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PART I
Metabolomics and 
glucose metabolism
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Metabolomics analyses in non-diabetic 

middle-aged individuals reveal 

metabolites impacting early glucose 

disturbances and insulin sensitivity

CHAPTER 2



ABSTRACT

Several plasma metabolites have been associated with insulin resistance and type 2 

diabetes mellitus. We aimed to identify plasma metabolites associated with different 

indices of early disturbances in glucose metabolism and insulin sensitivity. This 

cross-sectional study was conducted in a subsample of the Leiden Longevity Study 

comprising individuals without a history of diabetes mellitus (n = 233) with a mean 

age of 63.3 ± 6.7 years of which 48.1% were men. We tested for associations of fasting 

glucose, fasting insulin, HOMA-IR, Matsuda Index, Insulinogenic Index and glycated 

hemoglobin with metabolites (Swedish Metabolomics Platform) using linear regression 

analysis adjusted for age, sex and BMI. Results were validated internally using an 

independent metabolomics platform (Biocrates platform) and replicated externally 

in the independent Netherlands Epidemiology of Obesity (NEO) study (Metabolon 

platform) (n = 545, mean age of 55.8 ± 6.0 years of which 48.6% were men). Moreover, in 

the NEO study, we replicated our analyses in individuals with diabetes mellitus (cases: 

n = 36; controls = 561). Out of the 34 metabolites, a total of 12 plasma metabolites were 

associated with different indices of disturbances in glucose metabolism and insulin 

sensitivity in individuals without diabetes mellitus. These findings were validated using 

a different metabolomics platform as well as in an independent cohort of non-diabetics. 

Moreover, tyrosine, alanine, valine, tryptophan and alpha-ketoglutaric acid levels were 

higher in individuals with diabetes mellitus. We found several plasma metabolites that 

are associated with early disturbances in glucose metabolism and insulin sensitivity 

of which five were also higher in individuals with diabetes mellitus. 



25

Metabolomics analyses reveal metabolites impacting early glucose disturbances

2

INTRODUCTION 

Over the past decades, the incidence of type 2 diabetes mellitus (T2D) has increased, 

partly due to the ever increasing prevalence of obesity 1, 2. T2D is preceded by several 

disturbances in glucose metabolism, which can be recognized in the pre-disease 

state. A novel approach that is being increasingly used to gain additional insight in the 

disturbances in glucose metabolism before the development of T2D is high-throughput 

metabolomics. Metabolomics offers the possibility to comprehensively measure a broad 

range of metabolites in tissues and biological fluids. Multiple observational and causal 

association studies revealed metabolites such as phospholipids, triacylglycerols, ketone 

bodies, sphingomyelins, acyl-carnitines and organic acids to be linked to future risk of 

T2D onset 3-13. 

To recognize early stages of T2D one needs increased understanding of the mechanisms 

contributing to disturbances in glucose metabolism and insulin resistance among 

individuals without T2D. To quantify early disturbances in glucose metabolism, several 

indices have been developed based on an oral glucose tolerance test or based on 

fasting/postprandial plasma and insulin levels. For example, the homeostatic model 

assessments can be used to quantify insulin resistance (HOMA-IR) based on fasting 

glucose and insulin levels 14-17. If both fasting and post-prandial measures are available, 

indices such as the Matsuda Index or Insulinogenic index can be used to assess insulin 

resistance and β-cell function respectively15. The Matsuda Index reflects both hepatic 

and peripheral tissue insulin sensitivity and is therefore considered to be an index of 

whole-body insulin sensitivity14, 15. These and other indices all reflect different yet partly 

overlapping aspects of glucose tolerance and insulin sensitivity that play a role in T2D 

onset. 

