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1

I N T R O D U C T I O N

1.1 the standard cosmological model

In one sentence, we could summarise modern cosmology as the ambi-
tious attempt to explain the physics of the entire Universe with a hand-
ful of parameters. As surprising as it may sound the latter approach
has been to be remarkably successful in describing many observations
through the six parameters of the so called standard cosmological
model, or ΛCDM. This model is based on the theory of general rela-
tivity (GR) with the assumption of a cosmological constant Λ, being
the simplest driver of the accelerated expansion of the Universe, and
cold dark matter (CDM), responsible for structure formation. The most
famous example of its success is perhaps the spectacular agreement of
the ΛCDM predictions with the 2018 release of the cosmic microwave
background (CMB) data from the Planck collaboration [1]. According
to this model, the energy associated with Λ, to which we refer as dark
energy (DE), amounts to about 68% of the total energy budget of the
Universe while the CDM component contributes to 27%. This means
that the total energy of all the visible matter only makes up 5% of the
overall energy in the Universe, as shown in Figure 1.1.

It is then quite surprising that there is no theoretical explanation
for the dark components of the standard model, i.e. for 95% of the
current energy budget of the Universe. Regarding Λ, various attempts
have been made to explain the cause of the cosmic acceleration, e.g. by
considering a dark energy fluid or directly modifying the equations
of GR. Furthermore, there are other unresolved observational puzzles
within ΛCDM which motivate the quest for alternative cosmological
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2 introduction

Figure 1.1: The Universe’s ingredients according to the ΛCDM model. Or-
dinary matter that makes up stars and galaxies contributes just 5% of the
Universe’s energy inventory. Dark matter, which is detected indirectly by its
gravitational influence on nearby matter, occupies 27%, while dark energy, a
mysterious force thought to be responsible for accelerating the expansion of
the Universe, accounts for 68%.

models. The first puzzle resides in the apparent discrepancy, referred
to as“tension", between the value of the expansion rate as inferred from
high redshift experiments (for which a cosmological model must be
assumed) and that which is extracted from local (model independent)
measurements. In fact, from the 2018 Planck release we can measure
the Hubble parameter today to be H0 = 67.4± 0.5 kms−1 Mpc−1 [2],
while the local determination from the Hubble Space Telescope (HST)
is H0 = 74.03± 1.42 kms−1 Mpc−1[3]: a discrepancy with a significance
of 4.4σ.

The tension is not so significant when analysing a supernova sample
calibrated with the tip of the red giant branch, yielding H0 = 69.8± 2.5
kms−1 Mpc−1 [4], while it is larger for the recent H0LiCOW quadrupole
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lensed quasar measurement H0 = 73.3+1.7
−1.8 kms−1 Mpc−1 [5]. Surpris-

ingly, both these measurements are falling between the CMB and the
HST results, with uncertainties which are too large to shed some light
on the puzzle.

Furthermore, a second inconsistency within the ΛCDM model dwells
in the tension encoded by the derived parameter

S8 = σ8

√
Ωm

0.3
(1.1)

with Ωm being the matter density parameter and σ8 the amplitude
of the linear matter power spectrum at the scale of 8 h−1 Mpc, where
h = H0/100 km s−1 Mpc−1. Once again the discrepancy appears be-
tween measurements at large and small scales, most noticeably the
scales probed by the CMB and the small scale indicators of large scale
structure (LSS), such as galaxy cluster counts, weak lensing (WL) and
redshift space distortion (RDS) measurements [6], with LSS pointing
towards a lower value of S8 compared to CMB. In particular, if we
measure S8 from the combination of the Kilo Degree Surveys (KiDS)
dataset and the Dark Energy Survey (DES) Year 1 release the tension
with the Planck 2018 measurement reaches the 3.2σ level [7].

The coming decade will be key in order to assess if these tensions
will survive the new generation of surveys, such as Euclid, DESI,
SKA and LSST. In fact, one possible explanation could be that these
inconsistencies of the ΛCDM model are just a statistical fluke, due
to cosmic variance: the uncertainty intrinsic to the fact that we are
observing finite patches in the sky. Another answer could be that one (or
more) of the measurements are wrong: in this regard a lot of work has
been done in order to quantify the effect of hidden systematics in the
experiments [8–12], but, so far, none of the various effects considered
seems to explain the large inconsistency between the datasets. Finally,
the most intriguing scenario would be that the ΛCDM assumption
is itself mistaken and the tensions are signalling that a new physical
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model must be taken into account in order to describe the Universe
from the smallest to the largest scales.

The aim of testing the robustness of GR on cosmological scales, to-
gether with the need to explain the physical nature of the cosmological
constant, strongly motivates the quest for alternatives to the standard
cosmological model, by either considering an exotic dark energy fluid
component or by directly modifying Einstein’s theory of gravity. This
path of research goes under the name of dark energy or modified
gravity cosmology and will be addressed in this work.

1.1.1 Background cosmology

Almost all theories of cosmology lay their foundations on the cos-
mological principle, which states that on sufficiently large scales the
properties of the Universe are the same for all fundamental observers,
i.e. the observers that are comoving with the expanding cosmological
background. Being a principle, there is no way to prove its validity, but,
so far, all experimental evidences justify this assumption. In particular,
we know that on sufficiently large scales (' 100 Mpc) the Universe
appears isotropic and homogeneous. The most striking evidence of
this is the isotropy of the cosmic microwave background radiation,
whose photons are travelling to us from all directions in the sky with
deviations in their wavelengths of order 10−5. The most general metric
compatible with this fact is the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric, defined by the line element

ds2 = gµνdxµdxν = −dt2 + a2(t)
(

dr2

1− kr2 + r2d2Ω
)

