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Part II

Néron models of nodal curves and
their Jacobians

5 Generalities about Néron models

5.1 De�nitions

De�nition 5.1. Let S be a scheme and U a scheme-theoretically dense open subscheme 
of S. Let Z/U be a U -algebraic space. An S-model  of Z (or just model if there is no 
ambiguity) is an S-algebraic space X together with an isomorphism XU = Z. A 
morphism of S-models between two models X and Y of Z is an S-morphism X → Y 
that commutes over U with the given isomorphisms XU = Z and YU = Z.

De�nition 5.2. Let S be a scheme and U a scheme-theoretically dense open subscheme 
of S. Let Z/U be a smooth separated U -scheme. An ns-S-Néron model of Z (or just 
ns-Néron model if there is no ambiguity) is a smooth S-model N satisfying the 
following universal property, called the Néron mapping property:
For each smooth S-algebraic space Y , the restriction map

HomS(Y, N) → HomU (YU , Z)

is bijective.

If N is separated, we call it a S-Néron model, or just Néron model, of XU .
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Remark 5.2.1. In the litterature, Néron models are often required to be of �nite
type over the base, and what we called Néron model here is referred to as a
Néron-lft model, where "lft" stands for "locally of �nite type". The use of this
terminology is not systematical anymore, so we prefer the more �exible de�nition
above. To the author's knowledge, however, the separatedness hypothesis is
usually never omitted, so we use the pre�x "ns" (not necessarily separated) to
avoid generating unnecessary confusion.

Remark 5.2.2. As an immediate consequence of the universal property, a ns-
Néron model, when it exists, is unique up to a unique isomorphism. A fortiori,
the same holds for Néron models.

Remark 5.2.3. Let S, U , Z be as above, and N be a smooth, separated S-
model of Z. Consider a smooth S-algebraic space Y/S and two morphisms
f1, f2 : Y → N that coincide over U . The separatedness of N/S implies that the
equalizer of f1 and f2 is a closed subspace of Y containing YU , and �atness of
Y/S implies that the open subscheme YU of Y is scheme-theoretically dense (see
[13], théorème 11.10.5). Thus, we automatically have uniqueness in the Néron
mapping property, i.e. injectivity of the restriction map

HomS(Y,N)→ HomU (YU , Z).

Therefore, we can try to construct Néron models as separated S-spaces satisfying
existence in the Néron mapping property (i.e. surjectivity of the restriction
map).

5.2 Base change and descent properties

Proposition 5.3. The formation of ns-Néron models (resp. Néron models) is
compatible with smooth base change, i.e. given a smooth morphism S′ → S, a
scheme-theoretically dense open U ⊂ S and an S-algebraic space X which is a
ns-Néron model (resp. Néron model) of XU , the base change XS′ is a ns-Néron
model (resp. Néron model) of XU ′ .

Proof. First, note that XS′/S
′ is smooth since X/S is, separated if X/S is, and

that U ′ is scheme-theoretically dense in S′ by [13], théorème 11.10.5. Thus, we
only need to check that X ′/S′ has the Néron mapping property.

Let Y ′ be a smooth S′-scheme and u′ : Y ′U ′ → XU ′ a U ′-morphism. Composing
with the projection: XU ′ → XU , we get a U -morphism Y ′U ′ → XU , which
extends to a unique S-morphism Y ′ → X by the Néron mapping property since
Y ′/S is smooth. Then the induced morphism Y ′ → X ′ extends u′, and this
extension is unique since a morphism Y ′ → X ′ is uniquely determined by the
two composites Y ′ → X and Y ′ → S′.

Corollary 5.4. If S′/S is a co�ltered limit of smooth S-schemes (indexed by
a co�ltered partially ordered set, e.g. a localization, a henselization when S is
local...), and X is the (ns-)S-Néron model of XU , then XS′ is the (ns-)S′-Néron
model of XU ′ .

Lemma 5.5 (Néron models are compatible with disjoint unions on the base).
Let I be a set, (Si)i∈I a family of schemes, and (Ni → Si)i∈I a family of
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morphisms of algebraic spaces. Write S =
∐
i∈I

Si and N =
∐
i∈I

Ni. Let U be a

scheme-theoretically dense open of S, and write Ui = U ×S Si for every i. Then
N is the S-ns-Néron model of NU (resp. the S-Néron model of NU ) if and only
if for all i in I, Ni is the Si-ns-Néron model of Ni ×Si Ui (resp. the Si-Néron
model of Ni ×Si

Ui).

Proof. Suppose N is the ns-Néron model of NU . Then, by Proposition 5.3, for
all i in I, Ni is the ns-Néron model of Ni ×Si

Ui. Conversely, suppose that for
every i in I, Ni/Si is the ns-Néron model of its restriction to U , and consider
a smooth S-algebraic space Y with a morphism fu : YU → NU . For each i, we
write Yi = Y ×S Si. We have

HomS(Y,N) =
∏
i∈I

HomSi
(Yi, Ni)

=
∏
i∈I

HomUi
(Yi ×Si

Ui, Ni ×Si
Ui)

= HomU (YU , NU ),

where the �rst and third equalities hold since Y is the disjoint union of the Yi,
and the second one because each Yi/Si is smooth. Since N/S is smooth (resp.
smooth and separated) if and only if all Ni/Si are smooth (resp. smooth and
separated), we are done.

Proposition 5.6 (Néron models descend along smooth covers). Let S be a
scheme and U a scheme-theoretically dense open of S. Let S′ → S be a smooth
surjective morphism and U ′ = U ×S S′. Let XU be a smooth U -algebraic space,
and suppose XU ′ has a (ns-)S′-Néron model X ′. Then XU has a (ns-)S-Néron
model X satisfying X ′ = X ×S S′.

Proof. We �rst show X ′ comes via base change from an S-algebraic space X.
Call p1, p2 the two projections S′′ := S′ ×S S′ → S′. They are smooth mor-
phisms, so by Proposition 5.3 and uniqueness of the Néron model, we know
p∗1X

′ = p∗2X
′ is the S′′-Néron model of XU ′′ with U ′′ = U ×S S′′. It follows

from e�ectiveness of fppf descent for algebraic spaces ([30, Tag 0ADV]) that X ′

comes from an S-algebraic space X/S.

The morphism X → S is smooth since X ′/S′ is, and separated if X ′/S′ is (both
properties are even fpqc local on the base, see [30, Tag 02KU] and [30, Tag
02VL]). Therefore, we only need to show X/S has the Néron mapping property.
Take Y a smooth S-algebraic space with a generic morphism fU : YU → XU ,
and write Y ′ (resp. f ′U ) for the pullbacks of Y (resp. fU ) under S′ → S. Then
Y ′/S′ is smooth so f ′U extends to a unique f ′ : Y ′ → X ′. We have a cartesian
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diagram

Y ′′

�� ��

//// Y ′

��

// Y

��

X ′′

��

//// X ′

��

// X

��
S′′ //// S′ // S

where S′′ := S′×S S′ and the arrows S′′ → S′ are the two projections p1, p2, so
that all horizontal rows are equalizers. We only need to show that p∗1f

′ = p∗2f
′,

which follows from uniqueness in the Néron mapping property of X ′′/S′′ since
they coincide over U ′′.

Proposition 5.7. Let S be a scheme, U a scheme-theoretically dense open
subscheme of S, XU/U a smooth U -scheme and N/S a model of XU of �nite
type. Then N is the (ns-)Néron model of XU if and only if for all s ∈ S,
N ×S SpecOetS,s is a (ns-)SpecOetS,s-Néron model of its restriction to U .

Proof. If all the N ×S SpecOetS,s/SpecOetS,s are separated, then N/S is also
separated, and the "only if" part is a special case of Corollary 5.4. All that
remains to do is prove N/S is the ns-Néron model of NU/U , assuming that for
all s ∈ S, N is the ns-Néron model over SpecOetS,s of its restriction to U . Let Y/S
be a smooth S-algebraic space and fu : YU → XU a U -morphism. Since Y/S
is locally of �nite presentation, by [13], théorème 8.8.2, every point s ∈ S has
an étale neighbourhood Vs → S such that fu extends uniquely to a morphism
Y ×S Vs → X×S Vs. By [13], théorème 11.10.5, U remains scheme-theoretically
dense in every Vs, so these maps glue as in the proof of Proposition 5.6 and fU
extends to a morphism Y → X.

5.3 Schemes vs algebraic spaces

Here we introduce the (perhaps more standard) de�nition of a Néron model as
a scheme and not an algebraic space, and go for a little sanity check by showing
both notions coincide under conditions of existence.

De�nition 5.8. Let S be a scheme and U a dense open subscheme of S. Let
Z/U be a smooth separated U -scheme. A ns-S-Sch-Néron model of Z is a
smooth S-scheme N , with an identi�cation NU = Z, satisfying the Sch-Néron
mapping property :

For each scheme Y with a smooth morphism Y → S, the restriction map

HomS(Y,N)→ HomU (YU , Z)

is bijective.

Remark 5.8.1. • The ns-Sch-Néron model, if it exists, is unique up to a
unique isomorphism.
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• Again, when U is scheme-theoretically dense, given a smooth separated
S-scheme N with NU = Z, it is the ns-Sch-Néron model if and only if it
satis�es existence in the mapping property.

• When a ns-Néron model is a scheme, it is automatically the ns-Sch-Néron
model since it satis�es the Sch-Néron mapping property.

Proposition 5.9. Let S be a scheme and U a scheme-theoretically dense open
subscheme of S. Let Z/U be a smooth U -scheme. Suppose Z admits a ns-Sch-
Néron model N . Then N is also a ns-Néron model of Z.

Proof. We show that N has the Néron mapping property. Let Y be a smooth
S-algebraic space, together with a morphism YU → Z of algebraic spaces. We
can choose a presentation of Y as a quotient of a scheme by an étale equivalence
relation ([30, Tag 0262]), i.e. S-schemes R and V with an étale covering map
V → Y and an equivalence relation R → V ×S V such that the two induced
maps R→ V are étale, and such that the diagram

R⇒ V → Y

is a coequalizer of sheaves of sets on (Sch/S)fppf . This presentation is compat-
ible with the base change U → S ([30, Tag 03I4]), so we get a coequalizer

RU ⇒ VU → YU

in the category of sheaves of sets on (Sch/U)fppf . Thus YU → Z can be seen as
a map VU → Z such that both composites RU → Z coincide. Then, since V and
R are smooth over S by composition, applying the Sch-Néron mapping property,
we can extend uniquely VU → Z to an S-map V → N . The two composites
R → N both extend the same RU → Z, so they are equal by uniqueness in
the Sch-Néron mapping property. So we have a unique morphism Y → N of
algebraic spaces extending YU → Z, as required.

Corollary 5.10. If Z admits a ns-Néron model N and a ns-Sch-Néron model
N ′, then N = N ′ is a scheme.

6 Néron models of Jacobians

6.1 Alignment and its relation to the Picard space

This subsection summarizes the main results of [21] and introduces a few def-
initions to adapt them to our context. From now on, given a local ring R, we
will note Rsh for a strict henselization of R.

6.1.1 De�nition and examples

De�nition 6.1. Suppose S is a regular scheme. Let s be a geometric point of
S and R = OetS,s. Following [21], De�nition 2.11, we say that a labelled graph Γ
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is aligned when for every cycle Γ0 in Γ, all the labels �guring in Γ0 are positive
powers of the same principal ideal; and that a nodal curve X/S is aligned at s
when its dual graph Γs at s is aligned. We say X/S is aligned if it is aligned at
every geometric point of S.

We de�ne Γs to be strictly aligned, or X to be strictly aligned at s, when it
satis�es the following condition: for any cycle Γ0 ⊂ Γs, there exists a prime
element ∆ ∈ R such that all the labels of Γ0 are powers of the principal ideal
(∆) of R. We say that X is strictly aligned if it is strictly aligned at every
geometric point of S.

Example 6.2. Over S = SpecC[[u, v]], at the closed point, among the 4 following
dual graphs, the �rst is non-aligned; the second and the third are aligned but
not strictly, and the last one is strictly aligned.

BA

(uv2)

(u2v2)

BA

(uv2)

(u2v4)

A

(uv)

BA

(u2)

(u3)

(v3)

Remark 6.2.1. Strict alignment implies alignment, and is equivalent to strict
alignment in the sense of [21], De�nition 3.4. In particular, when S is regular,
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excellent and separated, and X is split and smooth over the complement of a
strict normal crossings divisor (i.e. the singular ideals are generated by products
of the elements of some regular system of parameters), using [21], Proposition
3.6, we see strict alignment is equivalent to the existence of a Néron model
for the Jacobian. We want to investigate what happens when X is a generi-
cally smooth nodal curve, but not necessarily smooth over the complement of a
normal crossings divisor.

