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Part I

Nodal curves, dual graphs and

resolutions

1 Local structure of nodal curves and their dual

graphs

1.1 First de�nitions

The results of this subsection are mostly either well-known facts about nodal
curves, or come from [21]. When the proofs are short enough, we reproduce
them for convenience.

De�nition 1.1. A graph G is a pair of �nite sets (V,E), together with a map
f : E → (V × V )/S2. We call V the set of vertices of G and E its set of edges.
We think of f as the map sending an edge to its endpoints. We call loop any
edge in the preimage of the diagonal of (V × V )/S2. We will often omit f in
the notations and write G = (V,E).

Let v, v′ be two vertices of G. A path between v and v′ in G is a �nite sequence
(e1, ..., en) of edges, such that there are vertices v0 = v, v1, ..., vn = v′ satisfying
f(ei) = (vi−1, vi) for all 1 ≤ i ≤ n. We call n the length of the path. A chain
is a path as above, with positive n, where the only repetition allowed in the
vertices (vi)0≤i≤n is v0 = vn. A cycle is a chain from a vertex to itself. The
cycles of length 1 of G are its loops.

Let M be a semigroup. A labelled graph over M (or labelled graph if there is
no ambiguity) is the data of a graph G = (V,E) and a map l : E → M , called
edge-labelling. The image of an edge by this map is called the label of that edge.

De�nition 1.2. Let X be an algebraic space. We call geometric point of X a
morphism Spec k̄ → X where the image of Spec k̄ is a point with residue �eld k,
and k̄ is a separable closure of k (notice the "separable" instead of "algebraic").
Given a geometric point x′ over a point x of X, we will call étale local ring of
X at x′, and note OX,x′ , the strict henselization of OX,x determined by the
residue extension k(x′)/k(x). Given two geometric points s, t of X, we say that
t is an étale generization of s (or that s is an étale specialization of t) when
the morphism t → X factors through SpecOX,s. We will often omit the word
"étale" and just call them specializations and generizations.

De�nition 1.3. A curve over a separably closed �eld k is a proper morphism
X → Spec k with X of pure dimension 1. It is called nodal if it is connected,
and for every point x of X, either X/k is smooth at x, or x is an ordinary double
point (i.e. the completed local ring of X at x is isomorphic to k[[u, v]]/(uv)).

A curve (resp. a nodal curve) over a scheme S is a proper, �at, �nitely presented
morphism X → S such that all its geometric �bers are curves (resp. nodal
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curves).

Remark 1.3.1. By [22], Proposition 10.3.7, our de�nition of nodal curves is
unchanged if one de�nes geometric points with the standard algebraic closures
instead of separable closures.

De�nition 1.4. Let S be a scheme, s a point of S, and s̄ a geometric point
mapping to s. We will call étale neighbourhood of s̄ in S the data of an étale
morphism of schemes V → S, a point v of V , and a factorization s̄→ v → s of
s̄ → s. Etale neighbourhoods naturally form a codirected system, and we call
étale stalk of S at s the limit of this system. The étale stalk of S at s is an
a�ne scheme, and we call étale local ring at s, and note OetS,s, its ring of global
sections. We will sometimes keep the choice of geometric point s̄ implicit and
abusively call (V, v), or even V , an étale neighbourhood of s in S.

Remark 1.4.1. The étale local ring of S at s is a strict henselization of the
Zariski local ring OS,s. The étale local ring of S at s̄ is the strict henselization
determined by the separable closure k(s)→ k(s̄).

1.2 The local structure

Proposition 1.5. Let S be a locally noetherian scheme and X/S be a nodal
curve. Let s be a geometric point of S and x be a non-smooth point of Xs.
There exists a unique principal ideal (∆) of the étale local ring OetS,s, called the
singular ideal of x, such that

ÔetX,x ' ÔetS,s[[u, v]]/(uv −∆)

Proof. This is [21], Proposition 2.5.

Remark 1.5.1. The singular ideal of x is generated by a nonzerodivisor if and
only if X/S is generically smooth in a neighbourhood of x.

1.3 The dual graph at a geometric point

De�nition 1.6. Let X, S be as above and s be a geometric point of S. We
de�ne the dual graph of X at s to be the graph whose vertices are the irre-
ducible components of Xs, and whose edges are the singular points of Xs: the
two vertices an edge connects are the two (not necessarily distinct) irreducible
components the singular point belongs to. We also make it a labelled graph
over the commutative semigroup of nontrivial principal ideals of OetS,s: the label
of an edge is the singular ideal of the corresponding singular point.

When S is strictly local, we will sometimes refer to the dual graph of X at the
closed point as simply "the dual graph of X".

De�nition 1.7. A nodal curve X over a �eld k is said to be split if its sin-
gular points are rational, and all its irreducible components are geometrically
irreducible and smooth. A nodal curve is split when all its �bers are split. This
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implies that there is no geometric point of the base over which the dual graph
of the curve has loops.

Proposition 1.8. Let S′ → S be a morphism of locally noetherian schemes,
X/S a nodal curve, s a geometric point of S, and s′ a geometric point of S′

such that s′ → S is a generization of s→ S. Let X ′ be the base change of X to
S′, Γ and Γ′ be the dual graphs, respectively of X at s and of X ′ at s′.

Let R := OetS,s; R′ := OetS′,s′ , and φ be the natural map SpecR′ → SpecR. Then
Γ′ is obtained from Γ by contracting all edges whose label becomes invertible in
R′, and pulling back the labels of the other edges by φ.

In particular, if s′ has image s, Γ and Γ′ are isomorphic as non-labelled graphs,
and the labels of Γ′ are obtained by pulling back those of Γ.

Proof. This is [21], Remark 2.12. We reprove it here.

We can reduce to S = SpecR and S′ = SpecR′ a�ne and strictly local (i.e.
isomorphic to spectra of strictly henselian local rings), of respective closed points
s and s′.

Let x be a singular point of X of image s, and ∆ be a generator of its (principal)
singular ideal. Then we can choose an isomorphism ÔX,x = R̂[[u, v]]/(uv −∆).

This yields ÔX,x⊗RR′ = R̂⊗RR′[[u, v]]/(uv−∆). The ring R̂⊗RR′ is local, with
completion R̂′ with respect to the maximal ideal: as desired, if ∆ is invertible
in R′, then X ′ is smooth above a neighbourhood of x, and otherwise, X ′ has
exactly one singular closed point of image x, with singular ideal ∆R′ .

