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Abstract
Target deconvolution is a vital initial step in preclinical drug development to determine 
research focus and strategy. In this respect, computational target prediction is used to identify 
the most probable targets of  an orphan ligand or the most similar targets to a protein under 
investigation. Applications range from the fundamental analysis of  the mode-of-action over 
polypharmacology or adverse effect predictions to drug repositioning. Here, we provide a review 
on published ligand- and target-based as well as hybrid approaches for computational target 
prediction, together with current limitations and future directions.

Introduction
Target prediction is a key aspect in early preclinical drug development, pivotal to determine 
the clinical application and to initiate drug development campaigns. For instance, orphan 
compounds may be known from phenotypic screening, showing changes in cell or organism 
phenotypes upon compound exposure, without the underlying molecular mechanism being 
known.1 Targets for orphan compounds can be experimentally identified with techniques based 
on chemical proteomics such as affinity chromatography and activity-based protein profiling 
(ABPP), enabling compound testing against the proteome of  cell lysates or even intact cells and 
organisms.2−4 

Since these experiments are time and cost extensive, computational alternatives to rapidly 
predict the primary targets have gained momentum and are commonly known as in silico target 
prediction, target identification, or target fishing.5 Herein, a general distinction can be made 
between ligand-based methods, centered around small molecules, and structure-based methods, 
implementing information from protein structures.6 Pivotal to most of  these approaches is the 
chemical similarity principle stating that “similar molecules have a similar biological effect” and 
conversely that “similar proteins bind similar ligands”.7

One of  the main applications of  computational target prediction is to elucidate the mode-of-
action of  a compound by identifying its potential target. However, the traditional magic bullet 
paradigm, wherein a ligand has a high potency and selectivity toward a single target, has shifted 
to the understanding that a ligand affects multiple targets simultaneously.8,9 In this context, target 
prediction methods can be used to explore desired polypharmacological effects of  ligands to 
cover disease pathways.10 Similarly, it can help to spot selectivity or toxicity problems during 
compound optimization which can potentially lead to unwanted adverse or side effects.11 

Moreover, approved drugs, and hence clinically tested ligands, can be repurposed for different 
indications if  they are also found to interact with a protein target that is part of  another 
disease mechanism.12−14 This process is called drug repositioning or drug repurposing. Whereas 
the aforementioned applications focus on predicting targets, computational target prediction 
methods can also be applied to select ligands that have the highest potential to be relevant 
chemical probes used for ABPP to characterize the biological function of  a poorly understood 
target.15−17 

Designed for computational biologists, medicinal chemists, and neighboring disciplines, this 
review aims to outline the general principle and potential of  computational target prediction 
together with the underlying methods and their application. The article starts with ligand-
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based modeling, followed by hybrid approaches (using both ligand and protein data), as well as 
structure- and interaction-based methods (Figure 2.1). Finally, potential pitfalls of  the different 
approaches are covered, and a future perspective is given.

Ligand-based target prediction 

Central to ligand-based methods is that they rely on the chemical structure of  ligands and 
associated bioactivity of  similar ligands. Ligand-based methods are often used to predict the 
bioactivity of  novel compounds for a specific target (Figure 2.2). However, ligand-based 
methods can also be applied to predict activities for a range of  targets. Generally, this can be 
activity: the target for which the highest activity is predicted is expected to be the most likely 
target of  that query compound. 

Typically, the ChEMBL database18 occasionally in combination with PubChem19, e.g., in the case 
of  the ExCape database20, is used as a public source for chemical structures. These databases 
hold experimentally validated bioactivity data for many compounds tested on a wide range of  
proteins. 

In the following, some general compound descriptors for ligand-based methods are outlined; 
for specific details, the reader is referred to the review by Rognan.21 Subsequently, a description 
of  ligand-based methods ordered by increasing complexity coupled to prediction confidence is 
given (Table 2.1). The latter is expected to be higher for the more complex methods.

Compound Descriptors. Compounds in ligand-based models are typically described using 
their 2D chemical structures. Depending on the data source, an intermediate step can be 
the conversion from a 1D sequential textual format (e.g., SMILES22) to a 2D structure, from 
which more complex binary vectors such as molecular fingerprints are usually obtained.23 

Different fingerprints are available to describe chemical structures, e.g., atom-pair fingerprints, 
topological torsion fingerprints, or circular fingerprints, where atom environments are included 
(e.g., ECFP).24 Optionally, the 3D shape of  compounds is taken into account and translated 
into similar molecular fingerprints. However, this requires additional information on the 3D 
conformation of  the compounds.25,26 The use of  different chemical fingerprints can impact 
model performance and was explored by Bender et al.27 Additionally, physicochemical 
properties, topological information, and pharmacophore features of  compounds can be added 
as descriptors in a similar way. As a result, each compound is described by an array of  numbers 
forming the compound descriptors. Resemblance between arrays is higher when compounds are 
more similar to each other.

A more complex representation of  compounds, compared to chemical descriptors, are bioactivity 
spectra descriptors. A spectrum in its simplest form is a binary bitstring representation where 
each bit represents a protein. Proteins for which a given compound shows activity are marked 
with a “1” as opposed to those for which this is not the case (marked with “0”). Bioactivity spectra 
rely on compounds being tested on a range of  proteins, instead of  compounds being tested on 
only one or a few targets. Considering compound promiscuity, it is expected that compounds 
display activity on a number of  proteins.28 Based on the bioactivity spectra, compounds that 
are not chemically similar but do exert a similar phenotype/bioactivity might be recognized 
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Figure 2.2. Ligand-based methods for target prediction. Descriptors in ligand-based methods are shown in the dashed-
lined boxes on the left. Methods increase in complexity from left to right.

Figure 2.1. Overview of  ligand- and structure-based as well as hybrid methods for target prediction (blue) with optional 
data enrichment strategies (light blue), using database (DB) or training data input (green), separated by applicability 
depending on available query data (orange). Necessary and potential connections are displayed with solid and dotted 
arrows, respectively.
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(so-called activity cliffs29). Likewise, this bioactivity profile can form an array of  numbers that 
can be implemented as descriptors for similarity searching or machine learning, where activities 
can be treated as a bioactivity fingerprint. Recently, the biological annotation of  compounds 
has been extended to include gene expression profiles30,31 and high content cellular images,32 

providing additional, high-dimensional descriptors that can be added to a bioactivity fingerprint 
in a straightforward way.

