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Abstract 35 

 36 

Hierarchical cognitive control enables us to execute actions guided by abstract goals. Previous 37 

research has suggested that neuronal oscillations at different frequency bands are associated 38 

with top-down cognitive control, however, whether distinct neural oscillations have similar or 39 

different functions for cognitive control is not well understood. The aim of the current study was 40 

to investigate the oscillatory neuronal mechanisms underlying two distinct components of 41 

hierarchical cognitive control: the level of abstraction of a rule, and the number of rules that 42 

must be maintained (set-size). We collected electroencephalography (EEG) data in 31 men and 43 

women who performed a hierarchical cognitive control task that varied in levels of abstraction 44 

and set-size. Results from time-frequency analysis in frontal electrodes showed an increase in 45 

theta amplitude for increased set-size, whereas an increase in delta was associated with 46 

increased abstraction. Both theta and delta amplitude correlated with behavioral performance in 47 

the tasks but in an opposite manner: theta correlated with response time slowing when the 48 

number of rules increased whereas delta correlated with response time when rules became 49 

more abstract. Phase amplitude coupling analysis revealed that delta phase coupled with beta 50 

amplitude during conditions with a higher level of abstraction, whereby beta band may 51 

potentially represent motor output that was guided by the delta phase. These results suggest 52 

that distinct neural oscillatory mechanisms underlie different components of hierarchical 53 

cognitive control.   54 
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Significance Statement 55 

 56 

Cognitive control allows us to perform immediate actions while maintaining more abstract, 57 

overarching goals in mind and to choose between competing actions. We found distinct 58 

oscillatory signatures that correspond to two different components of hierarchical control: the 59 

level of abstraction of a rule and the number of rules in competition. An increase in the level of 60 

abstraction was associated with delta oscillations, whereas theta oscillations were observed 61 

when the number of rules increased. Oscillatory amplitude correlated with behavioral 62 

performance in the task. Finally, the expression of beta amplitude was coordinated via the 63 

phase of delta oscillations, and theta phase coupled with gamma amplitude. These results 64 

suggest that distinct neural oscillatory mechanisms underlie different components of hierarchical 65 

cognitive control.   66 
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Introduction 67 

 68 

Cognitive control orchestrates thoughts and actions according to internal goals (Norman and 69 

Shallice 1986, Braver 2012). The frontal cortex is central to cognitive control, where 70 

representations of rules and goals provide top-down influences over motor and perceptual 71 

systems to guide actions (Miller and Cohen 2001, Miller and D'Esposito 2005, Badre and Nee 72 

2018, Vogelsang and D'Esposito 2018). Previous research findings suggest that the frontal 73 

cortex is organized hierarchically along the rostral-caudal axis, where the caudal frontal cortex is 74 

involved in the control of concrete action representations, whereas the rostral prefrontal cortex 75 

is involved in the control of abstract rules, goals, and contexts (Badre and Nee 2018). We have 76 

previously demonstrated that at any particular level of representation, an appropriate action can 77 

be chosen from a number of competing rules (number of rules defined as set-size), and as 78 

competition increases, cognitive control is required to adjudicate among alternatives (Badre and 79 

D'Esposito 2007). 80 

It is proposed that rhythmic neural oscillations support a diverse range of cognitive 81 

functions, whereby oscillations in different frequency bands, ranging from slow delta oscillations 82 

to faster gamma oscillations, are generated by distinct biophysical mechanisms and are 83 

associated with different cognitive functions (for reviews see: (Sauseng, Griesmayr et al. 2010, 84 

Roux and Uhlhaas 2014, Helfrich and Knight 2016, Sadaghiani and Kleinschmidt 2016, Helfrich, 85 

Breska et al. 2019)). Phase amplitude coupling (PAC) between frequency bands, in which the 86 

phase of a slow oscillation like theta can modulate the amplitude of faster oscillations like 87 

gamma (Lisman and Jensen 2013, Nácher, Ledberg et al. 2013, Arnal, Doelling et al. 2014, 88 

Morillas-Romero, Tortella-Feliu et al. 2015, Voytek, Kayser et al. 2015, Heusser, Poeppel et al. 89 

2016), further supports inter-areal communication and interactions between cognitive functions. 90 

However, whether or not there are distinct neural oscillations associated with different 91 

components of hierarchical cognitive control is unknown. 92 
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In our previous human electrocorticography (ECoG) study, we found that tasks that 93 

required increased hierarchical cognitive control were associated with increased theta-band 94 

synchronization between the prefrontal and premotor/motor regions (Voytek, Kayser et al. 95 

2015). Furthermore, the phase of prefrontal theta oscillations showed increased coupling with 96 

the amplitude of gamma oscillations in the motor cortex (Voytek, Kayser et al. 2015). A series of 97 

non-human primate experiments have also found that beta-band oscillations are associated with 98 

rule representation in the frontal cortex, in which distinct neural populations represent different 99 

rules, and become more synchronized in beta frequency when the rule is behaviorally relevant 100 

(Buschman, Denovellis et al. 2012, Antzoulatos and Miller 2014, Antzoulatos and Miller 2016, 101 

Wutz, Loonis et al. 2018). Furthermore, updating the active rule representation increases delta 102 

oscillations in these same neural populations, preceded by a modulation in beta oscillations 103 

