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Abstract

The development of drugs is often hampered due to off-target interactions leading to adverse
effects. Therefore, computational methods to assess the selectivity of ligands are of high interest.
Currently, selectivity is often deduced from bioactivity predictions of a ligand for multiple targets
(individual machine learning models). Here we show that modeling selectivity directly, by using
the affinity difference between two drug targets as output value, leads to more accurate selectivity
predictions. We test multiple approaches on a dataset consisting of ligands for the A and A,
adenosine receptors (among others classification, regression, and we define different selectivity
classes). Finally, we present a regression model that predicts selectivity between these two drug
targets by directly training on the difference in bioactivity, modeling the selectivity-window. The
quality of this model was good as shown by the performances for 5-fold cross-validation: ROC
A AR-selective 0.88 £0.04 and ROC A, AR-selective 0.80 £0.07. To increase the accuracy of
this selectivity model even further, inactive compounds were identified and removed prior to
selectivity prediction by a combination of statistical models and structure-based docking. As
a result, selectivity between the A, and A, adenosine receptors was predicted effectively using
the selectivity-window model. The approach presented here can be readily applied to other
selectivity cases.
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Introduction

Computational modeling of small molecules in drug discovery is typically focused on modeling
their binding affinity or bioactivity. These models can be used to identify active compounds
in silico, or to rationalize which chemical groups are correlated with bioactivity. Quantitative
structure-activity relationship (QSAR) models can be applied to model compound activity for
single proteins, whereas proteochemometrics (PCM) can be applied to model activity for multiple
proteins in one single model."* Next to statistical models (e.g. machine learning), structure-
based models are used to predict and rationalize compound activity. Methods such as docking,
molecular dynamics, and free-energy perturbation (FEP) are widely applied to study binding and
bioactivity.”?

Although modeling of activity is essential in drug discovery, these models often do not take
target selectivity into account. The ability to control promiscuity of potential drug candidates is
crucial as off-target effects can be avoided this way. Whereas selective drugs are designed to be
non-promiscuous, polypharmacological drugs ate designed to interact with multiple targets.® The
development of both polypharmacological and selective drugs requires predictions for more
than one target. Polypharmacology and selectivity can both be modeled by machine learning or
structure-based approaches that predict the affinity of compounds on multiple targets separately.
The resulting bioactivity profile can subsequently be applied to match the desired on-target(s)
and to avoid off-target effects. However, this indirect way of predicting selectivity based on
predicted bioactivities requires multiple model predictions to calculate one feature: the activity
difference of a compound for one target over the other.

Here we explore selectivity modeling for the adenosine receptors, which are members of the class
A G protein-coupled receptors (GPCRs). The adenosine receptor family, existing of subtypes
A, A, A, and A is involved in many physiological processes including cardiac control and
inflammation.” The A and A, adenosine receptors (A,AR and A, AR) both control cyclic
adenosine-5-monophosphate (cAMP) levels in the cell. Activation of A AR results in decreased
cAMP levels, whereas A, AR activation increases cAMP levels.* These contrary effects justify a
need for computational models that can predict selectivity between these two subtypes. A novel
method to model selectivity is presented in this study: namely to train machine learning models

directly on the differences between experimentally determined affinities.

For the A, AR many crystal structures are available in the Protein Data Bank.” More recently,
protein crystal and cryo-EM structures for the A AR have been obtained also.'"'* The availability
of structures for both proteins allows for a structure-based comparison of the subtypes to gain
insights into selectivity. Previous studies revealed differences between the protein structures
that correspond with ligand selectivity of specific chemical structures.!*'"* For example, the
A, AR-selectivity of reference antagonist ZM241385 could be explained by a combination of
three structural differences between the A AR and A, AR: a salt bridge at the binding pocket
entry, a hydrophobic pocket in the A| AR, and a (de)stabilized water network."” Furthermore, the
A AR-selectivity of xanthine-based antagonists with a bulky substituent has shown to be caused
by steric hindrance in the A, AR by residue Met270" (Thr270"* in A AR)."

In addition to the availability of crystal structures, many small molecule ligands have been
experimentally tested for their activity on one or multiple adenosine receptors. This data has



already been exploited to train bioactivity models using classification or continuous statistical
models."'"* Howevet, direct modeling of selectivity in the adenosine receptors using statistical
models has not yet been reported. Statistical models to predict selectivity are faster than predicting
selectivity using time-consuming FEP approaches.” Howevert, structure-based methods can
give additional mechanistic information on binding and selectivity of compounds, and are in

principle not dependent on available bioactivity data of ligands.

In this research a combined approach of QSAR modeling and structure-based docking is
presented to model bioactivity for the A AR and A,, AR. Moreover, the selectivity between the
A ARand A, AR is predicted directly by training on affinity differences (selectivity-window). This
is in contrast to methods that were reported up till now that deduced selectivity from predicted
bioactivities of separate models. Furthermore, by training a continuous model (regression), the
degree of selectivity was calculated in addition to a selectivity class with predefined thresholds.
Finally, to enhance the performance of the selectivity models, statistical bioactivity models and
structure-based docking were used to exclude inactive compounds.

Our study shows that continuous QSAR models can effectively predict selectivity between the
A ARand A,, AR. A model trained directly on the difference in affinity between the two proteins,
the selectivity-window model, outperformed models that are generally used to predict selectivity:
models that are trained on separate bioactivities for the A AR and A , AR.