Similarity Searching. The simplest and fastest method for target prediction is based on 
molecular similarity and is often referred to as similarity search or nearest neighbor search.33 
Using a similarity coefficient of  choice (e.g., Tanimoto) and any type of  compound descriptors 
(e.g., ECFP), the similarity between a pair of  molecules can be quickly generated. For example, 
finding the most similar 100 compounds for a given query compound in a PubChem-sized 
library (~96 million compounds) takes a few seconds using chemfp tools developed by Dalke.34

The simplest implementation for target prediction based on similarity is to rank the data 
set compounds based on their similarity toward the query compound and assume that the 
biologically tested target of  the most similar compounds is also the most likely target of  the query 

Table 2.1. Ligand-Based and Hybrid Methods in Target Prediction*

Name Data in model training Training set 
requirements

Target ranking Target prediction 
toolsCompound Interaction

Ligand-based models

Similarity 
searching

Chemical 
structure

- - Targets classified based 
on similarity threshold 
of  compounds

SwissTarget-
Prediction,35

SuperPred,36 
SEA,40 OCEAN,45

ROCS,72 FTrees73

Similarity 
searching

Bioactivities - - Targets classified based 
on similarity threshold 
of  bioactivity spectra

BASS,38 BioSEA4

Machine 
learning:
Classification

Chemical 
structure

Activity class Balanced (in)
active classes

Targets classified based 
on activity class

PIDGIN74

Machine 
learning:
Regression

Chemical 
structure

Bioactivity Normally/
equally distrib-
uted bioactivi-
ties

Targets ranked based 
on bioactivity

-

Hybrid models (ligand- and structure-based)

Proteoch-
emometrics

Chemical 
structure

Activity class
or bioactivity

Balanced (in)ac-
tive classes or
normally/equal-
ly distributed 
bioactivities

Targets classified 
or ranked based on 
bioactivity

ChEMBL mod-
els58,65

Network-
based
models

Chemical 
structure
and similarity

Activity class
or bioactivity

Sufficient 
number of  con-
nections/
bioactivities

Targets classified 
or ranked based on 
bioactivity

DINIES,68 
drugCIPHER69

*The table gives information on what data is used and how targets are inferred from the model output.
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compound. Webserver tools that enable the use of  this method are, e.g., SwissTargetPrediction35 
and SuperPred.36 These tools suggest protein targets based on molecular similarity of  the query 
compound to compounds with known bioactivity toward these targets. It should be noted 
however that these approaches cannot provide a direct quantification of  the biological activity 
of  the query compound on the top-ranked targets.

While similarity search is classically performed by comparing chemical descriptors, activity 
spectra descriptors can also be used (if  enough bioactivity data is available). Early work by 
Kauvar et al.37 characterized molecular similarity by an affinity fingerprint based on experimental 
screenings of  molecules against a reference panel of  selected proteins. Also in BASS38 (bioactivity 
profile similarity search), the similarity search is performed based on bioactivity spectra of  
chemical structures. Here, when the query has experimentally validated activities on a number 
of  targets, additional targets can be predicted based on its bioactivity spectrum. Alternatively, 
gene expression profiles can be used to predict bioactivities of  compounds for targets.30,39 Both 
bioactivity spectra and gene expression profiles do not compare the molecular structure of  
compounds. Therefore, these methods are suited to identify different chemical structures for 
similar targets.

In contrast to a classical similarity search, similarity ensemble methods are applied to identify 
targets based on a group of  known compounds for that target rather than a single compound. 
The compounds are first grouped based on interactions (e.g., bioactivity) with the same target(s). 
The similarity between different compound groups is subsequently calculated, and when defined 
as being similar, the targets that are known to interact with one compound group are identified 
as targets for the other compound group(s). The added benefit is that this allows the calculation 
of  statistical measures that can score the relevance of  a given retrieved target. When ensemble 
approaches are applied to identify targets for a query compound, the similarity is measured 
between this compound and the different compound groups. The targets belonging to the 
most similar groups are then identified as targets for the query compound. The SEA40 method 
utilizes the similarity ensemble concept to group proteins based on ligand topology. Within 
SEA, the retrieved value is then compared to an expected random value (similar to the way 
this is implemented in BLAST41,42), and subsequently, an “E-value” is returned.43 This E-value 
represents the extreme value and indicates the quality of  the result. The (similarity) score of  
the selected samples is compared to what is expected when two random samples are taken into 
account. E-values closer to zero indicate that it is more unlikely that random samples would have 
equal similarity as the selected samples. The SEA method has been applied by Lounkine et al.44 
in a target prediction challenge. Here, side effects of  656 compounds were predicted based on 
compound interactions with 73 off-targets. The results were partially validated by data from hold-
out databases or experimentally validated in vitro. Remarkably, off-targets were identified that 
had very low sequence similarity with the ontarget (e.g., off-target serotonin transporter 5-HTT 
and ontarget histamine H1 receptor for antihistamine diphenhydramine), indicating that such a 
ligand-based approach can predict targets without the need of  molecular biology information on 
protein targets. OCEAN45 is a similar technique, though using different thresholds to determine 
compound similarities. Finally, BioSEA46 also applies the same methodology; however, instead of  
comparing compound similarities based on chemical structure, bioactivity profiles are compared 
to create ensembles of  compounds.
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Machine Learning. Similarity search methods consider all features in the compound 
descriptors as equal. However, statistical methods can weigh the relevance of  individual 
descriptors by connecting them to biological activity of  the compounds and are often better 
suited to extrapolate to new compounds. Machine learning methods require a training phase, 
which is performed on known active and inactive compounds. Herein, a statistical model is 
fitted to the data to quantify how chemical descriptors relate to activity. Contrary to the similarity 
searching example above, this approach returns predicted compound−protein activities rather 
than a number of  compound structures that are similar for a query compound. When applied 
to a single protein target for a congeneric chemical series, these methods are named quantitative 
structure−activity relationship (QSAR) models.47 Given a query compound, QSARs can predict 
its expected activity based on the compound descriptors. In target prediction, however, more 
than one protein is considered. Machine learning can both be used for classification (e.g., is the 
expected affinity higher than a threshold that was defined a priori as active?) or for regression 
(e.g., what is the predicted Ki value for a compound−protein interaction?). Typically, algorithms 
such as Random Forest,48 Support Vector Machines,49 and Naïve Bayes50 are applied. However, 
with more data becoming available and to become more independent of  the chosen descriptor, 
recent work is moving toward deep learning, a method able to directly derive features from 
molecular structures.51,52

An example where machine learning was applied in target prediction is the identification of  novel 
inhibitors for the enzyme mycobacterial dihydrofolate reductase.53 Here, targets were predicted 
for a set of  query compounds using Naïve Bayesian models. The predicted compound−target 
interactions were validated in vitro, which indicates the value of  such target prediction methods.