(Antzoulatos and Miller 2016). Together, these findings suggest that theta-gamma and delta-104 

beta band oscillations are associated with hierarchical cognitive control. However, in these 105 

experiments, tasks that engaged more abstract rules also had higher set-size (higher number of 106 

rules to select from), making it impossible to determine if the modulation of neural oscillations 107 

and phase-amplitude coupling by these cognitive processes are driven by set size or 108 

abstraction. In this study, our aim was to address this question.  109 

 110 

Materials and Methods 111 

 112 

Experimental Design and Statistical Analysis 113 

Thirty-one healthy participants (18 females; mean age = 20 years; range 18-34) with 114 

normal or corrected to normal vision were recruited from the University of California, Berkeley. 115 

Written consent was obtained prior to the start of the experiment and participants received 116 

monetary compensation for their participation. The study was approved by the University of 117 

California, Berkeley Committee for Protection of Human Subjects. 118 
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The experiment consisted of a single session of EEG during performance of the 119 

hierarchical cognitive control task. Behavioral performance, response time and accuracy, was 120 

analyzed using two-way repeated-measures ANOVA with two factors: abstraction (high and low) 121 

and set-size (high and low). Time frequency analysis was conducted using stimulus and 122 

response-locked epochs for the abstraction and set-size contrast. The time frequency analysis 123 

was restricted to a midfrontal electrode cluster that was defined using hierarchical clustering of 124 

the time frequency data independent of the contrasts of interest. We corrected for multiple 125 

comparisons and spurious findings using permutation testing with significance determined by 126 

cluster mass across all seven electrode clusters for the abstraction and set-size contrast. Next, 127 

the significant time frequency bands were correlated with response time as a function of 128 

abstraction and set-size using Pearson correlation. Finally, phase amplitude coupling (PAC) 129 

was computed between delta phase and beta amplitude and theta phase and gamma amplitude 130 

for each task condition. PAC values were inputted to a two-way repeated-measures ANOVA 131 

with two factors: abstraction and set-size. 132 

 133 

Experimental Task 134 

The task used in this study was adapted from two previously published studies (Badre 135 

and D'Esposito 2007, Badre and D'esposito 2009, Voytek, Kayser et al. 2015). We manipulated 136 

two components of hierarchical cognitive control, abstraction and set-size (see Figure 1A). 137 

During the response task (low abstraction conditions), participants learned the association 138 

between a colored square and a button response. The response task had two levels of set-size: 139 

a low set-size condition (in which four colored squares had to be associated with four 140 

responses) and a high set-size condition (in which eight different colored squares had to be 141 

associated with eight response options; Figure 1A). In the dimension task (high abstract 142 

conditions), participants were presented with a colored square that contained two objects. The 143 

color of the square indicated the dimension (shape or texture) by which the participant had to 144 
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evaluate the two objects. Importantly, the abstraction task contained two levels of set-size 145 

similar to the response task: a low level of set-size and yet still higher in abstraction and a 146 

higher level of set-size and also high in abstraction (see Figure 1A). In the high abstraction, low 147 

set-size condition, participants made a judgement along only one dimension (either shape or 148 

texture) as both colored squares mapped to a single dimension (e.g. a purple square or a green 149 

square signal that participants must judge whether the two objects have the same or different 150 

shape). In the high abstraction, high set-size condition, two colored squares mapped to two 151 

different dimensions (e.g. the color red indicates a perceptual judgement along the shape 152 

dimension, the color blue indicates the texture dimension). 153 

Our previous versions of the experiment (Badre and D'Esposito 2007, Voytek, Kayser et 154 

al. 2015) did not match performance between the low and high abstraction tasks, as the highest 155 

set-size condition of a low abstraction task showed worse performance than the lowest set-size 156 

of a high abstraction task. By matching performance across levels of abstraction, we remove a 157 

potential confound of task difficulty in isolating the processing of abstract rule representations 158 

(Todd, Nystrom et al. 2013). To match performance between levels of abstraction, we ran 159 

multiple pilot experiments, in which we increased the difficulty of the response task into a 160 

comparable performance range as the dimensions task. In particular, we iteratively increased 161 

the number of competing rules in the response task and shorted the response window from 162 

three to two seconds to increase response time and reduce the accuracy of participants for the 163 

response task. At the completion of this pilot testing, we selected two conditions to be defined 164 

as low set-size based on performance levels: the response task with four responses and the 165 

dimensions task with one dimension. For the high set-size conditions, we used the response 166 

task with eight responses and the dimension task with two dimensions.  167 

In the experiment, participants performed eight blocks, two of each of the four 168 

conditions. Each block contained 48 trials; thus, each participant completed 96 trials per 169 

experimental condition. Each trial was presented on the screen for two seconds and participants 170 
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were instructed to provide their response within that time window. Each trial was separated by a 171 

fixation cross that varied exponentially in length from three to ten seconds. The experiment was 172 

programmed in Psychtoolbox implemented in MatLab 2015a (The MathWorks, Inc.). Prior to the 173 

start of the experimental task, participants were instructed to maintain their gaze on a fixation 174 

point and to remain still for five minutes with eyes open followed by five minutes eyes closed. 175 

This resting-state EEG data was not analyzed for the purpose of this paper.    176 

 177 

EEG Recording and Preprocessing  178 

EEG data was recorded from 64 active electrodes using a BioSemi ActiveTwo amplifier 179 

with Ag-AgCl pin-type active electrodes mounted on an elastic cap according to the extended 180 

10-20 system (BioSemi, Amsterdam, Netherlands). In addition, four electrodes were used to 181 

monitor horizontal and vertical eye movements and two electrodes recorded electrical activity 182 

from the mastoids. Signals were amplified and digitized at 1,024 Hz and stored for offline 183 

analysis. Participants were trained before the experiment to minimize eye movements, blinking, 184 

and muscle movement before the experiment. 185 

The EEG data were analyzed with the software package EEGLab14 (Delorme and 186 

Makeig, 2004) which utilized MatLab2015a (The MathWorks, Inc.). The continuous EEG data 187 

were re-referenced to an average of the mastoid electrodes and filtered digitally with a 188 

bandpass of 0.1-100Hz (two-way least-squares finite impulse response filter). The continuous 189 

data were then divided into epochs ranging from −1000 milliseconds before stimulus onset until 190 

