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Glossary

Affinity

Allosteric

Amino acids

Binding pocket

Binding pose 
metadynamics

Bioactivity

Clustering

Compound

Cryo-electron microscopy 
(cryo-EM)

Crystallography

   Protein crystallography

   X-ray crystallography

Descriptors

Docking

   Induced-fit docking

Ensemble scoring

Enzyme

Measure for the strength of  substances to combine with each 
other (e.g. ligand-protein combination).

A non-orthosteric binding pocket on a protein.

The ‘building blocks’ of  a protein or peptide.

An area on a protein where substances (e.g. ligands, substrates) 
can bind.

An automated, enhanced sampling method that assesses the 
compound stability in the binding pocket. A higher mobility 
indicates a less stable compound pose.  

A measure of  effect caused by a compound when bound to a 
protein.

Defining subgroups in a larger group (of  molecules) based on 
structural similarity.

A (chemical) substance or small molecule.

A technique to determine the arrangement of  atoms using cooled/
frozen samples and electron microscopy.

A technique to determine the arrangement of  atoms using crystals 
of  the sample.
The determination of  the arrangement and bonding of  atoms of  
a protein using crystallography.
A technique to determine the arrangement of  atoms using crystals 
of  the sample and X-rays refraction.

Identifiers used to describe a compound/protein; often chemical 
properties.

A computational technique to virtually place compounds into a 
rigid binding pocket of  a protein.
Similar to docking, but with (restricted) movement of  the binding 
pocket amino acids enabled. 

A scoring method that uses multiple values and/or methods to 
score, e.g., the binding affinity of  a compound.

A protein that carries out a biochemical reaction. 
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A (protein) model that is based on a similar or related structure.

The opposite of  activation; the action of  inhibiting a process.

A compound that interacts with or binds to a protein.
The natural ligand that binds to the protein.

A computational technique that applies algorithms and statistical 
modeling to automatically learn (patterns) from data.

A (newtonian) physics-based technique to simulate the movements 
of  atoms and molecules.

The binding pocket on a protein where the endogenous ligand or 
substrate binds. 

The disordered physiological processes associated with disease or 
injury.

Compounds that act on multiple proteins.

Large molecules composed of  chains of  amino acids of  which the 
structure is encoded in the DNA.

The biologic synthesis of  proteins.

Supervised machine learning of  bioactivity based on explicit 
molecular and target descriptors (typically proteins). 

The relation between the chemical structure of  a compound and 
its activity on a protein.

An ensemble learning method that applies multiple unpruned 
decision trees.

A membrane bound protein that can activate second messengers 
after ligand recognition.

The property of  affecting (e.g. inhibiting) a specific protein, while 
not affecting others at a similar level.

A modeling technique based on mathematics. The model is defined 
by an equation that approximates the data.

Homology model

Inhibition

Ligand
   Endogenous ligand

Machine learning

Molecular dynamics 
simulation

Orthosteric

Pathophysiology

Polypharmacology

Protein

Protein expression

Proteochemometrics 
(PCM)

Quantitative structure-
activity relationship 
(QSAR)

Random forest

Receptor

Selectivity

Statistical modeling



179

Substrate

Target
   Anti-target
   Off-target
   On-target

T-Distributed Stochastic 
Neighbor Embedding 
(t-SNE)

Text mining

Transporter

Virtual screening

A molecule that is used by enzymes in catalysis. 

A protein considered in ligand binding. 
A protein to which ligand binding should be avoided.
A protein that will result in undesired effects upon ligand binding.
A protein that will result in desired effects upon ligand binding.

A non-linear technique for dimensionality reduction to visualize 
high-dimensional data.

Deriving data from text by automatically searching the text using 
the computer.

A protein that transports substances across the cell membrane.

A computational way of  testing compounds against a protein.

Structural protein-ligand 
interaction fingerprints 
(SPLIFs)i 

i Da, C.; Kireev, D. Structural Protein-Ligand Interaction Fingerprints (SPLIF) for Structure-Based Virtual Screening: Method and Benchmark 
Study. J. Chem. Inf. Model. 2014, 54, 2555-2561.

An interaction fingerprint that explicitely encodes the interaction 
between ligand and protein in a structural way and therefore 
implicitly captures all types of  ligand–protein interactions. 
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