Results

Datasets

Information on compound-protein interactions (e.g. binding affinity and efficacy) was collected
for the human A AR and A, AR. Public bioactivity data was extracted from ChEMBL version
23' and supplemented with in-house data. As compounds with a ribose scaffold are often
associated with agonistic activity and dicyanopyridines with partial agonism, these compounds
were removed to generate an antagonist-focused dataset.!™'® Bioactivity values were standardized
to pActivity (conceptually similar to the pChEMBL value, an ensemble from pK /IC, /EC, /
K, values"), while simultaneously combining data from different labs and assays. The data was
subsequently used to compile the following compound datasets: an ‘A AR bioactivity dataset’
(containing bioactivities of compounds on the A AR), an ‘A, AR bioactivity dataset’ (containing
bioactivities of compounds on the A, AR) and an ‘A AR/ A, AR dataset’ (bioactivities of
compounds tested on both the A AR and A, AR). The latter dataset included information on
the selectivity of compounds. Compounds were termed ‘selective’ when the difference in activity
between the two proteins was more than 100 fold (e.g., A,, AR-selective when pActivity A/ AR =
6.5 and pActivity A, AR = 8.5). The A AR/A, AR dataset consisted of five classes: non-binder
(pActivity A AR and A, AR < 6.5), A AR- selecnve (pActivity A AR = 6.5 and selectivity >

100 fold), A JAR- selectlve (pActivity A JAR 2 6.5 and selectivity > > 100 fold), and dual binder
(pActivity A1AR and A, AR > 6.5 and selectlwty < 10 fold). Additionally, compounds that had
measured bioactivities for both the A AR and A, AR, but did not fit into any of the classes of
the A AR/A, AR dataset, were termed ‘semi-selective’ compounds. Compounds that only had
measured bioactivity for one receptor and were not present in the A AR/A AR dataset, but
were included in either the A/ AR bioactivity dataset or A, AR bioactivity dataset were termed
‘single points’. The distribution of activities in the different datasets was comparable (Table 4.1)



Table 4.1. Dataset characteristics: number of compounds, distribution of activities and chemical similarity within the
dataset.

Dataset Description Total Activity (pActivity) similarity
number (tanimoto
of com- FCFP4)
pounds protein min median max mean

A AR bioac- [ Compounds with measured 2774 A AR 4.05 6.43 10.52 0.18

tivity dataset | activity for the A| AR

A, AR bioac- | Compounds with measured 3123 A, AR 4.00 6.91 11.00 0.18

tivity dataset | activity for the A, AR

A1AR/A2AAR Compounds with measured 1106 AIAR 4.33 6.52 10.52 0.19

dataset activity for both the A AR

and A, AR with classlﬁcatlon
A AR/A AR /dual/non- A, AR 4.30 6.83 10.80
bmder

Semi-selective | Compounds with measured 855 A AR 4.37 6.37 10.02 0.20

compounds activity for both the A AR

and A, AR that do not fit into A, AR 4.34 7.09 10.38
a class
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Figure 4.1. Distribution of activities of the different compound classes for the A AR (A) and A, AR (B). The
compounds from the A AR and A, AR bioactivity datasets that did not belong to any of the classes of the A AR/
A, AR dataset are called “single points”.

and normally distributed in both the A AR and A, AR (Figure 4.1). It should be noted that the
total number of A AR-selective compounds is about three times smaller than the number of
A, AR-selective compounds (50 and 146 compounds, respectively).

Modeling A AR/A,, AR subtype selectivity using classification QSAR models

Several QSAR models were created to study selectivity. Firstly, subtype selectivity for the A AR
and A, AR was modeled using classification models. Additionally, non-selective compounds
(dual blnders) and non-binders were modeled. The following four models were constructed: a



2-class model (A AR-sclective/A,, AR-selective), two 3-class models (A AR-selective/A, AR-
selective/dual inhibitors on one hand, and A AR-selective/A,, AR-selective/non-binders on
the other hand), and a 4-class model (A AR-sclective/A,, AR-selective/dual/non-binders). All
models were validated with 5-fold cross-validation, using the same (chemically clustered) test
sets per iteration for each model (for details see Methods section). The performance of the
2-class QSAR model was best for predicting A AR and A, AR selectivity (receiver operating
characteristic (ROC) 0.87 £0.06, and Matthews Correlation Coefficient (MCC) 0.40 £0.13).
Addition of dual and non-binder classes decreased model performance. ROC decreased to 0.76
10.06 and 0.64 £0.09 for the A/ AR and to 0.62 £0.09 and 0.65 £0.09 for the A, AR. Likewise,
MCC decreases to 0.22 £0.15 and 0.00 £0.07 for the A|AR and to 0.20 £0.17 and 0.36 £0.12for
the A,, AR (Table 4.2). This indicates that the A AR and A, AR 100-fold selective compounds
are sufficiently chemically distinct from each other to be correctly predicted by the model and that
they show a clear structure-activity relationship. Conversely, dual and non-binders are suggested
to share chemical similarities with both the A, AR- and A, AR-selective classes, making it more
challenging for the model to differentiate between these classes (Figure 4.2). Furthermore, the
sensitivity and the positive predictive value (PPV) were consistently higher for A , AR-selective
compounds than for A AR-selective compounds, whereas specificity and negative predictive
value (NPV) were higher for A, AR-selective compounds.

The non-binder class contains compounds that are inactive at both receptors. However, these
compounds are not well differentiated from the active classes (A AR-, A , AR-selective, and
dual), as is observed by low MCC (0.15 £0.06) and poor ROC (0.57 £0.07) for the non-binder
class. The next section therefore describes bioactivity modeling of the A AR and A, AR in an
attempt to categorize non-binders.