2000 milliseconds post-stimulus onset. The epochs in the EEG data were visually inspected and 191 

trials that contained excessive noise, such as muscle artifacts, were removed, resulting in an 192 

average of 4.5% of trials that were removed across participants. Furthermore, electrode 193 

channels with excessive noise were identified by visual inspection and reconstructed using the 194 

average of neighboring electrodes. Eye-blinks and other EEG related artifacts were identified 195 
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and rejected using the extended info-max independent component analysis using the EEGLab 196 

toolbox with default mode training parameters (Delorme and Makeig 2004).  197 

 198 

Electrode clustering  199 

Electrode clusters were defined based on a data-driven hierarchical clustering approach 200 

that grouped electrodes based on the similarity of the evoked oscillatory amplitude that ranged 201 

from 2-30Hz (see for similar procedure (Clarke, Roberts et al. 2018). Time-frequency 202 

decomposition was averaged across all trials, conditions, and participants. Data from each 203 

electrode was vectorized such that it included all time points and frequencies. A distance metric 204 

was calculated for each electrode based on the similarity in evoked spectral response. An 205 

agglomerative hierarchical clustering algorithm was applied that grouped pairs of electrodes 206 

with the most similar spectral response. The two most similar electrode pairs were averaged. 207 

This process continued until all electrodes were paired under a single tree. A dendrogram of the 208 

hierarchical clusters was created and only clusters that fit an a priori cluster scheme based on 209 

Clarke et al. (2018) were included in the time-frequency analysis. Each electrode cluster was 210 

defined to only included contiguous electrodes and we excluded electrode clusters with less 211 

than three electrodes. This hierarchical clustering approach resulted in six electrode clusters 212 

that were used in the main analysis (Figure 2). Results reported here for an electrode cluster is 213 

the averaged spectral response of all electrodes within the cluster. Our previous evidence using 214 

this task in fMRI (Badre and D'Esposito 2007) and electrocorticography (Voytek, Kayser et al. 215 

2015) found task-modulated activity related to cognitive control in lateral prefrontal cortex. 216 

However, due to the problem of volume conduction and electric field properties in EEG, 217 

activation of bilateral sites is commonly found in the midline (Sasaki, Tsujimoto et al. 1996, 218 

Stropahl, Bauer et al. 2018, Riddle, Ahn et al. 2020). Therefore, we focused our analysis on the 219 

frontal midline electrode cluster and capitalized on the temporal resolution afforded by EEG. We 220 
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hypothesized that the frontal midline electrode clusters (highlighted in Figure 2) would show the 221 

strongest effects of hierarchical cognitive control (see (Cavanagh and Frank 2014) for review). 222 

 223 

Time-frequency Analysis  224 

Time-frequency analysis was applied using six cycle Morlet wavelet in the frequency 225 

range of 2 to 50 Hz with steps of 1 Hz between each wavelet center. The Morlet wavelets were 226 

applied to sliding time windows of 20 milliseconds increments in the entire epoch ranging from -227 

1000 milliseconds to 2000 milliseconds with stimulus onset set as time 0. To minimize the 228 

problem of edge artifacts, we concatenated mirrored (i.e. time inverted) segments before and 229 

after the task epoch (Cohen 2014). Time-frequency analysis was performed on these extended 230 

epochs and mirrored segments were discarded from the final analysis (see for similar procedure 231 

(Fell and Axmacher 2011, Vogelsang, Gruber et al. 2018). Results reported here were not 232 

baseline corrected since we were interested in differences across conditions and therefore 233 

baseline correction is not necessary (see for similar approaches (Fell and Axmacher 2011, 234 

Gruber, Watrous et al. 2013, Vogelsang, Gruber et al. 2018)). For each of the four experimental 235 

conditions, only trials in which the participant made a correct response were included in the 236 

analysis. Trial numbers used in the analysis were: low abstraction, low set-size mean(std) = 237 

92.4(4.8), range 76 - 96; low abstraction, high set-size mean(std) = 88.1(8.0), range 56-96; high 238 

abstraction, low set-size mean(std) = 91.8(6.8), range 68-96; high abstraction, high set-size 239 

mean(std) = 87.1(7.4), range 68-96. Our main analysis was two contrasts, one for “abstraction” 240 

(high versus low) and one for “set-size” (high versus low).  241 

 An across participant non-parametric statistical approach was applied to test for 242 

significant time-frequency differences between the contrasts of interest. We ran cluster-mass 243 

permutation testing in which the average t-value within a significant cluster (p < 0.05) is used to 244 

evaluate significance. The permutation testing procedure consisted of the following steps. First, 245 

we computed the cluster mass for each of the contrasts of interest (abstraction and set-size) for 246 
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each of the six electrode clusters. Second, the experimental conditions for the abstraction (or 247 

set-size) contrast were randomly swapped for 50% of the participants such that any systematic 248 

differences between the conditions were eliminated. We ran the contrast for this randomized 249 

pairing and calculated the largest absolute cluster mass across all electrode clusters. This 250 

randomization process was repeated 1000 times to create a null distribution of the largest 251 

negative and positive cluster mass values. Using an alpha level of .05 with 1000 permutations, 252 

we used the 25th and 975th values to represent the critical mass values, and values below or 253 

higher than these values were considered to be significant effects. This stringent procedure 254 

allowed us to control for multiple comparisons across the electrode clusters (Blair and Karniski 255 

