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ABSTRACT 
 
Background 

The tumor immune microenvironment is a heterogeneous entity. Gene expression analysis allows us to 

perform comprehensive immunoprofiling and may assist in dissecting the different components of the 

immune infiltrate. As gene expression analysis also provides information regarding tumor cells, 
differences in interactions between the immune system and specific tumor characteristics can also be 

explored. This study aims to gain further insights in the composition of the tumor immune infiltrate and 

to correlate these components to histology and overall survival in non-small cell lung cancer (NSCLC). 

 

Methods 

Archival tissues from 530 early stage, resected NSCLC patients with annotated tumor and patient 

characteristics were analyzed using the NanoString nCounter Analysis system. 

 
Results 

Unsupervised clustering of the samples was mainly driven by the overall level of inflammation, which 

was not correlated with survival in this patient set. Adenocarcinoma (AD) showed a significantly higher 

degree of immune infiltration compared to squamous cell carcinoma (SCC). A 34-gene signature, which 

did not correlate with the overall level of immune infiltration, was identified and showed an OS benefit in 

SCC. Strikingly, this benefit was not observed in AD. This difference in OS in SCC specifically was 

confirmed in two independent NSCLC cohorts. The highest correlation between expression of the 34-
gene signature and specific immune cell populations was observed for NK cells, but although a plausible 

mechanism for NK cell intervention in tumor growth could be established in SCC over AD, this could not 

be translated back to immunohistochemistry, which showed that NK cell infiltration is scarce irrespective 

of histology. 

 

Conclusions 

These findings suggest that the ability of immune cell infiltration and the interaction between tumor and 

immune cells may be different between AD and SCC histology and that a subgroup of SCC tumors 
seems more susceptible to Natural Killer cell recognition and killing, whereas this may not occur in AD 

tumors. A highly sensitive technique like NanoString was able to detect this subgroup based on a 34-

gene signature, but further research will be needed to assist in explaining the biological rationale of such 

low-level expression signatures.  
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BACKGROUND 
 
In the last decades, it has become increasingly evident that the host immune system has an elaborate 

interaction with tumor cells. The tumor microenvironment involves a whole range of immune cells 

together with a wide spectrum of soluble chemokines and cytokines that regulate the infiltrating capacity 

and the effectiveness of the immune response [1, 2]. The tumor immune microenvironment is a 
heterogeneous entity, although tumors are often broadly classified as inflamed or ‘hot’ vs. non-inflamed 

or ‘cold’. Typically, inflamed or ‘hot’ tumors show an abundance of tumor-infiltrating lymphocytes (TILs), 

IFNγ-producing CD8+ T cells and high expression of the inhibitory immune checkpoint programmed 

death-ligand 1 (PD-L1) suggesting a pre-existing antitumor immune response. In contrast, non-inflamed 

or ‘cold’ tumors contain hardly any TILs and rarely express PD-L1 [3, 4]. As this is a practical approach, 

in reality only a small fraction of tumors seems obviously cold or clearly hot, and the level of inflammation 

seems more like a spectrum. 

Aside from TILs, numerous other immunosuppressive and immunostimulatory mechanisms play a role 
in the interaction of the immune system with tumor cells. Gene expression analysis allows us to perform 

comprehensive immunoprofiling and may assist in dissecting the different components of the immune 

infiltrate. Investigating patterns of the separate components could lead to a better understanding of the 

complex tumor-immune interaction. This is relevant as presence of inflammatory cells has shown 

prognostic benefit in non-small cell lung cancer (NSCLC) and other solid tumors probably as 

representation of the immunostimulatory mechanism at work [5, 6]. On the other hand, myeloid-derived 

suppressor cells and T regulator cells have an immunosuppressive effect on cytotoxic T cells and have 
been associated with detrimental effects on the anti-tumor immune response [7]. As gene expression 

analysis also provides information regarding tumor cells, differences in interactions between the immune 

system and specific tumor characteristics can also be explored. Ultimately, this knowledge may lead 

towards a better understanding how the immune composition can be influenced for the patients’ benefit. 

This study aims to gain further insights in the composition of the tumor immune infiltrate by nCounter 

(Nanostring) gene expression analysis and to correlate these components to histology and OS in a large 

cohort of previously untreated, resected early stage NSCLC samples.  