Classification. The most frequently used method in ligandbased target prediction is arguably 
classification.1,54 Classification requires the setting of  an activity threshold for measured 
interactions to separate the classes. This interaction can be measured binding affinity (e.g., pKi) 
but can also be efficacy or other experimental measurements (e.g., pEC50) or even a combination 
of  multiple measurement types (e.g., pChEMBL value).55 For classification models, a difference 
can be made between several approaches:

Single Model Multi-Class (SMMC). In this approach, one model is used that predicts the most 
probable target for a given compound, and target classes are mutually exclusive, in other words 
a compound cannot be active on more than one target.56 Given known ligand promiscuity, the 
SMMC method provides an inaccurate representation of  the behavior of  ligands and could even 
be considered to be at odds with the similarity principle.

Ensemble Model Multi-Label (EMML). With EMML, also referred to as ensemble model multi-
class, one model is used per protein, and compounds receive a prediction from each model.1,57 

Thus, the sum of  protein models where the compound was predicted active on represents 
the set of  potential target proteins. To build the model per protein, all compounds with an 
activity for the respective protein above a certain threshold are deemed the active class, and all 
other compounds are typically pooled in the inactive class. For the EMML approach, pooling 
constitutes a source of  error. It might very well be that although a given compound has not been 
tested on the protein under consideration, it is indeed active yet pooling defines it to be inactive. 
Thus, potential targets for the query compound may be missed.
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Single Model Multi-Label (SMML). Here, one model is used to predict all potential targets for a 
given molecule, and compounds can belong to multiple target classes (or labels).56 The active 
class for a given protein is defined equally as is described for EMML, but all other compounds 
are not explicitly pooled in an inactive class, merely the ones that were tested to be inactive are 
considered. A caveat can be that there are none or too few known inactive compounds for good 
model fitting.

When a query compound is run through a classification model, the output gives the activity 
class per target (e.g., active/inactive, depending on the previously described approaches and on 
the predetermined activity threshold). However, regression can directly predict the affinity of  a 
compound.

Pitfalls Defining an “Active” Class. Typically, the activity threshold in classification models 
is set at 10 μM (i.e., an affinity better than 10 μM defines active interactions, corresponding 
to a pKi of  5). This parameter carries a significant influence on effectiveness and applicability 
of  target prediction methods. In principle, for classification, a balanced set of  active and 
inactive compounds is desired. When the activity threshold is set at 10 μM, this gives a skewed 
distribution of  actives and inactives. Recently, target prediction was performed using an affinity 
value of  ~316 nM (corresponding to 6.5 on a logarithmic scale) as the threshold; this leads to a 
better distribution of  active and inactive classes when using ChEMBL data.58 An added benefit 
is that this threshold also provides a more relevant prediction of  biological activity. Given that 
the biological error of  assays is on average around ~0.5 log units for mixed pKi values, a model 
using a cutoff  of  pKi = 6.5 could at worst correspond to an experimental activity of  a pKi = 6.0. 
When a cutoff  of  pKi = 5.0 (10 μM) is used, this error would be at worst pKi = 4.5 for predicted 
actives.57,58 However, the optimal activity threshold for balanced classification sets is dependent 
on the databases from which compounds and bioactivities are extracted (e.g., ExCape20 contains 
more compounds with lower bioactivities than ChEMBL). Furthermore, the targets that are 
considered can be biased toward reported (in)actives (often in relation to the amount of  studies 
focused on the target, see the Discussion and Future Directions section).

When a reasonable number of  inactive compounds is available, but significantly less than the 
number of  active compounds, some workarounds can be applied to train representative models. 
For instance, active compounds can be divided into smaller subsets in order to train separate 
models for each subset of  actives with the same set of  inactives (e.g., random undersampling) 
and, finally, recombined by ensembling. Ensembling is a technique to combine predictions from 
multiple models into one prediction that has shown to increase performance.58,59 The downside 
of  any ensembling method is the unavoidable increase in computational time required as 
predictions for multiple methods are needed.

Another workaround (which also requires increased computational time) is to construct multiple 
ligand-based target prediction models at different thresholds (e.g., 10 μM, 1 μM, 100 nM, 10 nM, 
and 1 nM). However, doing so decreases the available data points for the higher activity thresholds 
as fewer compounds are known that meet the threshold, and hence, this has a negative effect on 
the chemical applicability domain. In these cases, regression might allow the use of  more data.
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Regression. Contrary to classification, regression methods are able to directly train on the 
strength of  a given ligand−protein interaction avoiding the need for a preset threshold. Trained 
on experimental data, regression models can make quantitative predictions (e.g., Ki values) for 
compounds based on the chemical structure. These predictions can be directly translated to the 
interaction (e.g., affinity as a Ki value). Thus, when regression is applied to multiple proteins 
(using an ensemble of  models), the targets can quantitatively be ranked based on predicted 
compound−protein activity. In addition to predicting activity, the differences in interaction 
strength for different proteins can be evaluated. Using regression models, the output of  a query 
ligand can constitute a list with ranked targets based on quantitative bioactivity predictions. The 
output, therefore, does not only define “active” or “inactive” targets but also the activity strength 
that is reflected by the predicted bioactivity values.