1993, Maris and Oostenveld 2007). 256 

 257 

Phase Amplitude Coupling Analysis  258 

In addition to a time-frequency analysis, we also sought evidence for how different 259 

frequency bands may interact with each other during hierarchical cognitive control. One possible 260 

mechanism is phase amplitude coupling (PAC), which involves examining the relationship 261 

between the phase of a lower frequency band (e.g. delta and theta) and the amplitude of a 262 

higher frequency band (e.g. beta and gamma). To examine whether the phase of slow 263 

oscillatory bands modulated the amplitude of faster frequency bands as a function of increased 264 

rule abstraction and rule set-size, we computed PAC for the phase of slow frequency bands in 265 

the range of 2-7 Hz, which includes delta and theta, with the amplitude of the higher frequency 266 

spectrum ranging from 10-49 Hz separately for each task condition. We narrowed our analysis 267 

to the coupled pairs motivated by our time-frequency analysis and a priori based on our 268 

previous findings (Voytek, Kayser et al. 2015). 269 

To compute PAC, we extracted the phase of the delta and theta frequency bands using 270 

a three cycle Morlet wavelet convolution and the amplitude of the higher frequencies using a 271 

five cycle Morlet wavelet convolution. We selected these parameters such that the half width full 272 
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mass of the low and high frequencies were more closely matched (Cohen 2019). We calculated 273 

PAC using the phase and amplitude values from the significant time windows observed in the 274 

time-frequency contrast for delta band (200 to 1400 milliseconds) and theta band (600 to 1200 275 

milliseconds). For each participant, the phase (θ) and amplitude (M) values of each trial were 276 

concatenated into a single continuous time series (n is the number of time points) and PAC was 277 

calculated according to Formula 1. 278 

Formula 1. ܲܥܣ = ቚ∑ ெ∗ഇసభ ቚ  279 

We applied nonparametric permutation testing to determine whether the obtained PAC 280 

values would be expected given the null hypothesis of no relationship between phase and 281 

amplitude. The permutation procedure involved temporally shifting the amplitude values with a 282 

random temporal offset of at least 10% the length of the time series and calculating PAC 283 

(Cohen 2014). After 1000 repetitions, PAC is converted into a z-score from the null distribution, 284 

resulting in PACz. We were interested in changes in PACz with increased abstraction and set-285 

size. In order to reduce multiple comparisons, we used a priori coupled pairs for the 286 

hypothesized coupled frequencies based on the time-frequency analysis and ran a two-way 287 

repeated-measures ANOVA of within-participant factors: abstraction and set-size. 288 

 289 

Code and Data Availability 290 

Custom code used for these analyses are available upon request to the corresponding 291 

author. The authors assert that all requests for raw data within reason will be fulfilled by the 292 

corresponding author. 293 

 294 

Results 295 

 296 

Behavioral Results 297 
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 The task was designed to separately manipulate abstraction and set size during 298 

hierarchical cognitive control. To test the effects of our behavioral manipulation, we performed 299 

separate two-way repeated-measures ANOVA. We entered two independent variables: 300 

abstraction (low, high) and set-size (low, high), and response time (RT) and accuracy as 301 

dependent variables. For RT, the ANOVA revealed a significant main effect of abstraction (high 302 

abstraction mean = 1132.0, sd = 105.3 milliseconds; low abstraction mean = 974.1, sd = 95.0 303 

milliseconds; F(1,30) = 398, p < 0.0001, η2
p = 0.93), a main effect of set-size (high set-size mean 304 

= 1176.0, sd = 95.7 milliseconds; low set-size mean = 930.1, sd = 95.5 milliseconds; F(1,30) = 305 

92.1, p < 0.0001, η2
p  = 0.75), and an interaction (F(1,30) = 53.1, p < 0.0001, η2

p = 0.64) (Figure 306 

1B). Participants were slower as a function of abstraction and set-size.  For accuracy, the 307 

ANOVA revealed a main effect of set-size (high set-size mean = 94.7%, sd = 5.0%; low set-size 308 

mean = 97.7%, sd = 2.9%; F(1,30) = 10.2, p = 0.003, η2
p = 0.25), but did not reveal a significant 309 

main effect of abstraction (F(1,30) = 0.11, p = 0.75, η2
p  = 0.0036) or interaction (Figure 1C). 310 

Participants were less accurate for the conditions that required maintenance of a larger set-size, 311 

but behavior was matched across levels of abstraction.  312 

 313 

Time-Frequency Results 314 

 We performed time-frequency analyses to determine how set-size and abstraction 315 

modulates patterns of neural oscillations during hierarchical cognitive control. The time-316 

frequency analyses focused on the spectral amplitude differences ranging from 2 to 50 Hz in the 317 

entire epoch time window (-1000 to 2000 milliseconds relative to stimulus onset) for both the 318 

abstraction and set-size contrast (high versus low abstraction and high versus low set size). For 319 

the abstraction contrast (Figure 3A), across all electrode clusters, there was a significant 320 

increase in the delta frequency band (2-3 Hz) from 100 to 2000 milliseconds post stimulus onset 321 

and a significant decrease in the beta frequency band (peak at 12-22 Hz) from 500 to 1500 322 

milliseconds post stimulus onset (peak at 500 to 1000 milliseconds) for all electrode clusters. In 323 
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the topographic plots, it can be seen that in the abstraction contrast, delta amplitude showed the 324 

strongest increase in mid and right frontal electrode clusters (Figure 3B) whereas beta 325 

amplitude showed the strongest decrease in the mid frontal electrode cluster (Figure 3C). For 326 

the set-size contrast (Figure 3D), across all electrode clusters, there was a significant increase 327 

in amplitude in the theta frequency band (4-6 Hz) from 850 to 1700 milliseconds post stimulus 328 

onset. There was a significant decrease in amplitude in the beta frequency band (12-30 Hz) 329 

around 500 to 1500 milliseconds after stimulus onset in frontal midline electrode cluster, and 330 