 
 

METHODS 
 
Sample collection and patient cohort 
The cohort included 641 formalin-fixed, paraffin-embedded (FFPE) NSCLC samples derived from lung 

resections performed between 1990 and 2013 at one of four Dutch medical centers. Clinical data about 

gender, smoking status, neo-adjuvant and adjuvant treatment, age at resection, type of resection, tumor 
stage, progression free survival (PFS) and overall survival (OS) were collected. No data on treatment 

after relapse of disease was available. All tumors were histopathologically classified according the 2015 

WHO classification system. TNM classification was redefined for resections that were done before 2010 

according to the 7th lung cancer TNM classification and staging system [8]. Prior to analysis, the 
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samples were de-identified. The Translational Research Board of the Netherlands Cancer Institute-

Antoni van Leeuwenhoek hospital (NKI-AVL) approved the use of patient material in this study.  

 

Mutation analysis and immunohistochemistry staining 
Details on mutational analysis and immunohistochemical (IHC) staining for PD-L1 expression and CD8 

infiltration was previously reported [9]. Double staining CD3 (yellow) followed by CD56 (purple) of whole 
slide sections prepared from FFPE resection specimens was performed on a Discovery Ultra 

autostainer. Slides were deparaffinised in the instrument and heat-induced antigen retrieval was carried 

out using Cell Conditioning 1 (CC1, Ventana Medical Systems) for 32 minutes at 950C. The CD3 was 

detected in the first sequence using clone SP7 (1/100 dilution, 32 minutes at 370C, ThermoScientific). 

CD3 bound antibody was visualized using Anti-Rabbit NP (Ventana Medical systems) for 12 minutes at 

370C followed by Anti-NP AP (Ventana Medical systems) for 12 minutes at 370C, followed by the 

Discovery Yellow detection kit (Ventana Medical Systems). In the second sequence of the double 

staining procedure CD56 was detected using clone MRQ-42 (1:2000 dilution, 32 minutes at 370C, Cell 
Marque). CD56 was visualized using Anti-Rabbit HQ (Ventana Medical systems) for 12 minutes at 370C 

followed by Anti-HQ HRP (Ventana Medical systems) for 12 minutes at 370C, followed by the Discovery 

Purple Detection Kit (Ventana Medical Systems). Slides were counterstained with Hematoxylin and 

Bluing Reagent (Ventana Medical Systems). 

 

Nanostring analysis 
Gene expression analysis was performed using the NanoString nCounter Analysis system (NanoString) 
on 80-200ng RNA extracted from FFPE tissue samples. An input of 5*5μm slides was used. The most 

tumor-dense area and tumor percentage was assessed by a pathologist on the Hematoxylin and Eosin 

(H&E) staining and scraped off using a surgical blade. The RNA was isolated using the Roche “High 

pure RNA paraffin kit” (cat. No. 3270289001) following manufacturers protocol. A customized gene 

panel (version 0.3), including 531 targets including multiple genes of immunologic function and cancer 

biology and including 4 housekeeping genes was applied (Additional file 1). For 573 adequate RNA was 

available for NanoString analysis. To assess the quality of these samples, levels of expression for 

positive controls and negative controls were retrieved for each sample (Additional file 2). For 18 samples 
(3.1%) the expression levels were too low and an additional 25 samples (4.4%) failed the NanoString 

QC, leaving 530 samples for further analysis, consisting of 275 adenocarcinomas (AD), 235 squamous 

cell carcinomas (SCC) and 20 large cell carcinomas not otherwise specified (NSCLC NOS) (Additional 

file 3).  

 

Gene expression and statistical analysis 
All data analysis was performed in R (version 3.4.3) using CRAN and Bioconductor packages (Huber, 
Nature methods 2015). Differential gene expression between AD and SCC was assessed with Limma 

[10]. Heatmaps were generated with a custom version of ‘heatmap.2’ from the gplots package 

(https://CRAN.R-project.org/package=gplots). Kaplan-Meier plots were generated using the ‘survival’ 

package (https://CRAN.R-project.org/package=survival). 
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Validation cohorts 
Normalized and clinical data were downloaded for two NSCLC datasets (GSE8894 and GSE14814) 

from NCBI’s GEO database [11, 12]. Z-scores were calculated by centering and scaling the expression 

data. Expression of the 34-gene signature was computed using the average expression (z-score) of the 

34 genes for each sample. To define the ‘34-gene signature high’ and ‘34-gene signature low’ groups 

for survival analysis the same percentages as in the Nanostring nCounter discovery dataset were used.  
RNA sequence read count data of lung squamous cell tumor samples (LUSC) from The Cancer Genome 

Atlas (TCGA) database were downloaded using TCGAbiolinks [13]. Stage I and II samples that were 

defined as ‘Primary solid Tumor’ were selected. Statistical analysis of the differential expression of 

genes was performed using DESeq2 [14]. 