Example 1.9. With notations as above, in the case S = S′, we have de�ned
the specialization maps of dual graphs: take s, ξ geometric points of S with s
specializing ξ, we have a canonical map from the dual graph at s to the dual
graph at ξ, contracting an edge if and only if its label becomes the trivial ideal
in OetS,ξ.

It can be somewhat inconvenient to always have to look at geometric points.
We can often avoid it as in [18], by reducing to a case in which the dual graphs
already make sense without working étale-locally on the base.

1.4 Quasisplitness, dual graphs at non-geometric points

De�nition 1.10 (see [18], De�nition 4.1). We say a nodal curve X → S is
quasisplit if the two following conditions are met:

1. for any point s ∈ S and any irreducible component E of Xs, there is a
smooth section S → (X/S)sm intersecting E;

2. the singular locus Sing(X/S)→ S is of the form∐
i∈I

Fi → S,
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where the Fi → S are closed immersions.

Example 1.11. Consider the real conic

X = Proj(R[x, y, z]/(x2 + y2)).

It is an irreducible nodal curve over SpecR, but the base change XC has two
irreducible components: X is not quasisplit over SpecR.

On the other hand, consider the real projective curve

Y = Proj(R[x, y, z]/(x3 + xy2 + xz2)).

It has two irreducible components (respectively cut out by x and by x2+y2+z2),
both geometrically irreducible. The singular locus of Y/R consists of two C-
rational points, with projective coordinates (0 : i : 1) and (0 : −i : 1), at which
YC is nodal. Since Sing(Y/R) is not a disjoint union of R-rational points, Y
is not quasisplit over SpecR. However, both X and Y become quasisplit after
base change to SpecC.
Remark 1.11.1. Our de�nition of quasisplitness is similar to that of [18], but
more restrictive.

Remark 1.11.2. For a quasisplit nodal curve X/S and a point s ∈ S, for any
geometric point s′ of S of image s, the irreducible components of Xs′ are in
canonical bijection with those ofXs by the �rst condition de�ning quasisplitness,
and the singular ideals of X at s′ come from principal ideals of the Zariski local
ring OS,s by the second condition. Thus we can de�ne without ambiguity the
dual graph of X at s: its vertices are the irreducible components of Xs, and
it has an edge for every non-smooth point x ∈ Xs, with endpoints the two
components x meets, labelled by the principal ideal of OS,s that gives rise to
the singular ideal when we base change to a strict henselization.

From now on, we will call the latter the singular ideal of X at x, and talk
freely about the dual graphs of quasisplit curves at (not necessarily geometric)
�eld-valued points of S. This can clash with De�nition 1.6 when x is a singular
point of a geometric �ber of X/S. Unless speci�ed otherwise, when there is an
ambiguity, we always privilege De�nition 1.6.

Lemma 1.12. Quasisplit curves are stable under arbitrary base change.

Proof. Both conditions forming the de�nition of quasisplitness are stable under
base change.

Lemma 1.13. Let S be a strictly local scheme and X/S a nodal curve. Then
X/S is quasisplit.

Proof. There is a section through every closed point in the smooth locus of X/S,
so in particular there is a smooth section through every irreducible component
of every �ber. Proposition 1.5 implies the map Sing(X/S) → S is a disjoint
union of closed immersions.

Lemma 1.14. Let S be a locally noetherian scheme and X/S a nodal curve.
Then every point s ∈ S has an étale neighbourhood (V, v) such that XV /V is
quasisplit.
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Proof. By Lemma 1.13, and using the fact X/S is of �nite presentation, there
are étale neighbourhoods V1 and V2 of s such that the singular locus ofXV1

/V1 is
a disjoint union of closed immersions and there are smooth sections through all
irreducible components of all �bers of XV2/V2. Both conditions are stable under
further étale localization, so the base change ofX/S to V1×SV2 is quasisplit.

Corollary 1.15. Let S be a locally noetherian scheme and X/S a nodal curve.
There is an étale covering morphism V → S such that XV /V is quasisplit.

Proof. By the preceding lemma, every point s ∈ S admits an étale neighbour-
hood Vs such that XVs

/Vs is quasisplit, and we can pick V =
∐
s∈X

Vs.

Lemma 1.16. Let S be a locally noetherian scheme, X/S a quasisplit nodal
curve, s a point of S and x a singular point of Xs. Quasisplitness of X/S gives
a factorization

x→ F → Sing(X/S)→ X → S,

where F → S is a closed immersion and F → Sing(X/S) is the connected
component containing x. Then, there is an étale neighbourhood (V, y) of x in X;
two e�ective Cartier divisors C,D on V ; and an isomorphism V ×XF = C×V D
such that V ×S F is the union of C and D.

Proof. Let s̄ be a geometric point of S mapping to s, and x̄ = x ×s s̄. By

Proposition 1.5, we have an isomorphism ÔetX,x̄ = ÔetS,s[[u, v]]/(uv −∆), where
∆ is a generator of the singular ideal of x in OetS,s̄. The base change of F/S to
SpecOetS,s̄ is cut out by ∆, and the zero loci Cu of u and Cv of v are e�ective

Cartier divisors on ÔetX,x̄, intersecting in ÔetX,x̄/(u, v) = F ×X Spec ÔetX,x̄. The

union of Cu and Cv is ÔetS,s̄[[u, v]]/(∆, uv), so the proposition follows by a limit
argument.

2 Primality and base change

In this section, we will discuss questions of permanence of primality (of an
element of an integral regular ring) under étale maps, smooth maps and com-
pletions. One of the reasons these considerations are important to talk about
Néron models of nodal curves is that a nodal curve over an excellent and regular
base admits local sections through a singular point if and only if the label of
this singular point is reducible (Lemma 4.3).

An element ∆ of a regular local ring R is prime in Rsh when the quotient
R/(∆) is unibranch (i.e. has integral strict henselization), so we are interested
in questions of permanence of unibranch rings under tensor product. For a
more detailed discussion on unibranch rings or counting geometric branches in
general, see [29], chapitre IX. We also refer to [12], 23.2.

In [31], Sweedler gives a necessary and su�cient condition for the tensor product
of two local algebras over a �eld to be local. Since we are interested in how étale
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stalks behave under base-change, what we would like is a suitable su�cient
condition for algebras over a strictly local ring. Sweedler's proof adapts well to
this situation: this is the object of the following lemma.