500 to 1800 milliseconds after stimulus onset in central and posterior electrode clusters. In the 331 

topographic plots, it can be seen that in the set-size contrast, theta amplitude showed the 332 

strongest increase in the frontal midline electrode cluster and beta amplitude showed the 333 

strongest decrease in the frontal midline and central midline electrode clusters. Altogether, two 334 

different low frequency bands increased in amplitude in the midfrontal electrode cluster. Delta 335 

amplitude increased for abstraction and theta amplitude increased for set-size. However, beta-336 

band amplitude decreased for both higher abstraction and higher set size, but with a slightly 337 

different spread in frequency within the beta-band. Peak beta amplitude modulation for the 338 

abstraction contrast occupied a lower frequency range, from 12-18 Hz, compared to the wider 339 

frequency range in peak beta amplitude modulation for the set-size contrast from 12-22 Hz.  340 

In order to better understand the timecourse of amplitude modulations found for the 341 

contrasts of interest, the time course for the amplitude of delta, theta and beta frequency bands 342 

in the frontal midline cluster is plotted in Figure 4. Approximately 500 milliseconds after stimulus 343 

onset, the high abstraction, high set-size condition showed the greatest delta amplitude 344 

increase followed by high abstraction, low set-size and then both low abstraction conditions 345 

(Figure 4A). Approximately 1200 to 1800 milliseconds after stimulus onset, the two high set-size 346 

conditions showed an increase in theta amplitude (Figure 4B). Thus, both delta and theta 347 

frequency bands showed increased amplitude sustained throughout stimulus processing for 348 

greater abstraction or set-size. Finally, there was a decrease in amplitude in the beta frequency 349 
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band for all four conditions for the first 600 milliseconds (Figure 4C). However, only the high 350 

abstraction, high set-size condition showed a significant and prolonged decrease in beta 351 

amplitude relative to the other three conditions from 600 to 1600 milliseconds after stimulus 352 

onset. 353 

Since the stimulus-locked time-frequency effects persist after the probe for over a 354 

second, it is possible that decreased beta amplitude was related to a systematic difference in 355 

response time between conditions, and low-frequency activity in delta and theta band might only 356 

be significantly elevated after a response is made reflecting post-response monitoring 357 

processes. If decreased beta amplitude was indeed driven by motor-related processes, then it 358 

would not be observed in a response-locked analysis. If low frequency activity reflects post-359 

response monitoring processes, then it would only be observed after the response in a 360 

response-locked analysis. We performed a response-locked time-frequency analysis on the 361 

abstraction and set-size contrast in the midfrontal electrode cluster (Figure 5). For the 362 

abstraction contrast (Figure 5A), there was a significant decrease in amplitude in the beta 363 

frequency band (10-20 Hz) just prior to a response, whereas there was no change in beta band 364 

amplitude for the set-size contrast (Figure 5B). Thus, the modulation of beta amplitude by set-365 

size was most likely driven by a difference in response time, whereas the modulation of beta 366 

amplitude as a function of task abstraction is more likely driven by stimulus processing. No 367 

significant delta band amplitude was observed time-locked to the period just prior to the 368 

response. For the set-size contrast (Figure 5B), there was a significant increase in amplitude in 369 

the theta frequency band (3-8 Hz), starting at 1500 milliseconds prior to a response and 370 

persisted after the response. Thus, the significant change in theta amplitude as a function of 371 

set-size most likely does not only reflect post-response processes, but also related to pre-372 

response stimulus processing. 373 

 374 

Relationship between neuronal oscillations and behavior  375 
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Next, we investigated whether the significant changes in spectral amplitude during 376 

different task conditions correlated with behavior. To test this, we extracted spectral amplitude 377 

values from the significant time-frequency clusters for the abstraction (2-3 Hz delta and 18-22 378 

Hz beta; Figure 3A) and set-size (4-6 Hz theta and 18-22 Hz beta; Figure 3B) contrasts from the 379 

frontal midline electrode cluster, since this cluster showed the strongest peak in these contrasts 380 

(Figure 3C-F). We correlated the change in beta and delta amplitude with the change in RT as a 381 

function of abstraction. RT was analyzed since accuracy was at ceiling for many participants. 382 

For the abstraction contrast, task differences in beta band amplitude was significantly negatively 383 

correlated with RT (r(30) = -0.59, p = 0.001) and task differences in delta band amplitude was 384 

significantly positively correlated with RT (r(30) = 0.45, p = 0.012; Figure 6A). For the set-size 385 

contrast, we correlated the change in beta and theta amplitude with the change in RT as a 386 

function of task set-size. We found that the increase in theta band amplitude was significantly 387 

positively correlated with RT (r(30) = 0.36, p = 0.047), whereas there was no significant 388 

relationship between beta band amplitude and behavior (r(30) = -0.24, p = 0.20; Figure 6B). Our 389 

time frequency results (Figure 3) found that peak beta amplitude decreased from 12-18 Hz by 390 

abstraction and decreased from 12-22Hz by set-size. Therefore, we examined whether the 391 

observed behavioral correlation was consistent for the high (18-22Hz) and low (12-18Hz) beta 392 

bands. Just as with the high beta band, amplitude in the low beta band significantly negatively 393 

correlated with abstraction (r(30) = -0.47, p = 0.008) but did not show a significant relationship 394 

with set-size (r(30) = -0.15, p = 0.41). Thus, we do not find evidence that low and high beta 395 

serve different functional roles. Altogether, increased delta and decreased beta amplitude 396 

correlated with increased response time as a function of rule abstraction, and increased theta 397 

amplitude correlated with increased response time as a function of task set-size. 398 