Hybrid methods for target prediction

Similarity searching and machine learning methods-which are classically built on ligand 
information-can also be applied in more complex systems where protein information is added. 
Although the underlying mechanism of  the methods is the same (e.g., machine learning), the 
implementation can be different, in turn leading to other application possibilities. This results in 
alternate methods to model and analyze the data.

Proteochemometrics. With proteochemometrics (PCM), both compound and protein 
information are combined by addition of  an explicit protein descriptor.60 The most common 
approach is to add protein information based on knowledge derived from the protein sequence. 
Sequences are translated into descriptive scores (e.g., z-scales61), reflecting the properties of  the 
amino acids of  the proteins.62 Additionally, when structural protein information is available, 
this may be used to increase descriptor quality as information on binding site location can be 
included, making the model more accurate compared to using full sequences.63 PCM can be 
applied to expand single target models to multiple targets: based on sequence similarity between 
proteins, data from one protein can be extrapolated to a related one.64 Another application is 
increasing the amount of  available data (compared to single target models) in order to increase 
model performance.63 Several PCM models for target prediction based on ChEMBL data have 
been reported.58,65 Such models predict the activities of  a query compound for each of  the 
incorporated targets. When these models are based on regression, the most likely target for a 
query compound can be derived based on the highest predicted activity for that target compared 
to other targets. Additionally, a quantitative activity score is given per target; therefore, it can 
be assessed if  activity of  the query compound for the highest ranked target(s) is sufficient. 
Noteworthy, as the combination of  compound and protein descriptors defines each compound 
protein pair as a unique pair, even binary class PCM models behave as SMML models. A 
compound tested to be inactive on protein A can be distinguished from the same compound 
tested on protein B by the algorithm based on the protein descriptor. 

Network-Based Methods. Protein−protein or protein−ligand interactions can be described 
as a large network similar to a social network. Here, nodes can be proteins, compounds, or 
both, with the edges being interactions, similarities, or phenotypic effects. These connections 
can also be weighted based on the strength of  interaction (e.g., pKi). Using chemical structures 
and similarities between connections, targets can be identified for query compounds.51 This 
has led to the publication of  several works that use network analysis tools to predict protein 
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pharmacology.66,67 Additionally, networkbased target prediction tools such as DINIES68 and 
drugCIPHER69 are made available as open source tools to detect ligand−target interactions for 
query molecules. The concept of  network-based models is often based on similarities between 
chemical structures but can also include similarities between proteins. More simplistic models 
implement only one similarity (e.g., protein similarity), whereas more complex models can 
encompass similarities between protein, chemical structures, and interactions, simultaneously. 
Such a heterologous network was constituted using three different networks by Chen et al.70 
Here, a protein similarity network (based on sequence similarity) was connected to a compound 
similarity network by using a ligand−protein interaction network.71 Therefore, in this network, 
protein and compound similarities can simultaneously be addressed, which is not possible with 
only similarity searching as described in the section regarding this topic. Targets for a given query 
compound can be inferred from the network based on activities (or connections) of  similar 
ligands and their corresponding targets.

Structure-based target prediction 

Methods for structure-based target prediction identify the most likely targets for a query ligand 
or the most similar targets for a query target, using 3D structural, i.e., steric and physicochemical, 
information (Figure 2.3). The former group of  approaches focuses on docking a query ligand 
either to a set of  targets (inverse screening) or to a set of  pharmacophores inferred from 
ligand−target complexes (reverse pharmacophore screening), see Table 2.2. The latter group 
of  methods compares a query target, either to a set of  targets (binding site comparison) or to a 
set of  interactions inferred from ligand−target complexes (interaction fingerprint comparison),5 

see Table 2.3.

Typically, the Protein Data Bank (PDB)75 is used as a public source for protein structures, 
currently holding more than 140,000 protein structures (accessed in November 2018). Since 
the binding site is the key to protein function, most methods are proceeded by a binding site 
annotation step: with a ligand present, binding sites are extracted by a defined ligand-target 
residue distance cutoff, and without a cocrystallized ligand, binding site detection methods can 
be invoked.76 A widely used resource for such annotated binding sites is the scPDB77 database, 
containing more than 16,000 ligand-bound binding sites from the PDB and covering about 4700 
proteins with 6300 ligands.

Methods for structure-based target prediction are all composed of  three main steps, which are 
described in detail in the individual method paragraphs: (i) binding site encoding, (ii) target 
screening or comparison, and (iii) target ranking. First, binding sites or ligand-target interactions 
are encoded using different descriptor techniques and stored in a target database. Second, 
depending on the method, either a query ligand is screened against the target database, using 
different docking engines, or a query binding site is compared with the target database, using 
different similarity measures. Finally, targets are ranked based on a suitable scoring approach.

Inverse Screening. Classically, molecular docking is used to predict both the binding mode and 
the approximate binding free energy of  a set of  ligands against one target of  interest. In inverse 
docking, also known as inverse screening or panel docking, this strategy is reversed, and one 
query ligand is docked to a set of  target proteins in order to predict its most likely targets. Most 
docking tools are theoretically applicable for inverse screening, yet need adaption with respect to 
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intertarget instead of  conventional inter-ligand ranking (Table 2.2).78,79

(i) Binding Site Encoding. Since the query compound is screened against each target in the data 
set, the targets need to be preprocessed accordingly. Target databases for methods using 
conventional docking engines simply contain structure files for binding sites (e.g., TarFisDock80 

and idTarget81) or for whole proteins (INVDOCK82), preprocessed as required for the respective 
docking tool. In contrast, iRAISE83 prepares for an efficient comparison by encoding binding 
sites with triangle descriptors, which contain pharmacophoric and shape information and are 
stored as bitmap database, a specialized index for high-dimensional features.

