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Abstract
Anxiety disorders are among the most common mental disorders. Pharmacolo-
gical treatment is intensive and close supervision is required to secure a balance 
between benefits and adverse effects; the latter including tolerance and depen-
dence. The endocannabinoid system (ECS) has emerged as a potential drug 
target for the treatment of anxiety disorders. The ECS is a signaling system 
which comprises the endocannabinoids anandamide and 2-arachidonoylgly-
cerol and the cannabinoid receptors 1 and 2 (Cnr1 and Cnr2), which regulate 
neurotransmitter release and thus modulate neuronal excitability. The zebrafish 
larva is a promising model for the screening of psychoactive drugs, and its ECS 
is highly homologous to that of rodents and other mammals. In the present 
study, we have investigated the effect of Cnr1 activation on anxiety-like behavior 
in zebrafish larvae, using a light/dark preference test. The activation of Cnr1 
by the agonist WIN55,212-2 had an anxiolytic effect, which was abrogated in 
a cnr1-/- mutant line, and by co-administration of the Cnr1 antagonist AM251. 
Mutation of the cnr1 gene, administration of AM251 alone, or increasing levels 
of the endocannabinoid anandamide by chemical inhibition of the enzyme fatty 
acid amide hydrolase (FAAH), did not change anxiety-like behavior. These results 
show that in zebrafish larvae the endogenous activity of the ECS is insufficient 
to modulate anxiety-like behavior, but that administration of an exogenous Cnr1 
agonists reduces anxiety-like behavior. Therefore,  zebrafish larvae represent an 
excellent model to study the behavioral effects of pharmacological Cnr1 activa-
tion and screen for novel anxiolytic drugs.  
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Introduction
Anxiety is a feeling of apprehension, fear or worry, often without a specific thre-
at and often out of proportion to the danger anticipated. Generalized anxiety 
disorder (GAD) is one of the most common mental disorders and leads to func-
tional impairment and disability. Patients have high rates of absenteeism from work 
and are frequently hospitalized, and GAD has high rates of comorbidity with ma-
jor depressive disorder and other mood disorders (Revicki et al. 2012). Current 
first-line pharmacotherapy for GAD consists of selective serotonin reuptake in-
hibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs), along 
with benzodiazepines such as valium (Koen and Stein 2011). Although SSRIs 
and SNRIs have proven efficacy in both the short-term and long-term treatment 
of GAD, they are both associated with side effects such as insomnia, nausea, 
headache, fatigue and withdrawal effects on discontinuation (Bandelow et al. 
2017). Benzodiazepines are not recommended for use as routine treatments 
of anxiety because of their addictive potential and because of adverse effects, 
including sedation and cognitive impairment (Baldwin et al. 2014). As a result, 
currently there is a great demand for novel anxiolytic drugs. 

The endocannabinoid system (ECS) constitutes a lipid signaling system which 
can modulate both neuroendocrine and inflammatory pathways. It comprises the 
cannabinoid receptors 1 and 2 (Cnr1 and Cnr2), the endocannabinoids (eCBs) 
anandamide and 2-arachidonoylglycerol (AEA and 2-AG) and the metabolic en-
zymes involved in synthesis or degradation of those ligands. Cnr1 and Cnr2 are 
presynaptic G-protein-coupled receptors (GPCR). Cnr1 is mainly expressed in the 
central nervous system and activation results in inhibition of neurotransmitter re-
lease by inhibiting adenylate cyclases and N- and P/Q-type Ca2+-channels, and 
by activating K+ channels (Freund et al. 2003). By regulating excitatory and inhibitory 
synaptic neurotransmission, Cnr1 mediates several cognitive functions, such as 
memory, mood, stress and anxiety. Cnr2 is abundantly expressed on immune cells, 
including lymphocytes and macrophages, and plays an important role in immu-
ne regulation (Cabral and Griffin-Thomas 2009). Recently it was shown that this 
receptor also has neuronal effects, as both expression and functional effects of 
Cnr2 were shown in the brain (Chen et al. 2017). 