, (1.2)

where t is the cosmic time, r the radial coordinate on the spatial
hypersurfaces, d2Ω is the metric of a two-sphere and k indicates the
curvature of the spatial slicing, which can be negatively curved, flat or
positively curved. Finally, a(t) is the scale factor which describes how
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the length intervals on the spatial hypersurfaces contract or expand
with t. Usually the scale factor is normalised in such a way that today
a0 := a(t0) = 1. With this normalisation we have that 0 ≤ a(t) ≤ 1
∀ t, meaning that the Universe is expanding with time. We know this
since we can measure that the spectra of distant galaxies are redshifted:
a spectral line with a restframe frequency νr is being observed with
νo < νr. This phenomenon is due to the fact that, in an expanding
universe, the electromagnetic waves are stretched along their paths to
us. We can quantify this effect with the redshift z

z :=
νr

νo
− 1 =

a0

a(t′)
− 1, (1.3)

where t′ is the time at which the signal was emitted. If we define the
physical distance between two galaxies at a fixed cosmological distance
r to be d = a(t)r we can then infer the recession speed of a galaxy at a
distance d from the observer to be

v = Hd, (1.4)

where H(t) = ȧ(t)/a(t) is the Hubble function and the dot represents
the derivative with respect to t. The Hubble function is an essential
quantity in cosmology which describes all the expansion history of the
Universe by encoding the rate at which the scale factor changes. Finally,
we can here introduce a new time coordinate known as conformal time

τ(t) =
∫ t

0

dx
a(x)

. (1.5)

With this new coordinate the FLRW metric takes the form

ds2 = ã2(τ)

(
−dτ2 +

dr2

1− kr2 + r2d2Ω
)

, (1.6)

where ã(τ) = a(t(τ)). For simplicity, in the following we will neglect
the tilde and simply write a(τ).
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1.1.1.1 In a FLRW Universe

The dynamics of the FLRW metric is ruled by GR through the Einstein-
Hilbert action

S =
1

2κ

∫
d4x
√
−gR + Sm, (1.7)

where g is the determinant of the metric gµν, R is the Ricci scalar,
Sm is the action describing the dynamics of the matter fields. Finally
κ = 8πG where G is Newton’s constant. Making use of the variational
principle we can obtain the Einstein field equations

Gµν = κTµν, (1.8)

where Gµν is the Einstein tensor and Tµν is the energy momentum
tensor of the matter components. We can choose to describe the matter
present in the Universe as a perfect fluid with rest frame energy density
ρ and pressure p: in this case the energy momentum tensor can be
written as

Tµν = (ρ + p)uµuν + pgµν, (1.9)

where uµ is the four velocity of the perfect fluid. We can then insert the
FLRW metric (1.2) and the energy momentum tensor (1.9) into (1.8),
obtaining the Friedmann and acceleration equations:

H2 =
8πG

3
ρ− k

a2 , (1.10)

ä
a
= −4πG

3
(ρ + 3p). (1.11)

The diffeomorphism invariance of GR implies the continuity equation
of the energy momentum tensor

∇µTµν = 0, (1.12)
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which, in case of perfect fluids can be written as

ρ̇ + 3Hρ(1 + w) = 0, (1.13)

where w := p/ρ is the equation of state parameter of the fluid. For
each species i we can then solve eq (1.13) as

ρi ∝ exp
(
−3

∫ d a
a
(1 + wi)

)
. (1.14)

Therefore we have the following evolutions for the non relativistic
matter (m, which contains both baryons and CDM) and radiation (r)
components:

wm = 0 =⇒ ρm ∝ a−3, (1.15)

wr =
1
3
=⇒ ρr ∝ a−4. (1.16)

Along with these components another one is taken into account in the
standard cosmological model: the cosmological constant Λ. This was
originally introduced as a term Λgµν into the Einstein equations (1.8),
in order to obtain static solutions and then reintroduced when the
measurements of the supernovae type Ia (SNIa) indicated that the
expansion of the Universe is accelerating. From (1.11) we see that the
late time acceleration is achieved if the Universe is dominated by an
energy component with an equation of state parameter w ≤ −1/3. In
the case of the cosmological constant we have wΛ = −1, which gives a
component with constant energy density

ρΛ(a) = ρΛ(a0) ∀a (1.17)

and described by the energy momentum tensor

TΛ
µν = − Λ

8πG
gµν. (1.18)

This means that we can think of the cosmological constant as a compo-
nent of the Universe that serves the purpose of fuelling the late-time
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accelerated expansion. If we want to explain the nature of the cosmo-
logical constant and to test it robustness on cosmological scales it is
convenient to promote the vacuum to a fluid like component. Such
fluid, which goes under the name of dynamical dark energy, is char-
acterised by an equation of state parameter wDE, which varies over
time. The first step of DE research would be to detect deviations from
wDE = −1, in order to assess if DE can be identified by a cosmological
constant or not [13].

In order to infer information from the observational data it is often
useful to explore a broad class of DE models by assuming a dependence
of wDE over time, for example by means of a specific parametrization.
One example would be to consider wDE as a constant in time wDE(a) =
w (wCDM cosmology) or adopt the Chevalier-Polarski-Linder (CPL)
parametrization [14, 15]:

w DE(a) = w0 + wa(1− a), (1.19)

which behaves as wDE(a) = w0 + wa at high redshift and as wDE(a) =
w0 for z = 0. Such parametrizations are purely phenomenological and
do not encode a clear physical meaning. They are, however, motivated
by the behaviour of real physical models and they are necessary in
order to achieve a complete characterization of dynamical DE when
analysing cosmological data. For this reason they are an invaluable
tool, but one has to remember that in most cases the results of the
analysis will depend on the chosen parametrization.