Lemma 2.1. Let R be a strictly henselian local ring, R → A an integral mor-
phism of local rings with purely inseparable residue extension, and R → B any
morphism of local rings. Then A ⊗R B is local, and its residue �eld is purely
inseparable over that of B.

Proof. Let m be a maximal ideal of A⊗RB. The map B → A⊗RB is integral
so it has the going-up property ([30, Tag 00GU]), therefore the inverse image of
m in B is a maximal ideal: it must be mB . Thus m contains A⊗R mB .

In particular, m also contains the image of mR in A ⊗R B: it corresponds to
a maximal ideal of A ⊗R B/(mRA ⊗R B), that we will still call m. We have a
commutative diagram

kR //

��

B/mRB

��
A/mRA // A⊗R B/(mRA⊗R B).

Since A/mRA is local and integral over the �eld kR, its maximal ideal mA is
nilpotent and is its only prime. The inverse image of m in A/mRA is a prime
ideal, so it can only be mA. This shows that, as an ideal of A ⊗R B, m also
contains mA ⊗R B.

Every maximal ideal of A ⊗R B contains both mA ⊗R B and A ⊗R mB , so
the maximal ideals of A ⊗R B are in bijective correspondence with those of
kA ⊗kR kB = A ⊗R B/(mA ⊗R B + A ⊗R mB). We will now show the latter is
local, with purely inseparable residue extension over kB .

By hypothesis, the extension kA/kR is purely inseparable. If kR has character-
istic 0, then kA = kR and we are done. Suppose kR has characteristic p > 0.
For any x ∈ kA⊗kR kB , we can write x as a �nite sum

∑
i∈I

λi⊗µi with the λi, µi

in kA, kB respectively. There is an integer N > 0 such that for all i, λp
N

i is in

kR. Therefore xp
N

=
∑
i∈I

λp
N

i µp
N

i is in kB , and x is either nilpotent or invertible.

It follows that kA ⊗kR kB is local, with maximal ideal its nilradical, and that
its residue �eld is purely inseparable over kB as claimed.

Lemma 2.2. Let (R,m) be an integral and strictly local noetherian ring, and
R→ R′ a smooth ring map. Let p be a prime ideal of R′ containing mR′. Call
R̃′ a strict henselization of R′p. Then R′p is geometrically unibranch, i.e. R̃′ is
an integral domain.

Proof. We know R̃′ is reduced since it is a �ltered colimit of smooth R-algebras.
Let B,B′ be the integral closures of R,R′p in their respective fraction �elds.

The ring R′p is integral so by [29], chapitre IX, corollaire 1, R̃′ is an integral
domain if and only if B′ is local and the extension of residue �elds of R′p → B′

6

https://stacks.math.columbia.edu/tag/00GU


is purely inseparable. But any smooth base change of B/R remains normal (see
[22], Corollary 8.2.25), so B ⊗R R′p is normal as a �ltered colimit of normal B-
algebras. Moreover, any normal algebra over R′p must factor through B ⊗R R′p,
so we have B′ = B ⊗R R′p. Applying Lemma 2.1, we �nd that B′ is local and
the extension of residue �elds of R′p → B′ is purely inseparable, which concludes
the proof.

Corollary 2.3. Let S be a regular scheme, Y → S a smooth morphism and
y → Y a geometric point. Then for any prime element ∆ of OetS,y, the image of
∆ in OetY,y is prime.

Proof. Base change to SpecOetS,y/(∆), replace Y by an a�ne neighbourhood of
y in Y , and apply Lemma 2.2.

Lemma 2.4. Let R be a strictly henselian excellent local ring and R̂ its com-
pletion with respect to the maximal ideal. Then an element ∆ of R is prime in
R if and only if it is in R̂.

Proof. The nontrivial implication is the direct sense. Suppose ∆ is prime in
R. Since R is excellent, the morphism R → R̂ is regular. Then by Popescu's
thorem ([30, Tag 07GB]), R̂ is a directed colimit of smooth R-algebras. We
conclude by writing R/(∆) → R̂/(∆) as a colimit of smooth R/(∆)-algebras
and applying Lemma 2.2.

Lemma 2.5. Let S be an excellent and regular scheme, X/S an S-scheme of
�nite presentation, s̄ a geometric point of S, and x a closed point of Xs̄ with an

isomorphism ÔetX,x = ÔetS,s̄[[u, v]]/(uv −∆) for some ∆ ∈ ms̄ ⊂ OetS,s̄. For every
t1, t2 ∈ ms̄ such that t1t2 = ∆, there exists an étale neighbourhood S′ → S of s̄

and a section S′ → X through x such that the induced map ÔetX,x → ÔetS′,s̄ sends
u, v respectively to a generator of (t1) and a generator of (t2).

Proof. Put R = OetS,s̄ and consider the map ÔetX,x → R̂ that sends u, v to t1, t2

respectively. Compose it with OetX,x → ÔetX,x to get a map f0 : OetX,x → R̂.

For noetherian local rings, quotients commute with completion with respect to
the maximal ideal, so two distinct ideals are already distinct modulo some power

of the maximal ideal. Let
n∏
i=1

∆νi
i be the prime factor decomposition of ∆ in R.

Principal ideals of R of the form (∆µi

i ) with 0 ≤ µi ≤ νi are pairwise distinct
and in �nite number, so there exists some N ∈ N such that their images in
R/mNR are pairwise distinct. Since R is henselian and excellent, it has the Artin
approximation property ([30, Tag 07QY]), so there exists a map f : OetX,x → R

that coincides with f0 modulo mN
R . This f induces a map f̂ : ÔetX,x → R̂. Call

a, b the respective images of u, v by f̂ , we have a = t1 and b = t2 in R/mNR . But
ab = ∆ in R̂ and, by Lemma 2.4, ∆ has the same prime factor decomposition in
R and R̂, so the only principal ideals of R̂ containing ∆ are of the form (∆µi

i )

with 0 ≤ µi ≤ νi. By de�nition of N we get aR̂ = t1R̂ and bR̂ = t2R̂. Since
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X/S is of �nite presentation, f comes from an S-morphism S′ → X where S′

is an étale neighbourhood of s̄ in S.

3 Sections of nodal curves

We present a few technicalities regarding sections of a quasisplit nodal curve
X/S. There is a double interest in this. First, blow-ups of nodal curves in the
ideal sheaves of sections will be an important tool to construct ns-Néron models
of smooth curves with nodal reduction. Second, we can view the Néron mapping
property as a condition of extension of rational points into sections after smooth
base change. Thus, we will be interested in conditions under which a section
of a nodal curve factors through the blowing-up in the ideal sheaf of another
section.