(ii) Target screening. Most inverse screening methods use conventional docking engines, such as 
DOCK (TarFisDock), MEDock (idTarget), Glide (VTS84), or AutoDock Vina (VinaMPI85 and 

Binding site 
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Figure 2.3. Structure-based target prediction: conceptual representation of  the four main approaches, i.e. binding site 
comparison, inverse screening, reverse pharmacophore screening, and interaction fingerprint comparison.
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IFPTarget86), in order to estimated the fit of  the query compound against each protein in the 
target database. High computational costs are addressed by either parallel screening (VinaMPI 
and IFPTarget) or by search space reduction. The latter can be realized by aborting the search 
at the first pose reaching a threshold score based on interaction energies from reference ligand-
protein complexes (INVDOCK) or by testing one target representative per precalculated target 
cluster (based on sequence identity) before screening the entire cluster (idTarget). Usually, 
energybased functions, such as interaction or binding free energy functions, are used to score 
the resulting docking poses. In iRAISE, the query ligand is described with triangles, in the same 
manner as the binding sites before, and is efficiently matched based on bitmap indices, followed 
by respective superimposition of  the ligand and binding site triangles. Finally, iRAISE docking 
poses are scored using a more extensive approach in the form of  a scoring cascade, including 
a clash test, an interaction energy score, a reference score cutoff  (based on the co-crystallized 
reference ligand), and a ligand and pocket coverage score.

(iii) Target Ranking. Targets are ranked either directly based on the interaction energies of  the 
best docking pose(s) per target (INVDOCK, TarFisDock, and VinaMPI) or based on separate 
functions tailor-made for inter-target ranking. In the latter approach, each target in the database 
is profiled beforehand either with a set of  ligands using docking (iRAISE and VTS) or with 

Table 2.2. Structure-based target prediction: Selected methods for inverse screening and reverse pharmacophore 
screening

Name Encoding Target screening Target ranking Av.*

Docking 
engine

Scoring function

Inverse screening

INVDOCK82 Sphere-coated surface DOCK 
derivative

Interaction energy - 2

TarFisDock80 Sphere-coated surface DOCK 4.0 Interaction energy - 2

idTarget81 Energetic grid map MEDock Binding free energy 
(AutoDock4 score)

Z-score based on binding 
free energies of  reference 
complexes

1

VTS84 Energetic grid map Glide Binding free energy 
(Glide Gscore)

Gscore comparison to 
Boltzmannweighted aver-
age of  reference Gscores

2

VinaMPI85 Energetic grid map AutoDock 
Vina

Binding free energy 
(Vina score)

- 1

iRAISE83 Bitmap of  binned 
triangles (3 pharma-
cophore features and 
cavity shape)

Index-
based 
bitmap
comparison

Scoring cascade: 
clash test, interac-
tion energy
and reference 
cutoff, ligand and 
pocket coverage

Gaussian-weighted score 
based on scores for refer-
ence complexes

1

Reverse pharmacophore screening

PharmMapper90 Hash table of  binned 
triangles (5 pharma-
cophore features)

Geometric 
hashing

Fit score (based on 
matching feature 
types and positions)

Z-score based on fit score 
distribution of  reference 
complexes

1

*Av. = availability: web server, software, or code is (1) free for academic use and/or available upon request or (2) not 
(yet) available or unclear.
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one co-crystallized ligand (idTarget and IFPTarget). These reference profiles are then used to 
normalize the scores of  docking poses of  a query ligand and potential targets.

Inverse screening methods have been widely used for target prediction.78,79 For example, Scafuri 
et al.87 applied idTarget to predict potential targets of  apple polyphenols, known for their chemo-
preventive effect against colorectal cancer. In a bioinformatics-driven function analysis, the gene 
expression levels for the predicted targets were shown to be significantly altered in colorectal 
cancer cells, indirectly linking the investigated apple polyphenols to the predicted targets.

Reverse Pharmacophore Screening. Similar to inverse screening, reverse pharmacophore 
screening consecutively fits a query ligand in the form of  a ligand-based pharmacophore into 
a precalculated panel of  pharmacophore models, derived from protein-ligand complexes. 
A pharmacophore is defined as an ensemble of  physicochemical and steric features that 
are necessary for the recognition of  a ligand by a target, triggering or blocking a biological 
response.88 Structure-based approaches derive such pharmacophores from a target complex, 
whereas ligand-based pharmacophores consider solely ligand properties. Several studies have 
conducted reverse pharmacophore screening for polypharmacology, using available standard 
software packages that allow for rapid pharmacophore model building and evaluation.89 However, 
to the knowledge of  the authors, the only available automated workflow for pharmacophore-
based target prediction is PharmMapper.90

In PharmMapper, the interactions of  selected ligand-target complexes are encoded as 
pharmacophore feature triplets, stored in a hash table, and deposited in a target database (i). For 
target screening (ii), ligand-based pharmacophores are generated for multiple conformations of  
the query ligand. Each conformer pharmacophore is described in form of  triplets and aligned 
onto each pharmacophore triplet in the target database, using triangle hashing. Subsequently, 
targets are scored based on the overlap of  feature types and positions between the ligand and 
target pharmacophores. Finally, each target score is normalized by a reference score for target 
ranking (iii). The reference score per target reflects the score distribution of  matching all ligand 
pharmacophores extracted from the original protein-ligand complex structures in the database 
against the target pharmacophore.

Reverse pharmacophore screening was often applied to search for targets of  compounds 
in Chinese traditional medicine (CTM).79 For example, Liu et al.91 used PharmMapper to 
predict the glucocorticoid receptor, p38 mitogen-activated protein kinase, and dihydroorotate 
dehydrogenase as potential targets of  berberine, a compound used in CTM to treat cancers 
including melanoma. Experimental tests confirmed the predicted targets to be potentially 
involved in the anti-melanoma effect of  berberine.

Binding Site Comparison. Target comparison is based on the assumption that similar proteins 
- or more precisely binding sites - bind similar ligands. Various binding site comparison methods 
have been developed, pursuing different strategies to encode binding sites, as well as to measure 
and score their similarities92,93 (Table 2.3).

(i) Binding Site Encoding. The structural complexity of  binding sites is reduced to labeled 
representatives, whose spatial arrangement is encoded and stored in a database, to be compared 
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with a query binding site encoded accordingly. Binding site representatives can be per-residue 
points (e.g., CavBase94 or (Med-)SuMo95,96), binding site surfaces (e.g., ProBis97), or binding site 
volumes (e.g., Volsite/Shaper98), with labels mostly containing pharmacophoric information. 
The spatial arrangement of  these representatives is often encoded as graphs (e.g., CavBase) and 
triangles/quadruplets. The latter are binned by their edge lengths and vertex labels and stored 
as fingerprints (e.g., FuzCav99 and FLAP100), hash tables (SiteEngine101), or bitmaps (TrixP102), 
whereas (Med-) SuMo95,96 uses a graph of  adjacent triangles. Alternate methods describe binding 
sites as distance distributions between aforementioned per-residue points (e.g., RAPMAD103), or 
with volume functions (Volsite/Shaper).