1.1.2 Cosmological perturbations

As we mentioned in the previous section, the FLRW metric describes
well the homogeneity and isotropy of the Universe at large scales
(' 100 Mpc). However, on smaller scales we know that the Universe
is no longer homogeneous and isotropic. This is clear from the results
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of both CMB experiments, where temperature fluctuations have been
measured of the order of 10−5, and LSS surveys, that are able to see
a web of clustered matter, known as the cosmic web. In principle, the
Einstein equations, which are highly non linear partial differential
equations, would give the correct solution at all scales, but they cannot
be solved analytically. However, the perturbations at large scales are
small enough so that we can use perturbation theory. In the following
we will then present the theory of linear order perturbations. We can
start by considering the metric as

gµν = gµν + δgµν (1.20)

where gµν is the background FLRW metric and δgµν is the perturbation
around it. When we perturb the gravitational field we can always
decompose the contributions to the metric tensor in terms of irreducible
representations of the rotation group. This means that the most generic
form of δgµν will contain scalar, vector and tensor modes. These three
types of perturbations will evolve independently. Since we want to
study the evolution of cosmic structure, we will focus on the scalar
perturbations. The most general form of the perturbed metric is

ds2 = −(1+ 2Φ)dt2 ++2a∂iBdtdxi + a2[(1− 2Ψ)δij + 2∂i∂jE]dxidxj,

(1.21)

where Φ, Ψ, B, and E are functions of time and space. Thanks to gauge
freedom we can reduce these four quantities to only two independent
ones. Common gauge choices are the Newtonian gauge (B = 0 = E)
and the synchronous gauge (B = 0 = Ψ). In the following we will
work in the Newtonian gauge. In a similar way we can also perturb the
energy momentum tensor (1.9) as

T0
0 = −ρ(1 + δ), (1.22)

Ti
j = (p + δp)δi

j + πi
j, (1.23)

T0
i = −Ti

0 = (ρ + p)vi, (1.24)
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where bars denote background quantities, δ(t,~x) := δρ/ρ̄ is the space
dependent density contrast, δp(t,~x) is the pressure perturbation and vi
and πi

j are the velocity and shear fields respectively. We can then insert
the perturbed metric (1.21) and energy momentum tensor (1.22) into
the Einstein equations (1.8) and expand the results up to first order in
perturbations, obtaining the linearized Einstein equations:

0-0 component

k2Φ + 3H(Φ′ +HΨ) = −8πGa2

2
ρδ, (1.25)

0-i component

k2(Φ′ +HΨ) =
8πGa2

2
(ρ + p)ikv, (1.26)

i-i component

Φ′′ +H(Ψ′ + 2Φ′) + (2H′ +H2)Ψ +
8πG

3
(Φ−Ψ) =

k2a2

2
δp,

i-j component

k2(Φ−Ψ) = 12πGa2(ρ + p)σ, (1.27)

where primes denote the derivative with respect to the conformal time
τ and H = a′/a = aH is the conformal Hubble function. Finally, σ is
the anisotropic stress

(ρ + p)σ = −
(

κ̂ jκ̂i −
1
3

δ
j
i

)
πi

j. (1.28)

We can combine (1.25) and the anisotropy equation (1.27) and obtain
the Poisson equation

k2Ψ = −8πGa2

2
ρ∆, (1.29)

where

∆ := ρδ + 3iH(ρ + p)
v
k

, (1.30)
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is the energy density in the synchronous gauge. The Poisson equation
is a constraint equation, not dynamical, as it relates the metric potential
Φ to the matter sources. Finally, in the presence of negligible shear
the anisotropy equation states that the two gravitational potentials are
equal

Φ = Ψ. (1.31)

We can then consider a single fluid and linearize the continuity equa-
tion (1.12), resulting in two independent equations

δ′ = −(1 + w)(ikv− 3Φ′)− 3H
(

δp
δρ
− w

)
δ, (1.32)

v′ = −H(1− 3w)v− w′

1 + w
v− δp/δρ

1 + w
ikδ + ikσ− ikΨ. (1.33)

Usually, if we consider CDM, a collisionless non relativistic species, δ

and v are sufficient to study the dynamic of the perturbed fluid, which
rules the growth of structure during the matter era. We can then choose
w = 0, a vanishing speed of sound c2

s := δp/δρ = 0 and rewrite the
linearized continuity equations as:

δ′ = −ikv + 3Φ′, (1.34)

v′ = −Hv− ikΨ. (1.35)

Finally we can combine these two equations with the anisotropy (1.27)
and the Poisson (1.29) equations in order to obtain the master equation
for linear structure formation

δ′′ +Hδ′ − 3
2
H2δ = 0. (1.36)

The solution of this equation gives CDM perturbations which evolve
as ∝ t2/3 in the matter dominated era.
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1.2 observables

In the previous section we described how the evolution of the Universe
can be seen as a homogenous and isotropic background on top of
which small inhomogeneities evolve linearly. Here we list some of the
most important observables that have allowed us, in the past decades,
to enhance our understanding of cosmology.

1.2.1 Type Ia supernovae

Type Ia supernovae are exploding stars with well calibrated light
profiles. Since these objects can reach surprisingly high luminosities
(as they can outshine an entire galaxy), they can be observed out to
cosmological distances of several thousand megaparsecs [16]. Empiri-
cally it has been found that peak luminosities of SNIa are remarkably
similar [17]. This means that they all have nearly identical absolute
magnitude M, with small differences that can be taken into account if
we consider the shape of their light curves. Because they all share the
same absolute luminosity, SNIa are also known as standard candles.
Since from Earth we can measure their apparent magnitude m, we can
conclude that any difference that we measure in m from two different
supernovae is due to the different distance that they have from us. The
relation between the two magnitudes is given by

m = M + log
(

dL

10 pc

)
, (1.37)

where dL is the luminosity distance of the supernova. Observing m−M
allows us to measure the distance between us and the supernova,
independently of its redshift. It is then possible to reconstruct the
redshift-distance relation given by

dL(z) = (1 + z)
∫ z

0

dz′

H(z′)
. (1.38)
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Since the two measurements are independent it is possible to use
the standard candles to constrain the expansion history H(z) (and,
thus, the background evolution) of a specific cosmological model. An
example of this is the Supernova Cosmology Project [18] and the High-
Z Supernova Team [19], who were able to probe the redshift-distance
relation for supernovae up to z ∼ 1.7. Such measurements were able
to determine that the Universe is currently undergoing a phase of
accelerated expansion and the amount of dark energy (DE) needed to
explain ∼ 70% of the total energy budget.