In this study, we investigated which metabolites measured by a GC-MS assay are 

associated with early indices of disturbances in glucose metabolism and insulin 

sensitivity in individuals that do not use glucose lowering drugs and do not have a 

history of diabetes mellitus. To this end, we performed association analyses of plasma 

metabolites with fasting glucose, fasting insulin, the insulinogenic index, two indices 

of insulin resistance (HOMA-IR and Matsuda) and HbA1c. Subsequently, we replicated 

the significant findings internally using a different metabolomics platform as well as in 

an independent cohort in both non-diabetics and individuals with diabetes mellitus. 
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METHODS

Study design of the Leiden Longevity Study

The main analyses for the present study were embedded in the Leiden Longevity 

Study, which aims to investigate biomarkers associated with familial longevity and 

healthy ageing. A more detailed description of the study design and recruitment 

strategy has been described elsewhere 18. In short, between 2003 and 2006, a total of 

421 long-lived families were recruited, without selection based on health condition 

or demographics. Families were included when at least two long-lived siblings were 

still alive and fulfilled the age criteria of being at least 89 years for men and 91 years 

for women. Of these long-lived families, we also recruited 1,671 of their offspring 

and 744 partners thereof as controls resembling the general Dutch population at 

middle age. 

For the present study, we used fasting and postprandial blood samples collected 

between 2006 and 2008 from a subpopulation (N = 280) of the Leiden Longevity 

Study who lived in close approximation (<45 min by car) from the research center, as 

described previously 19. Glucose tolerance was assessed according to a 2-hour oral 

glucose tolerance test, conducted with a standard loading dose of 75g of glucose per 

300mL of water and venous blood samples were drawn at time points of 0, 30, 60, 

and 120 minutes after glucose loading. We excluded participants that used glucose 

lowering drugs, had a history of diabetes mellitus, who were not fasted before taking 

glucose tolerance test, had no fasting glucose or insulin measures, or had incomplete/

unreliable postprandial data. In the present study, we therefore included a total of 233 

participants. 

The Leiden Longevity Study was approved by the medical ethics committee of the 

Leiden University Medical Center. All participants provided written informed consent.

Measures of insulin resistance

Fasting plasma glucose concentrations and glycated hemoglobin levels were 

determined by enzymatic and colorimetric methods (Roche Modular Analytics P800, 

Roche Diagnostics, Mannheim, Germany; CV < 5%) and serum insulin concentrations 

were determined by an immunometric method (Siemens Immulite 2500, Siemens 

Healthcare Diagnostics, Breda, The Netherlands; CV < 5%). All analyses were performed 

in the central clinical chemical laboratory of the Leiden University Medical Center. 

Fasting glucose and insulin levels were used to calculate the Homeostatic Model 

Assessment of Insulin Resistance (HOMA-IR) index as a marker for hepatic insulin 

resistance. The HOMA-IR was calculated using (fasting insulin * fasting glucose) / 22.5. 
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The Insulinogenic Index was calculated as (insulin concentration30min – fasting insulin 

concentration) / (glucose concentration30min – fasting glucose concentration) and the 

Matsuda Index as 1000 / (squared root (fasting glucose * fasting insulin) * (average 

glucose * average insulin))15. 

Metabolomic profiling

Metabolomic profiling has been performed in three separate analytical batches 

analysed on three different days, of which the first batch consisted of cases with 

different levels of metabolic syndrome score as described previously20. The samples 

of the other participants were separated based on the gender of the participants, 

resulting in a batch of only women (Batch 2) or only men (Batch 3). These three 

batches were used for the analyses in this study. Fasting plasma samples from the 

participants were thawed on ice; 630 µL of extraction mixture (H2O:methanol (1:9, 

v/v)) was added to 70 µL of plasma. Extraction of the metabolites from the sample 

was then carried out using a MM301 vibration Mill (Retsch GmbH & Co. KG, Haan, 

Germany) at a frequency of 30 Hz for 2 min. Samples were stored on ice for 2 hours 

to allow protein precipitation, after which they were centrifuged at a relative central 

force of 18,000 for 10 min at 4°C. An aliquot (200 µL) of the resulting supernatant was 

transferred to a glass vial and evaporated to dryness at room temperature in a miVac 

QUATTRO concentrator (Genevac LTD, Ipswich, UK). Gas chromatography-mass 

spectrometry (GC-MS) (Batch 1, 2 and 3) analyses was performed after metabolite 

derivatization as described before 21.