The basis for this formalism was thought of together with Giulio Orecchia, and
these notions should appear again in a future joint work describing the sheaf
of regular models of a nodal curve, smooth over the complement of a normal
crossings divisor.

3.1 Type of a section

We will de�ne a combinatorial invariant, the type of a section, summarizing
information about the behavior of said section around the singular locus of a
nodal curve X/S. Later on, we will show that sections of all types exist étale-
locally on the base (Proposition 3.9) and that the type of a section locally
characterizes the blowing-up of X in the ideal sheaf of that section (Corollary
4.7).

De�nition 3.1. Let S be a regular scheme and s→ S a geometric point. Let
X/S be a nodal curve, smooth over a dense open subscheme U of S. Let x be a
singular point of Xs, we call thickness of x (in X/S) the image of the singular
ideal of x in the monoid OetS,s/(OetS,s)∗ of principal ideals of OetS,s.

De�nition 3.2. Let S be a locally noetherian scheme, X/S a quasisplit nodal
curve, s a point of S and x a singular point of Xs. Let F be the connected
component of Sing(X/S) containing x. Then the set of connected components
of (X\F ) ×X SpecOetX,x ×S F is a pair {C,D} (see Proposition 1.5 or Lemma
1.16), on which the Galois group AutOS

(OetS,s) = Gal(k(s)sep/k(s)) acts. If this
action is trivial, we say X/S is orientable at x, and we call orientations of X/S
at x the ordered pairs (C,D) and (D,C). The scheme-theoretical closures of
C and D in SpecOetX,x are e�ective Cartier divisors, and we will often also call
them C and D.

Remark 3.2.1. The curve X/S is orientable at x if and only if the preimage of
x in the normalization of Xs consists of two k(s)-rational points, in which case
an orientation is the choice of one of these points. Roughly speaking, this also
corresponds to picking an orientation of the edge corresponding to x in the dual
graph of X at s. The "roughly speaking" is due to the case of loops: there is an
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ambiguity on how to orient them. We could get rid of this ambiguity by using
a heavier notion of dual graphs (such as the tropical curves often used in log
geometry), but this work does not require it.

Remark 3.2.2. Since the base change of X/S to SpecOetS,s is orientable at x,
there is an étale neighbourhood (V, v) of s in S such that XV /V is orientable
at x×s v.

Lemma 3.3. Let S be a locally noetherian scheme, X/S a quasisplit nodal
curve, s a point of S and x a singular point of Xs. Let x′ be a singular point of
X/S specializing to x and s′ the image of x′ in S. Suppose X/S is orientable
at x, then it is orientable at x′. Moreover, in that case, there is a canonical
bijection between orientations at x and orientations at x′.

Proof. Suppose X/S is orientable at x and let (C1, C2) be an orientation at x.
Let F be the connected component of Sing(X/S) containing x and x′. Pick a
(non-canonical) isomorphism

OetX,x = OetS,s[[u, v]]/(uv −∆). (1)

Permuting u and v if necessary, we can assume C1 and C2 come from the zero
loci of u and v respectively. Pick a (canonical up to the residue extension
k(s)sep → k(s′)sep) factorization

SpecOetS,s′ → SpecOetS,s → S.

Then, tensoring by OetS,s′ in equation (1), we get an isomorphism

OetX,x′ = OetS,s′ [[u, v]]/(uv −∆),

and the two connected components C ′1 and C ′2 of (X\F ) ×X SpecOetX,x′ ×S F
come from the zero loci of u and v. Therefore, in order to prove that X/S
is orientable at x′ and that the order (C ′1, C

′
2) is canonically induced by the

order (C1, C2), we only need to know that the action of G = AutOet
S,s

(OetS,s′) on
{C ′1, C ′2} is trivial, which is true since the action of G on OetS,s′ [[u, v]]/(uv −∆)
preserves the zero loci of u and v.

From now on, given an orientation (C1, C2) at a singular point x, we will also
write (C1, C2) for the induced orientation at a singular generization of x.

De�nition 3.4 (type of a section). Let X/S be a quasisplit nodal curve with
S regular. Suppose X is smooth over a dense open subscheme U of S. Let s be
a point of S and x a singular point of Xs at which X/S is orientable. Pick an
orientation (C1, C2) at x and an isomorphism

ÔetX,x = ÔetS,s[[u, v]]/(uv −∆x),

where C1 corresponds to u = 0 and ∆x is a generator of the singular ideal of x
in OetS,s. We call type at x any element of the monoid OetS,s/(OetS,s)∗ strictly com-
prised between 1 and the thickness of x (for the order induced by divisibility).
There are only �nitely many types at x, given by the association classes of the
strict factors of ∆x in OetS,s (which is a unique factorization domain).

9



Let σ be a section of X/S through x. It induces a morphism

σ̂# : ÔetS,s[[u, v]]/(uv −∆x)→ ÔetS,s

By Lemma 2.4, ∆x has the same prime factor decomposition in OetS,s and in ÔetS,s,
so there is a canonical embedding of the submonoid of ÔetS,s/(ÔetS,s)∗ generated by
the factors of ∆x into OetS,s/(OetS,s)∗. We call type of σ at x relatively to (C1, C2)

the image of u in inOetS,s/(OetS,s)∗. It is a type at x, and sinceX/S is orientable at

x, it does not depend on our choice of isomorphism ÔetX,x = ÔetS,s[[u, v]]/(uv−∆x)
as long as C1 is given by u = 0. When they are clear from context, we will omit
x and (C1, C2) from the notation and just call it the type of σ. In general, given
a type T at x, there need not exist a section of type T .

If the type of a section σ at x relatively to (C1, C2) is equal to the type of a
section σ′ at x relatively to (C2, C1), we say σ and σ′ are of opposite type at x.

Lemma 3.5. Let X/S, s, x, (C1, C2) and U be as in De�nition 3.4, and σ be
a section S → X of type T at x. Let s′ be a generization of s. Then there is
a singular point of Xs′ specializing to x if and only if the thickness of x does
not map to 1 in OetS,s′/(OetS,s′)∗. Suppose it is the case and write x′ this singular
point, then

• if the image of T in OetS,s′/(OetS,s′)∗ is either 1 or the thickness of x′, then
σ(s′) is a smooth point of Xs′ ;

• otherwise, the image of T is a type at s′, that we still write T , and σ is of
type T at x′ relatively to (C1, C2).