We have to be a little careful about the fact that alignment and strict alignment
both deal with étale neighbourhoods. Let us consider two examples.

Example 6.3. The curve over R = C[s, t](s,t), given in the weighted projective
space PS(1, 2, 1) (in a�ne coordinates (x, y)) by

y2 =
(
(x− 1)2 − (1 + t)t2 + s2

) (
(x+ 1)2 + (1 + t)t2 − s2

)
is quasisplit, and its dual graph at the closed point is the following 2-gon:

BA

((1 + t)t2 − s2)

((1 + t)t2 − s2)

but it is not strictly aligned, even though (1 + t)t2 − s2 is a prime element of
R. Indeed, (1 + t)t2 − s2 is prime in R but has two distinct prime factors in a
strict henselization, since (1 + t) becomes a square, and it is the prime factor
decomposition in the étale local rings that counts in the de�nition of strict
alignment.

Example 6.4. On the other hand, the equation

y2 =
(
(x− 1)2 − t2 + s3

) (
(x+ 1)2 + t2 − s3

)
de�nes a nodal curve over SpecR with dual graph

BA

(t2 − s3)

(t2 − s3)

which is strictly aligned at the closed point, because t2 − s3 remains prime in
Rsh.

6.1.2 Alignment and Néron models

A classical way of obtaining a Néron model for the Jacobian of a proper smooth
curve XU/U with a nodal model X/S, when X is "nice enough", is to consider
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the biggest separated quotient of the subspace Pic
[0]
X/S of PicX/S consisting of

line bundles of total degree 0 (see for example [1]). In other words, a good
"candidate Néron model" is the quotient of Pic

[0]
X/S by the closure of its unit

section. This works well when three conditions are met: Pic
[0]
X/S is representable

by an S-algebraic space; the closure of its unit section is �at over S (so that
the quotient is also representable); and Pic

[0]
X/S satis�es existence in the Néron

mapping property (i.e. X is semifactorial after every smooth base change).
These are the ideas behind the main result of [21], that we will recall here, and
behind the notion of alignment.

Proposition 6.5. Let S be a regular scheme, U ⊂ S a dense open, and X/S
a nodal curve, smooth over U . Let P = Pic

[0]
X/S be the subsheaf of PicX/S

consisting of line bundles of total degree 0. It is representable by a smooth
quasi-separated algebraic space, that we call P again ([1], 8.3.1 and 9.4.1). Let
E be the scheme-theoretical closure in P of its unit section. Then the following
conditions are equivalent:

1. E/S is �at.

2. E/S is étale.

3. X/S is aligned.

Proof. This is [21], Theorem 5.17.

Proposition 6.6. With the same hypotheses and notations as in Proposition
6.5 above, let J be the Jacobian of XU . If a Néron model N for J exists, then
E/S is �at. Conversely, if X ×S S′ is locally factorial for every smooth base
change S′ → S and E/S is �at, then P/E is an S-Néron model for J .

Proof. This is [21], Theorem 6.2 and Remark 6.3. The idea is that, when the
regularity condition we give on X is satis�ed, we can use the correspondence
between Weil divisors and Cartier divisors to show that line bundles over U
extend to the whole base, so P satis�es existence in the Néron mapping property.
It follows that its biggest separated quotient P/E (which exists as an algebraic
space if and only if E/S is �at) also does.

We want to investigate the in-between zone, i.e. what happens if we are given
an aligned nodal curve that is not locally factorial.

A consequence of Proposition 6.6 is that if J has a Néron model, then every
nodal model of XU must be aligned. This is stronger than just alignment of
X since alignment is not stable under modi�cations of nodal curves (see the
example below).

Example 6.7. Consider a nodal curve X over S = SpecC[[u, v]] having the
following dual graph at the closed point:
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BA

(uv2)

(u2v4)

This graph is aligned, and X is smooth over the complement U in S of Div(uv),
but X is not locally factorial (see 4.2), so Proposition 6.5 and Proposition 6.6
do not allow us to immediately conclude to either existence or nonexistence of
a Néron model.

The zero locus of u in X has two irreducible components, one containing A and
one containing B, and explicit computation shows that if we blow up X in the
one containing A, the result is still a nodal curve, with dual graph

F

A E

B

(u)

(u) (v2)

(uv4)

This new curve coincides with X over U , and it is not aligned: the Jacobian of
XU cannot have a Néron model. Similarly, if S = SpecR with R = C[[u, v, w]]
and X has dual graph

BA

((u+ v)u2 + (v + w)w2)

((u+ v)u2 + (v + w)w2)

then, again, we cannot immediately apply 6.5 and 6.6: the curve X is aligned,
but its (smooth) base change to R′ = C[[u, v, w]][v−1,

√
u+ v,

√
v + w] fails to

be locally factorial, since in R′ the labels become sums of two squares and factor
into a product of two primes.

However, we can observe that if the Jacobian of XU/U had a Néron model, it
would still be a Néron model over R′, and after that base change, we are now in
a case similar to that of the previous example! The curve X×RR′ can be blown
up into a non-aligned nodal curve over R′, which means its Jacobian does not
have a Néron model.
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In conclusion, asking for X to remain aligned after smooth base changes and
birational morphisms of nodal curves is a strictly stronger condition than just
asking for X to be aligned, yet it remains necessary for a Néron model of the
Jacobian to exist. We will see that strict alignment is precisely the closure of
alignment under those operations, and that it is the right notion to talk about
Néron models of Jacobians in terms of dual graphs.

6.2 Étale-universally prime elements

Here, we will elaborate on a phenomenon illustrated in Example 6.7, namely
the fact that some prime elements of a regular, strictly henselian local ring can
have several prime factors in a further étale localization. If such an element
labels a cycle of an aligned nodal curve, then there is an étale base change after
which this curve has a non-aligned re�nement (which forbids the existence of a
Néron model for the generic Jacobian). We will also show this is actually the
only possible reason for the smooth base change of an aligned curve to have
non-aligned re�nements.

De�nition 6.8. Let R be a regular local ring and ∆ be a non-invertible element
of R. We say ∆ is étale-universally prime when, for all prime ideals p ⊂ R
containing ∆, the image of ∆ in a strict henselization of Rp is prime.

Example 6.9. Take R = C[s, t](s,t) and ∆ = (t2−s3). Then ∆ is étale-universally
prime, since ∆ remains prime in both Rsh and (R(∆))

sh, and the maximal ideal
and (∆) are the only primes of R containing ∆.

Example 6.10. On the other hand, some prime elements are not étale-universally
prime even if R is strictly henselian: let R = (C[u, v, w](u,v,w))

sh and ∆ =
u2(v + w)− v2(v − w). Then ∆ is prime in R (it is even prime in C[[u, v, w]]),
but if we consider the prime ideal p = (u, v) of R, which contains ∆, we see that
∆ has a nontrivial factorization in Rshp since the units v + w and v − w of Rp

become squares in Rshp .

Remark 6.10.1. An element ∆ ∈ R is étale-universally prime if and only if all
localizations of R/(∆) are geometrically unibranch in the sense of [12], 23.2.1
or [29], IX, Dé�nition 2.

We are interested in those étale-universal primes to study Néron models because
they behave well with respect to the smooth topology. Their key property is
Lemma 6.11.

Lemma 6.11. Let S = SpecR be an a�ne regular scheme and ∆ be an element
of R. Then ∆ is étale-universally prime in R if and only if for every smooth
morphism Y → SpecR and every geometric point y ∈ Y , the image of ∆ in
OetY,y is either invertible or prime.

Proof. The "if" sense is immediate since the identity SpecR → SpecR is
smooth. For the converse, suppose ∆ is étale-universally prime. Since smooth-
ness is a Zariski-local property, it is enough to prove that for each smooth map
of a�nes SpecA → SpecR, ∆ is étale-universally prime in A. Let p ⊂ A be a
prime ideal containing ∆ and m the preimage of p in R, the map R → (Ap)sh
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factors as R → (Rm)sh → A ⊗R (Rm)sh → (Ap)sh. Since the middle arrow
(Rm)sh → A⊗R (Rm)sh is smooth, and since A⊗R (Rm)sh → (Ap)sh is a strict
localization at a prime containing the image of m, we can conclude by quotient-
ing by (∆) and applying Lemma 2.2.

Proposition 6.12. Take X/S a generically smooth nodal curve with S regular.
Take s a geometric point of S such that X is strictly aligned at s. Then X is
strictly aligned at every étale generization t of s if and only if for every cycle
Γ0 of Γs, the only prime of OetS,s appearing as a factor of the labels of Γ0 is
étale-universally prime.

Proof. It follows from Proposition 1.8 applied to the specialization morphism:
SpecOetS,t → SpecOetS,s and the de�nitions.

This allows us to detect strict alignment, only looking at the dual graph of the
closed �ber:

De�nition 6.13. Let X/S be a generically smooth nodal curve with S regular.

We say that Γs is étale-strictly aligned, or that X is étale-strictly aligned at s,
when it satis�es the following condition: for any cycle Γ0 ⊂ Γs, including loops,
there exists an étale-universally prime element ∆ ∈ R such that all the labels
of Γ0 are powers of the principal ideal (∆) of R. We say that X is étale-strictly
aligned if it is étale-strictly aligned at every geometric point of S.

Proposition 6.14. If X/S is a nodal curve with S regular, the following con-
ditions are equivalent:

1. X is strictly aligned.

2. X is étale-strictly aligned at the closed geometric points of S.

3. X is étale-strictly aligned.

Proof. (3) =⇒ (2) and (2) =⇒ (1) are clear. (2) =⇒ (3) follows from
observing that in a locally noetherian scheme, every point specializes to a closed
point, and if R is a local ring, ∆ an étale-universally prime element of R, and p
a prime ideal of R containing ∆, then ∆ is also étale-universally prime in Rp.
We will show (1) =⇒ (2).

Take X/S a strictly aligned generically smooth nodal curve with S regular. We
will show it is étale-strictly aligned at the closed geometric points of S. We can
assume S = SpecR is local and strictly henselian, with closed point s. Let Γ be
the dual graph of X at s, and Γ0 be a cycle of Γ. There is a prime ∆ ∈ R such
that all labels of Γ0 are powers of ∆, and we have to show ∆ is étale-universally
prime in R.

Let p be a prime ideal of R containing ∆, and choose a strict henselization Rshp
of Rp. It gives an étale generization t of s, at which X is strictly aligned, so the
cycle pulled back from Γ0 in the dual graph of X at t has all its labels generated
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by powers of some prime of Rshp . Thus, the image of ∆ in Rshp is a power of a
prime. Therefore it is enough to show Rshp /(∆) is reduced.

But Rshp /(∆) is a strict henselization of Rp/(∆) since the quotient of a henselian
ring is henselian, so it is reduced as a directed colimit of reduced Rp/(∆)-
algebras.

6.3 Strict alignment is necessary and su�cient for Néron
models to exist

The goal of this subsection is to prove Theorem 6.20. It is to be noted that a
variant of the theorem probably holds under a weaker assumption than regular-
ity of S: what we care about is extending generic line bundles on X after étale
base change, so having S parafactorial along the complement of the discrimi-
nant locus after every smooth base change, plus some other minor assumptions,
should su�ce. Of course, strict alignment would then have to be de�ned in that
context, since the étale local rings of S would not be unique factorization do-
mains anymore. In addition, if one were in need of such generality, they would
need to verify that the material we use (e.g. in [21]) also works after weakening
the hypotheses.

6.3.1 The necessity of strict alignment

We start with the easy implication: we will show that if a nodal curve is not
strictly aligned, then over some étale local ring of the base, we can �nd a non-
aligned re�nement of it (which means there can be no Néron model for the
generic Jacobian).

Proposition 6.15. Let S be a regular scheme and X/S a nodal curve, smooth
over a dense open U ⊂ S. If the Jacobian of XU/U has a Néron model over S,
then X/S is strictly aligned.

Proof. We will work by contradiction, assuming there is a geometric point s ∈ S
at which X is not strictly aligned. Using Corollary 5.4, we can assume S is a
strictly local scheme SpecR, with closed point s. Remember that R is regular,
thus a unique factorization domain. Note Γ the dual graph of X at s and l
the edge-labelling of Γ. By assumption, there is a cycle Γ0 in Γ and two (not
necessarily distinct) edges e and e′ of Γ0 such that l(e)l(e′) has at least two
distinct prime factors.