Several researchers have indicated that the ECS could be a potential drug target 
for the treatment of anxiety disorders (Chhatwal and Ressler 2007; Gaetani et al. 
2009; Hill and Gorzalka 2009; Patel et al. 2017; Ruehle et al. 2012). The ECS has 
been mentioned as one of the top therapeutic targets for posttraumatic stress 
disorder (Krystal et al. 2017), a highly prevalent major depressive disorder in 
people following a major traumatic experience such as warfare that is often 
comorbid with GAD. However, relatively few studies have been conducted on the 
relationship between anxiety and the ECS in humans. Most of these studies indi-
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cate that eCBs are indeed involved in anxiety modulation, although most clinical 
studies to date have not used objective or clinician-rated measures of anxiety, 
or included only very small sample sizes. For these reasons, based on existing 
clinical studies, no robust conclusion on the effect of modulation of the human 
ECS on anxiety can be drawn (Lisboa et al. 2017; Mandolini et al. 2018; Turna et 
al. 2017). In studies done on the ECS of experimental animals, both acute and 
chronic anxiety tests have been applied (Lisboa et al. 2017). In general, pharma-
cological and genetic manipulation of the ECS show that cannabinoids are invol-
ved in the regulation of anxiety. Most of these animal studies have been done 
on rodents, and these studies can be time-consuming and costly. Furthermore, 
rodents lack expression of fatty acid hydrolase subtype 2 (Faah2), an enzyme 
that metabolizes AEA by hydrolysis, which is present in other mammals and fish. 
Another animal model, to be used complementary to the common rodent mo-
dels, could thus be advantageous in studying the ECS in vivo.

The zebrafish larva is a popular animal model which is well-developed for bio-
medical research and is widely used to complement data from rodent models 
(Ahmad et al. 2012; Khan et al. 2017). Easy maintenance, rapid development and 
high fecundity are features which have further increased interest in this model. 
The zebrafish genome has been sequenced and is well characterized. Genetic 
manipulation is relatively easy, and zebrafish are physiologically and genetically 
highly homologous to humans. Zebrafish have also been mentioned as a pro-
mising animal model for studying complex brain disorders (Kalueff et al. 2014), 
and the zebrafish neurotransmitter system is highly comparable to the mam-
malian neurotransmitter system (Gomez-Canela et al. 2018). Several interesting 
tools have emerged over the last few years. The optical transparency of zebrafish 
larvae allow for in vivo mapping of neuronal circuits in behaving fish (Feierstein 
et al. 2015), using for example calcium indicators, such as GCaMPs (Fosque et 
al. 2015; Turrini et al. 2017). 

Most zebrafish ECS genes show an orthologous relationship with the human 
ECS genes (McPartland et al. 2007), and there is a high degree of conservation 
between the zebrafish and mammalian ECS receptors and metabolic enzymes 
(Demin et al. 2018). These properties make the zebrafish a very interesting 
complementary model to study the ECS. Most research on this subject has fo-
cused on the developmental effects of cannabinoids (Ahmed et al. 2018; Akhtar 
et al. 2013; Carty et al. 2019; Carty et al. 2018; Migliarini and Carnevali 2009; 
Thomas 1975; Valim Brigante et al. 2018; Watson et al. 2008), but effects on 
metabolism (Liu et al. 2016; Migliarini and Carnevali 2008; Nishio et al. 2012; Pai 
et al. 2013; Silvestri et al. 2015), memory (Ruhl et al. 2015; Ruhl et al. 2014; Ruhl 
et al. 2017) and anxiety (Barba-Escobedo and Gould 2012; Connors et al. 2013; 
Ruhl et al. 2014; Stewart and Kalueff 2014) have been studied as well. The research 
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on the role of the ECS in anxiety-like behavior has until now mainly focused on 
adult zebrafish. 

In a previous study (Chapter 2), we have analyzed zebrafish larval behavior using a 
visual motor response (VMR) test. Although this assay usually allows for analyzing 
anxiety-like behavior, we were not able to distinguish anxiety-related effects of 
tested cannabinoids, due to coinciding locomotor-related effects.  In the present 
study we have investigated potential modulation of anxiety-like behavior by the 
ECS in zebrafish larvae using a different assay. For this purpose, we have utilized a 
light/dark preference test, which is commonly used to study anxiety-like pheno-
types (Steenbergen et al. 2011). This test consists of a plastic box, which is divi-
ded into a bright and a dark compartment. Since zebrafish larvae are scotophobic 
(Maximino et al. 2010), they incline to move or stay more in the bright zone com-
pared to the dark zone. Our data show that upon treatment with Cnr1 agonist 
WIN55,212-2, zebrafish larvae move relatively more in this zone dark zone, spend 
relatively more time in the dark zone and move sooner into the dark zone. This 
effect is Cnr1-specific, since neither pharmacological inhibition with the Cnr1 an-
tagonist AM251, nor genetic knockout of the cnr1 gene abolished the effect of 
WIN55,212-2. Furthermore, our results suggest that endogenous cannabinoids 
are not involved in regulating anxiety during this developmental phase.
 