Proof. By Proposition 1.5, if the thickness of x maps to 1 in OetS,s′/(OetS,s′)∗, then
all points of X mapping to s′ and specializing to x are S-smooth, and otherwise
there is a unique singular point x′ of Xs′ specializing to s. Suppose the latter
holds, then by Lemma 3.3, (C1, C2) induces an orientation of X/S at x′, and
the lemma follows from the de�nition of types.

Remark 3.5.1. One can think of the thickness of x as the relative version of a
length, and of the type of a section σ relatively to an orientation (C1, C2) as
a measure of the intersection of σ with C1, seen as an e�ective Cartier divisor
locally around x as in Lemma 1.16. In other words, the type is a measure of
"how close to C1" the section is.

Proposition 3.6. Let S be a regular scheme and X/S a quasisplit nodal curve,
smooth over some dense open subscheme U of S. Let σ and σ′ be two S-sections
of X. Then the union of (X/S)sm with the set of singular points x of X/S at
which σ and σ′ have the same type (resp. opposite types) is an open subscheme
of X.

Proof. Since the singular locus Sing(X/S) is �nite over S, every singular point
x of X/S has a Zariski-open neighbourhood V ⊂ X containing only S-smooth
points and singular generizations of x. Thus, since the smooth locus of X/S is
open in X, the proposition reduces to the following claim: if σ and σ′ have the
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same type (resp. opposite types) at a singular geometric point x → X, then
they have the same type (resp. opposite types) at every singular generization
of x. This claim is true by Lemma 3.5.

De�nition 3.7. The open subschemes of X described in Proposition 3.6 above
are called respectively the same type locus and the opposite type locus of σ
and σ′.

3.2 Admissible neighbourhoods

Here we will show that, when one works étale-locally on the base (in a sense
that we will make precise), one can always assume sections of all types exist.

De�nition 3.8. Let S be a regular scheme and X/S a nodal curve, smooth over
a dense open U of S. Let s be a point of S and (V, v) an étale neighbourhood
of s in S. We say (V, v) is an admissible neighbourhood of s (relatively to X/S)
when the following conditions are met:

1. XV /V is quasisplit;

2. XV /V is orientable at all singular points of Xv;

3. for any singular point x of Xv with singular ideal (∆x) ⊂ OetS,s, all prime
factors of ∆x in OetS,s come from global sections of OV ;

4. for every singular point x of Xv (however oriented), there are sections
V → XV of all types at x.

When s̄→ S is a geometric point with image s and (V, v) an admissible neigh-
bourhood of s with a factorization s̄ → v, we will also sometimes call V an
admissible neighbourhood of s̄.

Remark 3.8.1. In the situation of De�nition 3.8, if S is strictly local, then it is
an admissible neighbourhood of its closed point.

Proposition 3.9. Let X/S be a nodal curve, where S is a regular and excellent
scheme. Then any point s ∈ S has an admissible neighbourhood.

Proof. Replacing S by an étale neighbourhood, we can assume X/S is quasisplit
(for example using Lemma 1.13 and the fact X/S is of �nite presentation).
By Remark 3.2.2 and since Xs has �nitely many singular points x1, ..., xn, we
can assume X/S is orientable at all the xi. Each xi has only �nitely many
prime factors in its singular ideal in OetS,s, so we can shrink S again into a
neighbourhood satisfying condition 3. of the de�nition of admissibility. The
fact this V can be shrinked again until it meets all four conditions follows from
Lemma 2.5.

Remark 3.9.1. If (V, v) is an admissible neighbourhood of a point s of S, then V
need not be an admissible neighbourhood of all of its points (even if V is strictly
local with closed point v, condition 3. of the de�nition may fail, see Example
6.10). Thus, it is not easy a priori to �nd a good global notion of admissible
cover.

11



The next proposition states that admissible neighbourhoods are compatible with
smooth (and not just étale) morphisms.

Proposition 3.10. Let S be a regular scheme and X/S a quasisplit nodal curve,
smooth over some dense open subscheme U of S. Let Y → S be a smooth
morphism and y → Y a geometric point. Let V be an admissible neighbourhood
of y in S, then V ×S Y is an admissible neighbourhood of y in Y .

Proof. This follows from Corollary 2.3 and the de�nition of admissible neigh-
bourhoods.

4 Re�nements and resolutions

This section is dedicated to techniques aiming at constructing inductively nodal
models of a smooth curve with prime singular ideals, starting from an arbitrary
nodal model. When Néron models are concerned, the interest of nodal models
with prime labels lies in two facts: they are locally factorial, which is a crucial
hypothesis in the existence result of [21] for Néron models of Jacobians, and all
their sections factor through their smooth locus, which will allow us to construct
Néron models of curves as gluings of smooth loci of nodal models. We will now
make these two statements precise and prove them, and the consequences will
be developped in part II.

4.1 Arithmetic complexity and motivation for re�nements

We start by de�ning what will be our recursion parameter, the arithmetic com-
plexity of a nodal curve.

4.1.1 Arithmetic complexity

De�nition 4.1. Let M be the free commutative semigroup over a set of gener-
ators G. We call word length of m ∈ M , and note wl(m), the (unique) n ∈ N∗

such that we can write m =
n∏
i=1

gi with all the gi in G.

Given a labelled graph Γ = (V,E, l) over M and an edge e ∈ E, we call arith-
metic complexity of e and note ne the natural integer wl(l(e)) − 1. We call
arithmetic complexity of Γ and note nΓ the sum of the arithmetic complexities
of all its edges.

Given a nodal curve X/S where S = SpecR is a local unique factorization
domain, the semigroup of nontrivial principal ideals of R is the free commutative
semigroup over the set of primes of height 1. From now on, we will talk freely
about arithmetic complexities of edges of dual graphs, always implicitly referring
to this set of generators.
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Thus, when X/S is quasisplit, we de�ne the arithmetic complexity of a closed
singular point x, noted nx, as the arithmetic complexity of the corresponding
edge of the dual graph: If S is local, we de�ne the arithmetic complexity of X,
noted nX , to be that of its dual graph.

Note that X is of arithmetic complexity 0 if and only if every singular ideal is
prime: it is an integer measuring "how far away from being prime" the singular
ideals are. Arithmetic complexity is not stable even under étale base change.