Non-processed files from GC-MS were exported in NetCDF format to a MATLAB-based 

in-house script where all data pre-treatment procedures such as baseline correction, 

chromatogram alignment, and peak deconvolution were performed. Metabolite 

identification, was implemented within the script and was based on the retention index 

(RI) values and MS spectra from the in-house mass spectra library established by the 

Swedish Metabolomics Centre (Umeå, Sweden) and consisting of 585 compounds (Level 

1 identification according to the Metabolomics Standards Initiative 22). However, since the 

library covers a wide range of compound classes, and includes a significant number of 

compounds present in samples from other species than humans (for example plants, 

bacteria, etc.), as expected, not all metabolites present in the library could be identified 

in our samples. In the three analytical batches, respectively 105, 48 and 57 compounds 

were identified, with 34 compounds present in all three batches. In order to strengthen 

our findings, in calculations we only included those metabolites that were confidently 

measured in all three batches.
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Internal validation 

For internal validation, we used metabolomic data measured in the Leiden Longevity 

Study using the commercially available AbsoluteIDQ p180 (Biocrates Life Sciences, AG, 

Innsbruck, Austria) mass spectrometry (MS)-based assay kit. Fasting plasma samples 

were collected from study participants and were stored at −80 °C. A different (unique) 

aliquot of the sample was used, thus avoiding potential bias caused by introducing a 

freeze/thaw step when using the same sample for discovery and validation. In this study, 

we included only those metabolites that overlapped with those that were identified 

using the GC-MS approach as being significantly associated with indices of disturbances 

in glucose metabolism and insulin sensitivity after correction for multiple testing, note 

that only 5 out of the 12 significant metabolites were also present on the Biocrates 

AbsoluteIDQ p180 kit, namely: phenylalanine, proline, tryptophan, tyrosine and valine. 

External validation 

For external replication, we used data from the independent Netherlands Epidemiology 

of Obesity (NEO) study, which had no overlap with the LLS study in regard of study 

participants. A detailed description of the NEO study design and rationale has been 

provided elsewhere 23. We included participants with available data on the same 

indices of glucose metabolism (e.g. fasting glucose and insulin, HOMA-IR, Matsuda 

Index, Insulinogenic Index and glycated hemoglobin) as available in the LLS and an 

LC-MS and GC-MS based metabolic profile (Metabolon, Inc.), who were fasted and 

drank a complete liquid mixed meal (n= 545). Moreover, we assessed the associations 

in participants with diabetes mellitus (cases: n = 36; controls = 561). Presence of diabetes 

mellitus was defined as the usage of glucose lowering medication and/or having a 

history of diabetes mellitus and/or having fasting glucose levels of ≥7.0 mmol/L. 

Metabolomic profiling was performed using ultrahigh-performance liquid-phase 

chromatography and gas chromatography separation, coupled with tandem mass 

spectrometry at Metabolon, Inc. using established procedures (12). Fasting plasma 

samples were collected from study participants and were stored at −80 °C. Here, we 

only analyzed the identified metabolites in the LLS association study (those metabolites 

that were significant after correction for multiple testing) and did not include all of the 

metabolites measured using this platform.

Statistical analyses

All analyses were performed using the R statistical environment24. Before analyses, we 

removed those observations that could be considered outliers based on biological 

plausible reference values for these measurements. To gain insight in the interrelations 

of the metabolites included in the present study, we estimated a correlation network 
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using Pearson correlations for the 34 scaled metabolites measured using the GC-MS 

approach in the LLS study. The Pearson correlations for each batch were obtained 

separately and we took the average correlation of these batches taking into account the 

number of individuals included in each batch. The qgraph package25, using an absolute 

weight of edges of >0.5 to be shown, was used to obtain the plot. 

We conducted univariate analyses on the metabolites using linear regression analysis 

adjusted for age, sex and body mass index. All measures of glucose metabolism 

were log-transformed, independent of normality of the variables in order to improve 

comparability among the measurements. Peak areas (GC-MS) and metabolite 

concentrations (Biocrates LC-MS platform) were log-transformed and subsequently 

standardized using scaling to approach a standard normal distribution (mean = 0, s.d. 