Materials and methods
Zebrafish strains and husbandry
Zebrafish (Danio rerio) were handled and maintained according to the ZFIN gui-
delines (ZFIN, http://zfin.org). Group crossings were set up to stimulate natural 
spawning and fertilization. Eggs were raised in 10 cm Petri dishes containing 
50 mL of 10% Hanks’ balanced salt solution (HBSS; for specifications see (Ali et 
al. 2011)), on a 14h light:10h dark cycle at 28°C. The behavioral analyses were 
performed at 5 dpf between the times of 11:00 and 15:00. Wild-type Tubingen 
(Tu) fish were used, and a cannabinoid receptor 1 knockout line (cnr1-/-) (Liu et 
al. 2016)), was kindly provided by Prof. Wolfram Goessling of Harvard Medical 
School.

Test compounds
The following compounds were used: WIN55,212-2 and AM251 (MedChemExpress, 
Sweden), and PF-004457845 (Sigma-Aldrich, MO, USA). All compounds were 
dissolved in 10% Hanks Balanced Salt Solution (HBSS), and dimethylsulfoxide 
(DMSO) was used as a solvent (final concentration of 0.08% DMSO). The com-
pounds and dosage selected were based on a previous study (Chapter 2 of this 
thesis) and pilot experiments. In the case of co-exposure (AM251 and WIN55,212-
2), fish were first treated with AM251 for 15 minutes, after which fish were exposed 
to the combination of AM251 and WIN55,212-2.
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Behavioral analysis
The behavioral test that was used to monitor anxiety-like behavior, was the 
so-called light/dark preference test, which has been characterized and valida-
ted before (Steenbergen et al. 2011).  The light/dark preference test consists 
of a plastic box (dimensions: L, 45 mm x W, 30 mm x H, 21 mm), divided into 
an equally-sized bright and dark compartment (Fig. 1). A total of 4 boxes were 
placed in a frame, which was placed in the DanioVisionTM recording appara-
tus (Noldus, The Netherlands). A single larva was then carefully transferred from 
a Petri dish to the center of the bright compartment of each box, containing 5 
mL of water containing the vehicle or test compound. We applied removable se-
parators between the compartments, to prevent larvae from swimming into the 
dark zone before the start of the analysis. When each box contained one larva, 
the separators were removed and video recording was carried out for 15 minutes 
using an infrared camera. The camera recorded at 60 frames per second.  Each 
treatment group consisted of at least 25 larvae.
Videos were analyzed in EthoVision® XT v. 12 software (Noldus, The Nether-
lands). The following parameters were measured: distance moved in the dark 
zone, as a percentage of total distance moved, to assess zone preference; time 
spent in the dark zone, as a percentage of total testing time, to correct for indi-
vidual differences in swimming activity; latency to visit the dark zone, to assess 
anxiety for the dark compartment.

Fig. 1 Schematic overview of the light/dark preference test apparatus. It consists 
of an infrared camera and a plastic box, which is divided into two equally-si-
zed compartments. Both compartments, one bright and one dark, are matte and 
opaque. A physical barrier (or separator) was placed between the two compartments, 
and this barrier was removed at the start of video recording. 
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Statistics
The experimental data were analyzed with a one-way ANOVA test with the con-
centration or compound as independent variable. Dunnett’s post-hoc test 
was performed to analyze multiple comparisons. All analyses were done and 
all graphs were created using GraphPad Prism 7 (GraphPad Software Inc., CA, 
USA). Data shown are means ± standard error of the mean (SEM). Statistical 
significance was reported at p≤0.05.

 
 



| Chapter 360

•

Results
A light/dark preference test was used in order to screen for anxiolytic effects 
of ECS manipulation in zebrafish larvae. In this test, larvae are placed in a box 
containing a light and a dark compartment, and the distance moved and time 
spent in the dark compartment  (as a percentage of the total distance and time), 
and the latency to enter the dark compartment  for the first time are considered a 
read-out for anxiety. Since zebrafish larvae prefer the light compartment, high 
values for the first two parameters and low levels for the third parameter are 
considered to reflect low levels of anxiety (Steenbergen et al. 2011).