1.2.2 Cosmic microwave background

At the early stages of its life the Universe was filled with a hot plasma
of baryons and photons. When the temperature got sufficiently low
the photons decoupled from the baryons and started to free-stream
through the Universe. The decoupling occurred at zdec ' 1090 and the
free-streaming photons arrive directly at us generating the observed
CMB sky. The small inhomogeneities that are present in the plasma
are translated into fluctuations of the photon temperature, which we
can observe today. We can treat such temperature fluctuations as a
time-dependent background component plus the actual fluctuations,
which depend on time, space and direction in the sky n̂

T(~x, n̂, τ) = T(τ)[1 + δT(~x, n̂, τ)]. (1.39)

Since we observe these fluctuations on a sky sphere, we are only
interested in their angular dependence. We can then decompose them
in spherical harmonics as:

δT(~x, n̂, τ)

T
= ∑

`,m
a`m(~x, τ)Y`m(n̂), (1.40)

where T = 2.725K is the average CMB temperature and Y`m are the
spherical harmonics. The information coming from the CMB radiation
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Figure 1.2: CMB Temperature-Temperature power spectrum CTT
` as a function

of the multipole `. In black we plot the data points from the Planck 2018

release [2] and in red the best fit obtained with the ΛCDM model.

is then encoded in the coefficients a`m. We can usually assume that they
are statistically isotropic, thus satisfying

〈a`ma∗`′m′〉 = δ``′δmm′C`, (1.41)

where C` is the angular power spectrum of the temperature anisotropies
and the angular brackets denote the average over all the realizations
of the random field. In figure 1.2 we show the value of the power
spectrum for the temperature anisotropies as measured by the Planck
collaboration [2] and its prediction by the ΛCDM model.

In order to measure C` one needs to extract the 2`+ 1 a`m coefficients
from the sky map. The estimate of the power spectrum is then given
by the average

Ĉ` =
l

∑
m=−`

|a`m|2
2`+ 1

. (1.42)
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Since this is an average of finite independent terms, the result will
recover the expectation value (C`) with limited precision. This means
that there exists a fundamental uncertainty in how well we can measure
the CMB power spectrum. This is know as the cosmic variance and is
given by(

∆C`

C`

)
=

√
2

2`+ 1
, (1.43)

meaning that this uncertainty increases for low values of the multipole
`.

1.2.3 Baryonic acoustic oscillations

In the epoch before decoupling, in the baryon-photon plasma, the
baryons tend to cluster due to gravity, while the photons pressure pre-
vents this from happening. The results of this interaction are acoustic
oscillations throughout the whole cosmic plasma. When the baryons
and photons decouple, the expansion of the plasma density waves is
stopped and frozen into place. The fluctuations in the density of visible
baryons, know as baryonic acoustic oscillations (BAO), are imprinted at
a fixed scale, given by the maximum distance the acoustic waves were
able to travel before decoupling. For this reason the BAO matter cluster-
ing provides a standard ruler for length scales in cosmology, analogous
to the standard candle of supernovae. In fact, if one computes the
correlation function between galaxy pairs, it is possible to notice an
enhancement of the correlation for cosmic structures separated by the
scale

rs(zdrag) =
∫ ∞

zdrag

dz′
cs(z′)
H(z′)

, (1.44)

where zdrag ≈ 1020 and cs is the effective sound speed of the plasma.
In figure 1.3 we show the BAO effect BAO in the galaxy-galaxy two-

point correlation function ξ(r). We consider the best fit ΛCDM model
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of figure 1.2 and a model without baryons (Ωb = 0). We compare these
predictions with the data from the Sloan Digital Sky Survey (SDSS)
sample [20]. As we can notice from the figure, the correlation function
has a characteristic acoustic peak at a comoving scale r ∼ 100 h−1 Mpc,
which is not present in the model without the baryonic component.

Figure 1.3: Large scale two points correlation as a function of the comoving
distance between two galaxies. The data points are taken from the Sloan
Digital Sky Survey (SDSS) sample [20]. The dashed blue line is the prediction
for the ΛCDM model of figure 1.2, while the solid orange line represents a
cosmological model without baryons (Ωb = 0). In the small panel we show
an expanded view of the vertical axis.

1.2.4 Redshift space distortions

Accurate measurements of galaxy distances are rather difficult to obtain
and their uncertainties become too large to be useful as one moves
away from the local Universe. On the other hand, redshifts of galaxies
are relatively easy to determine, but they are not a direct measure of
distance, since the galaxy distribution in redshift space is distorted
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Figure 1.4: Illustration of the effect of peculiar velocities on RSD.

with respect to the distribution in physical space. In order to explain
this we can go in the z� 1 limit and consider the relation

s := cz, (1.45)

where s is the distance to a galaxy inferred through its redshift z and c
is the speed of light. In this section distances are expressed in units of
velocity. The physical distance would be

r := H0d, (1.46)

where we have assumed the galaxy to be close enough such that a
linearization of the Hubble relation applies. The two distances are then
related by

s = r + vr, (1.47)

where vr = ~v · r̂ is the projection of the galaxy peculiar velocity along
the line of sight.



18 introduction

From (1.47) we can see that the presence of peculiar velocities induces
redshift space distortions (RSD). On one hand RSD complicate the inter-
pretation of galaxy clustering, on the other hand they contain important
information about the mass distribution in the Universe, since the pe-
culiar velocities are caused exactly by the same distribution, which is
correlated with the galaxy positions. In order to qualitatively analyse
this effect we can imagine a simple spherical overdensity perturbation
δ(r) within a radius r. Following the spherical collapse model, for a
large value of r within which the overdensity is small the expansion
of the mass shell is decelerated but its peculiar velocity is still too
small to compensate for the Hubble expansion. In the redshift space
the mass shell will thus appear squeezed along the line of sight. On the
other hand, a completely virialized mass shell has peculiar velocities
which exceed the Hubble expansion across its radius. The shell will
then appear flattened along the line of sight, with the peculiarity that
the nearer side has larger redshift distance than the farther side. These
observational consequences of RSD are depicted in figure 1.4.