We know X is aligned by Proposition 6.5 and Proposition 6.6: there is an
element ∆ ∈ R such that all edges of Γ0 are labelled by positive powers of ∆R.
This applies in particular to e and e′, so we can write ∆ as a product (∆1∆2),
where ∆1,∆2 are non-invertible elements of R with no common factor.

Let x be the singular point of X corresponding to e. Since S is strictly local with
closed point s, we can pick an orientation (C,D) of X/S at x. Call X ′ → X the
(∆1)-re�nement of X at x relatively to (C,D). By Lemma 4.6, the dual graph
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of X ′ at s contains a cycle, re�ning Γ0, such that the edge corresponding to x
has been replaced by a chain of two edges, one of label (∆1) and one of label
(∆2). In particular, X ′ is not aligned at s. However, X ′U = XU , so the jacobian
of X ′U has a Néron model: we get a contradiction by virtue of Proposition 6.5
and Proposition 6.6.

6.3.2 Fiberwise-disconnecting locus of nodal curves and closure of

the unit section of the Picard scheme

As strict alignment is only a condition on the cycles of the dual graphs, we have
to show that "labels of disconnecting points do not matter", in a sense that will
made precise by Proposition 6.19. The idea is that when one blows up a nodal
curve over a strictly local base in a section through a disconnecting singular
point, all "new" line bundles are killed by the growth of the closure of the unit
section, and the quotient P/E does not change. We start with a few technical
lemmas.

Lemma 6.16. Let S = SpecR be a trait (i.e. the spectrum of a discrete val-
uation ring) and f : X → S a generically smooth quasisplit nodal curve. Let
π : X ′ → X be the blowing-up in a closed non-smooth point x of X/S. Let L be
a line bundle on X ′, trivial over the exceptional �ber of π. Then π∗L is a line
bundle on X.

Proof. This is [26], Proposition 4.2.

Lemma 6.17. Let S = SpecR be a regular and strictly local scheme. Let
f : X → S be a quasisplit nodal curve, smooth over some dense open U ⊂ S.
Let π : X ′ → X be a re�nement and L be a line bundle on X ′. Let Y ⊂ X ′ be
the exceptional locus of π and suppose L|Y ' OY . Then π∗L is a line bundle
on X.

Proof. π∗L is a coherent OX -module and X is reduced, so it is enough to check
that, for all y ∈ X, we have dimk(y) π∗L ⊗OX

k(y) = 1. It is obvious for all y
such that π is a local isomorphism at y, so we only need to check it when y is
in the image of the exceptional locus of π.

Take a section σ : S → X such that π is the blowing-up in the sheaf of ideals of
σ. Let x be in the image of the exceptional locus of π and s its image in S: we
have x = σ(s). The base change of π to SpecOshS,s is still the blowing-up in the
sheaf of ideals of σ, and the condition dimk(x) π∗L ⊗OX

k(x) = 1 can also be
checked after base change to SpecOshS,s, so we can assume s is the closed point of
S. Iterating the prime avoidance lemma, we see that OS(S) admits a quotient
D, that is a discrete valuation ring, such that the generic point of T = SpecD
lands in U . Pick a uniformizer t of D. We have ∆xD = tnD for some n ≥ 1,
where ∆x is a generator of the singular ideal of x.

The base change XT /T is a nodal curve. The point corresponding to x, that we
still call x, has singular ideal tnD. The sheaf of ideals I of σ inXT is trivial away

from x, and given at the completed étale local ring ÔetXT ,x
= D̂sh[[u, v]]/(uv−tn)
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by the ideal (u− tk, v − tl) with k + l = n for a good choice of isomorphism. If
n = 1, then I is trivial (and a fortiori Cartier) so X ′T = XT .

Suppose n ≥ 2 and pick d = bn2 c. There is a sequence

X ′′ = Xd → Xd−1 → ...→ X0 = XT

where each Xi+1 → Xi is a blowing-up in a closed point of image x, namely the
only closed non-T -smooth point of Xi of image x and of singular ideal 6= tD,
and the preimage of x in Xd is a chain of n − 1 copies of P1

k(x), intersecting in
n − 2 non-smooth points of ideal tD. The sheaf of ideals I on XT is Cartier
in X ′′, which, by the universal property of blowing-ups, implies that X ′′ → XT

factors through X ′T → XT .

Now, the restriction L|X′′ is a line bundle on X ′′, trivial on the exceptional
locus of X ′′ → XT . Thus, using the preceding lemma, we see inductively that
its pushforward to every Xi, and in particular to X0 = XT , is a line bundle.
This, in turn, gives us dimk(x) π∗L⊗OX

k(x) = 1: π∗L is a line bundle on X.

Lemma 6.18. Let S = SpecR be a regular and strictly local scheme with closed
point s. Let f : X → S be a nodal curve, smooth over some dense open U ⊂
S. Let π : X ′ → X be a re�nement such that the exceptional locus of π is
disconnecting in the closed �ber. Let L be a line bundle of total degree 0 on X ′.
There exists a line bundle L′ on X ′, trivial over U , such that (L⊗L′)|Z ' OZ ,
where Z is the exceptional locus of X ′ → X.

Proof. The morphism X ′ → X is the blowup in a section σ : S → X. Set
x = σ(s), and call Γ,Γ′ the respective dual graphs of X and X ′ at s. By
hypothesis, x is a singular point of X, disconnecting in its �ber.

We only look at the local picture at x, since π is an isomorphism away from x.
Pick an isomorphism ÔX,x ' R̂[[u, v]]/uv −∆x where ∆x is a generator of the

singular ideal of x. The map ÔX,x → R̂ given by σ sends u, v to elements ∆,∆′

of R with ∆∆′ = ∆x. Lemma 4.6 shows that the edge

DC

(∆∆′)

corresponding to x in Γ (where C,D are necessarily distinct since x is discon-
necting) is replaced in Γ′ by a chain

EC

(∆′)

D

(∆)

Where we still write C,D for the respective strict transforms of C and D in X ′.
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The new nodal curve f ′ : X ′ → S is quasisplit since S is strictly local. Call z
the singular point E ∩D of X ′ (of ideal (∆)) and Y the connected component
of the non-smooth locus of X ′/S containing z. The map Y → S is a closed
immersion, cut out by ∆.

Now, since Y ×S Y is disconnecting in X ×S Y , we know (X\Y )×S Y has two
distinct connected components Y 0

1 and Y 0
2 , respectively containing the images

of C and D in (X ′\Y ) ×S Y . Call Y2 the scheme-theoretical closure of Y 0
2 in

X ′. We will show it is a Cartier divisor on X ′.

The sheaf of ideals J de�ning Y2 in X ′ is locally principal away from Y , cut
out by ∆ in Y 0

2 and by 1 in X\(Y ∪ Y 0
2 ): we only need to check it is invertible

on OX′,z, which is a consequence of Lemma 1.16 (or can be seen explicitly in

Spec ÔetX′,z). Thus J is Cartier, and L′′ := O(Y2) is a line bundle on X ′, trivial
over U .

Let V be the closed subscheme of S cut out by the ideal (∆,∆′) ⊂ R. The
exceptional locus Z of π is a P1-bundle on V . But Z and Y2 intersect transver-
sally at one double point in each �ber over V , so degL′′|Z = 1. Let d be the
degree of L on Z and L′ = L′′⊗−d, then L⊗OX′ L

′ has degree zero on Z, hence
is trivial on Z since Z ' P1

V .

Proposition 6.19. Let f : X → S be a nodal curve with S = SpecR regular
and strictly local. Let π : X ′ → X be a re�nement, such that its exceptional
locus is disconnecting in the closed �ber. Set P = Pic

[0]
X/S and P ′ = Pic

[0]
X′/S and

call E and E′ the scheme-theoretical closures of the unit sections of P and P ′

respectively. Then the canonical morphism of algebraic spaces P → P ′ induces
an isomorphism P/E → P ′/E′.

Proof. First, we show P → P ′ is an open immersion.

The �berwise-connected component of unity Pic0
X/S is an open neighbourhood of

the unit section in P , and same goes for Pic0
X′/S → P ′. We have a commutative

diagram of S-spaces

Pic0
X/S

��

� � // P

��

// // ΦX/S

��
Pic0

X′/S
� � // P ′ // // ΦX′/S

where both horizontal rows are exact, and Pic0
X/S → Pic0

X′/S is an isomorphism
by Lemma 6.17, so P → P ′ is locally on the source an open immersion: to
deduce it is an actual open immersion, we only need to show it is set-theoretically
injective, which can be checked on its �bers over S. Let s be a point of S and
k its residue �eld. The smooth locus of Xsm

s has a k-rational point in every
irreducible component by quasisplitness of X (which follows from the fact S
is strictly local), and π is an isomorphism above Xsm

s , so Φs → Φ′s is set-
theoretically injective. It follows P → P ′ is set-theoretically injective, so it is
an open immersion.
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Now this implies the scheme-theoretical closure in P ′ of the unit section of P
is E′, so E = E′ ×P ′ P . Thus P/E = P ′/E′ ×P ′ P , and P/E → P ′/E′ is an
open immersion as a base change of the open immersion P ↪→ P ′. Moreover,
the formation of P and P ′ commutes with base change, so P/E → P ′/E′ will
be surjective (thus an isomorphism) if it is surjective on S-points: take a section
σ : S → P ′/E′, Lemma 6.18 shows that σ can be represented by a line bundle
L on X ′, trivial over the exceptional locus of π. But then by Lemma 6.17,
π∗L is a line bundle on X, so it gives a section S → P/E. Composing with
P/E → P ′/E′, we obtain the S-point of P ′/E′ corresponding to the line bundle
π∗π∗L, which is none other than σ since π∗π∗L ⊗OX′ L

⊗−1 is trivial over U .
Thus σ comes from an S-point of P/E and we are done.

6.3.3 The main theorem

Theorem 6.20. Let S be an excellent regular scheme, U ⊂ S a dense open
subscheme, and X a nodal S-curve, smooth over U . The following conditions
are equivalent:

(i) The Jacobian J of XU admits a Néron model over S.

(ii) X is strictly aligned.

(iii) X is étale-strictly aligned.

(iv) X is étale-strictly aligned at all closed points of S.

If these conditions are met, the Néron model is of �nite type. If in addition
X/S has a partial resolution X ′ → X, the Néron model of J is P/E, where
P = Pic

[0]
X′/S and E is the scheme-theoretical closure of the unit section in P .

Proof. The Néron model is of �nite type if it exists by [19], Theorem 2.1.

Conditions (ii), (iii) and (iv) are equivalent by Proposition 6.14, and (i)→ (ii)
is Proposition 6.15.

We will show (iii)→ (i). As both (iii) and (i) can be checked after base change
to an étale neighbourhood of an arbitrary point s of S, we can assume X/S is
quasisplit (using Lemma 1.14). Base-changing to a further étale cover, we can
assume X/S has a partial resolution (see Proposition 4.14). Replacing X by
this partial resolution, we can assume X is square-free and étale-strictly aligned.
Thus, every non-smooth point of X/S that is not disconnecting in its �ber has
étale-universally prime label. Take P = Pic

[0]
X/S , we will show P/E is a Néron

model for J .

The base change of X to any étale local ring of S still has étale-universally prime
labels in all cycles of all dual graphs, so our claim that P/E is a Néron model
for J can be checked over the étale local rings of S using 5.7 and the fact that
the formation of P and E commutes with base change to the étale local rings
of S. Thus we also assume S is strictly local, with closed point s.
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The quotient P/E is a smooth and separated model of J (since J = Pic0
XU/U ) so

we only have to show it satis�es existence in the Néron mapping property. Let Y
be a smooth S-algebraic space, together with a generic morphism fu : YU → J .
We want to show fu extends to a morphism Y → P/E. Using the uniqueness in
the Néron mapping property and the e�ectiveness of fppf descent for algebraic
spaces ([30, Tag 0ADV]), we can work étale-locally on Y : it is enough to extend
fu to OY,y for every geometric point y of Y . Thus we can and will work assuming
Y = SpecA is a strictly local scheme, and replacing the hypothesis that Y/S is
smooth by the hypothesis that A is a �ltered colimit of smooth R-algebras.