 
 

Fig. 2 The effect of WIN55,212 on anxiety-related behavior in the light/dark pre-
ference test. WIN55,212 dose dependently increases a the distance moved in the 
dark zone, b the time spent in the dark zone and c decreases the latency to visit the 
dark zone. Data shown are means ± SEM. Significant differences compared to the 
corresponding vehicle-treated control group are indicated.* P ≤ 0.05; ** P ≤ 0.01; 
**** P ≤ 0.0001
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Fig. 3 General distribution of larvae in the light/dark preference test at different con-
centrations of WIN55,212-2. This heatmap was generated by EthoVision® XT v. 12 
software (Noldus, The Netherlands) and shows the distribution of the larvae as repre-
sented by the data in Fig. 2. 

Treatment with WIN55,212-2 results in an anxiolytic phenotypic
First, the Cnr1 agonist WIN55,212-2 was administered to study the effect of 
Cnr1 activation. The results showed that that with increasing concentration of 
WIN55,212-2, the relative distance moved and time spent in the dark zone in-
creased. The relative distance moved in the dark was significantly higher in 
WIN55,212-2-treated larvae (12 and 24 nM, Fig. 2a) compared to the vehicle-tre-
ated group. WIN55,212-2-treated larvae not only moved more in the dark com-
partment, but also spent relatively more time in it (12 and 24 nM, Fig. 2b). The 
heat map in Fig. 3 confirms that with increasing concentrations of WIN55,212-2, 
larvae spent more time in the dark compartment. Furthermore, larvae treated with 
WIN55,212-2 (24 nM) had a lower latency to enter the dark compartment (Fig. 2c).
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Fig. 4 Cnr1 specificity of the anxiolytic effect of WIN55,212-2. The anxiolytic effect 
of WIN55,212-2 (24nM), as shown by a increased distance moved in the dark zone, b  
increased time spent in the dark zone and c decreased latency to visit the dark zone, 
was abolished in the cnr1-/- mutant line. Data shown are means ± SEM. Significant 
differences compared to the corresponding vehicle-treated control group are indica-
ted.* P ≤ 0.05; *** P ≤ 0.001; **** P ≤ 0.0001

The anxiolytic effects of WIN55,212-2 are Cnr1 specific
Subsequently, to investigate the Cnr1 specificity of the anxiolytic effect of 
WIN55,212-2, the compound was applied at a 24 nM concentration to a cnr1-

/- mutant line (Fig. 4). No differences were found between the cnr1+/+ and cnr1-/-  
line in the vehicle-treated groups. However, the anxiolytic effects of WIN55,212-
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2, as shown by relative distance moved in dark zone (Fig. 4a), relative time spent 
in dark zone (Fig. 4b) and latency to visit the dark zone (Fig. 4c) were present in 
the cnr1+/+ larvae, but absent in the cnr1-/- mutants. 

Fig. 5 Pharmacological verification of the cnr1 specificity of the anxiolytic effect of 
WIN55,212-2. The anxiolytic effect of WIN55,212-2 (24nM), as shown by a increased 
distance moved in the dark zone, b increased time spent in the dark zone and c 
decreased latency to visit the dark zone, was blocked by pretreatment with AM251 
(0.5µM). Data shown are means ± SEM. Significant differences compared to the cor-
responding vehicle-treated control group are indicated. ** P ≤ 0.01; *** P ≤ 0.001
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Treatment with AM251 or Faah inhibition does not affect anxiety-related be-
havior
We also tested Cnr1 specificity of the anxiolytic effect of WIN55,212-2 by using a 
specific Cnr1 antagonist. We found that pretreatment with the antagonist AM251 
completely blocked the anxiolytic effects of WIN55,212-2 on the relative distan-
ce moved in dark zone (Fig. 5a), the relative time spent in dark zone (Fig. 5b) and 
the latency to visit the dark zone (Fig. 5c). Similarly to the effect of mutation of 
the cnr1 gene, treatment with AM251 alone did not cause any effect in this assay. 