1.2.5 Weak lensing

Gravitational lensing is one of the most peculiar predictions of GR
and it represents also the first experimental confirmation of Einstein’s
theory. In practice, it prescribes that the path of a light signal is de-
flected by the presence of a massive object. When the deflection is large
we talk about strong gravitational lensing which is connected to the
production of giant arcs and multiple images of one single object in
the sky. Nevertheless, the majority of light coming towards us is in
the weak lensing (WL) regime: when the electromagnetic signal travels
nearby a massive distribution it gets slightly distorted. The net effect
of this distortion is that we observe the shape of bright objects in the
Universe, such as galaxies, to be different from how it is in reality.
In figure 1.5 we show an exaggerated example of the deformation
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caused by WL on galaxy shape. From the figure we can see that the
intrinsic ellipticities of the galaxies are twisted in a coherent way. It is
then possible to measure the ellipticity of the galaxies in the sky and
construct a statistical estimate of their systematic alignment. Since the
intrinsic orientation of the galaxies is expected to be random (apart
from some intrinsic alignment contributions) any systematics in the
alignment can be assumed to be due to the gravitational lensing. WL
is thus a statistical measure which allows cosmologists to track the
properties of the mass distributions in the Universe. The distortions
of light can be described by the variation between the lensed position
~θ, at which we observe the signal, and the unaltered position of the
source ~β as

∂θ
j
s

∂θi :=

(
−κwl − γ1 −γ2

−γ2 −κwl + γ1

)
, (1.48)

where the convergence κwl describes the overall magnification effect,
while γ1 and γ2 are the components of the shear and are connected to
the distortion effect.

The gravitational lensing induced by the large structure of the Uni-
verse goes under the name of cosmic shear and it represents a distortion
of only ∼ 0.1%. The cosmic shear is characterised by the shear corre-
lation functions which quantify the mean product of the shear at two
images as a function of the separation angle between the images. Since
the shear has two components it is possible to define three different
correlation functions which are computed by averaging over many pair
of galaxies:

ξ++(∆θ) := 〈γ+(~θ)γ+(~θ + ~∆θ)〉, (1.49)

ξxx(∆θ) := 〈γx(~θ)γx(~θ + ~∆θ)〉, (1.50)

ξx+(∆θ) = ξ+x(∆θ) := 〈γx(~θ)γ+(~θ + ~∆θ)〉, (1.51)

(1.52)
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Figure 1.5: Illustration of the distortions caused by weak gravitational lensing.

where γ+ is the shear component orthogonal to the separation angle ∆~θ
while γx is the component at 45◦. Since the gravitational lensing does
not allow the two different shear components to be correlated, checking
that ξx+ = 0 is a good test for systematic errors in the measurements.

Measures of these correlation functions directly constrain the cos-
mological parameters. The predictions of cosmic shear are particularly
sensitive to a degenerate combination of the background matter density
parameter (Ωm) and the amplitude of the matter power spectrum (σ8).
In [21] it was shown that the amplitude correlation functions roughly
scale with S2.5

8 , with

S8 := σ8

√
Ωm

0.3
. (1.53)

As mentioned at the beginning of this chapter, there exists a tension of
3.2σ within the ΛCDM model on the value of S8 measured from WL
when compared to the Planck CMB results [7].
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1.2.6 Local measurements of H0

The local measurement of the value of the Hubble function today, H0,
makes use of the comic distance ladder method [22], which allows to
accurately measure distances from Earth to near and far galaxies. Using
the Hubble Space Telescope (HST) [3], one can measure the distances
to a class of pulsating stars called Cepheid variables, employing a basic
tool of geometry called parallax: the change in the observer position
(Earth revolution around the Sun) induces an apparent shift in the
star’s position. After calibrating the Cepheid’s true brightness it is then
possible to use it as cosmic yardsticks in order to measure distances
to galaxies much farther away, for example to galaxies where both
Cepheids and supernovae type Ia are hosted. It is then possible to use
the Cepheids to measure the luminosity of the supernovae in each
host galaxy. Going further in redshift (where only SN can be seen, but
not Cepheids) one can compare the luminosity and brightness of the
SN at a distance where the cosmological expansion can be observed.
Comparing the redshift and the distances of those SN we can measure
the local value of the expansion rate, H0.

The local measure of the Hubble constant today and the sound hori-
zon 1 observed from the CMB provide two absolute scales at opposite
ends of the visible expansion history of the Universe. Comparing the
two by means of a cosmological model provides a stringent test of the
background cosmology. When assuming the standard cosmological
model, ΛCDM, one finds a striking incompatibility between the Planck
dataset and the local measurement of H0, of the order of 4.4σ [1, 3].
The root cause of this discrepancy is being actively investigated.

1 the sound horizon, defined as rs = cs(τ?)τ?, where cs is the sound speed, is the
distance that a sound wave could have travelled before a time τ?. The sound horizon
is a fixed physical scale at the surface of last scattering to which the CMB power
spectrum is particularly sensitive.
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1.3 modifications of gravity

As anticipated in the previous section, the theoretical challenges of
explaining cosmic acceleration and the tensions in the latest data are
inspiring a great amount of theoretical work. The aim is to build a
new theory of gravity which can, on one hand, replicate the numerous
successes of ΛCDM and, on the other hand, solve the few tensions
existing between high and low redshift datasets.

1.3.1 The theory of Horndeski

The theory of General Relativity is proven to be the unique theory of an
interacting, massless, spin-2 field in four dimensions [23]. This means
that any alternative theory of gravity should either go in the direction
of considering a massive extension to GR, add an extra dynamical
degrees of freedom, such as additional scalar-vector-tensor fields, or
extend to higher dimensions.