The map YU → J corresponds to a line bundle LU on (X×S Y )U . We only have
to show LU comes from a line bundle on X ×S Y : indeed, such a line bundle
would have total degree zero and give a morphism Y → P . Composing with
P → P/E, we would get a map extending fU as desired.

The base change X×S Y is still a nodal curve whose non-disconnecting singular
points have étale-universally prime label by Lemma 6.11. Take a Y -resolution
X0 → X×S Y . There is a Cartier divisor DU on (X×S Y )U = (X0)U such that

LU = O(DU ). Write it as a �nite sum DU =
k∑
i=1

niDi where the ni are integers

and the Di are primitive Weil divisors on (X0)U , and take D =
k∑
i=1

niDi, where

Di is the scheme-theoretical closure of Di in X0. By de�nition D is only a Weil
divisor on X0, but, by Lemma 4.2, X0 is locally factorial, so D is automatically
Cartier and the line bundle L = O(D) on X0 restricts to LU . Moreover, E×S Y
is still the closure of the unit section in P ×S Y , so the quotient of Pic

[0]
X0/Y

by
the closure of its unit section is equal to P/E×S Y by Proposition 6.19, and we
get the desired line bundle on X ×S Y extending LU .

7 Néron models of curves with nodal models

Let S be a regular base scheme, U a dense open subscheme of S, and X/S a
nodal relative curve, smooth over U . In what follows, we are interested in the
existence of a Néron model over S for the curve XU/U .

We will end up getting a very restrictive condition on the local structure of sin-
gularities for an actual Néron model to exist. When X/S is quasisplit, almost
all connected components of its singular locus need to be irreducible. However,
we will also see one can often exhibit a smooth (bot not necessarily separated)
S-algebraic space with the Néron mapping property. Our condition of local irre-
ducibility of the singular locus of X/S then becomes a condition for separability
of this object, i.e. a condition for it to be a true Néron model. More precisely,
the main results of this section are:

Theorem 7.1 (Theorem 7.40). Let S be a regular excellent scheme, U ⊂ S a
dense open subscheme and X/S a nodal curve, smooth over U , of genus g ≥ 2.
Suppose X has no rational loops, and suppose no geometric �ber of X contains
a rational component meeting the non-exceptional other irreducible components
in three points or more. Then XU/U has a ns-Néron model N/S. If in addition
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X/S is quasisplit, then N is the smooth aggregate (Construction 7.5) of the
stable model Xstable of XU (De�nition 7.26).

Theorem 7.2 (Theorem 7.48). Let X/S be a nodal curve of genus ≥ 1, smooth
over some dense open U ⊂ S, with S regular and excellent. If XU has a Néron
model over S, then the two following conditions are met:

• The singular locus Sing(X/S) is irreducible around every non-exceptional
singular geometric point of X/S.

• For any geometric point s → S, if a rational component E of Xs meets
the non-exceptional other components of Xs in exactly two points x and
y, then the singular ideals of x and y in OetS,s have the same radical.

Conversely, suppose these conditions are met. Suppose in addition that no ge-
ometric �ber of X/S contains either a rational cycle or a rational component
meeting the non-exceptional other components in at least three points. Then
XU/U has a Néron model, i.e. the ns-Néron model of XU/U exhibited in The-
orem 7.40 is separated over S.

7.1 Factoring sections through re�nements

A �rst question, easier to tackle than existence of a Néron model, is "given a
U -point of XU , can we extend it to a section of a smooth S-model of XU".

We answer with a two-step strategy: �rst, when X has no rational component
in its geometric �bers, all U -points of X extend to sections by the following
result from [8]:

Proposition 7.3 ([8], Proposition 6.2). Let X/S be a proper morphism of
schemes, where S is noetherian, regular and integral. Let K be the function
�eld of S, and suppose that no geometric �ber of X/S contains a rational curve.
Then every K-rational point of XK extends to a section S → X.

The S-section of X we obtain might meet the singular locus. Our second step
consists in �nding a re�nement of X such that the section comes (at least locally
on S) from a smooth section of this re�nement.

Lemma 7.4. Let X be a quasisplit nodal curve over a regular scheme S. Sup-
pose X is smooth over a scheme-theoretically dense open subscheme U ⊂ S. Let
σ, τ be sections of X/S, and φ : X ′ → X the blowing-up in the ideal sheaf of τ .
Let s be a point of S and suppose τ(s) is a singular point x of Xs at which X/S
is orientable. Then the three following conditions are equivalent:

1. The restriction of σ to the étale local ring SpecOetS,s factors through a
smooth section of X ′ ×S SpecOetS,s/ SpecOetS,s.

2. There exists an étale neighbourhood V of s such that the restriction of σ
to V factors through a smooth section of X ′ ×S V/V .
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3. Either σ(s) is a smooth point of Xs, or σ(s) = x and σ and τ are of
opposite types at x.

Proof. Conditions (1) and (2) are equivalent since nodal curves are of �nite
presentation. We will now prove that (1) and (3) are equivalent. This can be
done assuming S = SpecR is strictly local, with closed point s. We can also
assume σ(s) = x since otherwise, the equivalence of (1) and (3) follows from the
fact φ is an isomorphism away from x.

Under these additional hypotheses, let us assume (3) and prove (1). We know
σ factors uniquely through SpecOetX,x.

Let us note Ŝ = Spec R̂. We have the following commutative diagram:

W //

��

Spec ÔX,x

��
Ŝ

��

W0
//

��

SpecOetX,x ×S Ŝ

��

// Ŝ

��
S

σ′//
σ 22φ∗ SpecOetX,x

φ // SpecOetX,x // S

where W0 = φ∗ SpecOetX,x ×S Ŝ and W = W0 ×X×S Ŝ
Spec ÔX,x, so that all

squares are pullbacks, and σ′ is the strict transform of σ in X ′. Then σ′ is a
rational map (de�ned at least over U) and our goal is to prove that it is de�ned
everywhere.

There are sections σ̂ and τ̂ of Spec ÔX,x/Ŝ induced by σ and τ respectively.
Pick an isomorphism

Spec ÔX,x ' R̂[[u, v]]/(uv −∆∆′),

where the comorphism of τ̂ sends u, v to ∆,∆′ respectively. The section σ̂ is
fully described by the images t1 of u and t2 of v in R̂ by its comorphism. Since
σ and τ have opposite types at x, there is a unit λ such that t1 = λ∆′ and
t2 = λ−1∆.

We claim that σ̂ factors through W → Spec ÔX,x. Since W → Spec ÔX,x is the
blow-up in the ideal Iτ̂ = (u−∆, v −∆′) de�ning τ̂ , by the universal property
of blow-ups ([30, Tag 085U]), it su�ces to show that the pull-back of Iτ̂ to Ŝ
by σ̂ is Cartier. Blow-ups commute with completions, so our claim reduces to
proving that the ideal (u−∆, v −∆) of

A := R̂[u, v]/(uv −∆∆′)
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becomes invertible in R̂ when we map A to R̂ via

A→ R̂

u 7→ λ∆′

v 7→ λ−1∆.

The image of Iτ̂ under this map is the ideal I = (λ∆′−∆). If λ∆′ 6= ∆, then I
is invertible and the claim holds. Otherwise, we reduce to this case by observing
that the blow-up of A in (u−∆, v−∆′) is canonically isomorphic to the blow-up
of A in (u− µ∆, v − µ−1∆′) for any unit µ of R̂, as can be seen in the proof of
Corollary 4.7.

Now, let us check that σ factors through X ′ if and only if σ̂ factors through
W . Looking at the diagram above, we see that a factorization of σ̂ through W
yields a factorization of σ ×S Ŝ through W0, which means the (faithfully �at)
base change to Ŝ of the rational map σ′ is de�ned everywhere, so σ′ itself is
de�ned everywhere. Conversely, if σ′ is an actual S-section, it yields a section
from Ŝ to a completed local ring of X ′, and all completed local rings of X ′ at
points above x factor through W .

We have proven σ factors through a section σ′ : S → X ′. We need to show this
section is smooth. It su�ces to show σ′(s) is a smooth point of X ′/S. Call E
the preimage of x in X ′s. The point σ

′(s) must be in E since σ(s) = x. Looking
at the local description of X ′ in the proof of Lemma 4.6, we see E contains
exactly two non-smooth points y and y′ of Xs, and there is an isomorphism
ÔX′,y = R̂[[β, v]]/(βv+ ∆) such that the natural map ÔX,x → ÔX′,y sends u, v
to β(v − ∆′) + ∆ and v respectively. It follows that σ′(s) = y if and only if
t2 strictly divides ∆, i.e. if and only if ∆′ strictly divides t1. Symmetrically,
σ′(s) = y′ if and only if ∆ strictly divides t2. Thus, σ′(x) is in the smooth locus
of X ′/S as claimed, and we have proven (3) implies (1).

For the converse, suppose σ comes from a section σ′ : (X ′/S)sm. By our addi-
tional hypothesis that σ(s) = x, we know σ′(s) is a point of E that is neither y
nor y′, and it follows from the discussion in the paragraph above that σ and τ
are of opposite types at x.

7.2 First construction of the ns-Néron model

In the previous subsection, we have seen how to factor (at least locally) one
section of X to the smooth locus of some re�nement of X. If we want to
approach the Néron mapping property, we would rather have a smooth model
of XU , mapping to X, through which all sections will simultaneously factor.
Intuitively speaking, we need this model to contain the smooth loci of all possible
re�nements of X, at all singular points and of all types, after any smooth base
change. We will now present the formal construction.

Construction 7.5. Let S be a regular and excellent scheme and X/S a quasis-
plit nodal curve, smooth over a dense open U of S. For each point s of S, pick
an admissible neighbourhood V (s) of s in S as in De�nition 3.8. We will write
V (s,s′) the �ber product V (s) ×S V (s′). For each s and each singular point x of
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Xs, pick an orientation of XV (s) at x. For each type T at x, pick a V (s)-section
τ (x,T ) of XV (s) of type T at x, and write X(x,T ) → XV (s) the blowing-up in that
section. Write

Xtot =
∐

(s,x,T )

(X(x,T )/V (s))sm.

Then Xtot is a X-scheme, smooth over S. Consider two index triples (s, x, T )
and (s′, x′, T ′) and call R′ the same type locus of τ (x,T )|V (s,s′) and τ (x′,T ′)|V (s,s′) .
Then R′ is an open subscheme of XV (s,s′) by Proposition 3.6, and the pull-back

R(x,T,x′,T ′) of R′ to (X
(x,T )

V (s,s′)/V
(s,s′))sm is canonically isomorphic to the pull-

back of R′ to (X
(x′,T ′)

V (s,s′) /V
(s,s′))sm by Corollary 4.7. Therefore, we have étale

maps

R(x,T,x′,T ′) → (X(x,T )/V (s))sm

R(x,T,x′,T ′) → (X(x′,T ′)/V (s′))sm.

These maps de�ne an étale equivalence relation on Xtot. We write N the quo-
tient algebraic space (see [30, Tag 02WW]), and call it the smooth aggregate of
X.

Proposition 7.6. With the same hypotheses and notations as in Construction
7.5, N is well-de�ned, smooth over S, and depends only on X (i.e. if one
makes di�erent choices of admissible neighbourhoods V (s) and of sections τ (x,T ),
the resulting smooth aggregate N ′ is canonically isomorphic to N). The map
N → X is an isomorphism above the smooth locus of X/S.

Proof. First, let us prove that N is well-de�ned, i.e. that we have indeed given
an étale equivalence relation on Xtot. For any pair of index triples (s, x, T ) and
(s′, x′, T ′), the maps

R(x,T,x′,T ′) → (X(x,T )/V (s))sm,

R(x,T,x′,T ′) → (X(x′,T ′)/V (s′))sm

are étale since V (s) → S and V (s′) → S are. These maps jointly form an étale
equivalence relation since for any quasisplit nodal curve Y/R with R regular,
and any singular point y at which Y/R is orientable, "having the same type
at y" is an equivalence relation on the set of sections R → Y . Since Xtot is
S-smooth, N is also S-smooth. The fact that N → X is an isomorphism above
the smooth locus of X/S follows from observing that all X(x,T ) → XV (s) are
isomorphisms above said smooth locus, and that the V (s) form an étale cover
of S.

Now, we have to show N only depends on X. For every (s, x, T ), consider
another admissible neighbourhood W (s) of s and a section σ(x,T ) of XW (s) of
type T at x. This gives rise to another smooth aggregate N ′, and we will
prove N and N ′ are canonically isomorphic. We can assume V (s) and W (s) are
admissible neighbourhoods of the same geometric point s̄→ S mapping to s.