4.1.2 Factoriality of completed étale local rings

Lemma 4.2. Let R be a regular complete local ring, and ∆ be an element of
mR. Let Â = R[[u, v]]/ (uv −∆), then Â is a unique factorization domain if
and only if ∆ is prime in R.

Proof. Suppose that Â is a unique factorization domain, and let d be a prime
factor of ∆ in R. Call S the complement of the prime ideal (u, d) in Â. Let p be a
nonzero prime ideal of S−1Â. Then, p contains a nonzero element x = uxu+xv,
with xu and xv in R[[u]] and R[[v]] respectively. Since p 6= S−1Â, we have d|xv.
Call n and m respectively the maximal elements of N∗∪{+∞} such that un|uxu
and dn|xv. Since x is nonzero, we know either n or m is �nite. If n ≤ m, then
vnx = ∆n xu

un−1 + dn v
nxv

dn is in p, and is associated to dn in S−1Â, so we obtain
d ∈ p, from which it follows that p = (u, d). If m < n, a similar argument shows
that p contains um and thus equals (u, d). Therefore, S−1Â has Krull dimension
one, i.e. (u, d) has height 1 in Â. Since Â is a unique factorization domain, it
follows that (u, d) is principal in it, from which we deduce that ∆ and d are
associated in Â. In particular, ∆ is prime in R.

The interesting part is the converse: let us assume that ∆ is prime in R. We
want to show that Â is a unique factorization domain. We �rst prove that
A := R[u, v]/(uv −∆) is a unique factorization domain: let p be a prime ideal
of A of height 1, we have to show p is principal in A. We observe that u
is a prime element of A, since the quotient A/(u) = R/(∆)[v] is an integral
domain. Therefore, if p contains u, then p = (u) is principal. Otherwise, p
gives rise to a prime ideal of height 1 in Au := A[u−1], which is principal
since A[u−1] = R[u, u−1] is a unique factorization domain. In that case, write
pAu = fAu for some f ∈ Au. Multiplying by a power of the invertible u of Au,
we can choose the generator f to be in A\uA. Since p is a prime ideal of A not
containing u, we know p contains f and thus fA. We will now prove the reverse
inclusion. Let x be an element of p. The localization pAu = fAu contains x,
so x satis�es a relation of the form unx = fy for some n ∈ N and some y ∈ A.
But since u is prime in A, we know un divides y and x is in fA.

Now, we will deduce the factoriality of Â from that of A. The author would like
to thank Ofer Gabber for providing the following proof. Let q be a prime ideal
of Â of height 1, we will show q is principal. We put S = SpecR, X = SpecA,
X̂ = Spec Â, and Z = Spec(Â/q), so that Z is a prime Weil divisor on X̂. Let
η, η′ be the generic points of the respective zero loci of u, v in the closed �ber
Spec kR[[u, v]]/(uv) of X̂ → S. Since u and v are prime elements of Â, we can
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once again assume Z contains neither η nor η′. It follows that the closed �ber
of Z → S is of dimension 0: the morphism Z → S is quasi-�nite, hence �nite by
[10], chapter 0, 7.4. A fortiori, Â/q is �nite over A, so by Nakayama's lemma,
the morphism A → Â/q is surjective. Call p its kernel. Then A/p = Â/q is
mA-adically complete and separated, so it maps isomorphically to its completion
Â/pÂ. The prime ideal p of A is of height 1 since X̂ → X is a �at map of normal
noetherian schemes. Therefore, p is principal in A, and q = pÂ is principal in
Â.

4.1.3 Factoring sections through the smooth locus

Lemma 4.3. Let X/S be a quasisplit nodal curve, where S = SpecR is a
regular, strictly local and excellent scheme. Let σ be a section of X/S. Let
s ∈ S be the closed point and x = σ(s), then x is either smooth over S, or
singular of arithmetic complexity ≥ 1.

Proof. Suppose by contradiction that x is singular of arithmetic complexity 0.
The section σ factors through SpecOX,x, and gives rise to a Spec R̂-section of

Spec ÔX,x. As ÔX,x is of the form R̂[[u, v]]/(uv−∆) for some prime ∆ ∈ R, this
section is given by a morphism R̂[[u, v]]/(uv−∆)→ R̂, which is fully described
by the images of u and v. But ∆ is prime in R̂ by Lemma 2.4, so either u or v
has invertible image in R̂. Thus the image of s factors through the complement
of one of the two irreducible components of Spec X̂s,x, a contradiction.

4.2 Re�nements of graphs

Now, to reap the bene�ts of the properties of nodal curves with prime labels, all
we need is an algorithm that takes a generically smooth nodal curve as an input,
and returns a nodal curve, birational to the �rst, with strictly lower arithmetic
complexity.

De�nition 4.4. As in [21], De�nition 3.2, for a graph Γ = (V,E, l) with edges
labelled by elements of a semigroup M , we call re�nement of Γ the data of
another labelled graph Γ′ = (V ′, E′, l′) labelled by M and two maps

E′ → E

V ′ → E
∐

V

such that:

• every vertex v in V has a unique preimage v′ in V ′;

• for every edge e ∈ E with endpoints v1, v2 ∈ V , there is a chain C(e) from
v′1, v

′
2 in Γ′ such that the preimage of {e} in V ′

∐
E′ consists of all edges

and intermediate vertices of C(e);

• for all e ∈ E, the length of e is the sum of the lengths of all edges of C(e).
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We will often keep the maps implicit in the notation, in which case we call Γ′

a re�nement of Γ and write Γ′ � Γ. We say Γ′ is a strict re�nement of Γ and
note Γ′ ≺ Γ, if in addition the map E′ → E is not bijective.

Remark 4.4.1. Informally, a re�nement of a graph is obtained by "replacing
every edge by a chain of edges of the same total length". Suppose Γ′ � Γ, then
Γ′ ≺ Γ if and only if at least one of the chains C(e) is of length ≥ 2, i.e. if and
only if Γ′ has strictly more edges than Γ.

Now we want to blow up X in a way that does not a�ect XU , but re�nes the
dual graph. We will de�ne re�nements of curves (De�nition 4.5). We can obtain
any re�nement of a dual graph of X by iterating these re�nements of curves,
but they exist only étale-locally on the base.