A great number of models have been proposed in order to exploit one
of the aforementioned alternatives. Although each of these approaches
to modified gravity shows different and peculiar features, it can be
proved that, at the scales which are relevant to cosmology, the low
energy limit of such theories is often represented by GR with the
addiction of a dynamical scalar field. For this reason in this work we
focus on such class of theories, known as scalar-tensor gravity. One of
the most straightforward examples is given by Brans-Dicke gravity [24].
In this theory the additional dynamical scalar field φ has the physical
effect of changing the effective gravitational constant from place to
place in the spacetime. The action of Brans-Dicke gravity is:

S =
1

2κ

∫
d4x
√
−g
(

φR− ω

φ
∇αφ∇αφ

)
+ Sm, (1.54)
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where Sm is the action for the matter sector and ω is a dimensionless
parameter known as the Brans-Dicke coupling constant. Gravity as
described by Brans-Dicke theory is really well understood, both in
the strong and in the weak field limit [25]. A number of different
cosmological probes have been used in order to place constraints on
Brans-Dicke theory. For example, using data from CMB it has been
claimed that ω > 1000 at 2σ [26].

The theory of Brans-Dicke is indeed a very special case of scalar-
tensor theory. A more sophisticated example would be to consider a
scalar field with a derivative self interaction given by a non standard
kinetic term, as in the case of cubic galileon:

S =
1

2κ

∫
d4x
√
−g
(

R− c2∇αφ∇αφ− 2 c3

M3�φ∇αφ∇αφ

)
+ Sm, (1.55)

where c2 and c3 are dimensionless constants and M3 = m0H2
0 , m0 being

the Planck mass. It is easy to prove that the theory given by 1.55 is
invariant under the shift symmetry

φ −→ bµxµ + c, (1.56)

which recalls of the Galilean symmetry, hence the name of the theory.
Since 1.55 allows for self accelerating solutions even in the absence of
a field potential [27], cubic galileon is a riveting theory if we want to
answer questions about the nature of dark energy.

Following this example, we can exploit shift symmetry in order to
build scalar-tensor theories with more complex interactions: this is the
case of Covariant Galileons [28], whose action is given by

S =
∫

d4x
√
−g

[
R

16πG
− 1

2

5

∑
i=1

ciLi

]
+ Sm, (1.57)
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with

L1 = M3φ,

L2 = ∇µφ∇µφ,

L3 =
2

M3�φ∇µφ∇µφ,

L4 =
1

M6∇µφ∇µφ
[
2(�φ)2 − 2(∇µ∇νφ)(∇µ∇νφ)− R∇µφ∇µφ/2

]
,

L5 =
1

M9∇µφ∇µφ
[
(�φ)3 − 3(�φ)(∇µ∇νφ)(∇µ∇νφ)

+ 2(∇µ∇νφ)(∇ν∇ρφ)(∇ρ∇µφ)− 6(∇µφ)(∇µ∇νφ)(∇ρφ)Gνρ

]
.

It is possible to show that higher order Lagrangians are just total
derivatives and hence they would not contribute to the equations of
motion. In the quartic (L4) and quintic (L5) Lagrangians some terms
are non minimally coupled to the metric: these are needed in order to
retain that the scalar field equations are second order, which ensures
the propagation of only one additional degree of freedom. Covariant
Galileons have been extensively studied in cosmology [29–33] and they
represents an interesting alternative to GR, which can alleviate the
tensions between the cosmological datasets. Furthermore in [29] it has
been proved the existence of tracking solutions in Covariant Galileon
cosmologies, that finally approach a de Sitter fixed point, responsible
for cosmic acceleration today.

The choice of invariance under shift symmetry is completely arbitrary
and, in principle, one could ask if it is possible to write the most general
scalar-tensor theory that includes all existing single field modifications
of gravity as particular cases. It turns out that it is possible to do so and
the action of the most general scalar-tensor theory with second order
equations of motion, also known as the Horndeski class of theories [34–
36], can be written as

S =
∫

d4x
√
−g

[
5

∑
i=2
Li + Lm(gµν, χm)

]
, (1.58)
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with

L2 = K(φ, X),

L3 = −G3(φ, X)�φ,

L4 = G4(φ, X) R + G4X [(�φ)2 − (∇µ∇νφ) (∇µ∇νφ)] ,

L5 = G5(φ, X) Gµν (∇µ∇νφ)

− 1
6

G5X [(�φ)3 − 3(�φ) (∇µ∇νφ) (∇µ∇νφ)

+ 2(∇µ∇αφ) (∇α∇βφ) (∇β∇µφ)] , (1.59)

where K and Gi (i = 3, 4, 5) are functions of the scalar field φ and
its kinetic energy X = −∂µφ∂µφ/2, R is the Ricci scalar, Gµν is the
Einstein tensor, GiX and Giφ denote the partial derivatives of Gi with
respect to X and φ, respectively, and Lm(gµν, χm) is the Lagrangian for
matter fields, collectively denoted with χm, minimally coupled to the
metric gµν. The constraint of having second order equations of motion
is a sufficient condition in order to avoid Ostrogradsky instability [37],
which is connected to an unstable Hamiltonian description of the
theory. Nevertheless it is still possible to construct stable scalar-tensor
theories with higher order equations of motion which contain a single
propagating scalar degree of freedom. Such theories go under the name
of beyond Horndeski or Gleyzes-Langlois-Piazza-Vernizzi (GLPV) [38,
39] extensions. Finally, GLPV theories were also extended to a larger
class, known as Degenerate Higher Order Scalar Tensor (DHOST)
theories [40, 41].

1.3.2 The effective field theory of dark energy

The wealth of theoretical models proposed in order to explain cosmic
acceleration poses serious threats to the model selection in modern
cosmology. If we decide to assess the preference of one model by look-
ing at the observations we end up in a dramatic problem: how can
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we efficiently discriminate among so many different gravity theories?
Each one of them is characterised by a certain number of free param-
eters that have to be fitted against data, by solving the background
and the perturbation equations. Practically, each DE model must be
independently compared with ΛCDM in order to state which is the
theory that better describes the data. The effective field theory (EFT) of
dark energy simplifies this situation by implementing a unifying and
model-independent approach. It is unifying in the sense that it incorpo-
rates many different models as particular cases: in fact it describes all
the class of scalar-tensor theories up to GLPV. It is model independent
since the operators of the EFT can be readily tested against observations
without relying on any particular DE model.