First, we will do so assuming that the W (s) are smaller than the V (s) and that
the σ(x,T ) are obtained from the τ (x,T ) via pullback. In that case, there is a
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canonical map from X ′tot :=
∐

(s,x,T )

(X(x,T )/V (s))sm to Xtot, compatible with

the étale equivalence relations de�ning N and N ′, so we get a canonical map
N ′ → N of S-algebraic spaces. This map restricts to an isomorphism over the
étale stalks of all geometric points s̄→ S, so it is an isomorphism.

Now, let us drop the assumption that the σ(x,T ) are obtained from the τ (x,T )

via pullback. For all (s, x, T ), by the special case proven above, we can assume
V (s) = W (s). Using Proposition 3.6 and the special case proven above, we can
assume (shrinking V (s) if necessary) that σ(x,T ) and τ (x,T ) have the same type
everywhere. It follows from Corollary 4.7 that the blowing-ups in the sheaves
of ideals of σ(x,T ) and τ (x,T ) are canonically isomorphic, and this holds for all
(s, x, T ), so N = N ′ by construction.

Finally, we also drop the assumption that there exist maps of étale neighbour-
hoods W (s) → V (s). Then, N and N ′ are still canonically isomorphic by the
special cases above since W (s)×S V (s) is an admissible neighbourhood of s that
factors through both V (s) and W (s).

Proposition 7.7. The formation of smooth aggregates commutes with smooth
base change, i.e. if S is a regular and excellent scheme, X/S a nodal curve,
smooth over a dense open U ⊂ S, N the smooth aggregate of X/S, and Y/S a
smooth morphism of schemes, then N ×S Y is the smooth aggregate of XY /Y .

Proof. Immediate from Proposition 3.10 and Proposition 7.6.

Corollary 7.8. If S is a regular and excellent scheme, X/S a nodal curve,
smooth over a dense open U ⊂ S, N the smooth aggregate of X/S, and Y/S a
co�ltered limit of smooth morphisms, then N ×S Y is the smooth aggregate of
XY /Y .

Proposition 7.9. Let S be a regular and excellent scheme, X/S a nodal curve,
smooth over a dense open U ⊂ S, and N the smooth aggregate of X/S. Then
every S-section of X/S factors uniquely through N .

Proof. First, we prove uniqueness: suppose σ comes from two sections σ0, σ1

of N/S an let us show σ0 = σ1. Since σ0 and σ1 coincide on NU = XU , it is
enough to show that for any t ∈ S we have σ0(t) = σ1(t). This can be done
assuming S is strictly local with closed point t. Describe N as in Construction
7.5 using admissible neighbourhoods V (s) of every point s of S and sections
τ (x,T ) of XV (s) of type T at x for every singular point x of Xs and every type
T at x. By Proposition 7.6, we can assume none of the V (s) contains t except
V (t) and V (t) = S. Put y = σ(t). If y is a smooth point of X/S, then σ factors
through the smooth locus of X/S, above which N → X is an isomorphism, so
we are done. Otherwise, by Lemma 7.4, we see that σ0 and σ1 must both factor
through the Zariski-open subscheme X(t,y,T ) of N , where T is the type at y
opposite to that of σ. Since X(t,y,T ) is a nodal curve over S, it is S-separated,
and we conclude using the fact σ0 and σ1 coincide over U .

Next, we have to show existence. We recycle the notations of Construction 7.5.
By descent, using the uniqueness part we have already proven, it is enough to
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show that for all s ∈ S, the section σ(s) := (σ, Id) of XV (s)/V (s) comes from
a map V (s) → N . Put y = σ(s). By Lemma 7.4 and Proposition 7.6, we can
assume (shrinking V (s) if necessary) that σ(s) factors through X(y,T ), where T
is the type at y opposite to that of σ, so we are done.

The properties of smooth aggregates proven above allow us to see them as the
solutions of a universal problem:

Proposition 7.10. Let S be a regular, excellent scheme and X/S a quasisplit
nodal curve. Then for any smooth S-algebraic space Y together with a morphism
f : Y → X, f factors uniquely through the canonical map N → X.

Proof. The section (f, Id) of XY /Y factors uniquely through NY by Proposi-
tion 7.9 since the latter is the smooth aggregate of XY /Y by Proposition 7.7.
Projecting onto N , we get the unique map Y → N through which f factors.

Corollary 7.11. Let S be a regular and excellent scheme and X ′ → X a mor-
phism between two quasisplit nodal curves over S. Let N be the smooth aggregate
of X, then N ×X X ′ is the smooth aggregate of X ′.

Now, we are equipped to prove the following result, which is a weak version of
our main theorem of existence for ns-Néron models of nodal curves:

Proposition 7.12. Let S be a regular and excellent scheme and X/S a nodal
curve, smooth over a dense open subscheme U of S, with no rational component
in any geometric �ber. Then XU has a ns-Néron model N/S, and there is a
canonical morphism N → X of models of XU . When X/S is quasisplit, N is
the smooth aggregate of X.

Proof. By Lemma 1.14, Proposition 5.6 and Lemma 5.5, we can assume X/S is
quasisplit and S is integral. Let N be the smooth aggregate of X/S. Then N is
a smooth S-model of XU with a canonical S-map N → X. Consider a smooth
S-scheme Y , then we have

HomU (YU , XU ) = HomS(Y,X)

= HomS(Y,N),

where the �rst equality holds by Proposition 7.3 applied to the connected com-
ponents of XY /Y , and the second by Proposition 7.7. Thus, N/S has the Néron
mapping property.

The remainder of this section will be dedicated to improving Proposition 7.12
by weakening the hypothesis that the geometric �bers of X/S have no rational
components, and determining conditions under which N/S is separated, i.e. a
Néron(-lft) model in the classical sense.
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7.3 Exceptional components and minimal proper regular
models

It is known that an elliptic curve over the fraction �eld of discrete valuation
ring has a Néron model, given by the smooth locus of its minimal proper reg-
ular model. It is proven in [23] that the same holds for any smooth curve of
positive genus. In particular, rational components of the special �ber that can
be contracted to smooth points have a "special status": they must map to a
mere point of the Néron model. Therefore, if one wants to weaken the hy-
potheses of Proposition 7.12 to allow for rational components, one must take
this phenomenon into account. Over a discrete valuation ring, these compo-
nents of the special �ber that can be contracted to smooth points, the so-called
exceptional components, are characterized by Castelnuovo's criterion ([22], The-
orem 9.3.8). This criterion uses intersection theory on �bered surfaces, so is not
easy to generalize to higher-dimensional bases for arbitrary relative curves, but
the nodal case is much simpler. We will discuss the analogue of the notion of
exceptional components for nodal curves over arbitrary regular base schemes.

7.3.1 De�nition

De�nition 7.13. Let k be a separably closed �eld and Xk/k a nodal curve.
De�ne a sequence of subsets of the (�nite) set I of irreducible components of Xk

by J0 = ∅, and for all n ∈ N, Jn+1 is the subset of I consisting of components
C meeting one of the following conditions:

• C is in Jn;

• C is rational and k-smooth, and intersects

( ⋃
D∈I−Jn−{C}

D

)
in exactly

one point.

The sequence (Jn)n∈N is increasing, so it is stationary at some subset J of I,
which we call the set of exceptional components of X.

We call exceptional trees the connected components of
⋃
C∈J

C.

A non-smooth point of X/k is called exceptional if it belongs to at least one
exceptional component.

WhenX/S is a nodal relative curve, smooth over a schematic dense open U ⊂ S,
we call exceptional point of X a singular point, exceptional in a �ber of X over
a separably closed �eld-valued point of S.

If X/S is quasisplit, for any s ∈ S, we de�ne the exceptional components (resp.
exceptional points, resp. exceptional trees) of Xs as those giving rise to the
exceptional components (resp. points, resp. trees) of Xs̄ for some geometric
point s̄→ s.

Remark 7.13.1. Neither the components of X lying in a cycle of the dual graph,
nor its components of genus ≥ 1 are exceptional. In particular, the exceptional
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trees correspond to actual trees of the dual graph, and they are not covering as
soon as X is of genus ≥ 1.

7.3.2 The minimal proper regular model

Here, we discuss brie�y the case of one-dimensional bases, where there is a
canonical minimal proper regular model of which the Néron model is the smooth
locus.

Proposition 7.14. Let R be a discrete valuation ring, with �eld of fractions K
and residue �eld k, and XK a smooth K-curve of genus ≥ 1. Then XK admits
a unique minimal proper regular model Xmin over S (i.e. Xmin is a terminal
object in the category of proper regular S-models of XK).

Moreover, if XK has a regular nodal model X, then Xmin is nodal and the map
X → Xmin is just a contraction of every exceptional tree of the special �ber of
X into a smooth point (i.e. the image of an exceptional tree of the special �ber
of X is a smooth point of Xmin/S, and X → Xmin restricts to an isomorphism
over the rest of Xmin).

Proof. The existence of the minimal proper regular model is [22], Theorem
9.3.21.

For the second part of the proposition, suppose XK has a nodal regular model
X/S. It follows from [22], De�nition 3.1 and Theorem 3.8, that there exists a
regular proper model X ′/S of XK and a map X → X ′ that is just a contraction
of every exceptional tree into a smooth point. In particular, X ′/S is nodal. But
then X ′ is relatively minimal in the sense of [22], De�nition 3.12, so it is Xmin

and we are done.

Theorem 7.15 ([23], Theorem 4.1.). Let S be a connected Dedekind scheme
(i.e. a regular scheme of dimension 1) with �eld of functions K. Let XK/K be
a proper regular connected curve of genus ≥ 1. Suppose either S is excellent, or
XK/K is smooth, and let Xmin be the minimal proper regular S-model of XK .
Then (Xmin/S)sm is the Néron model of (XK/K)sm.

7.3.3 Van der Waerden's purity theorem

We will de�ne the exceptional locus of a birational morphism, and cite a result
of purity of this exceptional locus when the target is factorial. This will allow us
to describe explicitly some open subsets of the ns-Néron model (when it exists)
of a curve with a nodal model.

De�nition 7.16. Let f : X → Y be a morphism locally of �nite type between
two locally noetherian algebraic spaces. We say f is a local isomorphism at some
x ∈ X when f induces an isomorphism OY,f(x) = OX,x (or, equivalently, if x has
a Zariski open neighbourhood V ⊂ X such that f induces an isomorphism from
V onto its image in Y ). The set of all points at which f is a local isomorphism
is an open subscheme W of X, and we call its complement the exceptional locus
of f . If W = X, we say f is a local isomorphism.
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Example 7.17. Let Y be a noetherian integral scheme and X → Y be the
blowing-up along a closed subscheme Z → Y of codimension ≥ 1. Then the
exceptional locus of X → Y is the preimage of the set of all z ∈ Z around which
Z is not a Cartier divisor.

Example 7.18. Let k be a �eld, and glue two copies of the identity A1
k → A1

k

along the complement of the origin. The resulting map A→ A1
k, where A is the

a�ne line with double origin, is a local isomorphism.

In Example 7.18, the birational map f : A → A1
k has empty exceptional locus,

but it is not separated, so in particular not an open immersion. In the follow-
ing lemma, we will see that non-separatedness is essentially the only possible
obstruction preventing such maps from being open immersions.

Lemma 7.19. Let f : X → Y be a separated local isomorphism between two
locally noetherian integral algebraic spaces. Then f is an open immersion.

Proof. We need to show f is injective. Call η the generic point of X. Since f
is a local isomorphism at η, we know f(η) is the generic point of Y . Consider
two points x, x′ of X with the same image y in Y . There are Zariski-open
neighbourhoods U,U ′ of x and x′ respectively, such that U → Y and U ′ → Y are
open immersions. By separatedness of f , the canonical map U×XU ′ → U×Y U ′
is a closed immersion. But it follows from the fact f is a local isomorphism that
U ×Y U ′ is integral, with generic point (η, η). Since this point is in the image
of U ×X U ′, the map U ×X U ′ → U ×Y U ′ is an isomorphism, so the point
(x, x′)→ X ×Y X ′ factors through U ×X U ′, i.e. x = x′.

Theorem 7.20 (Van Der Waerden). Let X,Y be locally noetherian integral
schemes with Y locally factorial and f : X → Y a birational morphism of �nite
type. Then the exceptional locus of f is of pure codimension one in X.