 399 

Phase Amplitude Coupling Results  400 
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Our results thus far provide evidence that delta and beta oscillations may reflect the 401 

cognitive processes related to increased abstraction, whereas theta may reflect the cognitive 402 

processes related to increased set-size. To further probe the interactions between these 403 

oscillations in different frequency bands, we conducted a phase amplitude coupling (PAC) 404 

analysis. We investigated the coupling strength of the phase of the slower frequency bands, 405 

delta and theta, with the amplitude of the higher frequency bands, beta and gamma. The 406 

comodulograms for each condition were calculated for the phase of low frequencies (2-7 Hz) to 407 

the amplitude of high frequencies (10-49 Hz) (Figure 7). Since both delta and beta amplitude 408 

were modulated as a function of the abstraction of the task condition, we focused our statistical 409 

analysis on the coupling between delta phase (2-3 Hz) coupled to beta amplitude (18-22 Hz). 410 

Given that we found theta-gamma PAC in our previous electrocorticography study with a similar 411 

task (Voytek, Kayser et al. 2015), we also analyzed coupling of the phase of the theta frequency 412 

band (4-6 Hz) with the amplitude of the gamma frequency band (40-49 Hz). We found a 413 

significant increase in delta-beta PAC with increased abstraction (F(1,30) = 7.62, p = 0.00976, 414 

η2
p  = 0.203; Figure 7A,B), but not set-size (F(1,30) = 2.63, p = 0.115, η2

p  = 0.0807), and there 415 

was no interaction (F(1,30) = 2.79, p = 0.105, η2
p  = 0.0852). For theta-gamma PAC, we found a 416 

significant increase in PAC for the low abstraction conditions relative to the high abstraction 417 

conditions (F(1,30) = 4.56, p = 0.0409, η2
p  = 0.132; Figure 7C,D), but no effect of theta-gamma 418 

PAC for set-size (F(1,30) = 1.16, p = 0.290, η2
p  = 0.0372), and no interaction (F(1,30) = 0.591, p 419 

= 0.448 η2
p  = 0.0193). During the high abstraction, high set-size condition, we found a 420 

significant increase in delta-beta PAC (t(30) = 2.377, p = 0.012, d = 0.427), one-tailed; Figure 421 

7B) and beta amplitude was strongest at the trough and rise of delta phase (Figure 8A). During 422 

the low abstraction, high set-size condition, we found a moderate increase in theta-gamma PAC 423 

(t(30) = 1.665, p = 0.053, d = 0.299, one-tailed; Figure 7D) and gamma amplitude was strongest 424 

at the rise of theta phase (Figure 8B). Therefore, delta-beta coupling may be how low frequency 425 
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oscillations modulate high frequency oscillations to execute abstract rules, whereas theta-426 

gamma coupling may be relevant for maintaining task rules with higher set size.  427 

 428 

Discussion 429 

 430 

In this experiment, we investigated the oscillatory neural dynamics associated with two 431 

dissociable components of hierarchical cognitive control: rule abstraction and set-size. Previous 432 

studies found that various frequency bands from low frequency delta to high frequency gamma 433 

are associated with cognitive control (Helfrich and Knight 2016), but the specific contribution of 434 

each of these bands to different control processes remains underspecified. We found that the 435 

abstraction and set-size of task rules are each associated with distinct oscillatory mechanisms. 436 

Specifically, when the abstractness of the rule increased, delta amplitude increased and beta 437 

amplitude decreased; whereas when the number of rules (set-size) increased, theta amplitude 438 

increased and beta amplitude decreased. These task-dependent changes in oscillatory 439 

amplitude correlated with behavioral performance. When the abstraction of the rule increased, 440 

slower response times correlated with increased delta amplitude and decreased beta amplitude. 441 

When the set-size increased, slower response times correlated with increased theta amplitude. 442 

Prior to the motor response, increased abstraction decreased beta amplitude, and increased 443 

set-size increased theta amplitude. Finally, coupling between the phase of delta oscillations and 444 

the amplitude of beta oscillations strengthened as a function of task abstraction. 445 

Cognitive control is organized hierarchically such that superordinate abstract 446 

representations influence subordinate, concrete action representations. In our previous study 447 

using electrocorticography with a similar version of the task (Voytek, Kayser et al. 2015), we 448 

found that tasks that engaged more abstract task rules increased theta synchrony between the 449 

prefrontal cortex (PFC) and premotor cortex. Furthermore, we found theta phase in the PFC 450 

coupled with gamma amplitude in premotor regions, suggesting that the PFC communicates 451 
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with the motor cortex for hierarchical control via theta-gamma phase amplitude coupling 452 

(Voytek, Kayser et al. 2015). However, one important limitation of this previous study is that 453 

tasks that required more abstract rules also had increased set-size; therefore, we could not 454 

discern whether changes in oscillatory activities were driven by differences in abstraction or set-455 

size. An important feature of our current experiment was to separately manipulate the 456 

abstraction of the rule and the number of competing rules (set-size). We further matched the 457 

performance (accuracy) between high and low abstraction. Therefore, we were able to 458 

dissociate these two components of hierarchical cognitive control.  459 

Our findings suggest a relationship between theta oscillations and set-size, and this 460 

finding is consistent with previous studies that reported theta oscillations scale with working 461 

memory load (Jensen and Tesche 2002, Meltzer, Negishi et al. 2007, So, Wong et al. 2017, 462 