(ii) Binding Site Similarity Measure. Common strategies for measuring binding site similarities can 
be divided into alignment-based (often slower) and alignment-free methods (mostly faster), 
as well as accelerated alignment-based methods. The latter combine the speed of  alignment-
free methods with the visual interpretability of  alignment-based methods. Alignment-based 
methods calculate and perform the best possible structural superimposition of  two binding 
sites based on their encoded features, using geometric matching and hashing of  two triangle sets 
(e.g., SiteBase104 and SiteEngine, respectively) or most commonly clique detection between two 
graphs (e.g., CavBase). The latter approach searches the maximum complete subgraph (clique) 
in a product graph, which is built from a target and query graph with matching vertices and 
edges. Many alignment-free methods operate on the comparison of  fingerprints (e.g., FuzCav) 
or of  distance histograms (e.g., RAPMAD). Accelerated alignment-based methods use efficient 
data structures for rapid comparison, with subsequent binding site alignments for scoring and 
visual interpretation. Those methods include strategies to reduce graph complexity before clique 
detection (BSAlign105), to compare binding site volumes using smooth Gaussian functions 
(Volsite/Shaper), and to store binned 3-point pharmacophores in bitmap indices (TrixP). 
Moreover, properties of  a binding site can be projected to a triangulated sphere positioned at 
its center, stored as fingerprint to be iteratively compared, and aligned to another binding site 
fingerprint (SiteAlign106).

(iii) Binding Site Similarity Ranking. Alignment-based methods score the similarity of  binding sites 
based on the mutual overlap and/or root-mean square deviation (RMSD) of  their associated 
encoded features. In contrast, alignment-free methods mainly calculate fingerprint similarity 
based on the number of  matching fingerprints, if  multiple fingerprints exist per binding site 
(e.g., FLAP), or based on the Tanimoto coefficient, if  only one fingerprint per binding site (e.g., 
FuzCav) is calculated.

An exemplary application of  binding site comparison is a study on cross-reactivity using 
SiteAlign by De Franchi et al.107 Virtual screening of  Pim-1 kinase against ATP-binding sites 
showed high similarity to synapsin I, a protein regulating neurotransmitter release in the synapse, 
suggesting a crossreaction of  protein kinase inhibitors with synapsin I. Biochemical validation 
revealed nanomolar affinities for pankinase inhibitor staurosporine and selective Pim-1 kinase 
inhibitor quercetagetin for synapsin I. These findings were proposed as possible explanations 
for the observed downregulation of  neutrotransmitter release by some protein kinase inhibitors.
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Interaction Fingerprint Comparison. Interaction fingerprints (IFPs), or protein-ligand 
fingerprints, are vectors that encode information on interacting ligand and target moieties, such 
as hydrogen bond, hydrophobic, charge, aromatic, and metal-binding interactions. IFPs are often 
used in combination with screening methods in order to rescore docking poses.108 Only a few 
IFP-based pipelines have been published for target prediction so far. Note that they require a 
ligand placement step for IFP calculation. Thus, for IFP encoding (i), the query ligand has to be 
docked against the target structure(s). Generally, IFP methods either map detected interactions 
to ligand atoms (e.g., LIFt109), to target binding site residues (e.g., SIFt110 and IFPTarget86), or 
define a ligand- and targetindependent fixed length fingerprint (e.g., TIFP111 and SPLIF112). 
Similar to the alignment-free fingerprint-based binding site comparison, the comparison of  two 
IFPs is usually based on the Tanimoto coefficient (ii), and targets are rankordered accordingly 
(iii). In the following, two tools are introduced: In the first approach, interactions are mapped on 
the ligand; thus, ligand IFPs are compared. In the second, information is mapped on the target 
residues, and subsequently, target IFPs are compared.

Cao and Wang109 propose a pipeline for off-target prediction exemplified on a tubulin agent 
with kinase-cross activity. The tubulin agent complex structure is the starting point to generate 
the ligand-based interaction fingerprint (LIFt) for the query compound. Next, the query ligand 
is docked to a panel of  kinase structures. The best-scoring pose per ligand-kinase complex is 
encoded as LIFt, documenting interactions per ligand atom. Finally, these predicted panel LIFts 
are compared (Tanimoto coefficient) to the known reference LIFt and ranked accordingly. In 
contrast, IFPTarget by Li et al.86 first sets up a target database, where the co-crystallized ligand 
is used to define the reference target IFP, documenting per-residue interactions. Next, the query 
ligand is docked to the same panel of  targets, and the top-scoring pose for each target is used to 
generate the docked target IFP. Subsequently, reference and docked target IFPs are compared 
and ranked by a final score that integrates aforementioned energy-based docking and IFP-based 
scores.

The presented methods are strongly intertwined with a docking (inverse screening) procedure: 
Two IFPs can only be compared if  they have one constant component (LIFT: same ligand 
in two different structures, or IFPTarget: same structure with two different ligands) because 
otherwise the IFP lengths and order differ. Here, the third category of  ligand and protein 
invariant fingerprints, such as TIFP by Desaphy et al.,111 could find a remedy, but has, to the 
knowledge of  the authors, not yet been used for target prediction.

Consideration of  Target Flexibility in Structure-Based Methods. Proteins are flexible, 
existing in transient conformational states, whereby only a subset may be receptive to 
ligand binding. Such flexibility is to some extent implicitly considered by the coarse-grained 
representation of  binding sites in the encoding step, such as binned distances (e.g., RAPMAD 
and FuzCav) and fuzzified graphs (PoLiMorph114), as well as by including tolerances during the 
matching step. Small side-chain flexibility can be explicitly included by, e.g., representing rotatable 
hydrophilic interactions (TrixP) or “on-the-fly” conformational sampling of  side chains (FLAP 
and BioGPS118). Instead of  conformational sampling, different parts of  the binding site can be 
investigated separately from each other in order to spot local similarities. Some methods therefore 
allow for partial shape matching (TrixP) or local examination of  binding site segments (ProBis). 
Inverse screening methods usually treat the target structure as rigid body, while considering 
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ligand flexibility by conformational sampling of  the ligand (e.g., iRAISE and INVDOCK).