Table 4.2. Performance of selectivity classification models.

Clas- | Class MCC Sensitivity Specificity PPV NPV ROC

sifica-

tion

model

QSAR | A AR 040 *0.13 [ 0.62 *0.16 [ 076 011 [ 0.57 012|086 +0.07 | 0.87 +0.06

Zclass I A AR 040 %013 | 076 %011 0.62 *0.16 [ 0.86 +0.07 | 057 *0.12 | 0.87 *0.06

QSAR | A AR 022 015 025 +0.15[ 096 +0.02 [ 031 £0.14]093 +0.02 | 0.76 +0.06

Sclass I'A AR 020 *0.17 | 033 *0.16 | 0.88 +0.02 [ 0.35 0.14 | 0.83 +0.04 | 0.62 *0.09
Dual 0.10 +0.09 [ 0.81 #0.03 [ 0.29 #0.10 [ 0.75 £0.02| 035 *0.08 | 0.58 +0.06

QSAR | AAR 0.00 +0.07 [ 0.11 +0.05 [ 0.88 +0.07 [ 010 £0.06 | 0.91 *0.02 | 0.64 +0.09

Sclass [ AR 036 *0.12 [ 047 *0.14 [ 085 2010 [ 059 011|085 +0.02 | 0.65 +0.09
Non-binder | 0.07 £0.13 [ 0.67 *0.11 [ 039 012 [ 0.70 +0.05| 037 +0.12 | 0.50 +0.09

QSAR | A AR 011 £0.10 [ 0.12 £0.09 [ 097 2001 [ 0.18 011|095 *0.01 | 0.70 +0.07

declass TA AR 025 %016 | 029 %013 | 094 20.02 [ 039 +0.16 | 090 *0.02 | 0.67 *0.09
Dual 0.09 +0.05[ 051 +0.05[ 058 +0.08 [ 0.50 +0.05]0.60 *0.02 | 058 +0.05
Non-binder [ 0.15 #0.06 [ 0.51 £0.09 [ 0.64 +0.06 | 0.47 +0.04 | 0.68 *0.05 | 057 +0.07

Means of 5-fold cross-validation with standard error of the mean (SEM). The class indicates the performance for that
particular selectivity class: A AR-selective, A, AR-selective, dual (non-selective), and non-binders. MCC = Matthews
Correlation Coefficient, PPV = Positive Predictive Value, NPV = Negative Predictive Value, and ROC = receiver
operating characteristic.
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Figure 4.2. Chemical similarity of compounds of the selectivity classes A, AR-selective, A, AR-selective, dual, and non-
binders. The chemical similarity is visualized with t-SNE* based on FCFP4 fingerprints. (A) The used chemical clusters
of the compounds: A AR-selective, A, AR-selective, dual binders, and non-binders. (B) Clusters based on chemical
similarity; each color-symbol combination represents a unique cluster (136 clusters in total).

Modeling A AR and A, AR bioactivity using classification and regression QSAR
models

The bioactivity of compounds for the A AR and A, AR were modeled with both classification
and regression models. Classification models categorize compounds with using a pre-defined
threshold (here pActivity = 6.5) as ‘active’ and compounds below that threshold are termed
‘inactive’. The model is trained on these activity classes and provides an activity class for test
compounds as well. In contrast, regression models are not trained on classes, but on numetrical
bioactivity values. The output that is generated from a regression model is a bioactivity value,
which can subsequently be assigned to an activity class. As can be observed in Table 4.1 where
the median pActivity for the sets is shown, this value (pActivity 6.5) is applicable for these data
sets and was previously also shown to be a relevant threshold leading to balanced classes.'

Bioactivity classification and regression QSAR models were trained on the A AR/A, AR
dataset, the same dataset that was used in the selectivity-classification QSAR models described
in the previous section. Additionally, semi-selective compounds were added to increase the
amount of training data. These semi-selective compounds have experimental activities for both
receptors but do not fit into any of the four selectivity classes (e.g. a compound with pActivity
A AR = 7.0, pActivity A, AR = 8.1). However, for bioactivity modeling the selectivity class
is irrelevant, and thus these compounds were now included to increase model performance.
Additionally, separate bioactivity QSAR models were trained on the A/ AR and A, AR bioactivity
datasets. The validation test sets were composed based on chemical clusters and bioactivity
of compounds; each subset contained both actives and inactives. These validation sets were
not equal to the aforementioned (selectivity) validation sets as they were used for a different
purpose: validation of bioactivity models instead of selectivity models. All bioactivity models
were validated using the same cross-validation test sets, regardless of the dataset that was used in
training (A, AR/A, AR dataset, A, AR bioactivity, or A, AR bioactivity). The A AR and A, AR



bioactivity datasets contained more data points than the A AR/A AR dataset as these sets
also included single points (bioactivity measured only for one of the two receptors). The single
bioactivity points were included in training, but excluded from validation to retain comparability
of performance for the different models. Single points that belonged to the same chemical
cluster as the data points in the test set were also excluded from training to prevent bias. The
regression models show good model quality in training, with a high R* (= 0.98) and low RMSE
values (< 0.14). Unfortunately, when applied on the validation set, performances are lower than
expected based on training performance (likely caused by the challenging test set based on
chemical clustering). Nevertheless judging the model performance on classification validation
metrics a realistic estimation can be made for the predictive performance of the models.

