayesian reconstruction method [126],
one needs theoretical priors in the form of joint covariances of wDE(a),
Σ(a) and µ(a). These are shown in figures 3.10, 3.11 and 3.12 for the
three classes of models considered in this chapter.
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Figure 3.11: Covariance matrices for the HS class of models.

One can see that the prior variance in wDE(a) is smaller at higher
redshifts and becomes larger towards a = 1. This is because at higher
redshifts, the effective DE tends to track the matter density, hence its
equation of state is quite robustly close to zero. On the other hand, at
lower redshifts, the effective DE fluid can develop its own independent
dynamics as the matter density subsides, and there is more variation
of possible wDE(a) histories within the ensemble.

The variances of Σ and µ do not show a strong dependence on
redshift, which is a reflection of the approximately uniform sampling
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Figure 3.12: Covariance matrices for the Hor class of models.

of the EFT functions in a. The variances increase as one goes from GBD
to HS to Hor, as expected, since the latter have a larger number of
varied EFT functions that results in a larger scatter of Σ and µ values.