The action of the EFT of DE is built in the unitary gauge. We can con-
sider a foliation of spacetime by breaking the spacetime manifold into
a family of three dimensional spacelike hypersurfaces parametrized by
a function t(x). Each hypersurface Σt is characterised by a timelike unit
normal vector field nµ and an induced spatial metric hµν = gµν + nµnν

(see Figure 1.6 for a pictorial representation). The unitary gauge is
realised by choosing a time coordinate which is function of the scalar
field t = t(φ): in such a way we have φ = const. on each hypersurface.
This choice hides the explicit presence of the scalar field, since it is
eaten by the metric components, and it breaks time diffeomorphism
invariance. This last point has the effect that we are allowed to use
generic functions of time in front of any terms in the Lagrangian. The
timelike unit normal vector field to the hypersurface now reads:

nµ := −
∂µφ√
−(∂φ)2

−→ −
δ0

µ√
−g00

, (1.60)

where we have used the fact that now φ is the new time coordinate and
thus ∂µφ = δ0

µ. Since, when building the DE action, we can contract
any tensor with nµ, we are left with terms with free upper 0 indexes,
such as g00 or R00. Furthermore, operators can also be built through
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Figure 1.6: Pictorial representation of the foliation of spacetime given by the
hypersurfaces Σt with the unit normal vector on the surface, nµ.

covariant derivatives of the normal vector. For example, we can use
their projection along Σt, named extrinsic curvature

Kµν := hα
µ∇αnν. (1.61)

In this setup we can write the most general action up to quadratic
order in perturbations [42–46]
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S =

∫
d4x

√
−g m2

0

{
1
2
[1 + Ω(τ)] R +

Λ(τ)

m2
0
− c(τ)

m2
0

δg00

+ H2
0

γ1(τ)

2
(
δg00)2 − H0

γ2(τ)

2
δg00 δK− H2

0
γ3(τ)

2
(δK)2

− H2
0

γ4(τ)

2
δKi

jδK j
i +

γ5(τ)

2
δg00δR

+ γ6(τ)∂
µ(a2g00)∂µ(a2g00)

}
+ Sm[gµν, χm] , (1.62)

where m−2
0 = 8πG, and δg00, δKµ

ν , δK and δR(3) are, respectively, the
perturbations of the time-time component of the metric, the extrinsic
curvature and its trace and the three dimensional spatial Ricci scalar on
the constant-time hypersurfaces. The action (1.62) is written in terms
of the conformal time, τ. The functions Ω(τ), Λ(τ) and c(τ) affect
the evolution of the background and perturbations, with only two of
them being independent as the third one can be derived using the
Friedmann equations. The remaining functions, γi, i = 1, . . . , 6, control
the evolution of perturbations.

All of these time dependent functions are known as EFT functions and
they are essential for this framework to be unifying as well as model
independent. In fact, on one hand, it is possible to specify a specific time
dependence of the EFT functions, e.g. through some parameterizations,
and to test the effect of each operator on the phenomenology. On the
other hand, they can be expressed in terms of the functions appearing
in the Horndeski Lagrangian (1.59) [45], in order to reproduce the
phenomenology of a given scalar-tensor theory. We refer to this process
as mapping procedure.

As previously stated, action (1.62) can reproduce the phenomenology
of any GLPV theory. In the case of mapping to Horndeski theory, which
is a subset of GLPV, the following constraint applies
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γ4 = −γ3 ,

γ5 =
γ3

2
,

γ6 = 0. (1.63)

1.3.3 The α-basis

An equivalent and alternative way of parameterizing the EFT action for
linear perturbations around a given FLRW background in Horndeski
models is based on the following action for linear perturbations [47–50]:

S =
∫

d4x a3 M2
∗

2

{
δKi

jδK j
i − δK2 + RδN

+ (1 + αT)δ2

(√
hR/a3

)
+ αK H2δN2

+ 4αBHδKδN
}
+ Sm[gµν, χm] , (1.64)

where N is the lapse function. The role of the EFT functions is here
covered by five functions of time: the Hubble rate H, the generalized
Planck mass M∗, the gravity wave speed excess αT, the kineticity αK,
and the braiding αB [47]. One also defines a derived function, αM, which
quantifies the running of the Planck mass. The relations between the
functions in the two EFT approaches is given by
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Ω(a) = −1 + (1 + αT)
M2
∗

m2
0

,

γ1(a) =
1

4a2H2
0 m2

0

[
αK M2

∗H2 − 2a2c
]

,

γ2(a) = − H
aH0

[
αB

M2
∗

m2
0
+ Ω′

]
,

γ3(a) = −αT
M2
∗

m2
0

,

γ4(a) = −γ3 ,

γ5(a) =
γ3

2
γ6(a) = 0. (1.65)

We emphasize a key difference between the two EFT descriptions. In
the first, the expansion history is derived, given the EFT functions.
In the second approach, H(a) is treated as one of the independent
functions that needs to be provided. This distinction is important when
it comes to sampling the viable solutions of Horndeski theories, as it
amounts to a different choice of priors.

1.3.4 EFTCAMB and stability conditions

In order to study the phenomenology of scalar-tensor modifications
of GR, the EFT of DE approach has been implemented in the public
Einstein-Boltzmann solver CAMB (Code for the Anisotropies in the Mi-
crowave Background) [51]. The resulting code is known as EFTCAMB [52,
53]. Based on the EFT of DE approach, EFTCAMB can be employed for
different purposes. The code can evolve the full set of linear scalar per-
turbation equations of any single field scalar-tensor theory, up to GLPV,
once a mapping between the model and the EFT of DE is provided



1.3 modifications of gravity 31

(mapping approach). Furthermore, it allows for agnostic investigation
of gravity on cosmological scales, for example by specifying a pre-
ferred parametrization for the evolution of the EFT functions (pure EFT
approach).

One of the strengths of EFTCAMB is that it does not rely on any quasi
static (QS) approximation. When fitting data one usually focuses on
sub horizon scales and neglects the time derivatives of the scalar field
and gravitational potential compared to their spatial gradient: this is
the QS approximation. On one hand the employment of the QS regime
simplifies both the theoretical and the numerical setup, still giving a
good description of the physics at sub horizon scales [54], on the other
it might lose some dynamics at scales and redshifts that are relevant
for upcoming surveys [55, 56].