Berger, Griesmayr et al. 2019). Other studies have also found that theta oscillations 463 

(presumably from frontal cortex) increase during tasks that required cognitive control (Cohen 464 

2011, Hsieh, Ekstrom et al. 2011, Kikumoto and Mayr 2018). Theta-gamma coupling has been 465 

suggested as a mechanism by which multiple representations are organized for working 466 

memory (Bahramisharif, Jensen et al. 2018) and long-term memory (Heusser, Poeppel et al. 467 

2016). Therefore, the increased theta-gamma PAC for higher set-size in our task could reflect 468 

the maintenance or retrieval of an increased number of rules. It should be noted that in our 469 

previous study using electrocorticography, we found increased theta phase to high gamma 470 

amplitude coupling for the high abstraction, high set-size condition (Voytek, Kayser et al. 2015). 471 

While we were unable to measure theta to high gamma coupling due to the limitations of EEG, 472 

we did find increased theta amplitude for this condition consistent with these findings. 473 

Furthermore, this previous study did not separately manipulate abstraction and set-size, which 474 

we investigated in the current study (see Methods). 475 

We observed that beta amplitude decreased after stimulus onset as a function of 476 

increased abstraction and increased set-size. For the response-locked analysis, beta 477 
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oscillations decreased only as a function of increased abstraction, but not increased set-size. 478 

Many studies have found that beta oscillations decrease when the motor system executes an 479 

action (Little and Brown 2012). While we also observed that beta band amplitude decreased 480 

before the button press, higher abstraction conditions showed a greater beta amplitude 481 

decrease when compared to lower abstraction conditions. We also found decreased beta 482 

amplitude as a function of abstraction in the stimulus-locked analysis. Together, these 483 

abstraction dependent results indicate a role for beta oscillations beyond motor preparation. We 484 

propose that beta oscillations may reflect top-down inhibitory signals for guiding action that are 485 

most robustly disengaged when guided by hierarchical goal representations. 486 

Our findings of increased delta and decreased beta oscillations with increased 487 

abstraction are consistent with a previous study that examined performance of a delayed-488 

match-to-sample task in which monkeys had to evaluate an object according to two different 489 

categorical judgements: left versus right or up versus down (Antzoulatos and Miller 2016). This 490 

study reported that distinct neural populations carry information for each of these two 491 

categories: vertically selective populations and horizontally selective populations. For the cued 492 

category, beta coherence increased between the neural populations that coded for the relevant 493 

category. This pattern of activity led the authors to conclude that beta oscillations were encoding 494 

rule categories. Our task also required the maintenance of abstract rules and similarly found an 495 

abstraction-related modulation of beta amplitude in prefrontal cortex. Furthermore, when there 496 

was a shift in the boundary between what was defined as “up” and “down,” there was an 497 

increase in delta synchrony between prefrontal and parietal cortex. This suggests that updates 498 

to abstract categorical rules modulates delta oscillations. In our experiment, for the high 499 

abstraction, high set-size condition, participants had to evaluate the similarity of two different 500 

objects based on different stimuli attributes (e.g., judge the similarity in texture or shape), and 501 

the relevant attribute that participants should focus on was instructed by a supraordinate task 502 

rule cued by the color of the square surrounding the stimuli. Based on the findings from 503 
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Antzoulatos & Miller 2016, the increase in delta oscillations in our study may reflect an update to 504 

the relevant supraordinate rule, and the change in beta oscillations may reflect rule selection. 505 

Participants with the greatest increase in response time when responding to the 506 

increased abstraction conditions showed the greatest increase in delta amplitude and decrease 507 

in beta amplitude. Similarly, participants with the greatest increase in response time when 508 

responding to the increased set-size conditions showed the greatest increase in theta 509 

amplitude. These findings emphasize the behavioral relevance of these low frequency neuronal 510 

oscillations and provide further support for a role of delta oscillations in processing task 511 

abstraction and theta oscillations in processing increased set-size. 512 

The interplay between slow and fast neuronal oscillations has been investigated as a 513 

mechanism for cognitive control (Sauseng, Klimesch et al. 2009, Sauseng, Griesmayr et al. 514 

2010, Roux, Wibral et al. 2012, Voytek, Kayser et al. 2015) as long-range, low frequency 515 

cognitive control signals from prefrontal cortex couple to more local high frequency oscillations 516 

(Canolty and Knight 2010, Sauseng, Griesmayr et al. 2010). Our PAC analysis revealed that 517 

delta phase coupled with beta amplitude when task conditions became more abstract. 518 

Specifically, delta-beta coupling increased in the high abstraction, high set-size condition in 519 

which participants decide between two task rules (e.g., focus on texture or shape). We observed 520 

that beta amplitude decreased around the peak of the delta phase (see Figure 8A). This finding 521 

is similar to Helfrich et al. (2017) in which alpha-beta amplitude was lowest at peak delta-phase 522 

in prefrontal cortex during a perceptual judgement (Helfrich, Huang et al. 2017). Wyart et al. 523 