 

Correlation of gene signature to immune cell types  
To correlate expression of the 34-gene signature with specific immune cell types Microenvironment Cell 

Population (MCP)-counter was used [15]. To plot the MCP-counter output samples were ordered 
according to the expression of the 34-gene signature. Correlations between the 34-gene signature and 

MCP-counter output was calculated using the ‘Pearson’ correlation.  

 

 

RESULTS 
 
Gene expression analysis 
In a cohort of 641 NSCLC archival tissue samples adequate RNA could be isolated from 573 samples 

and these were sent for nCounter (Nanostring) analysis. Gene expression results were obtained for 530 

(92.5%) samples. Despite the large range in age of the FFPE blocks, no association was observed 

between age of the FFPE blocks or hospital of origin with the QC results. All 530 samples were included 

in an unsupervised clustering analysis (Figure 1A). Clear differences between the two main histological 

subtypes AD and SCC were observed (cluster 1). Differential gene expression analysis between AD 

and SCC showed the largest fold change for KRT5, KRT14, KRT17 and TP63 (Figure 1B). These genes 

are known to be highly expressed in SCC and KRT5 and p63 IHC are important markers in diagnostics 
of lung cancer. Interestingly, TTF1 - the most important diagnostic IHC marker for lung AD - was not 

able to differentiate between histological subtypes on the nCounter platform. Gene expression of TTF1 

was higher compared to the negative controls, but at an overall low expression and variance (Figure 

1C), suggesting that protein expression of TTF1 as the most important biomarker for adenocarcinoma 

of the lung may not be represented by high RNA levels. These findings show that the NanoString 

nCounter platform can be used to robustly perform gene expression analysis, even on old FFPE 

samples (>20 years). 
 

Immune infiltration is anti-correlated with cell cycle related genes 
Besides differences between histological subtype, the unsupervised clustering of the samples was 

mainly driven by the overall level of inflammation; the inflamed or ‘hot’ samples vs. the non-inflamed or  
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Figure 1. Gene expression patterns in NSCLC. 

 
A) Heatmap and clustering of all NSCLC samples (n=530) and all genes analyzed using nCounter (NanoString). 
Top bar indicates the histology as assessed by pathology: green represents AD, yellow SCC. Bar right of the 
heatmap show the correlation of each gene with the percentage of tumor cells (assessment by a pathologist). Red 
indicates a positive correlation, blue a negative correlation. Grey boxes indicate the identified clusters that do not 
correlate with tumor cell percentages B) Volcano plot with the log-fold change on the x-axis and FDR (-log10) on 
the y-axis. The 4 genes with the highest fold change are indicated. C) Top 4 genes that best differentiate SCC 
from AD and TTF-1 expression that does not differentiate. Top bar indicates the histology as assessed by 
pathology: green represents AD, yellow SCC. D) Immune response genes show a negative correlation with the 
percentage of tumor cells in a sample as assessed by pathology. E) Immune response genes show a positive 
correlation with the percentage of CD8+ T cells in a sample as assessed by pathology. F) Cell Cycle related 
genes show a positive correlation with the percentage of tumor cells in a sample as assessed by pathology 
(cluster 2).  
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Figure 2. Expression of immune response genes do not provide a survival difference in NSCLC. 