 
Fig. 6 Effect of PF-004457845 treatment (1µM) on behavioral parameters a distance 
moved in the dark zone, b time spent in the dark zone and c latency to visit the dark 
zone, in the light/dark preference test. Treatment with this FAAH inhibitor increases 
AEA-concentration by a 5-fold, but does not affect anxiety-related behavior in this 
assay. Data shown are means ± SEM.
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Apparently, blocking Cnr1 activity, either genetically or pharmacologically, does 
not affect anxiety-related behavior (in vehicle-treated larvae), suggesting that  
there is little or no endogenous activity of the ECS under the conditions of this 
assay. To further investigate the endogenous ECS activity, we administered PF-
004457845 (1 μM), an inhibitor of the metabolic enzyme Faah, to  decrease the 
degradation of AEA. With the concentration and exposure time applied here, 
this results in a 5-fold increase of AEA (unpublished data, dr. V. Kantae). Our re-
sults show that this treatment, in contrast to exogenous activation by WIN55,212-
2, does not affect the relative distance moved in the dark zone (Fig. 6a), the 
relative time spent in the dark zone (Fig. 6b), or the latency to visit the dark 
zone (Fig. 6c). Thus, even an increased activity of the endogenous ECS activity 
in zebrafish larvae does not affect the behavior in the light/dark preference test.
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Discussion
In the present study, we have investigated the effects of Cnr1 activation on anxie-
ty-related behavior using a light/dark preference test. We show that activation of 
Cnr1 by treatment with the Cnr1 agonist WIN55,212 has pronounced anxiolytic 
effects. WIN55,212-2-treated fish spent more time in the dark zone, they move 
relatively more in this zone, and they enter the dark zone sooner. These effects 
were not observed in a cnr1-/- mutant line, nor after pretreatment with the Cnr1 
antagonist AM251. This implies that the anxiolytic effects of WIN55,212-2, ob-
served in in our assay, are mediated specifically by Cnr1. Administration of 
AM251 alone or mutation of the cnr1 gene does not affect anxiety-related behavior 
in our assay, which suggests that endogenous cannabinoids do not modulate 
anxiety in zebrafish larvae.

These data are in agreement with previous results (Chapter 2), in which we used 
a VMR test and showed that Cnr1-specific activation reduced the mobility of 
that larvae, and we could not distinguish between effects on locomotor activity 
and anxiety. In order to develop a simple assay that can be used to screen spe-
cific effects on anxiety-related behavior in a vertebrate organism, we studied 
the behavior of zebrafish larvae in the light/dark preference test. The light/dark 
preference test was initially developed for mice (Crawley and Goodwin 1980), 
and is based on the aversion of rodents to bright areas (Bourin and Hascoët 
2003). It has been adapted for use in adult zebrafish (Maximino et al. 2010), 
and has subsequently been adjusted, characterized and validated for zebrafish 
larvae (Steenbergen et al. 2011). The latter test was developed to assess anxiety 
responses in zebrafish larvae, which, in contrast to rodents and adult zebrafish, 
prefer the light zone over the dark zone; anxiolytic compounds increase the time 
they spend in the dark. Using this test, we managed to show that WIN55,212-2 
had an anxiolytic effect, causing a dose-dependent increase of the relative time 
spent and the relative distance moved in the dark zone, but also a lower initial 
latency to move into the dark. 

In adult zebrafish, a few studies have been performed on the effects of canna-
binoids on anxiety-related behavior, and most of them show anxiolytic effects. 
In one study, a comparable approach to ours, a light/dark cross maze, was used 
(Connors et al. 2013). Acute exposure to WIN55,212-2 had no effect on anxiety, 
but prolonged exposure (daily feeding with WIN55,212-2-containing dried food 
for 1 week) had an anxiolytic effect. 

In another study, WIN55,212-2 was shown to have anxiolytic properties in a so-
cial interaction test (Barba-Escobedo and Gould 2012), and Stewart and Kalueff 
(Stewart and Kalueff 2014) found that acute exposure to delta (9)-tetrahydro-
cannabinol (THC), a Cnr1 agonist, reduced anxiety-related behavior (latency to 
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move to top, number of top transitions and time spent in the top) in a novel 
tank test. Interestingly, Ruhl et al. (2014) found no effect of THC exposure in an 
escape-response test (Ruhl et al. 2014), in which the fish were confronted with 
an approaching object.