The mean performances of all bioactivity models (based on 5-fold cross-validation) were
better for the A , AR than for the A AR, with an average ROC difference of 0.12 (Table 4.3).
Furthermore, classification models performed worse than regression models, as indicated by
their lower values for enrichment (ROC) and MCC: average difference in ROC for the A AR
=0.20 and A ,AR = 0.07, and average difference in MCC for the A AR = 0.07 and A, AR =
0.03. Moreover, the MCC and ROC for A AR bioactivity classification models even indicated
performances worse than random (MCC < 0 and ROC < 0.5). The best performing bioactivity
models were based on regression, which reached an average performance (ROC score 0.60-0.70)
for predicting bioactivities.

Modeling A AR/A,, AR subtype selectivity using regression models

The application of the above bioactivity model approach was tested in modeling the selectivity
of compounds (i.e. modeling the affinity on the respective receptors and deriving selectivity from
that indirectly). As the predicted bioactivities of the two bioactivity models are not correlated
with each other, a separate validation was performed to indicate the performance of selectivity
predictions. However, the cross-validation sets of the models in Table 4.3 were clustered
based on bioactivity instead of selectivity classes, hence bioactivity models were retrained
using differently composed cross-validation sets to justify comparison with a later discussed
selectivity-window model. Regression bioactivity models were selected as these outperformed
the classification bioactivity models. Moreover, regression was preferred in selectivity modeling
as with regression a quantitative value for selectivity can be derived.

Thus, bioactivity regression models were used to predict compound activity for the A/ AR and
A, AR. Models were trained on the AlAR/ A, AR dataset including additional ‘semi-selective’
compounds. The difference in predicted bioactivity for the two receptors was calculated as
sclectivity value. Subsequently, selectivity classes (A AR-selective, A, AR-selective, dual) were
assigned to the compounds based on the predicted selectivity according to the same categorization
rules as used in classification previously. The application of the two combined bioactivity models
to deduce selectivity (two-step A/ AR-A, AR difference model) resulted in models with average
performance. Although ROC scores were decent (0.75 £0.09 and 0.72 +0.15), MCC was poor
(0.19 £0.16 and 0.28* £0.12, *one failed validation) for both the A/ AR and A, AR, indicating
that models were capable of ranking the compounds but less capable of explaining the whole
data set (Table 4.4).
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Continuing our single model approach to predict selectivity we explored the usage of regression
for a selectivity-window model rather than classification. In contrast to the two-step A AR-
A, AR difference model (regression), the single model to predict selectivity between the A/ AR
and A,,AR was based on the difference in affinity rather than the prediction of bioactivity and
calculatlon of the resulting selectivity. The regression model was trained directly on the difference
in bioactivity for both receptors (pActivity A, AR — pActivity A,, AR = selectivity-window)
and predicts a quantitative score for the degree of selectivity of a compound (difference in
pActivity). A positive score indicates A, AR-selectivity, a negative score A, AR-selectivity, and a
score close to zero indicates dual binders. The model was evaluated based on the ROC score and
classification metrics (MCC, sensitivity, specificity, PPV, and NPV). The rules for classification
of the A AR-, A , AR-selective, and dual binders were derived from the thresholds applied in
the selectivity classification models: A/ AR = 100 fold selective equals pActivity difference = 2,
A, AR = 100 fold selective equals pActivity difference < -2, and for dual binders (= 10 fold
selective) pActivity difference = -1 & < 1.

The selectivity-window regression model was trained on the same data (A, AR/A, AR dataset
and semi-selective compounds) as the two-step A, AR-A_ AR difference model described above
in which selectivity was deducted from two separate bioactivity models. The selectivity-window
outperformed the two-step A AR-A, AR difference model with increased ROC values for
selectivity classes A, AR- and A,, AR-selective (ROC increase 0.07-0.13) (Table 4.4).

Figure 4.3 shows example compounds that were misclassified with the two-step A/ AR-A, AR
difference model, but were correctly predicted using the selectivity-window model. The similarity
(Tanimoto FCFP4) between the mispredicted compounds by the two-step A AR-A) AR
difference model was 0.25, whereas the similarity within wrongly predicted compounds by the
selectivity-window model was 0.58. This indicates that the two-step A AR-A AR difference
model is challenged by selectivity prediction of more diverse compounds and the selectivity-
window model underperforms on specific chemical scaffolds. The most frequently mispredicted
scaffold by the selectivity-window model was N-(2-(furan-2-yl)-6-(1H-pyrazol-1-yl) pyrimidin-4-
yl)-2-phenoxyacetamide (Figure 4.4).

A B C

QO
e O-

NH, NH
CHEMBL260788 CHEMBL3596506 CHEMBL201750
A1AR-A2AAR prediction: -0.57, Dual A1AR-AAAR prediction: -1.00, Dual A1AR-A2AAR prediction: -0.41, Dual
Selectivity-window prediction: -2.06, A)aAR  Selectivity-window prediction: -2.62, ApaAR Selectivity-window prediction: 2.26, AJAR
Experimental: -2.24, A2aAAR Experimental: -2.04, A2aAAR Experimental: 2.18, A1AR

Figure 4.3. Chemical structures of compounds with predictions by different selectivity models. The compounds were
wrongly predicted with the two-step A/ AR-A, AR model and correctly predicted with the selectivity-window model.
Predictions are indicated as: predicted A AR- selecme (AAR), A, AR-selective (A, AR), and as dual binder (Dual) for
ligands CHEMBIL260788 (A), CHEMBL3596506 (B), and CHEMBL201750 ©).
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Figure 4.4. Most frequent chemical scaffold of compounds that were wrongly predicted by the selectivity-window
model, but correctly predicted by the two-step A AR-A, AR difference model.