 
A) Heatmap of immune response genes for AD and SCC ordered according to the average expression of the 
genes. Top bar indicates the histology as assessed by pathology: green represents AD, yellow SCC. B) Waterfall 
plot of average expression of immune response related genes, both for AD (left panel) and SCC (right panel). 
Samples above the average are ‘hot’ tumors (red), the samples below ‘cold’ (blue). C) Box plot for expression of 
the immune response related genes per histology. *** p < 0.001. D) Box plot for expression of CD8A per 
histology. *** p < 0.001. E) Box plot for mean tumor cell percentages per histology. *** p < 0.001. F) Bar graph of 
each tumor cell percentage group for both AD (green) and SCC (yellow) samples. *** p < 0.001. G) Kaplan-Meier 
plots with the probability of survival of ‘hot’ versus ‘cold’ tumors in stage I/II tumors, both for AD and SCC. 
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‘cold’ samples. The expression of a subset of genes was negatively correlated with genes involved in 

inflammation (cluster 2). Gene Ontology analysis showed that the genes in cluster 2 were highly 

enriched for cell cycle related genes (Figure 1A, Additional file 1). As tumor cells tend to proliferate faster 

compared to stromal and/or most immune cells, this negative correlation between proliferation 

represented by cell cycle gene expression and the level of inflammation within samples might suggest 

a relation with the number of cancer cells and the number of immune cells within that same sample. 
Indeed, the percentage of tumor cells, based on H&E staining by a pathologist, correlated positively with 

the expression for cell cycle genes (R = 0.47) and correlated negatively with the expression of immune 

related genes in our cohort (R= -0.57, Figure 1D and F). Apparently, this occurs even though RNA from 

tumor samples was extracted from tumor-enriched areas designated on the H&E slide by a pathologist 

in order to increase tumor purity. In addition, these results suggest that not only the number of tumor 

cells, but also the number of immune cells is represented in the NanoString data and therefore allows 

for a quantitative measurement of the immune infiltration in these tumor samples. This was confirmed 

by an increasing expression of immune related genes per increasing number of CD8+ T cells in the 
tumor-enriched areas (Figure 1E).   

 

Inflammation according to histological subtype 
As a proxy to measure the level of ‘active’ inflammation in each sample as opposed to the quantified 

immune infiltration in general, we calculated the average expression of genes that are known to be 

involved in the response to immune signals (the ‘immune response genes’ as indicated by NanoString), 

available in the dataset (Additional file 1). Next, we divided the cohort by histological subtype and tested 
for each sample whether the average expression of immune response genes was above the mean (‘hot’) 

or below the mean (‘cold’) of the dataset. The distribution of samples above the mean was 62% for AD 

versus only 37% for SCC histology (Figure 2A-B). Based on our previous finding that the level of 

inflammation is negatively correlated with tumor cell percentage, a comparison between histologies was 

performed and confirmed our previous result for the ‘immune response gene’ expression as well: tumor 

cell percentage is significantly higher in SCC (p < 0.001, Figure 2C-D). These findings suggest that the 

ability of immune cell infiltration and/or the interaction between tumor and immune cells may be different 

between AD and SCC histology.  
Associations between the level of inflammation and OS benefit has been contradictory for NSCLC in the 

past. No differences in survival were observed between ‘hot’ and ‘cold’ tumors in stage I/II samples for 

neither histologies in our cohort (p = 0.19 and 0.29, Figure 2G).  

 

Expression of a 34-gene signature is a prognostic marker in SCC 
In addition to the genes that correlated with immune infiltration, histology (cluster 1), and proliferation 

(cluster 2), the unsupervised clustering of all samples using all genes revealed a third cluster of genes 
(cluster 3, Figure 1A and Figure 3A). As opposed to the expression of the other immune genes, 

expression of cluster 3 did not correlate with tumor cell percentage. The expression of the 34-gene 

signature showed no association with PD-L1 expression and CD8 infiltration (Additional file 4). To check  



3

Presence of a 34-gene signature is a favorable prognostic marker in squamous non-small cell lung 
carcinoma   |   49   

 

Figure 3. Gene expression cluster 3 is predictive of response in SCC but not in AD.  

 
A) Zoom-in of cluster 3 of the heatmap from Figure 1A. Samples are ordered on the average expression of the 
genes per subtype. B) Kaplan-Meier plots of AD samples divided into high (top 1/3) and low (bottom 2/3) 
expression of the 34-gene signature. C) Kaplan-Meier plot of SCC samples divided into high (top 1/3) and low 
(bottom 2/3) expression of the 34-gene signature. D) Same analysis as in B and C in two independent validation 
sets (GSE8894 and GSE14814). E) Boxplot of the expression level of the 34-gene signature in AD and SCC 
samples (p = 0.534). 
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whether there is any clinical relevance in the expression of this set of genes, we performed a survival 

analysis on the stage I/II samples, both for AD and SCC samples separately. In AD samples, no OS 

benefit was seen between 34-gene signature high (top 1/3) samples and 34-gene signature low (bottom 

2/3) samples (p = 0.38, Figure 3B). In contrast, a clear OS benefit was observed in SCC between 34-

gene signature high (top 1/3) and low (bottom 2/3) samples (p = 0.012, Figure 3C). 