Proof. This is [14], Theorem 21.12.12.

Lemma 7.21. Let S be a regular scheme, U a dense open subscheme of S, and
X/S a quasisplit nodal curve, smooth over U . Let E be the union in X of the ex-
ceptional components of all �bers Xs (which are well-de�ned by quasisplitness).
Suppose that XU admits a ns-Néron model N/S, then the map (X\E)sm → N
extending the identity over U is an open immersion.

Proof. The scheme (X\E)sm is separated over S, hence separated over N .
Therefore, using Lemma 7.19, we only need to prove the exceptional locus of
(X\E)sm → N is empty. The subset E is Zariski-closed in X by 1.8. The
unique morphism of algebraic spaces g : Xsm → N extending the identity over
U is birational and of �nite type, and the domain and codomain are S-smooth,
hence regular. We only have to show that its exceptional locus E0 is contained
in E. Take an étale cover V0 → N where V0 is a scheme, it is enough to show
E0 ×N V0 ⊂ E ×N V0. Therefore, it is enough to prove that for any integral
scheme V and any étale map V → N , we have E0×N V ⊂ E×N V . The scheme
V is smooth over S so it is regular, and gV : Xsm ×N V → V is birational
and of �nite type since g is. Furthermore, since the property "being an isomor-
phism" is local on the target for the fpqc topology, the exceptional locus of gV
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is precisely E0×N V . Thus E0×N V is either empty or pure of codimension one
in Xsm ×N V by Theorem 7.20. If it is empty, we are done. Otherwise, since
E×XXsm×N V is closed in Xsm×N V , it is enough to prove that every point of
E0×N V of codimension 1 in Xsm×N V is contained in E×N V . Since V → N
is an étale cover, this is true if and only if every point of E0 of codimension 1
in Xsm is contained in E.

Let x be a point of E0 of codimension 1. Let ξ be the image of x in S, we
have codim(x,X) = codim(x,Xξ) + codim(ξ, S), so ξ has codimension ≤ 1 in
S. Since X/S is smooth over U , ξ cannot be of codimension 0 in S, so it must
be of codimension 1: OS , ξ is a discrete valuation ring.

But then N ×S SpecOS,ξ is the SpecOS,ξ-Néron model of its generic �ber by
Proposition 5.4, so it is the smooth locus of the minimal proper regular model of
X×SSpecOS,ξ by Theorem 7.15. Now, by Proposition 7.14, the minimal proper
regular model of X×S SpecOS,ξ is the contraction of the exceptional trees of its
special �ber into smooth points, and in particular contains (X\E)×S SpecOS,ξ
as an open subscheme. This implies g is an isomorphism at every point of
(X\E)sm ×S SpecOS,ξ, so x must be in E.

Remark 7.21.1. With hypotheses and notations as in Lemma 7.21, if E is empty,
it follows that the canonical morphism N0 → N , where N0 is the smooth aggre-
gate of X, is an open immersion. We will see in the next subsection that one
can always reduce to this situation: if E is not empty, one can always contract
X into a new nodal model of XU with no exceptional components. However,
we will also see that nodal models with no rational components at all do not
always exist, so ns-Néron models cannot always be easily described in terms of
smooth aggregates.

7.4 Contractions and stable models

So far, we have met two features of a nodal curve X/S, smooth over a dense
open U ⊂ S, that can cause problems for us: one is the complexity of its
singularities (for example because there can be sections through a singular point
of positive arithmetic complexity, meaning we lose relevant information if we
take the smooth locus and forget this point), and the other one is the presence of
rational components in its geometric �bers (in the absence of such components,
we can construct explicitly a ns-Néron model, see 7.2). Re�nements allow us to
"turn the �rst problem into the second": we get a new model of XU with less
complex singularities, but more rational components. Looking at Proposition
7.12, it is clear that we also have an interest in the inverse problem: if X/S has
rational components, is it possible to blow them down and obtain a new nodal
model with more complex singularities, but less rational components?

This question �nds its answer in [7], in which the author introduces and studies
contraction morphisms for the moduli stacks of n-pointed stable curves. In this
subsection, we will see how this translates into the algorithm we need.
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7.4.1 The stack of n-pointed stable curves and the contraction mor-

phism

De�nition 7.22 ([7], De�nition 1.1.). Let n, g be natural integers such that
2g−2+n > 0. A n-pointed stable curve of genus g over S is a nodal relative curve
X/S of genus g, together with n pairwise disjoint sections σ1, ..., σn : S → Xsm,
such that for every geometric �berXs and every nonsingular rational component
C of Xs, the sum of the number of intersection points between C and the union
of all other irreducible components of Xs, and of the number of σi passing
through C, is at least 3. When the sections are clear from context, we will
sometimes omit them in the notation.

We de�ne a morphism between two n-pointed stable curves (X ′/S′, σ′1, ..., σ
′
n)

and (X/S, σ1, ..., σn) as a cartesian diagram

X ′
f //

π′

��

X

π

��
S′

g // S

such that fσ′i = σig for all i.

Remark 7.22.1. The condition on the number of special points appearing on a
rational component aims to guarantee that the S-automorphism group of X is
�nite.

Theorem 7.23. Call Mg,n the category of stable n-pointed curves of genus
g. As a category �bered in groupoids over schemes, it is a separated Deligne-
Mumford stack, smooth and proper over SpecZ.

Proof. This is [7], Theorem 2.7.

De�nition 7.24 ([7], De�nition 1.3.). Let S be a scheme, g a natural integer,
and f : X → X ′ a morphism of S-schemes between stable pointed S-curves of
genus g. It is called a contraction, or contraction of X, if:

• X is n + 1-pointed and X ′ is n-pointed, with 2g − 2 + n > 0, and their
respective sections (σi)1≤i≤n+1, (σ

′
i)1≤i≤n satisfy f ◦ σ(i) = σ′(i) for all

0 ≤ i ≤ n.

• For any geometric point s ∈ S, either Xs → X ′s is an isomorphism, or
σn+1(s) is in a rational component C of Xs such that f(C) is a point
x ∈ X ′s, and Xs\C → X ′s\{x} is an isomorphism.

Remark 7.24.1. We do not use the same notion of geometric point as [7], but
the two subsequent de�nitions of contractions are equivalent by [22], Proposition
10.3.7.

Theorem 7.25. Let S be a scheme and X/S a n + 1-pointed stable curve of
genus g with 2g − 2 + n > 0. Then X admits a contraction, unique up to a
canonical isomorphism.

Proof. This is [7], Proposition 2.1.
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7.4.2 The stable model

De�nition 7.26. Let S be a scheme and U ⊂ S a scheme-theoretically dense
open. Let XU/U be a smooth curve of genus g ≥ 2. We call stable S-model of
XU a 0-pointed stable curve X of genus g with an isomorphism X ×S U = XU .

Lemma 7.27. Let S be a normal, noetherian and strictly local scheme, U ⊂ S
a scheme-theoretically dense open subscheme and X/S a nodal curve, smooth
over U , of genus g ≥ 2. Then XU has a unique stable model Xstable, and there
is a unique morphism of models X → Xstable.

Proof. Let s ∈ S be the closed point. The �ber Xs has �nitely many ratio-
nal components, and there are in�nitely many disjoint smooth sections of X/S
through each of those. If a rational component E of Xs contains only one sin-
gular point, consider two disjoint smooth sections through E, and if it contains
two singular points, consider one smooth section through E. This gives a �nite
number σ1, ..., σn of sections through Xsm. Applying Proposition 1.8, and us-
ing the fact that the irreducible components of X are geometrically irreducible
by quasisplitness, we see that for any geometric �ber Xt of X/S, any rational
component of Xt intersecting the other components in two points contains σi(t)
for some i, and any rational component of Xt intersecting the other components
in one point contains σi(t) and σj(t) for some i 6= j.

Thus X/S endowed with the (σi)0≤i≤n becomes a n-pointed stable curve of
genus g, restricting over U to the data of XU and the n U -sections σi|U : U →
XU , and we can apply repeatedly Theorem 7.25 to get a stable 0-pointed curve
X ′ → S with a map X → X ′. Since XU/U is smooth, the restriction of X → X ′

to U just forgets the sections (and induces an isomorphism on the curves), so
Xstable := X ′ is a stable model of XU .

Consider two stable models of XU , corresponding to two maps a, b : S ⇒Mg,0

extending U → Mg,0. Call Z the equalizer of f and g, we have a cartesian
diagram

Z //

��

S

(a,b)

��
Mg,0

//Mg,0 ×Mg,0

where the bottom arrow is the diagonal. Since Mg,0 is Deligne-Mumford and
separated, its diagonal is �nite. Thus, Z → S is a �nite and birational morphism
of algebraic spaces, hence an isomorphism by Zariski's main theorem: the stable
model Xstable is unique up to a unique isomorphism. As for uniqueness of the
morphism X → Xstable of models of XU , let f, g be two such morphisms, then
their equalizer is a closed subscheme of X (by separatedness of Xstable/S),
which contains XU . But XU is scheme-theoretically dense in X since U is
scheme-theoretically dense in S and X/S is �at, so f and g must be equal.

Proposition 7.28. Let S be a normal and locally noetherian scheme and U ⊂ S
a scheme-theoretically dense open. Let X/S be a quasisplit nodal curve, smooth
over U , of genus g ≥ 2. Then
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1. XU has a stable S-model Xstable, unique up to a unique isomorphism, and
there is a canonical map X → Xstable.

2. The formation of Xstable commutes with any base change S′ → S such that
S′ is normal and locally noetherian and U ×S S′ is scheme-theoretically
dense in S′.

Proof. (2) is a consequence of Proposition 1.8. In (1), uniqueness of Xstable

and of the map X → Xstable holds by the same argument as in the proof of
Lemma 7.27 above. We will now prove their existence. Let s be a point of S.
By Lemma 7.27, XU ×S SpecOetS,s admits a stable model X0,s over SpecOetS,s.
But then X0,s/ SpecOetS,s is of �nite presentation, thus comes via base change
from a morphism Xs → V s, where V s is an étale neighbourhood of s in S.
Moreover, by [13], Proposition 8.14.2, restricting V s if necessary, the map X×S
SpecOetS,s → X0,s extends to a V s-map X ×S V s → Xs. Restricting V s once
again if necessary, we take this map to be an isomorphism over U . Now, the
locus on Xs where Xs/V s is at-worst nodal is open in Xs and contains Xs so,
restricting Vs again if necessary, we can assume Xs/V s is a nodal curve. Finally,
the union of all nonsingular rational components of �bers of Xs/V s meeting the
other components of their �ber in at most two points is closed in Xs, and does
not meet Xs, so, restricting Vs one last time, we can assume Xs/V s is stable.
In particular, it corresponds to a morphism V s →Mg,0.

For any s, s′ ∈ S, the diagram of stacks

V s ×S V s
′ //

��

V s

��
V s
′ //Mg,0

commutes by uniqueness of the stable model of XU×SV s×SV s′ .

Applying a similar argument to the triple �bered products, we see the maps
V s → Mg,0 and their gluing isomorphisms satisfy the cocycle condition with
respect to the (étale) covering of S by the V s. Therefore, they come via base
change from a map S →Mg,0 i.e. the Xs are obtained via base change from a
stable curve Xstable/S (which is a model of XU as desired). Likewise, the local
maps X ×S V s → Xs glue to a morphism X → Xstable.

7.4.3 Rational components of the stable model

We will now determine conditions onX guaranteeing thatXstable has no rational
components in any geometric �ber. When said conditions are met, this allows
us to use Proposition 7.12 to describe explicitly the ns-Néron model of XU .

De�nition 7.29. Let k be a separably closed �eld and X/k a nodal curve. We
say X has rational cycles if there is a union of rational components of X that
is 2-connected, and no rational cycles otherwise. If S is a scheme and X/S a
nodal curve, we say X/S has rational cycles if a �ber over some geometric point
of S does.
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Remark 7.29.1. The curve X/ Spec k has rational cycles if and only if there is a
cycle of its dual graph in which each vertex corresponds to a rational component.
We call such cycles the rational cycles of the dual graph.

Remark 7.29.2. If X/ Spec k is of genus g ≥ 2 and has rational cycles, then every
rational cycle of the dual graph either is a loop, or contains a rational component
meeting the non-exceptional other components in at least three points.

De�nition 7.30. Let k be a separably closed �eld and X/k a nodal curve. We
call rational loop of X any singular rational irreducible component of X. If S is
a scheme and X/S a nodal curve, we say X/S has rational loops if a �ber over
some geometric point of S does.