= 1). Hence, results can be interpreted as the difference in standard deviation per unit 

increase in measured index. Because of the applied distribution of the individuals in 

the different batches rather than random allocation, proper correction for batch effect 

was not possible. Instead, we conducted all univariate analyses separately for the 

different batches; derived effect estimates were subsequently meta-analysed using a 

fixed-effect model, assuming a similar direction of effect among batches, by using the 

rmeta package26. Meta-analysis was only performed for those metabolites that were 

measured in all three batches, which resulted in a total of 34 metabolites. To correct 

for multiple testing, we calculated the number of independent metabolites based on 

the methodology described by Li et al. 27, and corrected our threshold for statistical 

significance accordingly. We obtained a total of 24 independent metabolites and used 

a p-value of 0.05/24 (~0.0021) as a threshold for significance. Analyses were visualized 

using the ggplot2 package 28.

For internal validation, we repeated our analyses using significant metabolites from our 

discovery analyses. Of these metabolites, only five metabolites were overlapping with 

the Biocrates AbsoluteIDQ p180 kit. We performed the same analyses using the same 

statistics and covariables as in the discovery analyses, however, we used a p-value of 

<0.05 as level of statistical significance. For external replication, analyses were repeated 

with the metabolites that were identified in the LLS study and could also be measured 

by the GC-MS Metabolon platform, comprising twelve metabolites present in the 

NEO study and Metabolon data. We used the same statistical methods as described 

previously, however, since we tested hypothesis generated in the discovery phase, we 

considered a two-sided p-value of <0.05 as statistically significant. 
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RESULTS

Population characteristics 

A total of 233 participants were included in the main study with a mean age of 63.3 ± 6.7 

years of which 48.1% were men. The population characteristics of this study are shown in 

Table 1, separately for each batch and combined for all batches. Characteristics of the study 

population are presented as means with accompanying standard deviations for normally 

distributed variables, median with interquartile range for non-normal distributed variables 

and number with percentages for proportional variables. Participants in Batch 3 used slightly 

more antihypertensive and lipid lowering medication as compared to the other batches. 

Network analysis of metabolites

In order to have a better understanding of the interrelations of metabolites in this study, 

we calculated and visualized the correlations between the different metabolites. In 

Figure 1, a correlation network is shown of the primary metabolite set tested in the 

LLS study comprising 34 metabolites. Several amino acids were correlated, such as 

tryptophan, tyrosine, phenylalanine and valine. The strongest correlations were observed 

between fatty acids, such as myristic acid, dodecanoic acid and octadecanoic acid. 

SA: Salicylic acid
LA: Lactic acid
AK: Alpha ketoglutaric acid
CA: Citric acid
C18.H34: Octadecenoic acid
EA: Eicosatetraenoic acid
MA: Myristic acid
HA: Hexadecanoic acid
PA: Palmitoleic acid
C18.H36: Octadecanoic acid
Ala: Alanine
Cys: Cysteine
Asn: Asparagine
Lys: Lysine
Cst: Cystine
Gly: Glycine
Orn: Ornithine
Gln: Glutamine
Val: Valine
Thr: Threonine
Pro: Proline
Trp: Tryptophan
Tyr: Tyrosine
Phe: Phenylalanine
Cre: Creatinine
U: Urea
PGA: Pyroglutamic acid
UA: Uric acid
Cam: Campesterol
Chl: Cholesterol
AG: 1.5-anhydro-d-glucitol
POP: 1-palmitoyl-sn-glycero-3-phosphocholine

Figure 1.Correlation network estimated using Pearson correlations. Each node represents one 

metabolite. The edges indicate the strength of the correlation. For this plot, only edges with an 

absolute weight of >0.5 are shown. 
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Associations between different indices of glucose metabolism with the metabolomic profile

We first tested for association of the 34 single metabolites that were measured in all three 

batches with six variables of glucose metabolism and insulin sensitivity in the Leiden 

Longevity Study adjusted for age, sex and BMI. Twelve metabolites were identified to 

be associated (p-value < 0.05/24) with markers of glucose metabolism, as shown in 

Figure 2 and Online Supplementary Table 1. Tyrosine, hexadecanoic acid, lysine and 

alpha-ketoglutaric acid levels were associated with fasting glucose concentrations. 