To validate these findings, we downloaded gene expression and associated clinical data from two 
publicly available NSCLC datasets [11, 12]. Since the expression levels of the genes that comprise the 

34-gene signature were generally low, gene expression by RNA sequencing failed to provide accurate 

read count estimates for the 34-gene signature as tested in the TCGA NSCLC dataset (Additional file 

2). Therefore, we were confined to methods with a high sensitivity for gene measurement. Microarray 

data showed similar sensitivity as our nCounter NanoString panel together with positive correlations 

between the genes of the 34-gene signature (Additional file 2), providing independent datasets to 

validate our findings. 

In concordance with our large cohort of NSCLC samples, survival analysis on a dataset of 61 AD and 
72 SCC samples (GSE8894) showed benefit in recurrence free survival (RFS) between samples with 

high expression (top 1/3) of the 34-gene signature and low expression (bottom 2/3) in SCC (p = 0.032), 

but not in AD (p = 0.47, Figure 3D). In the second dataset with 71 AD and 52 SCC samples (GSE14814), 

survival analysis showed improved OS for the samples with high 34-gene signature expression in SCC 

albeit not significant (p = 0.21). However, in AD the samples with high expression of the 34-gene 

signature showed a significant lower OS (p = 0.033, Figure 3D).  

Together, these datasets recurrently show a survival benefit in stage I/II SCC patients with high 
expression of the identified 34-gene expression signature. This, in contrast to AD patients where high 

expression of the 34-gene signature is either not or negatively correlated with survival.  

 
The 34-gene expression signature correlates with NK cell related gene expression 
Interestingly, there was no difference in the level of expression of the 34-gene signature between AD 

and SCC histology (p = 0.53, Figure 3E). However, high expression of the 34-gene signature was only 

related to improved survival in SCC, suggests a difference in interaction between tumor and immune 

cells between the two histological subtypes.  
To investigate the origin of this beneficial prognostic signal in SCC, we correlated the expression of our 

34-gene signature with the presence of specific immune cell populations within the samples. Therefore, 

we applied MCP-counter on our datasets of 530 samples [15]. The highest correlation between 

expression of the 34-gene signature and specific immune cell populations was observed for Natural 

Killer (NK) cells (R = 0.73, Figure 4A). These finding were corroborated in the two independent datasets 

with again the highest correlation of the NK cell population (GSE8894, R = 0.80 and GSE14814, R = 

0.89, Figure 4B and Additional file 5).  
Although the expression level was comparable between histologies, but high expression of the 34-gene 

signature was only related to improved survival in SCC, this may suggest a difference in interaction 

between tumor and immune cells between the two histological subtypes. To further test whether the  
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Figure 4. Allocation of the signature.  

 
A) Heatmap of immune cell populations ordered according to expression of the 34-gene signature (cluster 3). B) 
Correlation of the NK cell population as measured using MCP-counter. Samples are ordered according to the 34-
gene expression signature. C) Volcano plot with the log-fold change on the x-axis and FDR (-log10) on the y-axis 
in AD and SCC for cell surface genes. D) Boxplot for expression of ULBP2 in AD vs. SCC in our dataset and two 
independent validation sets. *** p < 0.001. E) Boxplot for expression of HLA-C in AD vs. SCC (p < 0.001) and 
boxplot with the expression of HLA-C in ULBP2 high vs ULBP2 low samples. * p < 0.05, *** p < 0.001. F) Examples 
of a CD56+/CD3- NK cell in a 34-gene signature high SCC sample (A) and in a 34-gene signature low AD sample 
(B). 
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improved survival in SCC, but not in AD, even though expression level of the 34-gene signature was 

similar in both histologies, could indeed be explained by differences in the interface between tumor and 

immune cells we analyzed the dataset for cell surface genes and compared their expression between 

AD and SCC samples (Figure 4C). Interestingly, one of the cell surface genes highly expressed in SCC 

but not in AD is ULBP2 (FDR < 0.001, Figure 4D), a marker for NK cell killing. Higher expression of 

ULBP2 in SCC was also observed in our validation datasets (GSE8894; FDR < 0.001 and GSE14814; 
FDR < 0.001, Figure 4D). Also, high expression of ULBP2 was associated with lower expression of HLA-

C, one of the genes encoding for major histocompatibility complex (MHC) class I molecules. 