Lemma 7.31. Let k be a separably closed �eld, (Y/k, y1, ..., yn+1) a stable n+1-
pointed curve of genus g over k with 2g−2+n > 0, and Y → Z the contraction.
Then Z has rational cycles if and only if Y does.

Proof. If Y → Z is an isomorphism of schemes, it is obvious. Otherwise, there is
a rational component C of Y whose image is a point z ∈ Z, and Y \C → Z\{z}
is an isomorphism. If C does not belong to a 2-connected union of rational
components of Y , we are done. Otherwise, let Γ be said union, the image of Γ
in Z is still 2-connected and still contains only rational components.

Corollary 7.32. Let S be a normal and locally noetherian scheme and U ⊂ S
a scheme-theoretically dense open. Let X/S be a quasisplit nodal curve, smooth
over U , of genus g ≥ 2. Then Xstable has rational cycles if and only if X does.

Rational cycles are an example of rational components we cannot get rid of by
contracting. There is another family of such "problematic components": sup-
pose for example that a rational component intersects three other non-rational
components, then no contraction will get rid of it. The ones we can get rid of
are described in the two following lemmas:

Lemma 7.33. Let k be a separably closed �eld and (Y/k, y1, ..., yn+1) a stable
(n + 1)-pointed curve of genus g with 2g − 2 + n > 0. Suppose Y/k has no
rational cycles, and Y → Z is the contraction. Let FY , FZ denote the union
of all rational components meeting the non-exceptional other components in at
most two points, in Y and Z respectively. Then Y \FY is isomorphic to its image
in Z, and the image of FY in Z is either FZ or the union of FZ and a point.

Proof. If Y → Z is an isomorphism of schemes, this is obvious. Otherwise, there
is a rational component C of Y whose image is a point z ∈ Z, and Y \C → Z\{z}
is an isomorphism. We will prove that the image of FY in Z is FZ ∪ {x}.

The contracted component C meets the other irreducible components of Y in at
most two points so C is in FY . There is a canonical bijection between irreducible
components of Y that are not C and irreducible components of Z (namely, it
sends a component of Y to its image in Z), so we just need to prove that a
component D 6= C of Y is in FY if and only if it is sent to a component of FZ .

If D is not rational or does not meet C, this is true. Suppose D is rational
and meets C. Then D ∩ C is exactly one point c1 (otherwise D ∪ C would be
2-connected and Y would have rational cycles).
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It is enough to show thatD has as many intersection points with non-exceptional
other irreducible components of Y than its image D′ has in Z. Since the map
Y \C → Z\{z} is an isomorphism, it comes down to saying that if C is not
exceptional, then the other irreducible component of Y that C meets is not
exceptional either, which follows from the de�nition of exceptional components.

Lemma 7.34. Let S be a normal and locally noetherian scheme and U ⊂ S a
scheme-theoretically dense open. Let X/S be a quasisplit nodal curve, smooth
over U , of genus g ≥ 2, with no rational cycles. Let s be a �eld-valued point of
S, F the union of all rational components of Xs intersecting the non-exceptional
other components in at most two points, and F ′ its image in Xstable. Then

1. X → Xstable induces an isomorphism between Xs\F and Xstable
s \F ′.

2. F ′ is a disjoint union of points, one for each connected component of F .

Proof. By quasisplitness we can assume k(s) is separably closed, and base-
changing to SpecOetS,s (which preserves Xstable by Proposition 7.28), we can
assume S is strictly local, with closed point s. Then there are S-sections
σ1, ..., σn of X making it a n-pointed stable curve. Consider the sequence
X = Xn → Xn−1 → ... → X0 = Xstable, where Xi → Xi−1 is the contrac-
tion of σi. Call Fi the image of F in (Xi)s for all i, and call Gi the union of
all rational components of (Xi)s meeting the non-exceptional other ones in at
most two points. It follows from the preceding lemma that Fi is the union of
Gi and a �nite number of points. In particular, since (Xi)s → (Xi−1)s induces
an isomorphism from (Xi)s\Gi to its image, we have (Xi)s\Fi = (Xi−1)s\Fi−1,
and (1) follows inductively. Then, (2) follows from observing that G0 is empty:
indeed, Xstable

s is a stable 0-pointed curve over k(s), so it has no exceptional
components, thus a component in G0 would be rational, unmarked, and meet
the other irreducible components in at most two points, which is forbidden by
the de�nition of stable curves.

Proposition 7.35. Let S be a normal and locally noetherian scheme and X/S a
quasisplit nodal curve of genus g ≥ 2, smooth over a scheme-theoretically dense
open U ⊂ S. Let Xstable be the stable model of XU . Then the two following
conditions are equivalent:

1. There is a geometric point s→ S such that Xstable
s has a rational compo-

nent.

2. One of the �bers of X over S contains either a rational loop, or a rational
component meeting the non-exceptional other irreducible components in at
least three points.

Proof. If X has rational loops, then Xstable has a geometric �ber with a rational
component by Corollary 7.32. If a �ber Xs has a rational component E meeting
the other non-exceptional other components in at least three points, then any
contraction of Xs is an isomorphism over the open subscheme E ∩ (X/S)sm of
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Xs, so Xstable
s has a rational component (thus some geometric �ber of Xstable

also does).

Conversely, suppose X has no rational loops, and every rational component of
a �ber Xs meets the other non-exceptional irreducible components of Xs in at
most two points. By Remark 7.29.2, X has no rational cycles, so we conclude
with Lemma 7.34.

7.4.4 Singular ideals of the stable model

Now we want to understand precisely what the stable model looks like as a
nodal curve, i.e. we want to compute its singular ideals. This will be made
clear by Lemma 7.39. We build up to it with a few technicalities.

Lemma 7.36. Let S = SpecR be a trait with generic point η. Let X be a
nodal S-model of a smooth η-curve Xη. Then the sum of thicknesses of non-
exceptional singular points of X is the number of singular points of the special
�ber of Xmin, where Xmin is the minimal proper regular model of Xη.

Proof. The sum of thicknesses of non-exceptional singular points does not change
when one blows up in a singular point of the closed �ber, and after a �nite
sequence of such blow-ups, we obtain a regular model Xreg → X of Xη. There-
fore, we can assume X is regular. But then, Proposition 7.14 allows us to
conclude.

Corollary 7.37. The sum of thicknesses of non-exceptional singular points is a
birational invariant for generically smooth nodal curves over a discrete valuation
ring.

Proposition 7.38. Let S = SpecR be a regular local scheme with closed point s,
U a dense open subscheme of S and X/S, Y/S two quasisplit nodal curves, with
XU = YU smooth over U . Then the product of singular ideals of non-exceptional
points of Xs is equal to that of Ys.

Remark 7.38.1. If we call thickness of a singular point its singular ideal, and
note additively the monoid of principal prime ideals of R, we can rephrase
this "the sum of thicknesses of non-exceptional points in the closed �ber is a
birational invariant for generically smooth quasisplit nodal curves over a regular
local ring".

Proof. Since R is regular, it is a unique factorization domain. Let ∆1, ...,∆k

be the prime elements of R such that the generic point of {∆i = 0} is not

in U . Every singular point of Xs has singular ideal of the form

(
k∏
i=1

∆νi
i

)
for some integers νi, not all zero, and the same goes for Y . Therefore, if we
call λ, µ the products of all singular ideals of non-exceptional points of Xs and

Ys respectively, we have integers n1, .., nk,m1, ...,mk with λ =

(
k∏
i=1

∆ni
i

)
and

µ =

(
k∏
i=1

∆mi
i

)
, and we only need to show ni = mi for all i.
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Pick some 1 ≤ i ≤ k, let t be the generic point of the zero locus of ∆i in S and
set T = SpecOS,t. Base-changing to T , we get nodal curves XT , YT , with the
same smooth generic �ber. Proposition 1.8 implies that the sum of thicknesses
of their non-exceptional singular points are respectively ni and mi, but they
must be equal by Corollary 7.37, so ni = mi for all i and we are done.

The next lemma describes how to compute the singular ideals of Xstable from
the singular ideals of X.

Lemma 7.39. Let X/S be a quasisplit nodal curve with no rational cycles, of
genus ≥ 2, with S regular. Suppose X is smooth over a dense open U ⊂ S.
Let s be a point of S and F ⊂ Xs be the union of all rational components of
Xs intersecting the non-exceptional other irreducible components in at most two
points. Call Z the set of non-exceptional singular points of Xs. The image in
Xstable of a connected component G of F is a smooth point if all singular points
in G are exceptional, and a singular point of label

∏
y∈Z∩G

l(y) otherwise, where

we note l(y) the label of y.

Remark 7.39.1. To put this in simpler words, in the formalism of Remark 7.38.1,
with the additional convention that the points of thickness 0 are the S-smooth
points, Lemma 7.39 says that the thickness of a point of Xstable is the sum of
thicknesses of all non-exceptional singular points of X above it.

Proof. We can assume S is local, with closed point s. Let σ1, ..., σn be such that
X/S endowed with the σi is inMg,n (they exist by quasisplitness). Permuting
the σi if necessary, we assume there is an index 0 ≤ m ≤ n such that for all
1 ≤ i ≤ m, σi(s) is in G, and for all m < i ≤ n, σi(s) is not in G. Consider
the sequence Xn → ... → X0, where Xn is X endowed with the σi, and each
Xi+1 → Xi is the contraction of σi+1: we have X0 = Xstable. Call Fi, Zi the
images of F,Z in (Xi)s. For all y ∈ Zi, we call li(y) the singular ideal of y in
Xi.

Call Gi the image of G in Xi for every i. Since none of the σi(s) with 1 ≤ i ≤ m
are in Gi, we know that Gm → G0 is an isomorphism. But G0 is a point, since
it is connected, X0 is stable, and all components of G are rational and meet the
others in at most two points. Thus, Gm is a k(s)-point x of Xm.

Now, observe that for all m < i ≤ n, σi(s) is in Gi. Therefore, X → Xm induces
an isomorphism X\G → Xm\Gm. In particular, the product of all singular
ideals of non-exceptional points of X outside of G is equal to the product of all
singular ideals of non-exceptional points of Xm distinct from x. But we also
know by Proposition 7.38 that the product of singular ideals of non-exceptional
singular points of X and Xm are the same: it follows that if G consists only of
exceptional components, then x is smooth over S, and otherwise, x is singular
of label

∏
y∈Z∩G

l(y).
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7.4.5 The main theorem

We can now generalize Proposition 7.12 by applying it to the stable model:
since the latter is less likely to have rational components than the original nodal
model, it is more likely to fall under the hypotheses of the proposition.

Theorem 7.40. Let S be a regular excellent scheme, U ⊂ S a dense open
subscheme and X/S a nodal curve, smooth over U , of genus g ≥ 2. Suppose X
has no rational loops, and suppose no geometric �ber of X contains a rational
component meeting the non-exceptional other irreducible components in three
points or more. Then XU/U has a ns-Néron model N/S. If in addition X/S is
quasisplit, then N is the smooth aggregate of the stable model Xstable of XU .

Proof. We can assume X/S is quasisplit by Lemma 1.14, Proposition 5.6 and
Lemma 5.5. Then X/S has a stable model Xstable, which has no rational com-
ponents in any geometric �ber by Proposition 7.35. We conclude by applying
Proposition 7.12 to Xstable/S.

Remark 7.40.1. Our hypotheses on the rational components of the geometric
�bers of X/S are quite unnatural, and merely come from the fact the rational
components we allow are the only ones that can be contracted while staying in
the realm of nodal curves. One could maybe get rid of these hypotheses in the
following way:

1. Locally on the base if necessary, obtain a (not necessarily nodal) model of
XU with no rational components in any geometric �ber.

2. Try to see if the models obtained this way always �t into a category in
which we can solve the universal problem 7.10.

Over one-dimensional bases, the standard way to contract a set E of rational
components is to consider the projectivisation of the symmetric graded algebra
of a very ample divisor that does not meet E. In higher dimension, however, it
is not obvious that the resulting scheme would even remain �at over the base.
In the case of nodal curves, this was proven for us in [7], so these subtleties
are hidden behind Theorem 7.25, but in order to go beyond nodal curves, one
would have to be careful about such matters.