However, information on protein flexibility can be enriched by including protein ensembles 
in screening databases, either derived from a set of  experimentally determined structures or 
from molecular dynamics (MD) simulations. The former approach is to some extent integrated 
whenever methods are built upon a database containing multiple structures per protein (e.g., 
scPDB-based target databases); however, so far, those structures have not been statistically 
evaluated as one protein ensemble. Furthermore, such PDB-derived protein ensembles can only 
cover protein classes with high coverage. Methods describing binding site changes based on MD 
simulations, as described in TRAPP119 for transient pockets, are already available but have not 
been integrated yet into a workflow for target prediction.

Discussion and future directions
Since without sufficient data computational target prediction would not be possible at all, we 
first discuss the beauty and peril of  current data sources. We then cover challenges in target 
ranking and method validation as well as directions on how to overcome them.

Data. Usage of  in silico techniques for target prediction has been enabled in the first place by the 
rapidly increasing amount of  available structural, chemical, and biological data. In this respect, 
the increasing availability of  open access databases for drug discovery should be appreciated, 
with the PDB,75 ChEMBL,18 PubChem,19 and DrugBank120 databases being arguably the most 
well known. While the speed of  computation has increased at a phenomenal rate with transistor 
counts roughly doubling every two years121 (slowing down in recent years122), data availability and 
quality still form the bottleneck.20,123 Given more data, more intricate methods can be applied, 
which should result in higher quality predictions.21 This does not only concern bioactivity data 
but also structural information on proteins.75

In ligand-based methods, the large amount of  available bioactivity data is used for model training. 
Lack of  data here typically means that there are not enough experimentally derived activities of  
compounds for a given target. One way to overcome this is using computational target prediction 
to fill in the expected bioactivities for proteins that were not experimentally tested.54,124 However, 
even if  sufficient data is available, this does not directly mean the data quality is adequate. It has 
been shown that the experimental error in bioactivity databases can be substantial.33,125 In public 
data, experimental activities are not derived following the same standard operating procedure or 
are even from the same lab or assay. This leads to a relatively large experimental error in the data 
(on average 0.47 log units for mixed pKi data),33 which is reflected in the prediction accuracy of  
the models. Data quality and bias each determine the applicability domain of  a model and should 
therefore be addressed early on by comparing the similarity between training and screening 
compounds. For instance, models trained on smaller or more hydrophobic molecules may not be 
able to make reliable predictions for larger or more hydrophilic compounds. Furthermore, high 
chemical similarity within the training set leads to a bias toward a similar group of  compounds. 
Therefore, a wide diversity in chemical space is more favorable than a large compound set 
encompassing a congeneric series of  ligands. Models trained only on close analogues cannot 
predict activities of  very dissimilar compounds reliably. In summary, in order to build reliable 
models, important factors to check are the amount of  data and heterogeneity (as discussed here), 
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as well as the bias toward (in)actives (see Pitfalls Defining an “Active” Class section) and toward 
certain targets (see Target Ranking section).

Structure-based methods build on the structural arrangement of  binding site atoms, experimentally 
derived from currently mostly X-ray crystallography. Such structural arrangements are (i) less 
reliable with decreasing resolution and (ii) represent only a static (and maybe even artificial) 
conformational state. The former is usually addressed with resolution thresholds (e.g., < 3 Å in 
case of  the scPDB), whereas the latter is sometimes considered with conformational sampling 
(see Consideration of  Target Flexibility in Structure-Based Methods section). Furthermore, using 
structure-based methods, only targets with available structures can be queried, introducing a bias 
toward structurally known targets. Currently, most methods rely only on the available structures 
in the PDB. While there are over 140,000 protein structures deposited in the PDB (accessed in 
November 2018), they only cover at most 30% of  the human proteome and 50% of  known human 
drug targets,126 with protein classes being differently well represented. Homology modeling is 
a possibility to infer lacking information from determined structures of  homologous proteins. 
Somody et al.126 have shown that given a sequence identity of  ≥ 30% (as generally accepted 
lower limit for homology modeling) the structural coverage of  the modeled human proteome 
could approach 70% (that of  known human drug targets 95%). While large scale homology 
models have been used, e.g., for kinome-wide druggability predictions,127 they have not been 
widely used yet for target prediction. It should be noted that the higher the sequence identity 
is, the more reliable the homology models are for structural modeling purposes. Furthermore, 
target-focused methods such as inverse screening and binding site comparison only require 3D 
target structures and binding site locations, whereas interactionfocused methods require ligand-
target complex information, limiting their applicability. To overcome this, such interactions 
can be predicted: For instance, interaction fingerprint comparison can be coupled with inverse 
docking, and reverse pharmacophore screening can be based on target-focused pharmacophore 
methods such as T2F-Pharm128 that generate pharmacophores from apo-structures. However, 
it is important to note that such ligand- as well as structure-based models-based-on-models 
approaches may introduce noise to the predictions.

Target Ranking. Results from computational target prediction are highly dependent on the 
scoring function(s) used for target ranking. If  two objects of  the same type-for example, two 
small molecules or two protein binding sites- are compared, similarity of  the query to the 
database can directly be inferred from the commonalities or mutual overlap between the objects 
and ranked accordingly. In contrast, if  the objects to be compared are of  different types, target 
ranking becomes more complex. For example, this is the case when the most likely targets 
are predicted for a small molecule based on individual machine learning models per target 
(ligand-based methods) or based on inverse screening against a target database (structure-based 
methods). While it is already challenging to predict the correct activity or binding energy of  a 
ligand against one target, in panel predictions, the ligand is scored individually against multiple 
targets, requiring intertarget ranking. This is especially ambitious since the predictions are 
influenced by different forms of  bias present in the data. Typically, some protein classes (e.g., 
kinases or G protein-coupled receptors) have been very well explored, whereas others have 
been explored less thoroughly (e.g., transporters). This means that more ligands are known for 
these proteins (ligand-based methods) or more structures have been elucidated (structure-based 
methods). Thus, the chemical or structural space is better covered, and they might score better 
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compared to less explored chemical or structural spaces. Another form of  bias influencing target 
ranking can be the average molecular weight of  ligands for certain protein classes. For example, 
the molecular weight of  class B GPCRs is much higher than that of  other proteins such as 
kinases. The higher molecular weight leads to the presence of  more chemical substructures in 
the fingerprint vector and can increase the amount of  predicted targets for these ligands.58