Furthermore, expression of HLA-C was significantly lower in SCC compared to AD (Figure 4E).  

To further explore the possible role of NK cell killing in regard to the OS benefit in signature-high SCC 

opposed to signature-high AD, a double-staining of CD56 and CD3 was performed in a selection of 

samples. Signature-high and signature-low in both AD and SCC samples were evaluated. Overall, the 

infiltration of CD56+/CD3- cells was scarce in SCC and only somewhat more frequent in AD, both 

irrespective of the expression level of the 34-gene signature. This difference between AD and SCC 
presumably matches the previously mentioned difference in tumor cell percentage and amount of 

immune infiltrate between histologies, which is overall more pronounced in AD vs. SCC (Figure 4F). 

These findings might suggest that a subgroup of SCC tumors seems more susceptible to NK cell 

recognition and killing, whereas this may not occur in AD tumors.  

 

 

DISCUSSION 
 
In our study, we performed gene expression analysis on a large cohort of early stage resected NSCLC 

samples. Unsupervised clustering of the samples was mainly driven by the overall level of inflammation, 

which was not correlated with survival in this patient set. Expression of a 34-gene signature did not 

correlate with the general inflammation level. This signature provided an OS benefit in SCC, but not in 

AD. This finding was validated in two independent NSCLC cohorts. The signature showed the strongest 

association with NK cells based on gene expression profiling, but this could not be validated by IHC, 

which showed that NK cell infiltration is scarce irrespective of histology.  
The expression level of the 34-gene signature was comparable in both histological subtypes, but had a 

different effect on OS. This histology-dependent OS benefit may suggest a difference in the interaction 

of the immune system between AD and SCC NSCLC. To understand the biological foundation of the 

34-gene signature, the selection of genes in the signature was compared to the gene profiles of eight 

immune cell populations as established by the MCP-counter method [15]. Our gene signature showed 

the strongest correlation with the gene profile of NK cells. NK cells have the unique property to revert to 

cell-killing induced without presentation of tumor specific antigens [16]. Production and release of 
granules, like perforin and granzyme B, cause lyses of the targeted cell [17]. Inhibition of NK cells occurs 

through activation of killer cell immunoglobulin-like receptors (KIRs) by recognition of MHC class I 

molecules on surrounding cells and thereby providing protection against auto-immunity. One 

mechanism of tumor immune escape is downregulation of MHC class I on tumor cells in order to evade 
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T cell recognition and killing [18]. However, this may render them vulnerable to NK cell attack. To 

strengthen the rationale for annotating our signature as possessing NK cell features, we sought for 

differences between the two histological subtypes in expression of tumor-related genes (as opposed to 

immune-related genes for which our NanoString panel was enriched). In our cohort, SCC samples 

showed a significant higher expression of the NK activation marker ULBP2 and lower expression of the 

MHC class I gene HLA-C compared to AD samples. This may suggest that tumor growth in SCC may 
be possible because of the tumor immune escape mechanism of evasions of T cell recognition, but that 

NK cell killing may successfully prevent this escape, eventually leading to improved OS. McGranahan 

et al. recently found that loss of heterozygosity of HLA (HLA LOH) seemed to be correlated to prior 

immune activation and to a higher mutational burden in treatment-naïve, resected NSCLC [19]. Even 

though McGranahan et al. also found a higher overall level of inflammation in AD compared to SCC 

samples, SCC more often showed HLA LOH and this was associated with a higher expression of two 

different NK cell signatures from RNA sequencing data.  