It should be noted that for the A/ AR and A, AR predictions MCC and PPV could not always
be calculated in cross-validation, resulting in failed cross-validation folds, or iterations. This is
explained by the lack of true/false positives in the patticular cross-validation fold: PPV cannot
be calculated if there are no positives, MCC cannot be calculated without a PPV.

The selectivity-window model performed better than the three-class selectivity classification
model validated earlier (Table 4.2). It was tested whether this increased performance was a
result from the increased amount of data as the selectivity-window model included additional
semi-selective compounds and non-binders, which the three-class selectivity classification model
necessarily lacked as the affinity difference was not large enough to meet the classification cut-
off. When these additional data points were excluded from the selectivity-window model, the
ROC dropped from 0.78 to 0.67 (average over classes), which is comparable with the ROC of
0.65 of the three-class selectivity classification model. This observation clearly confirms a direct
link between model quality and data availability and shows that the increased performance of the
selectivity-window model is attributed to additional data points. Hence it is advantageous to use
continuous models in selectivity modeling as in this case more data can be included. In addition
to the benefit of increased data availability, continuous selectivity models also provide the
ability to calculate a selectivity ratio as opposed to the class only. This selectivity ratio indicates
the degree of selectivity and therefore cannot only identify selective compounds, but can also
differentiate highly selective compounds from weakly selective compounds.

Remarkably, metrics based on classification (MCC, sensitivity, specificity, PPV, and NPV) for
the selectivity-window model (without non-binders and semi-selective compounds) (Table
4.4) are lower for the A AR-selective compounds and dual binders than metrics of the
3-class classification model (both trained on the same data) (Table 4.2), whereas ROC scores
are comparable or higher. Therefore, the predictions of the selectivity-window model were
compared with the experimentally measured selectivity values (Figure 4.5). It was observed
that the A, AR-selective compounds have consistently lower selectivity-window predictions than
the experimental selectivity values. As a result, fewer compounds reached the A AR-selective
classification threshold, decreasing the number of the A, AR-selective positives drastically. From
the 50 A AR-selective compounds, none reached the threshold. Of all predictions, only three
compounds reached the A AR-selective threshold, which were dual binders instead of the
Al1AR-selective compounds. This deficiency of predicted positives explains the failed cross-
validation calculations for the A AR-selective class.
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Figure 4.5. Relationship between experimental selectivity versus predicted selectivity. Predicted selectivity values shown

for the selectivity-window model. A AR-selective classification thresholds shown as orange lines (dotted = old threshold,
solid = new threshold).

To compensate, classification validation metrics were re-calculated post-hoc using classification
thresholds that were adapted to compensate for the generalization of selectivity for A AR-
selective compounds. Compounds were deemed A AR-selective when the selectivity-window
2 0.5, A, AR-sclective when the selectivity-window < -2 (unchanged), and dual binder when
the selectivity-window = -1 & < 0.5. Using the new thresholds, values of the metrics for the
A, AR-selectivity predictions improved: MCC 0.31 £0.10, sensitivity 0.45 £0.12, specificity 0.91
+0.02, PPV 0.32 £0.06, and NPV 0.95 £0.01, indicating that the revised threshold improves
the categorization of the A AR-selective compounds. Not all A AR-selective compounds
were correctly categorized but the post-hoc optimized threshold was considered adequate, as
lowering the A AR-selective threshold further would increase sensitivity (by categorization of
more compounds as A AR-selective), but would also decrease PPV. Here, the correctness of
predictions was prioritized over the number of predicted active compounds; hence PPV was
prioritized over sensitivity.

Removal of non-binders to enhance performance

Although the selectivity-window model differentiates between the A AR-, A, AR-selective
compounds, and dual binders, the model does not consider potential inactivity of compounds.
Consequently, non-binders cannot be filtered using this model. Therefore, a consensus approach
of statistical modeling and structure-based docking was applied to identify and exclude non-
binders.



Bioactivity regression models described above for the A AR and A, AR were combined with
dockingof the A AR/A, AR datasetand semi-selective compounds into crystal structures of both
proteins. Bioactivity predictions for the A AR and A, AR, and selectivity-window predictions,
were derived for the entire A AR/A, AR dataset and semi-selective compounds by assembling
the predictions made during 5-fold cross-validation of the previously trained regression models.
Compounds were docked into crystal structures of the A AR (PDB: 5UEN)" and the A, AR
(PDB: 50LZ)*, which resulted in docking scotes for both receptors. Compounds were assigned
a separate bioactivity label for the A AR and A, AR: compounds in the A AR were labeled
‘active’ when predicted pActivity = 7 and docking score < -9. Compounds in the A, AR were
labeled ‘active’ when predicted pActivity = 7 and docking score = -10.

Compounds with predicted selectivity-window = 0.5 or < -2, corresponding with A, AR- and
A, AR-selective, were subsequently filtered using the consensus bioactivity filter (Figure 4.6).
The PPV for A AR-selective compounds drastically increases from 0.13 to 0.39 when the
selectivity-window predictions were filtered using the consensus bioactivity filter for the A/ AR.
The A,, AR bioactivity filtering also increased the PPV of A  AR-selective compounds; here
docking and consensus filtering performed equally well (PPV A, AR-selective: 0.80).