Levels of alanine, tyrosine, valine, phenylalanine, tryptophan, proline and uric acid were 

positively associated with fasting insulin and HOMA-IR and negatively associated with 

the Matsuda index. Alpha-ketoglutaric acid was positively associated with HOMA-IR 

and negatively with the Matsuda Index, however, not with fasting insulin. Moreover, 

lysine levels were positively associated with HOMA-IR, however, not with fasting insulin 

concentrations or the Matsuda Index. Levels of hexadecanoic acid, myristic acid and 

octadecanoic acid were associated with Insulinogenic Index. None of these metabolites 

were associated with either fasting insulin, HOMA-IR or the Matsuda Index. However, 

hexadecanoic acid levels positively associated with fasting glucose concentrations. 

Finally, glycated hemoglobin was not associated with any of the metabolites.

Internal validation of main results

Next, we validated the significant observations using the Biocrates platform in order 

for us to test the robustness of these findings when using a different metabolomics 

platform. Note that only 5 out of the 12 significant metabolites overlapped with the 

Biocrates platform (phenylalanine, proline, tryptophan, tyrosine and valine). In Online 

Supplementary Table 2, effect estimates for the association of measures of glucose 

metabolism with these metabolites are shown. Effect estimates pointed in the same 

direction and were similar to those observed using the Swedish Metabolomics Platform. 

For fasting glucose, only tyrosine was present in the Biocrates platform and we were 

able to validate this result. Proline, tryptophan, tyrosine and valine were positively 

associated with fasting insulin, HOMA-IR and negatively with the Matsuda Index, thereby 

validating the previous results. Phenylalanine negatively associated with the Matsuda 

Index, however, not with fasting insulin and the HOMA-IR, thereby only validating the 

result for the Matsuda Index. The metabolites that associated with the Insulinogenic 

Index were not present in the Biocrates platform and therefore, we did not validate 

these findings. Moreover, for glycated hemoglobin we did not identify any significant 

associations and therefore we did not validate any finding. 
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Table 1. Characteristics of study population stratified by batches and combined. 

Batch 1

(N=82)

Batch 2

(N=78)

Batch 3

(N=73)

Combined (N=233)

Age in years, mean (SD) 63.2 (6.2) 61.5 (7.0) 65.4 (6.4) 63.3 (6.7)

Men, N (%) 39 (47.6) 0 (0.0) 73 (100.0) 112 (48.1)

BMI in kg/m2, mean (SD) 26.3 (4.9) 25.9 (3.2) 26.9 (3.0) 26.5 (3.8)

Body fat %, mean (SD) 31.3 (9.4) 35.6 (6.5) 26.3 (5.6) 31.2 (8.3)

Fasting glucose in mmol/L, mean (SD) 5.2 (0.7) 5 (0.4) 5.1 (0.5) 5.1 (0.5)

Fasting insulin in mU/L, median (IQR) 7.0 (4.0-11.8) 6.0 (4.0-9.0) 7.0 (4.0-10.0) 6.0 (4.0-10.0)

HOMA-IR, median (IQR) 1.6 (0.8-2.7) 1.2 (0.9-2.0) 1.5 (1.0-2.2) 1.5 (0.9-2.2)

Insulinogenic Index, median (IQR) 0.6 (0.4-1.1) 0.8 (0.5-1.2) 0.7 (0.4-1.2) 0.7 (0.4-1.1)

Matsuda Index, median (IQR) 24.6 (12.7-45.3) 26.9 (18.7-42.7) 25.1 (17.4-35.7) 26.3 (17.1-41.2)

HbA1c in %, mean (SD) 5.1 (0.4) 5.1 (0.4) 5.0 (0.5) 5.1 (0.4)

ASAT in U/L, median (IQR) 22.1 (7.2) 22.5 (8.6) 21.5 (4.6) 22.1 (7.0)

ALAT in U/L, median (IQR) 16.0 (13.0-19.8) 15.0 (12.0-19.8) 17.0 (15.0-21.0) 16.0 (13.0-20.0)

GGT in U/L, median (IQR) 22.0 (15.0-35.0) 18.0 (13.0-24.8) 29.0 (21.0-40.0) 22.0 (15.0-33.0)

CRP in mg/dL, median (IQR) 1.2 (0.7-2.5) 1.1 (0.7-1.9) 1.0 (0.6-2.0) 1.1 (0.6-2.3)