In others species the picture is more complicated. Several studies, performed 
using various animals and protocols, showed biphasic effects (Bellocchio et al. 
2010; Genn et al. 2004; Haring et al. 2011) upon cannabinoid exposure, with low 
doses inducing anxiolytic effects and high doses anxiogenic effects. In addition, 
the anxiety-related effects of cannabinoids differ between species. For exam-
ple, in mice WIN55,212-2 has an anxiolytic effect, whereas it increases anxiety in 
rats (Haller 2007). This variation might be explained by differences in the balance 
of GABAergic and glutamatergic signaling, which has been shown to be diffe-
rent between species (Haller et al. 2007). Anxiety processing by cannabinoids 
may be dependent on this signaling. For example, anxiolytic effects after a low 
dose of Cnr1 agonist CP-55,940 were blocked in mice with a cnr1 knockout in 
cortical glutamatergic neurons specifically, whereas the anxiogenic effects after 
a high dose were blocked in a cnr1 knockout in forebrain GABAergic neurons 
only (Rey et al. 2012).  Thus, data on the effects of cannabinoids on anxiety-like 
behavior are highly inconsistent between and within different species. Our mo-
del system  using zebrafish larvae may in future studies help to reveal the factors 
that cause this variation in behavioral response to Cnr1 activation.

In our study, Cnr1 activation has an anxiolytic effect, but in which brain regions 
does Cnr1 act to mediate these effects? Interestingly, Lau et al. (2011) exposed 
adult zebrafish to the light/dark preference test and mapped c-fos neuronal ac-
tivity in their brain (Lau et al. 2011). It was shown that dorsal telencephalon (Dm) 
activity predicates choice in anxiety-like behavior in zebrafish. It has been shown 
that cnr1 is expressed in the (medial zone of the) Dm in both larval (Watson et 
al. 2008) and adult zebrafish (Lam et al. 2006), which suggests that Cnr1 directly 
manipulates anxiety-like behavior. In the adult zebrafish brain, several regions 
are involved in the regulation of anxiety, including the habenula (Fontana et 
al. 2018; Lau et al. 2011) and the medial zone of the Dm (Lau et al. 2011; von 
Trotha et al. 2014). Finally, it was shown that reduced avoidance behavior was 
associated with lower telencephalic gene expression levels of cnr1 (Manuel et al. 
2015). It is interesting to note that it has been suggested that the Dm in fish is 
homologous to the cortical amygdala in mammals (Friedrich et al. 2010), which 
is also the brain area which is often associated with anxiety in humans (Babaev et 
al. 2018; Shin and Liberzon 2010). 

Consistent with our previous results from the VMR test, our results of the light/dark 
preference test show that blocking endogenous activation of Cnr1 in zebrafish larvae 
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by the antagonist AM251 does not have any effect on the zebrafish larval 
behavior. However, in adult zebrafish, treatment with AM251 increased anxiety-li-
ke responses, such as freezing and bottom dwelling (Tran et al. 2016). This result 
indicates that the endogenous activity at the larval stages of development is insuffi-
cient to modulate anxiety-like behavior. Even though a complete ECS is present at 
these stages (Martella et al. 2016; Oltrabella et al. 2017), the levels and/or release 
of endocannabinoids seem to be insufficient to result in Cnr1-mediated behavioral 
effects. In addition, the results obtained using the cnr1-/- mutant line confirmed that 
endogenous ligands are weakly active or inactive in affecting anxiety-like behavior in 
zebrafish larvae. Increasing the concentration of AEA by treatment with Faah-inhibi-
tor PF-004457845 did not change anxiety-related behavior either. Again, the levels 
of endogenous ligands may be insufficient to have a measurable effect on  behavior 
in our assay. Another explanation could be that the available AEA remains inactive as 
it needs to be secreted to activate Cnr1 (Gabrielli et al. 2015).

In conclusion, we have shown that the exogenous activation of Cnr1 in zebra-
fish larvae reduces anxiety-like behavior in a light/dark preference test. Since 
endogenous ligands do not appear to sufficiently activate Cnr1 to affect anxiety 
in zebrafish larvae, the absence of endogenous stimulation makes the zebrafish 
larval model highly suitable to investigate effects of pharmacological Cnr1 acti-
vation on anxiety-related behavior, and screen for novel anxiolytic cannabinoid 
drugs. This assay may additionally be used to study factors that determine the 
behavioral response to Cnr1 agonists.  
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