In an effort to reduce the effect of  these biases on ligandbased prediction probability, raw 
probabilities can be converted to a z-score.53 In this method, for all molecules in the training set, 
a prediction score is obtained for all proteins in the training set. Subsequently, for each protein, 
a mean probability and standard deviation of  this probability can be derived and converted into 
a z-score. By applying the same z-scoring for novel compounds rather than the raw probability, 
the predictions are converted to a number of  standard deviations over or under the mean for 
that particular protein. This method has been shown to be more robust than using the raw 
probability.58 Similarly, in structure-based inverse screening, the interaction score of  the ligand 
with each target is compared with the interaction score distribution from a set of  reference 
ligands of  the respective target complex structures, taken from X-ray structures or determined 
by docking.81,83,84

Validation Strategies. The performance of  ligand-based models should always be estimated 
using external test sets to minimize overfitting (besides cross-validation). If  test sets are composed 
randomly, this may lead to overoptimistic performance values as similar ligands may be present 
in both training and test sets, resulting in “easy” predictions. In order to overcome this effect, 
cluster splits, where the whole cluster of  similar molecules is either contained in the test or 
training set, or temporal splits, where data from the most recent years is used for testing, can be 
applied.129 Predictive performances of  ligand-based models can be estimated by metrics such as 
R2 and Q2 as well as error-based metrics such as the root-meansquare error (RMSE) and mean 
absolute error (MAE). It is debatable what the best metric is to indicate model performance 
as this is dependent on the data and validation method. Generally, performance can be better 
estimated when multiple metrics are considered.130

Evaluating the performance of  structure-based methods is based on diverse strategies. Binding 
site comparison methods, for instance, often screen a query target against a set of  true (well-
studied protein class with subclass classification) and decoy targets, whereas inverse screening 
methods often test only one or few query ligands in a set of  true (known targets of  the ligand) 
and decoy targets. Evaluation metrics are, for instance, the percentage of  true targets in the 
top x% of  the ranked hit list, the so-called enrichment factor (EF), and the area under the 
curve (AUC). While different sizes and compositions of  benchmark data sets and the diverse 
use of  performance metrics hamper a direct comparison between methods, efforts to unify 
benchmarking have been made. Since binding site comparison is a long-established approach 
with many published methods, proposed data sets have often been reused. Such an example 
is the data set compilation by Weill and Rognan,99 encompassing a set of  similar and dissimilar 
structure pairs as well as sets focused on kinases and serine endopeptidases (all scPDB-based). 
Also concentrating on similar and dissimilar pairs, Ehrt et al.131 have recently proposed a 
collection of  new and reused data sets (ProSPECCTs) to test different performance aspects, 
which the authors applied to multiple binding site methods to establish guidelines for their 
application scope. For inverse screening methods, Schomburg et al.83 proposed two data sets 
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together with evaluation strategies: a small data set consisting of  three target classes for detailed 
proof-of-concept and selectivity studies and a large data set with about 8000 protein structures 
and over 70 drug-like ligands. In addition to the widely used EF and AUC, the authors propose 
performance metrics capable of  measuring the early enrichments, i.e., BEDROC (Boltzman-
enhanced discrimination of  ROC) and NSLR (normalized sum of  logarithmic ranks).

Conclusion
Drug target identification is one of  the most important, but also most complex, aspects of  
preclinical drug development. In this respect, computational target prediction is a highly valuable 
tool to identify the most probable targets for a compound under investigation. Such tools can 
guide wet lab experiments by suggesting potential targets for orphan compounds, supply tool 
compounds for functional analyses of  poorly understood proteins, and thus help to decipher 
the mode-of-action of  a protein under investigation. Furthermore, desired as well as undesired 
multitarget drug effects can be rationalized by computational (off-)target predictions, and known 
drugs can potentially be repositioned based on these forecasts.

Computational target prediction methods rely on the general assumption that similar molecules/
structures will have similar interactions or interaction patterns. Exceptions are so-called activity 
cliffs, describing that small changes can cause large differences in activity.29 Depending on the 
research question and the data available, ligand- or structure-based target prediction methods 
can be applied. In ligand-based methods, potential targets can either be inferred from the 
most similar known ligands or through elaborated machine learning models. The latter require 
sufficient and well annotated data in order to train proper models. Structure-based approaches 
compare a query protein based on their binding sites or interaction fingerprints to a panel 
of  protein structures or screen a query compound against these panels using a docking or 
pharmacophore screening engine. It should be noted that usually ligand-centric methods are 
faster than structure-centric methods, especially when structural alignment or pose prediction 
is evoked. The former provides more quantitative information such as predicted bioactivities 
that can directly be associated with experimental values, whereas the latter can give additional 
information about the binding pose of  ligands to potential targets. It should be noted that most 
methods do not consider alternate binding pockets on a single protein or the effect of  protein 
complex formation. Although protein function or (de)activation through allosteric modulation 
can occur, most target prediction methods are based on the assumption that all ligands are 
orthosteric binders. 

In our opinion, future progress needs to promote data coverage from both the ligand and protein 
point of  view, e.g., annotation of  non-biased bioactivities (reporting inactives) and deposition 
of  novel structures or the same protein structures, but with different ligands to provide a 
better view on the dynamics of  the ligand binding site (high-throughput crystallization). 
Furthermore, protein flexibility modeling and inter-target ranking are equally important matters 
to address. Moreover, new methods should be evaluated on standardized benchmarking data 
sets and performance metrics, as well as made accessible to the community in order to improve 
predictability, reliability, and reproducibility. Finally, holistic approaches should and will gain 
momentum, integrating multiple types of  data, e.g., coupling chemical and structural space with 
information on the proteome level and pathways, linking cellular and molecular scales. 
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