Non-binders that were not removed using the statistical filter only, but were filtered when the
consensus approach was used, were inspected in the crystal structure of the A AR. Some non-
binders (e.g,, CHEMBIL.1800792) did not adapt a favorable conformation when docked into the
A AR (Figure 4.7). Moreover, an interaction with pocket residue Asn®* (Ballesteros-Weinstein
numbering) was frequently not observed. This is an essential missing element, as interaction with
this residue has shown to be important for ligand binding to the A, AR and A, AR.""** However,
some non-binders were able to make this interaction (CHEMBIL372580), but nevertheless had
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Figure 4.6. Positive predictive value (PPV) of compounds predicted to be A/ AR- or A, AR-selective. The PPV
depicts the number of experimentally validated selective compounds divided by the total number of predicted selective
compounds. PPVs are shown when different filters are applied: no bioactivity filter, statistical bioactivity, bioactivity
based on docking score, and consensus bioactivity (statistical bioactivity and structure-based docking).



a docking score that did not reach the set threshold (docking score < -9). The poses of the
non-binders were compared to those of an A AR-selective (CHEMBIL207824) and an A, AR-
selective compound (CHEMBIL371436). Both selective compounds adapt a conformation that
is able to make an interaction with residue Asn®>. Furthermore, the poses also constitute the
same aromatic interactions (with Phe171%? in the A AR and with Phe168"'2 and His250°**in the
A, AR) as the co-crystalized ligands and adapt a similar scaffold orientation. Finally, the poses of
the selective ligands have favorable docking scores (-10.30 and -10.91, respectively), supporting

that these compounds are binders for the A AR or A, AR.

Validation of the selectivity-window model on an external set

The predictive selectivity-window model (trained on A/ AR/A, AR dataset and semi-selective
compounds) was challenged to predict the selectivity of compounds from an external validation
set. This set contained 1,482 compounds of which a dose-response bioactivity value (Ki/ ICao/
EC, /K was known for at least one of the two receptors. If an accurate bioactivity value was
available for both receptors, the compound was classified according to prior rules applied in
this study. However, if an accurate bioactivity value for only one receptor was known, a less
accutate bioactivity measurement (inhibition as percentage displacement/efficacy/change) was
used to identify inactivity for the missing receptor. The low accuracy of the bioactivity values
makes this data less suitable for model training on the quantitative difference between activity
on the two receptors, but suitable for classification validation. A pChEMBL value of < 4.5
or inhibition threshold of < 50% (at 10 uM) was used to label inactive compounds, whereas
a pChEMBL value of = 6.5 was used to indicate active compounds. The selectivity-window
model was applied to the compounds in the external validation set, providing them all with
a predicted selectivity score and, subsequently, a selectivity class. The validation encompassed
all selectivity classes: A/ AR- and A, AR-selective compounds, dual binders and non-binders.
Since the selectivity-window model has no threshold for non-binders, non-binders were always
considered either as true or false negative (never false/true positive).

Without filtering inactives, the selectivity-window model performed average in the prediction
of the A AR-selective compounds (ROC 0.75) and A, AR-selective compounds (ROC 0.66)
in the external validation set (Table 4.5). However, application of the consensus bioactivity
filter resulted in an increase of the classification enrichment of the A/ AR- and A, AR-selective
compounds. Although the ROC for A AR-selective compounds decreased after applying the
bioactivity filter, PPV, and thus the fraction of true A AR-selective compounds compared to all
predicted A/ AR compounds, increased from 0.12 to 0.21. In addition, MCC increased slightly
from 0.13 to 0.18. Inspection of the compounds showed that all non-binders were removed after
filtering the selectivity-window predictions with the consensus bioactivity filter. The decrease
in ROC for the A AR-sclective class was thus caused by the presence of dual binders only.
Remarkably, sensitivity for the A/ AR- and A, AR-selective compounds was both 1.00 (100%),
whereas sensitivity for dual binders was 0.00 (0%). Although dual compounds were present
in the set that was filtered with the selectivity-window model, these compounds were wrongly
categorized as cither A AR- or A  AR-sclective. The predicted dual binders prior to bioactivity
filtering were, in fact, non-binders. However, these non-binders were correctly filtered out using
the bioactivity filter, leaving the dual binder class without positive-predicted compounds. Note
that the results do not specify dual binder enrichment, as the bioactivity predictions encompassed
only compounds predicted to be A/ AR- or A, AR-selective.
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Figure 4.7. Docked poses of compounds in their corresponding targets. Poses of two non-binders in the A AR
(CHEMBL1800792 in (A) and CHEMBL372580 in (B)), an A, AR-selective compound (CHEMBL204780 in (C)), and
A, AR-selective compound (CHEMBL371436 in (D)). Docked poses are compared to the co-crystalized ligands shown
in orange. Hydrogen bonds between ligands and Asn®*® are shown in yellow.
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Table 4.5. Performance of the selectivity-window model on an external validation set.

Model Class MCC Sensitivity | Specificity PPV NPV ROC
Selectivity-window AAR 0.13 0.39 0.83 0.12 0.96 075
ALAR | 040 0.24 1.00 0.70 0.97 0.6
Dual 0.02 0.81 021 0.64 0.39 0.37
Selectivity-window and | A AR 0.18 1.00 0.16 021 1.00 0.6
bioactivity filtered AAR | 088 1.00 0.97 0.80 1.00 0.98
Dual - 0.00 1.00 - 028 0.72

The query compounds were categorized based on post-hoc optimized classification of the selectivity predictions:
A AR-selective when selectivity-window = 0.5, A, AR-selective when selectivity-window =< -2, and dual binder when
selectivity-window = -1 & < 0.5. MCC = Matthews Correlation Coefficient, PPV = Positive Predictive Value, NPV =
Negative Predictive Value, and ROC = receiver operating characteristic.