7.5 Separatedness of the ns-Néron model

Ns-Néron models of nodal curves are often non-separated, which can make them
a little di�cult to work with. Here, we discuss (quite restrictive) criteria under
which they are separated, i.e. under which a Néron model exists. Roughly
speaking, the defect of separatedness of the ns-Néron model comes from the ex-
istence of non-isomorphic locally factorial models. In fact, we will show that a
Néron model can only exist when there is a canonical "minimal étale-locally fac-
torial model": this is quite similar to the case of one-dimensional bases studied
in [23].
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De�nition 7.41. Let S be a regular scheme and X → S a nodal curve, smooth
over a dense open U ⊂ S. Let s be a geometric point of S and x a singular point
ofXs. We say Sing(X/S) is irreducible around x when the connected component
of the singular locus of X ×S SpecOetS,s/ SpecOetS,s containing x is irreducible.
We say Sing(X/S) is étale-locally irreducible if it is irreducible around every
singular geometric point of X. We will sometimes omit the "étale" and just say
Sing(X/S) is locally irreducible.

Lemma 7.42. With hypotheses and notations as in De�nition 7.41, Sing(X/S)
is irreducible around x if and only if the singular ideal of x is of the form (∆)n,
where n is a positive integer and ∆ a prime element of SpecOetS,s.

Proof. The base change of X/S to SpecOetS,s is quasisplit, so if we write Y the
connected component of the singular locus of X ×S SpecOetS,s/ SpecOetS,s con-
taining x, then the structural morphism Y → SpecOetS,s is a closed immersion.
Therefore, the irreducible components of Y are in bijection with the distinct
irreducible factors of the singular ideal of x.

Corollary 7.43. Keeping the same hypotheses and notations, Sing(X/S) is
irreducible around every étale generization of x if and only if the singular ideal of
x is generated by an étale-universally prime element of SpecOS,s. In particular,
X/S has étale-locally irreducible singular locus if and only if all of its singular
geometric points have a power of an étale-universally prime element as a label.

Remark 7.43.1. With notations as above, Sing(X/S) is irreducible around x if
and only if the radical of the singular ideal of x is generated by a prime element
of OetS,s: if the singular ideal of x is of the form (∆n) with ∆ prime in OetS,s and
n > 0, its radical is precisely (∆).

Proposition 7.44. Let S = SpecR be a strictly local unique factorization do-
main, U ⊂ S a dense open subscheme, and take two non-units ∆1,∆2 of R with
no common prime factor. There exists a trait T = SpecA→ S such that

• The generic point of T is sent to a point of U .

• The special point of T is sent to the closed point of S

• The images in A of ∆1 and ∆2 are equal, nonzero, and not units.

Proof. Take π : S′ → S the blowing-up in the (non-invertible) ideal (∆1,∆2) of
R. Call D1 and D2 the strict transforms of the divisors cut out in S by ∆1 and
∆2 respectively, and E the exceptional divisor. Let s be a closed point of S′ in
the zero locus of ∆1

∆2
−1 (which is contained in E\(D1∪D2). By [11], Proposition

7.1.9, there exists a trait T → S′ such that the closed point is mapped to s and
the generic point to a point of U . The map T → S′ factors through OS′,s and
∆1 = ∆2 in OS′,s, so T → S satis�es all the desired properties.

Remark 7.44.1. Though over one-dimensional bases, uniqueness in the Néron
mapping property is already a weaker condition than separatedness, Proposition
7.44 illustrates the fact that the gap between these two conditions becomes
much greater in higher base dimension. Indeed, as the base gets bigger, smooth
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morphisms of base change remain pretty rare and tame, while the quantity (and
array of potentially wild behavior) of traits on the base gets much bigger. This is
why non-separated ns-Néron models are so prevalent in higher dimension, even
though, to the author's knowledge, no examples are known over a Dedekind
scheme.

Lemma 7.45. Let X/S be a nodal curve of genus ≥ 1, smooth over some dense
open U ⊂ S, with S regular and excellent. Suppose XU has a Néron model
over S. Then Sing(X/S) is irreducible around every non-exceptional (De�nition
7.13) singular geometric point x of X/S.

Proof. We will work by contradiction: suppose there is some geometric point
s ∈ S and a singular point x ∈ Xs around which Sing(X/S) is not irreducible.
Since XU ×S SpecOetS,s has a Néron model by 5.4, we can assume x is a closed
point of X and S = SpecR is strictly local with closed point s. In particular,

S is an admissible neighbourhood of s relatively to X/S. Let
r∏
i=1

∆νi
i be the

decomposition in prime factors of a generator ∆x of the singular ideal of x in
R. By hypothesis, we have r ≥ 2.

Let (C1, C2) be an orientation of X/S at x. De�ne T1 and T2 to be the images

in the (multiplicative) monoid R/R× of
r−1∏
i=1

∆νi
i and ∆νr

r respectively. They are

opposite types at x. For j ∈ {1, 2}, consider a section σj : S → X of type Tj at
x relatively to (C1, C2). We de�ne Xj as the blowing-up of X in the ideal sheaf
of σ1−j (note the index). The Xj are re�nements of X, in particular models
of XU , so by hypothesis there is a Néron model N for (X1)U = (X2)U = XU .
Call F the union of all exceptional components of X, and F1, F2 the preimages
of F in X1 and X2 respectively. Since S is strictly local, X/S is quasisplit so
F, F1, F2 are well-de�ned closed subsets of X,X1, X2 respectively. Using Lemma
4.6, we know Fi is the union of all exceptional components of Xi for i = 1, 2.
By Lemma 7.21, the canonical maps

(Xi\Fi)sm → N

are open immersions. Thus, they induce isomorphisms on open subspaces V1, V2

of N . Call V the open subspace V1 ∪ V2 of N . Then V is isomorphic to the
gluing of (X1\F1)sm and (X2\F2)sm along the preimages of V1 ∩ V2 in each of
them. We will conclude by proving V is not separated, which is absurd since it
is an open subspace of N .

Using Lemma 7.4, we see that σ1 factors through Xsm
1 . Since x is not in F ,

σ1 even factors through a section σ′1 : S → (X1\F1)sm. However, X2 → X is
precisely the blowing-up in the ideal sheaf of σ1, so σ1 does not factor through
X2. Symmetrically, σ2 factors through a section σ′2 : Xsm

2 \F2, but not through
X1. Let xj be the image of σ′j(s) in N , the fact σj does not factor through X1−j
implies xj is not in V1 ∩ V2, so x1 6= x2.

Proposition 7.44 gives a trait T = SpecA→ S, with generic point η and closed
point t, such that η is sent to a point of U and t to s, and such that the images

in A of

(
r−1∏
i=1

∆νi
i

)
and ∆νr

r are equal, nonzero, and not units.
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In particular, the T -sections (σ1)T and (σ2)T of XT induced by σ1 and σ2 are

equal (because

(
r−1∏
i=1

∆νi
i

)
and ∆νr

r are equal in A). Since η is sent to a point

of U , it follows that (σ′1)T (η) = (σ′2)T (η) in VT . However, (σ′1)T (t) = σ′1(s) =
x1 6= x2 = σ′2(s) = (σ′2)T (t) since x1 is in V1\V2 and x2 in V2\V1: V does not
satisfy the valuative criterion for separatedness, a contradiction.

Example 7.46. • Local irreducibility of the singular locus is only necessary
around non-exceptional points: for example, consider S = SpecC[[a, b]]
and U = D(ab), and take the elliptic (so a fortiori nodal) curve X/S cut
out in the weighted projective space P2(2, 3, 2) by y2 = x(x2−z2), so that
X is the S-Néron model of XU . Consider the blowing-up X ′ → X of X
in the sheaf of ideals I given by (y, abz). Since I is Cartier outside of
the zero locus of ab, we have X ′U = XU : in particular, X ′U has a Néron
model over S (namely X). However, computing the blowup explicitly, we
�nd that X ′ is nodal and that its closed �ber consists of two irreducible
components, intersecting in a point p of label (ab): the singular locus is
not irreducible around p, but p is exceptional.

• Local irreducibility of the singular locus around non-exceptional points is
not su�cient either: take X to be a nodal curve over S = SpecC[[a, b]],
whose closed �ber has two irreducible components C1 and C2 of genus 1,
intersecting in a singular point of label (ab). In this case, X is smooth over
the dense open U = D(ab) of S and the singular point is not exceptional,
so by (2), XU has no Néron model over S. Take X ′ → X to be the
(C1, a)-re�nement, this meansX ′U has no Néron model over S, even though
X ′ has étale-locally irreducible singular locus. However, we will see in
Theorem 7.48 that if X has no rational components in any geometric �ber,
the condition (which then just becomes "X has étale-locally irreducible
singular locus") is necessary and su�cient.

As seen in Example 7.46, there are situations in which we cannot conclude to
nonexistence of a Néron model by applying directly Lemma 7.45, but we can if
we apply it to a di�erent nodal model. This argument can be made systematic,
and gives the following (more restrictive) necessary condition:

Lemma 7.47. Let X/S be a nodal curve of genus ≥ 1, smooth over some dense
open U ⊂ S, with S regular and excellent. Suppose XU has a Néron model over
S. Then the following two conditions are met:

• The singular locus Sing(X/S) is irreducible around every non-exceptional
singular geometric point of X/S.

• For any geometric point s → S, if a rational component E of Xs meets
the non-exceptional other components of Xs in exactly two points x and
y, then the singular ideals of x and y in OetS,s have the same radical.

Proof. By Corollary 5.4, we can assume S is strictly local. In particular, X/S
is quasisplit. If X/S is of genus 1, this is a special case of Proposition 6.15.
Otherwise, we can apply Lemma 7.45 to the stable model Xstable and conclude
using Lemma 7.39.
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Remark 7.47.1. In the genus 1 case, there is no 0-pointed stable model, but we
could use a 1-pointed stable model instead of referring to our work on Jacobians.

One could wonder if the necessary conditions of Lemma 7.47 are still too weak.
We will now show that, when we know the ns-Néron model exists, its separat-
edness (and therefore the existence of a Néron model) is equivalent to these
conditions.

Theorem 7.48. Let X/S be a nodal curve of genus ≥ 1, smooth over some
dense open U ⊂ S, with S regular and excellent. If XU has a Néron model over
S, then the two following conditions are met:

• The singular locus Sing(X/S) is irreducible around every non-exceptional
singular geometric point of X/S.

• For any geometric point s → S, if a rational component E of Xs meets
the non-exceptional other components of Xs in exactly two points x and
y, then the singular ideals of x and y in OetS,s have the same radical.

Conversely, suppose these conditions are met. Suppose in addition that no ge-
ometric �ber of X/S contains either a rational cycle or a rational component
meeting the non-exceptional other components in at least three points. Then
XU/U has a Néron model, i.e. the ns-Néron model of XU/U exhibited in The-
orem 7.40 is separated over S.

Proof. The �rst part of the theorem is Lemma 7.47. We will now prove the
"conversely" part. Let N/S be the ns-Néron model of XU exhibited in Theorem
7.40. Separatedness of N/S can be checked over the étale stalks of S: we can
and will assume S = SpecR is strictly local, and we call s its closed point.
In particular, X/S is quasisplit. By Proposition 7.35, we know Xstable has no
rational components in any geometric �ber, and by Lemma 7.39, we can assume
X = Xstable while preserving all hypotheses made on X. Then, N is the smooth
aggregate of X/S. By Corollary 7.43, all prime factors of all singular ideals of
X/S are étale-universally prime, so S is an admissible neighbourhood of all its
geometric points (and not just of s). Therefore, if for every pair (x, T ) where x
is a singular point of Xs and T a type at x, we write X(x,T ) the blowing-up of
X in a section of type T at x, N is the gluing of the (X(x,T )/S)sm along the
strict transforms of (X/S)sm in each of them.

Now, for any singular point y of Xs, the singular ideal of y in R is of the form
(∆

νy
y ), where ∆y is an étale-universally prime element of R and νy a positive

integer. Consider the morphism X ′ → X obtained as a composition of νy − 1
blowing-ups in sections through points of positive arithmetic complexity above
y, it follows that all the Xy,T factor uniquely through X ′. Repeating the process
for every x, we �nd a nodal model Xmin of XU of arithmetic complexity 0, with
a map Xmin → X, such that N is the smooth locus of Xmin. In particular, N
is separated.

Remark 7.48.1. Here, we only constructed Xmin locally, but when X/S is qua-
sisplit and the hypotheses of the "conversely" part of Theorem 7.48 are met,
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these local models always �ue into a canonical "minimal étale-locally factorial 
model" of XU , of which the Néron model is the smooth locus.
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