Unfortunately, there is no clearly validated method for establishing NK cell infiltration by IHC [20]. 
Because NK cells were defined as CD56+/CD3- in the MCP-counter method, we performed a double-

staining with CD56 and CD3 on a selection of samples in this cohort, but very few infiltrating NK cells in 

either histology were seen [15]. It has been described that even at a low ratio NK cells are able to kill 

tumor cells due to their specific cytotoxic abilities [21]. As the presence of NK cells in the tumor 

microenvironment is scarce, it may be difficult to study the role of the innate immune system and NK 

cells in particular regarding tumor cell attack [22, 23]. Furthermore, by performing only a double-staining 

with CD56 and CD3 acquiring a differentiating signal from additional subtypes of NK cells could have 
been missed; nor is it possible to establish the activity-level of these specific NK cells. Infiltration of 

tumors by NK cells has been previously linked to favorable outcome, although there are limited studies 

performed in NSCLC [24]. Villegas et al. found improved OS in early-stage SCC NSCLC when more NK 

cells were present in the tumor as assessed by CD57 staining [25].  

However, the NanoString nCounter system used in this study and the microarray-based techniques 

used in both validation cohorts provide a higher sensitivity compared to standard RNA sequencing. This 

technique therefor allows discovery of immune gene expression that is present in very low abundance 

within the tumor microenvironment. Indeed, expression of most genes in the 34-gene signature was low, 
which precludes accurate measurement of the 34-gene signature in RNA sequencing data sets like 

TCGA and therefor precludes validation of the prognostic ability of the signature in these available 

cohorts. Backman et al. found no correlation between IHC of the NK cell marker NKp46 and expression 

of the corresponding gene NCR1 measured by RNA sequencing in early-stage NSCLC, which they 

ascribed to low abundance of NK cells as well [26]. They also noticed that the expression of NK cell 

genes was not associated with the overall level of inflammation. This NK-enriched subgroup had low 

expression of T cell markers, low T cell activation and a low tumor mutational burden. Interestingly, the 
prognosis of this subgroup was similar to the inflamed subgroup, suggesting that not neoantigen-driven 

T cell recruitment, but a different (immune) mechanism of containing tumor growth may be responsible. 

Unlike our findings, this OS benefit was irrespective of histology.   
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Unfortunately, we were unable to provide solid evidence for the annotation of the 34-signature. The 

signature seemed to have NK cell like features, but although a plausible mechanism for NK cell 

intervention in tumor growth could be established in SCC over AD, this could not be translated back to 

IHC or RNA sequencing data. Unfortunately, exploration of additional pathways or gene sets associated 

with the 34-gene signature was not possible due to the relatively small number of genes in our 

NanoString panel, which was highly enriched for immune genes specifically, and no additional RNA 
sequencing data of this cohort was available. Previous NK cell signatures were based on RNA 

sequencing, sorted cell or single cell RNA sequencing. Due to the low expression level of most genes 

in the 34-gene signature a formal comparison between signatures that use different techniques seems 

futile. Maybe single cell sequencing using NanoString or microarray-based techniques may solve the 

remaining questions regarding the underlying mechanisms of scarce immune cells in the tumor 

microenvironment.  

 

 
CONCLUSION 
 
In conclusion, this study identified a subgroup of squamous NSCLC with an OS benefit that seemed not 

related to infiltration of immune cells in general, suggesting that a different (immune) mechanism of 

containing tumor growth may be responsible. A highly sensitive technique like NanoString was able to 

detect this subgroup based on a 34-gene signature, but further research will be needed to assist in 

explaining the biological rationale of such low-level expression signatures.  
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ADDITIONAL FILES 

Additional file 1. List of NanoString gene panel. 
Gene Cluster 1  Gene Cluster 2 Gene Cluster 3 
PI3 FUT2 MKI67 PRSS1 
KRT17 MUC1 CCNB1 CEACAM8 
TP63 MLPH UBE2T CDX2 
KRT14 RORC ECT2 SNAP91 
KRT5 C1orf116 ORC6 ARG1 
MAGEA3 DPP4 GINS1 CCR3 
PRAME TREM1 RAD51AP1 PNOC 
MAGEA4 TNFRSF10C CDC6 NA 
CTAG1B ENPP3 TYMS KIR2DS2 
KIF1A HHLA2 RRM2 KIR2DL3 
UCHL1 S100B DTL EGFL7 
DLL3 CD1A NUF2 IL23R 
BEX1 CD207 EXO1 TRIM69 
GALNT13 FGFBP2 BIRC5 IL27 
CDH2 VTCN1 CENPF IL17A 
NCAM1 S100A9 TOP2A CSF3 
HLA-DQA1 S100A8 MYBL2 CLC 
PDZK1IP1 FGFR3 KIF2C KIR3DL1 
LCN2 HAS3 CDC20 IL13 
LTF COL4A6 MELK PLA2G5 
NA NRG1 NDC80 IL6R 
CXCL1 WNT5A NA CD160 
CCL20 ACKR3 ANLN IL17B 
IL6 JAG1 UBE2C SERPINA9 
SELE ITGA6 CEP55 IL2 
HAS1 FERMT1 CCNE1 NA 
PTGS2 TP73 FBXO5 FCRLA 
EGLN3 EFS EZH2 SCGB2A2 
ANGPTL4 FGFR2 CENPK IL5 
TNFSF11 ULBP2 PTTG1 IL22 
LIF BBC3 STMN1 IL17F 
CXCL3 CDKN2B BRIP1 IL3 
ESM1 CDKN2A ZNF367 IL9 
APLN SFRP1 GGH IL31 
PROK2  HMMR MLANA 
CMTM2  NA IL4 
AREG  NA 
EREG  LRP4 
FOXA1  HEY1 
KIT  PHGDH 
TMEM45B  E2F7 
CEACAM1  NOS2 
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Additional file 2. 