The reliability of EFTCAMB has been tested against several existing
Einstein-Boltzmann solvers, showing a remarkable agreement [57].

Furthermore, the code has been interfaced with a modified version
of the Monte Carlo Markov Chain (MCMC) integrator CosmoMC [58],
which allows to explore and constrain the parameter space of modi-
fied gravity models by performing a fit to cosmological data. When
performing parameter estimation for a DE model, one needs to verify
that the sampled point in the parameter space satisfies specific criteria
of theoretical viability. We refer to these criteria as stability conditions
and they mainly include the avoidance of the following three classes of
instability:

• Ghost instability: the ghost corresponds to the presence of fields
with negative energy or negative norm, typically connected to a
wrong sign in the kinetic term. This leads to an unstable vacuum
as the spontaneous particle production process would cost zero
energy and it would have infinite decay rate.

• Gradient instability: this instability is due to an imaginary speed
of sound of the scalar field, which translates into a catastrophic
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growth of DE perturbation modes. Since this instability has an
intrinsic timescale, in cosmology we say that a model is safe from
gradient instability when this timescale does exceed the timescale
of the Universe, given by the Hubble time.

• Tachyon instability: it is a large-scale instability which is sourced
by a mass term with wrong sign, which in turn is related to the
unboundedness of the Hamiltonian from below [59, 60].

Imposing such stability conditions during a MCMC analysis guarantees
not only that the dynamical equations are mathematically consistent
and can be meaningfully solved, but also that the underlying theory
is physically acceptable. This is true when considering a specific DE
model, but even more when performing analysis in the pure EFT
approach, where the choice of the time dependence of the EFT functions
is completely arbitrary. The imposition of stability conditions in the
MCMC algorithms divides the parameter space of a theory into patches,
in some of them the theory is stable while in others instabilities occur.
This partitioning of the parameter space could, in principle, alter some
important statistical properties of the MCMC. In order to avoid this
issue, the stability conditions have been implemented as stability priors:
the Monte Carlo step is rejected whenever it falls in one of the unstable
patches. Since the stability priors are well motivated from the theoretical
point of view, and they are a natural requirement for the DE model
(or parametrization) considered, they represent the degree of belief in
viable underlying theory encoded in the EFT framework.

1.4 constraints from gravity waves

The detection of the gravitational wave (GW) event GW170817 and
the associated gamma-ray bursts GRB170817A from a neutron star
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merger [61–63] has put stringent constraints on the difference between
the speed of light (c = 1) and gravitational waves

−3× 10−15 < cT − 1 < +7× 10−16. (1.66)

This has a significant implication for modified gravity models, in
particular scalar-tensor theories [64–77]. In the case of Horndeski the
surviving viable action includes a reduced number of EFT functions.
In particular, the quintic order Lagrangian is vanishing (G5 = 0) and
the quartic order reduces to a general function of the scalar field alone
(G4,X = 0). However, it is still possible to recover the quintic order
once we move to GLPV theories, as it will be shown in chapter 4.
Although such observation had a profound impact on the modified
gravity community, possibly ruling out a large class of theories, it is
worth noticing that the extent to which this bound applies to the EFT
of DE is still under debate. In fact, as pointed out in [78], the energy
scales detected by the LIGO collaboration lie very close to the typical
cutoff of many DE models.

1.5 this thesis

The primary aim of this thesis is shedding light on the nature of dark
energy and the theory of gravity on cosmological scales. We do so by
presenting different approaches that we can adopt when we want to
study the cosmology of modified gravity models. Specifically:

• Chapter 2 studies the impact of general conditions of theoretical
stability and cosmological viability on the analysis of dynamical
DE models with cosmological data. Recently, the KiDS collab-
oration has found a mild preference for a CPL DE model over
ΛCDM when combing their data with Planck [79]. Interestingly,
this model has been found to alleviate the tension on the S8 pa-
rameter, between CMB and WL measurements. In chapter 2, we
use the powerful stability check which is built-in in the EFTCAMB
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code, in order to verify if such results are compatible with a stable
theoretical description, i.e. a quintessence field which does not
develop ghost instabilities. This chapter is based on Ref. [80].

• Chapter 3 describes the building blocks that are needed in order
to obtain meaningful theoretical priors for cosmological analyses
of DE models. When comparing the theory predictions with data
a convenient approach is to look at phenomenological departures
at the level of linear perturbations equations. This approach is an
alternative to the EFT of DE framework: while the former is more
directly connected to the observation, the latter is more prone
to keep the connection between phenomenology and the under-
lying theory of gravity. By building a bridge between the two
approaches it is then possible to connect a single EFT operator to
a specific phenomenological feature. On the other hand, through
the EFT, it is possible to impose conditions of theoretical stability
and study their effects on the model phenomenology. This is done
by creating numerical samples of theoretically viable Horndeski
models, studying the typical trends for their phenomenology
and computing theoretical priors that can be exploited in a non
parametric reconstruction from data. This chapter is based on
Refs. [81, 82].

• Chapter 4 shows the full study of a specific dark energy model
in the framework of Gleyzes-Langlois-Piazza-Vernizzi theories,
which predicts a speed of gravity waves compatible with the ob-
servational constraints. We present the signatures of the model on
some relevant observables. In this model, we show that the Planck
cosmic microwave background data, combined with datasets of
baryon acoustic oscillations, supernovae type Ia, and redshift
space distortions, give a tight upper bound on the beyond Horn-
deski parameter α H. Finally, we make use of specific model selec-
tion criteria in order to assess the model preference with respect
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to ΛCDM. We find that the model considered fits the data better
than ΛCDM according to the χ2 statistics, yet the deviance infor-
mation criterion (DIC) slightly favours the latter. However, we
show that the Horndeski limit of the model, known as Galileon
ghost condensate, is preferred over the standard model of cos-
mology by the data. This chapter is based on Refs. [83, 84].