Discussion

While QSAR models are widely applied in bioactivity modeling, they can also effectively be used
in selectivity modeling. However, modeling of selectivity requires a substantial amount of data,
as activities for more than one protein have to be measured. The amount of data that is available
influences the performance of the selectivity model as was observed for the performances of
the selectivity-window models when trained on limited data. To increase the amount of data
that is sufficient for selectivity modeling continuous regression models can be applied instead of
classification models. With regression not only compounds that belong to a defined selectivity
class can be included, but also compounds of which there is some selectivity but not large
enough to fit into a class. Another benefit of regression is that the degree of selectivity can be
provided in addition to the selectivity class of a compound.

Multiple QSAR regression models to derive selectivity for a panel of kinases were used by

Sciabola et al.?

. First, regression bioactivity models were trained for every kinase in the panel.
Next, bioactivity patterns were predicted for a set of compounds against all kinases, from which
subsequently selectivity was derived. To compare, we repeated a similar approach was repeated
by us in the current work. However, we also introduce the selectivity-window model, which
is a direct implementation of selectivity. We show that this approach outperformed models
that predicted selectivity indirectly by using separate bioactivity models. Even though separate
bioactivity models can include more data since compounds measured for just one protein can
be considered, this approach did not increase model performance enough to outperform the

selectivity-window model.

Nevertheless, an advantage of using separate bioactivity models to deduce selectivity from is that
additional proteins can be added easily: the selectivity between the added protein and existing
proteins can quickly be deduced from the results of the added bioactivity model. In selectivity-
window modeling multiple models need to be trained to predict selectivities of compounds
against a panel of targets: one model for every target-target combination. However, while using
separate bioactivity models can be more convenient, selectivity-window modeling may yield
more accurate predictions. It should also be noted that automatically generating these models
using scripting can be considered trivial. Therefore, when sufficient selectivity data is available it
is worthwhile to apply selectivity-window modeling;



The higher accuracy of selectivity-window modeling compared to using multiple bioactivity
models is suggested to be influenced by the higher quality of the data used in selectivity-window
modeling. In selectivity-window modeling, selectivity is predicted based on data from biological
experiments. Although biological experiments are susceptible to error (on average an error of
0.6 log units®), this data is more reliable than data derived from statistical models whose etrror
by definition should be higher than the error of the data they were trained on. In practice the
error of statistical models (and hence the error of predictions) vaties around 0.5-1.0 log units.**
While this error may accumulate with the experimental error, there is also the possibility that
modeling can reduce part of the experimental error. An additional study is required to reveal

how the modeling error behaves in combination with the experimental error.

The selectivity-window model by itself is not capable of distinguishing actives from inactives as it
is trained on the difference only, which is different from the affinity. However, separate bioactivity
models can be applied to filter potentially selective compounds from inactives, or non-binders. A
study by Zhao et al., where subtype selectivity between epigenetic targets HDAC1 and HDACG6
was modeled by classification of selectivity, utilizes a comparable approach by first predicting
selectivity, followed by bioactivity.”” Howevet, the selectivity model in that study is incapable
of predicting the degree of selectivity as a classification model was used. Furthermore, only
statistical models were used by the authors to predict bioactivity of compounds. In the current
study it was observed that implementation of statistical bioactivity models only increased the
enrichment of selective compounds slightly. In contrast, addition of structure-based docking
scores increased the enrichment of selective compounds substantially for both the A AR and
A, AR. Moreover, structure-based docking performed equally well as the consensus model
(statistical bioactivity and docking) for A, AR-selective enrichment.

Conclusion

We demonstrated that continuous QSAR models can be applied to model selectivity on the
A AR and A, AR. The selectivity-window model, which was trained directly on the difference
in affinity between both receptors, outperformed a two-step A, AR-A, AR selectivity model. In
the two-step model, which is generally applied in selectivity modeling, selectivity predictions are
derived indirectly by calculation of the difference between bioactivity predictions that resulted
from two separate models. Even though the separate bioactivity models included more data, the
performance did not increase enough to outperform our selectivity-window model. Furthermore,
a combination of statistical bioactivity models and structure-based docking contributed to the
enrichment of selective compounds and can be used to exclude non-binders (which are not
predicted accurately when directly predicting selectivity). In summary, we demonstrated that
accurate selectivity predictions can be made for the A, and A, adenosine receptors by combining
the selectivity-window model and consensus bioactivity modeling. This method can easily be
applied to other protein targets (e.g., kinases) as well, provided sufficient data is available.



Methods

Training/test datasets

The dataset was compiled from publicly available data derived from the ChEMBL database
(Gaulton et al. 2012; Bento et al. 2014) (version 23) and in-house data from Leiden University
(Leiden, The Netherlands). Compounds with experimental activities were collected for the human
A AR (P30542) and human A, AR (P29274). The data derived from ChEMBL was filtered on
confidence score 7 and 9, and a pChEMBL value = 4. In-house data was filtered similarly:
activity (K /IC_ /EC,) < 10* M. K values were prioritized over IC, or EC_|
duplicates, when more than one type was available for a given compound-receptor pair, K values