 
A) Flowchart of samples for NanoString analysis. B) QC data NanoString: positive/negative controls and keratin 
expression. C) The 34-gene signature does not work on TCGA RNA-seq data: unmeasurable or low expression of 
the majority of the genes. D) Heatmap with correlations (Pearson correlation) of genes from the 34-gene 
signature in the NSCLC validation set (GSE14814). 
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Additional file 3. Patients’ and tumor characteristics of the non-small cell lung cancer cohort 
 AD SCC NSCLC NOS 
Total (n = 530) 275 235 20 
Gender    
Male 136 (49%) 156 (66%) 11 (55%) 
Female 139 (51%) 79 (34%) 9 (45%) 

    
Median age at surgery (years, range) 62 (30-83) 68 (37-85) 58 (37-81) 

    
Neo-adjuvant therapy    
Chemotherapy 16 (6%) 2 (0.8%) 1 (5%) 
Concurrent chemo radiotherapy  4 (1.5%) 1 (0.4%) 2 (10%) 
Sequential chemo radiotherapy  2 (0.7%) 1 (0.4%) 0 
Erlotinib  19 (7%) 6 (3%) 2 (10%) 
Radiotherapy 0 1 (0.4%) 0 
No neo-adjuvant therapy 234 (85%) 224 (95%) 15 (75%) 

    
Smoking    
Never 21 (8%) 0 1 (5%) 
Still 107 (39%) 109 (46%) 10 (50%) 
Stopped 141 (51%) 122 (52%) 9 (45%) 
Unknown 6 (2%) 4 (2%) 0 

    
Tumor stage at resection    
Stage I 169 (61%) 115 (49%) 8 (40%) 
Stage II 64 (23%) 82 (35%) 7 (35%) 
Stage III 35 (13%) 32 (14%) 5 (25%) 
Stage IV 7 (3%) 6 (3%) 0 

    
Genetic alterations*    
EGFR 16 (6%) 0 0 
KRAS 89 (32%) 8 (3%) 2 (10%) 
PIK3CA 8 (3%) 10 (4%) 0 
BRAF 1 (0.3%) 0 0 
NRAS 0 3 (1.3%) 0 
HRAS 0 1 (0.4%) 0 

    
Median overall survival 
(months,range) 49 (0-285) 49 (0-289) 53 (6-259) 

* percentages for analyzed samples only. EGFR mutations included exon 19 deletions, exon 20 insertions and 
exon 21 L858R mutations. No T790M mutations were found. KRAS mutations included mutations in codon 12, 13 
and 61. Mutations in AKT1, ERBB2, FLT3, JAK2, KIT, MYD88 were not present within this cohort. All present 
MET mutations were germline single nucleotide polymorphism (SNP). 
SCC = squamous cell carcinoma, AD = adenocarcinoma, NSCLC NOS = non-small cell lung cancer not otherwise 
specified 
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Additional file 4.  

 
Boxplots of the associations between the immune response genes and the 34-gene signature with PD-L1 
expression on tumor cells (TC) and immune cells (IC) and CD8 infiltration in the tumor margin and in the tumor 
center.  
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Additional file 5. 

 
Heatmaps of the cluster 3 genes with allocated immune cell types per two independent cohort with correlation 

 



 

 