(2012) also reported that the distribution of beta oscillations in motor cortex was updated every 524 

cycle of a prefrontal delta signal, and the amplitude of beta was inversely related to the 525 

probability of action of the underlying motor cortex (Wyart, de Gardelle et al. 2012). Consistent 526 

with Wyart et al. 2012, our PAC finding suggests that delta phase in frontal regions may guide 527 

action selection via modulating beta-band amplitude when cognitive tasks are hierarchically 528 
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organized, and participants have to rely on supraordinate, abstract rules to guide concrete 529 

actions. 530 

Taken together, low frequency oscillations in the theta and delta frequency band may 531 

reflect different components of hierarchical cognitive control that couple to different high 532 

frequency oscillations. Gamma oscillations play a primary role in carrying feedforward sensory 533 

processing signals (Börgers and Kopell 2008, Michalareas, Vezoli et al. 2016). Theta 534 

oscillations in prefrontal cortex couple with gamma oscillations to support the organization of 535 

perceptual information during memory encoding and retrieval (Osipova, Takashima et al. 2006, 536 

Hsieh and Ranganath 2014). When multiple items must be held in mind, theta-gamma coupling 537 

is increased (Alekseichuk, Turi et al. 2016, Tamura, Spellman et al. 2017, Bahramisharif, 538 

Jensen et al. 2018). Our findings suggest that increasing the set-size of a task may recruit a 539 

similar neural mechanism. Beta oscillations play a role in sensory feedback (Bastos, Vezoli et 540 

al. 2015, Michalareas, Vezoli et al. 2016) and motor control (Zhang, Chen et al. 2008, Picazio, 541 

Veniero et al. 2014). Therefore, delta to beta coupling may be a mechanism by which low 542 

frequency oscillations in prefrontal cortex guide future action according to abstract goals. 543 

Theoretical models on the role of gamma and beta oscillations in bottom-up and top-down 544 

attention (Fries 2015, Riddle, Hwang et al. 2019) may be extended to include theta and delta 545 

oscillations that show task-related modulations in the frontal cortex. 546 

 547 
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 702 

Figure 1. Hierarchical cognitive control task 703 

(A) The hierarchical cognitive control task used a two by two design with four conditions. On the 704 

X-axis, the set-size increases within a fixed level of abstraction. On the Y-axis, the level of 705 
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abstraction increases. Behavioral results for response time (B) and accuracy (C). Error bars are 706 

S.E.M. 707 

 708 

Figure 2. Electrode clusters used for EEG analysis 709 

Hierarchical clustering of the time-frequency data for each electrode revealed six distinct 710 

electrode clusters. The analysis focused on the frontal midline electrode cluster 711 

(outlined). The other electrode clusters were used for cluster-mass permutation testing in 712 

time-frequency analysis. 713 

 714 

Figure 3. Time-frequency analysis of hierarchical cognitive control along two 715 

dimensions: abstraction and set-size 716 

In the frontal-midline electrode cluster, there was a significant increase in delta and 717 

decrease in beta amplitude as a function of task abstraction (A). The dark outline 718 

highlights time-frequency clusters that were found to be significant at p < 0.05 and 719 

survived correction for multiple comparisons. Delta amplitude increase was localized to 720 

the frontal-midline and right frontal (B). Beta amplitude decrease was localized to the 721 

frontal- and central-midline (C). In the frontal-midline electrode cluster, there was a 722 

significant increase in theta amplitude and decrease in beta amplitude as a function of 723 

task set-size. The increase in theta amplitude was localized to the frontal-midline 724 

electrodes (E). The decrease in beta amplitude was localized to frontal-midline 725 

electrodes (F). 726 

 727 

Figure 4. Time course of task-evoked oscillatory amplitude 728 

At time 0, the stimulus for the task is presented. (A) Delta amplitude showed the greatest 729 

increase in the two high abstraction conditions (red and orange). (B) Theta amplitude 730 

showed the greatest in the response task (dark blue and light blue) in the first 0.5 731 
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seconds and the greatest increase in the high set-size conditions (dark blue and red) in 732 

the 1 to 2 second range. (C) Beta amplitude showed the greatest decrease in the high 733 

abstraction, high set-size condition (red). Error bars are S.E.M. 734 

 735 

Figure 5. Response-locked time frequency analysis 736 

The response-locked time frequency analysis for the abstraction (A) and set-size (B) 737 

contrast in the midfrontal electrode cluster found a significant decrease in low beta 738 

amplitude prior to response for abstraction and increase in theta amplitude prior to and 739 

after response for set-size. The line at time 0 is the time that the participant made a 740 

response. The dark outline highlights time-frequency clusters that were found to be 741 

significant at p < 0.05 with a cluster correction of k = 100. 742 

 743 

Figure 6. Behavior to brain correlations  744 

Correlation analysis for response time to spectral density for the significant clusters in 745 

abstraction (A) and set-size (B). Error bars are 95% confidence intervals. * p < 0.05, ** p 746 

< 0.005, n.s. = not significant. 747 

 748 

Figure 7. Comodulograms of phase amplitude coupling for each task condition 749 

For the high abstraction conditions, there was increased coupling between delta phase 750 

(2-3 Hz) and beta amplitude (18-22 Hz) in the high-set (B), but not low set-size condition 751 

(A). For the low abstraction conditions, there was increased coupling between theta 752 

phase (4-6 Hz) and gamma amplitude (40-49 Hz) in the low and high set-size conditions 753 

(C, D). 754 

 755 

Figure 8. Distribution of beta and gamma amplitude across delta and theta phase 756 
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Rose plots of delta phase coupled to beta amplitude (A) for the high abstraction, high 757 

set-size condition and theta phase coupled to gamma amplitude (B) for the low 758 

abstraction, high set-size condition. Amplitude values (z) were binned into 30 phase 759 

angles, averaged, and z-scored across phase bins. Error bars are within-participant 760 

SEM. Legends depict the peak and trough values in radians. 761 


