Total cholesterol in mmol/L, mean (SD) 5.3 (1.1) 5.6 (1.0) 5.1 (1.0) 5.3 (1.0)

HDL-cholesterol in mmol/L, mean (SD) 1.5 (0.4) 1.7 (0.5) 1.4 (0.4) 1.5 (0.4)

LDL-cholesterol in mmol/L, mean (SD) 3.2 (0.9) 3.3 (0.9) 3.1 (0.9) 3.2 (0.9)

Triglycerides in mmol/L, mean (SD) 1.5 (0.8) 1.3 (0.5) 1.3 (0.5) 1.4 (0.6)

Hypertension, N (%) 20 (24.4) 19 (24.4) 25 (34.2) 64 (27.5)

Statin use, N (%) 7 (8.50 10 (12.8) 10 (13.7) 27 (11.6)

Abbreviations: BMI, Body Mass Index; ALAT, alanine transaminase; ASAT, aspartate transaminase; 

GGT, gamma-glutamyltransferase; HbA1c, glycated haemoglobin; HDL, high-density lipoprotein; 

HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; hsCRP, high-sensitivity 

C-reactive protein; IQR, interquartile range; LDL, low-density lipoprotein; N, number of 

participants; SD, standard deviation. 
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Figure 2. Associations of plasma metabolites with measures of glucose metabolism. Analyses 

can be interpreted as the difference in metabolite level in standard deviation in relation to unit 

increase of the exposure. The difference in exposure (in standard deviation) is presented on the 

x-axis; the -log(p-value) of the comparison is presented on the y-axis. Metabolites that were 

labelled in the figures were those that remained significant after correction for multiple testing 

(p < 2.1e-3); compounds with a p-value < 0.05 are presented as solid black dots.
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External validation of main results in individuals with and without diabetes mellitus

We validated our results for the identified metabolites in an independent subset of 

the NEO cohort in individuals without diagnosis of diabetes mellitus that did not use 

glucose lowering medication using the same indices of glucose metabolism and insulin 

sensitivity. As can be seen in Table 2 and Table 3, tyrosine, hexadecanoic acid and 

alpha-ketoglutaric acid were positively associated with levels of fasting glucose, thereby 

replicating the associations as observed in the LLS study, except for lysine. Levels of 

tyrosine, alanine, valine and phenylalanine were positively associated with fasting insulin 

and HOMA-IR levels in both the LLS and the NEO study. Additionaly, alpha-ketoglutaric 

acid significantly associated with HOMA-IR. However, proline, tryptophan (fasting insulin 

and HOMA-IR) and uric acid (HOMA-IR) did not associate in the NEO study. Tyrosine, 

alanine, valine, phenylalanine, alpha-ketoglutaric acid, hexadecanoic acid and uric 

acid were negatively associated with the Matsuda Index, similar as in the LLS study. 

However, tryptophan was not associated with the Matsuda Index in the NEO study. 

None of the metabolites that associated with the Insulinogenic Index in the LLS study 

were replicated in the NEO study. 

In addition, we studied which of the twelve metabolites associated with diabetes 

mellitus (cases = 36; controls = 561). As compared to individuals without diabetes 

mellitus, individuals with diabetes mellitus had higher levels of tyrosine, alanine, valine, 

tryptophan and alpha-ketoglutaric acid (Table 3). 



36

Chapter 2

Table 2. Associations of blood metabolites with measures of glucose metabolism in NEO using 

Metabolon.