4.3 Re�nements of curves

De�nition 4.5. Let S be a regular scheme and X/S a quasisplit nodal curve,
smooth over a dense open subscheme U of S. Let s be a point of S and x a
singular point of Xs at which X/S is orientable, and (C,D) an orientation of
X/S at x. Let T be a type at x. We will call T -re�nement of X (at x, relatively
to (C,D)) the blowing-up of X in the sheaf of ideals of a section S → X through
x, of type T . We will often omit x and (C,D) in the notation and just call these
T -re�nements of X.

A map X ′ → X is called a re�nement if it is a T -re�nement for some such
X,x, (C,D), T .

Remark 4.5.1. • If S is excellent, then any geometric point s ∈ S has an ad-
missible neighbourhood V by Proposition 3.9, soXV /V has a T -re�nement
for any type T at any singular point of Xs.

• Consider any morphism S′ → S where S′ is still regular (e.g. any smooth
map S′ → S). Let x be a singular point of X and x′ a singular point of X ′

of image x. Then any orientation of X/S at x pulls back to an orientation
of XS′/S

′ at x′; any type T at x pulls back to a type T ′ at x′; and any
T -re�nement pulls back to a T ′-re�nement.

• Let x ∈ X be a singular point at which X/S is orientable, and y a gener-
ization of x. By Lemma 3.5, for any type T at x and any T -re�nement
X ′ → X, either T corresponds to a type (still noted T ) at y, in which case
X ′ → X is a T -re�nement at y, or T becomes trivial at y, in which case
X ′ → X restricts to an isomorphism above a Zariski neighbourhood of y.

Lemma 4.6. Let f : X → S be a quasisplit nodal curve with S regular and
excellent. Suppose X is smooth over some dense open U ⊂ S. Let σ : S → X
be a section and φ : X ′ → X the blow-up in the ideal sheaf of σ.

Then φ is an isomorphism above the complement in X of the intersection of
Sing(X/S) with the image of σ. In particular, it is an isomorphism above the
smooth locus of X/S, which contains XU , so X ′ is a model of XU .
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Moreover, X ′ is a nodal curve, and its dual graphs are re�nements of those of
X. More precisely, let s be a point of S and suppose σ(s) is a singular point x
of Xs. Choose an orientation (C,D) of XOet

S,s
at x, and call T the type of σ at

x relatively to (C,D). Then, the singular ideal of x in OetS,s is generated by

∆x = ∆∆′,

where ∆ and ∆′ are lifts to OetS,s of T and of the opposite type of T respectively.
Let Γ,Γ′ be the respective dual graphs of X and X ′ at s, and let e be the edge
of Γ corresponding to x. Then e has label generated by ∆x = ∆∆′, and one
obtains Γ′ from Γ as follows:

• if e is not a loop, then C and D come from two distinct irreducible com-
ponents of Xs (that we still call C and D). In that case, Γ′ is obtained
from Γ by replacing e by a chain

EC D

(∆′) (∆)

where the strict transforms of C and D are still called C and D, and E is
the inverse image of x.

• if e is a loop, i.e. x belongs to only one component L of Xs, then Γ′ is
obtained from Γ by replacing e by a cycle

L E

(∆′)

(∆)

where the strict transform of L is still called L and E is the inverse image
of x.

Proof. The ideal sheaf of σ is already Cartier above the smooth locus of X/S
and outside the image of σ, so by the universal property of blow-ups ([30, Tag
0806]), we only need to describe φ above the étale localizations SpecOetX,x, where
x, s, (C,D) are as in the statement of the lemma. We can assume S = SpecR
is strictly local, with closed point s. Pick an isomorphism

ÔetX,x = R̂[[u, v]]/(uv −∆∆′)

such that C is locally given by u = 0. The map

σ̂ : ÔetX,x → R̂

yielded by σ sends u to a generator of ∆R̂ and v to a generator of ∆′R̂. Scaling
u and v by a unit of R̂ if necessary, we can assume σ̂(u) = ∆ and σ̂(v) = ∆′.
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The completed local rings of SpecOetX,x ×X X ′ can be computed using the
blowing-up of the algebra B := R[u, v]/(uv −∆∆′) in the ideal (u−∆, v −∆′)

(since the completion of B at (u, v,mR) is ÔX,x).

The latter is covered by two a�ne patches:

• the patch where u−∆ is a generator, given by the spectrum of

R[u, v, α]/((v −∆′)− α(u−∆), uα+ ∆′) ' R[u, α]/(uα+ ∆′)

since, in the ring R[u, v, α]/((v −∆′)− α(u−∆)), the element uv −∆∆′

is equal to (u−∆)(uα+ ∆′)

• and the patch where v−∆′ is a generator, where we obtain symmetrically
the spectrum of

R[v, β]/(vβ + ∆)

with the obvious gluing maps. Thus we see that X ′ remains nodal, and that
the edge e of Γ (of label (∆∆′)) is replaced in Γ′ by a chain of two edges, one
labelled (∆) and one labelled (∆′). It also follows from this description that the

strict transform of C (resp. D) in X ′ ×X Spec ÔetX,x contains the singularity of
label (∆′) (resp. (∆)).

Corollary 4.7. With the same hypotheses and notations as in Lemma 4.6,
for any two sections σ, σ′ of X/S, the blow-ups Y → X and Y ′ → X in the
respective ideal sheaves of σ and σ′ are canonically isomorphic above the same
type locus of σ and σ′ in X.

Proof. It su�ces to exhibit, for any point s → S and any singular point x of
Xs such that σ(s) = σ′(s) = x and σ, σ′ have the same type T at x, a Zariski
neighbourhood V of x in X and an isomorphism Y ×X V → Y ′×X V compatible
with the canonical identi�cations Y ×X Xsm = Xsm = Y ′ ×X Xsm. Since
X,Y, Y ′ are of �nite presentation over S, this can be done assuming S = SpecR
is strictly local, with closed point s. Using the universal property of blow-ups
([30, Tag 0806]), we reduce to proving that the pull-back of the ideal sheaf of σ′

(resp. σ) to Y (resp. Y ′) is Cartier. The proofs are symmetric, so we will only
show that the pull-back to Y of the ideal sheaf of σ′ is Cartier. This, in turn,

reduces to proving that the ideal sheaf of σ′ in Spec ÔetX,x becomes Cartier in

Y ×X Spec ÔetX,x. Pick an isomorphism

Â := R̂[[u, v]]/(uv −∆x) = ÔetX,x,

where ∆x ∈ R is a generator of the singular ideal of x. The map

Â→ R̂

corresponding to σ sends u, v to elements ∆,∆′ of R̂ with ∆∆′ = ∆x. Since σ
and σ′ have the same type at x, there is a unit λ ∈ R̂× such that the map