values. Thus, for

were kept and 1C_ and EC, values were discarded. The mean value was taken when multiple
bioactivity values of the same type were reported for a given compound-receptor pair (e.g., mean
of multiple K values for the same compound). The standardized activity values are reported as
pActivity values. An antagonist-focused dataset was compiled from the filtered data by removing
compounds with a ribose or dicyanopyridine scaffold. From this antagonist-focused dataset
an A/ AR/A , AR dataset that contained only compounds with activities measured on both the
A AR and A, AR was derived. The compounds were assigned to the A AR/A, AR dataset
after they were categorized into one of the following five classes: non-binders when pActivity
for both the A AR and A, AR < 6.5, A AR-selective (pActivity = 6.5 for the A/ AR and activity
compared to the A, AR = 100-fold), A, AR-selective (pActivity = 6.5 for the A, AR and activity
compared to the A/AR 2 100-fold), and dual binders (pActivity = 6.5 for both the A,AR/
A,, AR and activity difference < 10-fold). Compounds with experimental bioactivities for both
the A AR and A, AR, but that did not fit into any of the classes of the AlAR/ A, AR dataset,
were termed “semi-selective” compounds (855 bioactivities). The antagonist-focused dataset
contained 5,897 activities, the AlAR/AzAAR dataset included 1,106 compounds, of which 50
A, AR-selective and 146 A, AR-selective. Additionally, the antagonist-focused dataset was split
into two datasets for bioactivity modeling: the A| AR bioactivity dataset (2,774 compounds) and
the A, AR bioactivity dataset (3,123 compounds).

T-distributed Stochastic Neighbor Embedding (t-SNE)

The chemical similarity of the A AR/A AR dataset was plotted using t-SNE.*” Compounds
were described using FCFP4 fingerprints (fixed-length array of bits 2024). Two dimensions
were calculated: t-SNE component 1 and t-SNE component 2. The settings were as follows:
maximum number of iterations 5000, theta 0, perplexity 30, momentum 0.5, final momentum
0.8, and learning rate 10. Additionally a t-SNE was conducted showing the distribution of
chemically clustered compounds using affinity propagation (FCFP4).*

External validation set

An external validation set was created by using compounds that had been newly added in
ChEMBL version 24 and 25. Furthermore, compounds with confidence score 6 and 8 from
previous ChEMBL versions were added. Additionally, less accurate bioactivity measurements
(e.g., % displacement) were used to identify inactives. These less accurate bioactivities included
bioactivities measured as percentage displacement, efficacy and change. If a pChEMBL value
was known for both receptors, the compounds were categorized into the selectivity classes
A AR-selective, A, AR-sclective, dual binder, and non-binder according to the same rules as



used for the A\ AR/A AR dataset. If a pChEMBL value was known for only one of the two
receptors, less accurate measutrements (displacement/efficacy/change) were used to identify if
the compound was marked as inactive for the other receptor. Subsequently, a selectivity class
could be assigned. A pChEMBL value of < 4.5 or inhibition threshold of =< 50% (at 10 uM) was
used to label compounds as inactive and a pChEMBL value of 2 6.5 was used to identify active
compounds. Subsequently the selectivity class was derived from these bioactivity classes: A AR-
selective if active on the A AR and inactive on the A, AR, A  AR-selective if inactive on the
A AR and active on the A , AR, and non-binder if inactive on both the A AR and A, AR. Again,
compounds with ribose and dicyanopyridine scaffolds were excluded, resulting in an external
validation set of 1,482 compounds.

Machine learning

QSAR bioactivity and selectivity models were constructed using the R XGBoost model
component in Pipeline Pilot (version 18.1.0.1604).* The following settings were applied for
both classification and continuous models: maximum number of trees 1000, learning rate 0.3,
maximum depth 7, data fraction 1.0, and descriptor fraction 0.7. Compound descriptors were
calculated within the component and included ALLogP, molecular weight, number of H-donors,
number of H-acceptors, number of rotatable bonds, number of atoms, number of (aromatic)
rings, and FCFP6 fingerprints (fixed-length array of bits 2024).

Cross-validation

The models were validated with 5-fold cross-validation where they were trained on 80%
and tested on 20% of the dataset. The AlAR/ A, AR dataset was split into five subsets that
each contained all four classes (A AR-selective / A, AR-selective /dual/non-binder) and the
A, AR bioactivity dataset and A, AR bioactivity dataset were both separated into five subsets
considering an active/inactive distribution. This consideration of class-distribution ensuted that
every subset contained each (bioactivity) class, which allows for balanced model training and
validation. Chemical similarity of compounds was also considered; the A ]AR/ A, AR dataset and
bioactivity datasets were each split into five subsets with every set covering different chemical
structures. In order to create five chemically distinct subsets, each selectivity/activity class was
clustered into ten clusters with the cluster molecules component in Pipeline Pilot (based on
FCFP4). Subsequently, the smallest and largest clusters were combined into one group. This was
done recurrently until all clusters were divided into five groups with every group containing 2
clusters per class. Finally, the resulting groups of each selectivity/activity class were disttibuted
equally, resulting in five chemically distinct subsets comprising all selectivity/activity classes. The
model performances were evaluated using the following metrics: MCC, Matthews Correlation
Coefficient; sensitivity; specificity; PPV, Positive Predictive Value; NPV, Negative Predictive
Value; and ROC, receiver operating characteristic.’’** The (traditionally classification) metrics
MCC, sensitivity, specificity, PPV, and NPV, were either derived from the classification models
directly, or calculated from the output of the regression models.

Protein preparation and docking

Protein crystal structures were prepared with the protein prep wizard in Maestro 11, Schrédinger
Suites 2017-4.% First, modified amino acid residues were mutated back to wild type. Next, the
protein was prepared by filling in missing side chains, adding hydrogens, and creation of disulfide



bonds. Compounds were prepared for docking using LigPrep from Schrédinger Suites 2017-4.
Different tautomers were generated and compound charges were calculated at pH 7.4. Docking
was performed with Glide from Maestro 11, Schrédinger Suites 2017-4. SP (standard precision)
was used in docking and 10 poses per compound were generated.
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