  Fasting glucose Fasting insulin HOMA-IR Matsuda Index Insulinogenic Index

Beta SE P-value Beta SE P-value Beta SE P-value Beta SE P-value Beta SE P-value

Tyrosine 1.29 0.34 <0.001 0.26 0.07 <0.001 0.27 0.07 <0.001 -0.26 0.08 0.001

Lysine -0.45 0.36 0.211 -0.11 0.07 0.122

Alanine 0.36 0.07 <0.001 0.37 0.07 <0.001 -0.48 0.08 <0.001

Valine 0.14 0.06 0.025 0.15 0.06 0.015 -0.22 0.07 0.002

Proline 0.14 0.07 0.054 0.11 0.07 0.092 -0.09 0.08 0.239

Phenylalanine 0.30 0.07 <0.001 0.27 0.07 <0.001 -0.35 0.08 <0.001

Tryptophan 0.13 0.07 0.079 0.11 0.07 0.111 -0.12 0.08 0.118

Hexadecanoic acid 0.84 0.36 0.021 -0.07 0.05 0.123

Alpha-ketoglutaric acid 1.38 0.35 <0.001 0.45 0.07 <0.001 -0.54 0.08 <0.001

Myristic acid -0.04 0.05 0.431

Octadecanoic acid -0.04 0.05 0.354

Uric acid 0.09 0.06 0.148 -0.16 0.07 0.027

Data presented as beta’s with accompanying standard errors (SE) and p-values. Results can be 

interpreted as the difference in metabolite level in standard deviation in relation to unit increase 

of the glycemic trait. Analyses are adjusted for age, sex and body mass index. 
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of the glycemic trait. Analyses are adjusted for age, sex and body mass index. 
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Table 3. Associations of blood metabolites with measures of glucose metabolism in NEO using 

Metabolon.

Diabetes Mellitus

Beta Se P-value

Tyrosine 1,93 (1,58 – 2,28) <0,001

Lysine 1,31 (0,96 – 1,66) 0,134

Alanine 1,59 (1,24 – 1,94) 0,010

Valine 1,94 (1,59 – 2,29) <0,001

Proline 1,30 (0,94 – 1,65) 0,150

Phenylalanine 1,35 (1,00 – 1,70) 0,097

Tryptophan 1,47 (1,12 – 1,82 0,033

Hexadecanoic acid 0,98 (0,63 – 1,33) 0,902

Alpha-ketoglutaric acid 1,71 (1,36 – 2,06) 0,003

Myristic acid 1,16 (0,81 – 1,51) 0,409

Octadecanoic acid 0,84 (0,48 – 1,19) 0,319

Uric acid 1,14 (0,78 – 1,49) 0,476

Data presented as odd ratio’s (OR) with accompanying 95% confidence interval (95%CI) and 

p-values. Analyses are adjusted for age, sex and body mass index
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DISCUSSION 

We identified twelve metabolites to be associated with different indices of glucose 

metabolism and insulin sensitivity, in individuals without diabetes mellitus from the 

general population. These results were largely validated and externally replicated in an 

independent cohort. Moreover, five of the twelve metabolites (tyrosine, alanine, valine, 

tryptophan and alpha-ketoglutaric acid) were associated with diabetes mellitus. These 

results indicate that specific early alterations in the metabolic profile are already present 

in individuals without diabetes mellitus and these findings may therefore improve the 

understanding of mechanisms involved in diabetes mellitus etiology.

To date, several amino acids, sugar metabolites, and lipids have been associated with 

T2D risk in observational studies and causality has been investigated using Mendelian 

Randomization 3-13, 29, 30. The present study replicates these observational findings in 

participants without diabetes mellitus, indicating that alterations in plasma metabolites 

levels in relation to perturbed glucose metabolism are already present in the non-

diabetic population. For example, alanine, valine, tyrosine and phenylalanine have been 

consistently associated with the risk of developing type 2 diabetes mellitus in different 

studies10. A better understanding of the molecular mechanisms by which amino acids may 

impact insulin resistance may aid the identification of novel targets for future diabetes 

therapies. One of these pathways is via mitochondrial metabolism and the exocytosis 

of insulin granules. Next to ATP, the main factor in insulin secretion, other factors such 

as nucleotides, amino acids, enzymes or transporters and alanine aminotransferase 

have been identified to mediate insulin secretion. Alanine, our strongest association, has 

previously been described to directly affect β-cell function and insulin secretion30. In 

line, in this study we observed these metabolites to be associated with insulin sensitivity 

in individuals without diabetes mellitus, as well as in individuals with diabetes mellitus. 