Â→ R̂
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corresponding to σ′ sends u and v to λ∆ and λ−1∆′ respectively. We have
reduced to proving that the sheaf given by the ideal (u− λ∆, v − λ−1∆′) of Â
becomes Cartier in the blow-up of Â in (u−∆, v −∆′). Put

A = R̂[u, v]/(uv −∆∆′),

then it is enough to prove that the ideal I = (u− λ∆, v− λ−1∆′) of A becomes
invertible in the two a�ne patches (as described in the proof of Lemma 4.6)
forming the blowing-up of A in (u−∆, v−∆′). By symmetry, we only check it
in the patch generated by u−∆, which is the spectrum of

A1 = R̂[u, α]/(uα+ ∆′),

where v maps to ∆′ + α(u−∆). We have I = (u− λ∆, λv−∆′), and in A1 we
can write

λv −∆′ = λ(∆′ + α(u−∆)) + uα

= −λα∆ + uα

= α(u− λ∆).

Thus, the preimage of I in A1 is the invertible ideal (u − λ∆), and we are
done.

4.4 Resolutions of nodal curves

Lemma 4.8. Let Γ,Γ′ be two labelled graphs over a free commutative semigroup.
If Γ′ � Γ (De�nition 4.4), then nΓ′ ≤ nΓ. If Γ′ ≺ Γ, then nΓ′ < nΓ.

Proof. Suppose Γ′ � Γ. Then, by de�nition, the sum of lengths of edges of Γ is
equal to the sum of lengths of edges of Γ′ and Γ′ has at least as many edges as
Γ, so nΓ′ ≤ nΓ.

If equality holds in the latter, then Γ′ and Γ have the same number of edges,
which, combined with the fact Γ′ � Γ, implies they are isomorphic.

Now we want, starting from X, to �nd a model of XU "re�ning Γs as much as
possible", in the sense that it will be of arithmetic complexity 0 and its dual
graph will be a re�nement of Γs. This model's alignment will then determine
the existence of a Néron model for the Jacobian of XU . We do it following the
ideas of [2], proposition 3.6, as follows:

De�nition 4.9. Let X be a nodal curve over a regular and strictly local scheme
S with closed point s, smooth over a dense open subscheme U ⊂ S. We call
resolution of X any nodal S-model X ′ of XU , obtained by a �nite sequence of
re�nements, and of arithmetic complexity 0.

Proposition 4.10. With notations and hypotheses as above, X admits a reso-
lution.
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Proof. The base S is strictly local so it is an admissible neighbourhood of s.
Take X ′ → X a �nite sequence of re�nements minimizing nX′ , then X ′ → X is
a resolution. Indeed, suppose it was not, then there would be a closed singular
point x of X ′ of arithmetic complexity ≥ 1. There would exist a type T at x,
and a T -re�nement X ′′ → X. We would have nX′′ < nX′ , a contradiction.

Remark 4.10.1. Resolutions are not unique in general. For example, consider
S = SpecC[[u, v]], and suppose X is a nodal curve over S with dual graph

C2C1

(uv)

There are two types at the closed singular point x of X/S with respect to
(C1, C2), namely the class T of u and the class T ′ of v. The T -re�nement and
the T ′-re�nement of X are both resolutions, but they are not isomorphic as
models of XU (they are not even isomorphic as schemes as soon as C1, C2 are
not isomorphic, e.g. of distinct genera).

De�nition 4.11. Let X be a quasisplit nodal curve over a regular scheme S,
smooth over a dense open subscheme U ⊂ S. Let s be a point of S. We say
X/S is square-free at s when all labels of edges of the dual graph of X ′ at s are
square-free. We say X is square-free if it is square-free at every point of S.

Remark 4.11.1. In the de�nition above, we consider the dual graphs at points
of S labelled by ideals of the Zariski local rings, see Remark 1.11.2. However, if
R→ Rsh is a strict henselization of a regular local ring, any square-free element
∆ ∈ R has square-free image in Rsh, so the de�nition would be unchanged if we
asked for the labels of the dual graphs at geometric points (which are ideals of
the étale local rings of S) to be square-free.

De�nition 4.12. Let X be a quasisplit nodal curve over a regular scheme S,
smooth over a dense open subscheme U ⊂ S. Let s be a point of S. We call
partial resolution of X at s any map X ′ → X, composition of a �nite number of
re�nements, such that X ′ is square-free at s. We will call partial resolution of X
over S, or just partial resolution of X if there is no ambiguity, a map X ′ → X
that is a partial resolution at every point of S.

Remark 4.12.1. The property "being a square-free principal ideal of the regu-
lar local ring R" is preserved by tensor product with R′ for any morphism of
local rings R → R′ that is a directed colimit of étale morphisms. Therefore, a
square-free quasisplit nodal curve remains square-free after base change to any
codirected limit of étale maps, e.g. a localization or a strict localization. In
particular, for any point s ∈ S and any geometric point s̄ above s, X ′ → X is
a partial resolution at s if and only if X ′ ×S SpecOetS,s̄ → X ×S SpecOetS,s̄ is a
partial resolution at the closed point.

Lemma 4.13. Let X/S be a quasisplit nodal curve, smooth over a dense open
U ⊂ S, with S regular. Then, the set of points s ∈ S at which X/S is square-free
is open in S.
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Proof. By quasisplitness, the singular locus of X/S is a disjoint union of closed 
immersions cut out by locally principal ideals I1, ..., In of OS . Thus, X is square-
free at a point t if and only if the quotient OS/Ii is reduced at t for every i, 
which is an open condition on S.

Proposition 4.14. Let X/S be a nodal curve, smooth over a dense open U ⊂ 
S, with S excellent and regular. Then, every point s ∈ S admits an étale 
neighbourhood V ⊂ S such that XV /V has a partial resolution.

Proof. Let s be a point of S, we will show it has such a neighbourhood. Shrink-
ing S if necessary, we assume S is an admissible neighbourhood of s. If the 
arithmetic complexity of X at s is not 0, then there is always a re�nement 
X ′ → X such that the arithmetic complexity of X ′ at s is strictly lower than 
that of X, so by induction we may assume all labels appearing in the dual graph 
of X at s are prime. In particular, X is square-free at s. The proposition now 
follows immediately from Lemma 4.13.
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