Some of the identified associations can be explained by correlations between the 

metabolites. For example, tyrosine, valine and phenylalanine were correlated which were 

also observed together in the analyses addressing the association with fasting insulin, 

HOMA-IR and the Matsuda Index. However, alpha-ketoglutaric acid was not correlated 

with any of the other metabolites and may therefore reflect an independent pathway 

that may contribute to disturbances in glucose metabolism and insulin sensitivity. For 

example, alpha-ketoglutaric acid is a key intermediate in the citric acid cycle and is 

important for amino acid formation and the urea cycle. Alpha-ketoglutaric acid may be a 

marker of protein degradation and gluconeogenesis. Hepatic glutamate dehydrogenase 

catalyzes the reversible oxidative deamination of glutamate to α-ketoglutarate and 

ammonia, bridging amino acid-to-glucose pathways. In the current study, we observed 
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higher levels of alpha-ketoglutaric acid to be associated with higher fasting glucose and 

HOMA-IR and a lower Matsuda Index in two independent cohorts of individuals without 

diabetes mellitus. Moreover, this metabolite was higher in individuals with diabetes 

mellitus. Since alpha-ketoglutaric acid was not associated with glycated hemoglobin, 

but only with measures of short-term insulin sensitivity, this metabolite may be more 

reflective of short-term glucose control instead of long-term glucose control. 

A broad range of studies assessed the association between several lipid classes and 

type 2 diabetes mellitus3-13. Of these classes, for example, plasma phospholipids, 

triglycerides and sphingolipids were found to be associated with insulin resistance and 

type 2 diabetes mellitus onset 3-13. In individuals with impaired fasting glucose and type 

2 diabetes mellitus, higher levels of several saturated acids (e.g. palmitic and stearic) 

have been observed10, 31. Our results are in agreement with these findings as we have 

identified palmitic (hexadecanoic acid) acid to be associated with higher fasting glucose 

levels. 

We observed distinct metabolites to be associated with different measures of glucose 

metabolism. Of interest is that the metabolites that were associated with fasting insulin 

and HOMA-IR, which are based on fasting measures of glucose metabolism, were the 

same metabolites that associated with the Matsuda Index, which also takes into account 

postprandial measures of glucose metabolism. Since the metabolites that we found to 

be associated with fasting insulin, HOMA-IR and Matsuda Index were mainly overlapping, 

these measures may reflect similar biological pathways in the development of type 

2 diabetes mellitus. Interestingly, only saturated fatty acids were associated with the 

Insulinogenic Index in the LLS, which is specific for β-cell function. We did not observe 

any association between glycated hemoglobin and any of the investigated metabolites. 

Glycated hemoglobin is the only index that we included that is able to assess glucose 

metabolism over a longer time period. Since none of the metabolites associated with 

glycated hemoglobin, the present observations may be more reflective of short-term 

insulin resistance and non-pathological, merely normal physiology. 

The main strength of this study is the internal and external validation of our results in 

an independent cohort. The same associations were observed, thereby strengthening 

our results. The participants in the Leiden Longevity Study received a glucose drink and 

the participants of the NEO study received a mixed meal as a challenge, emphasizing 

the robustness of the observed associations. However, some limitations of our study 

have to be acknowledged. Because of the selection of individuals in the three batches 

(no random selection), we were not able to harmonize for batch effects using statistical 

techniques. Instead, we performed the analyses separately for the three batches using 
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standardized metabolite data (mean = 0, s.d. = 1) and performed subsequent meta-

analyses to combine the results. As a consequence, we minimized potential bias caused 

by the batch effects. In this study, we only observed higher levels of the identified 

metabolites to be associated with higher insulin resistance. High metabolite levels that 

are associated with lower insulin resistance might (1) have a smaller effect size that 

would require larger sample sizes, and (2) may only be measured on different platforms. 

Moreover, due to the observational nature of the study, we could not establish causality 

and address how the observed metabolites can affect insulin resistance or how insulin 

resistance may affect the metabolic profile, this will require dedicated prospective 

studies in the future. 

Taken together, in a population of individuals without diabetes mellitus, we observed 

distinct metabolomic profiles to be associated with different measures of glucose 

metabolism. In total, we identified 12 metabolites to be associated with indices of glucose 

metabolism in individuals without diabetes mellitus. Most of these findings could be 

internally validated and externally replicated. Moreover, five of these metabolites 

associated with prevalent diabetes mellitus. Our results may improve the understanding 

of the mechanisms involved in disease etiology and thereby may contribute to improved 

diagnostics of the early metabolic disturbances preceding type 2 diabetes mellitus.
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