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Abstract

EPID dosimetry in the Unity MR-Linac system allows for reconstruction 
of absolute dose distributions within the patient geometry. Dose 
reconstruction is accurate for the parts of the beam arriving at the 
EPID through the MRI central unattenuated region, free of gradient 
coils, resulting in a maximum field size of ~10x22 cm2 at isocenter. The 
purpose of this study is to develop a Deep Learning-based method to 
improve the accuracy of 2D EPID reconstructed dose distributions 
outside this central region, accounting for the effects of the extra 
attenuation and scatter. 

A U-Net was trained to correct EPID dose images calculated at the 
isocenter inside a cylindrical phantom using the corresponding TPS 
dose images as ground truth for training. The model was evaluated 
using a 5-fold cross validation procedure. The clinical validity of the 
U-Net corrected dose images (the so-called DEEPID dose images) was 
assessed with in vivo verification data of 45 large rectum IMRT fields. 
The sensitivity of DEEPID to leaf bank position errors (±1.5 mm) and 
±5% MU delivery errors was also tested.

Compared to the TPS, in vivo 2D DEEPID dose images showed 
an average γ-pass rate of 90.2% (72.6%-99.4%) outside the central 
unattenuated region. Without DEEPID correction, this number was 
44.5% (4.0%-78.4%). DEEPID correctly detected the introduced delivery 
errors. 

DEEPID allows for accurate dose reconstruction using the entire 
EPID image, thus enabling dosimetric verification for field sizes up 
to ~19x22 cm2 at isocenter. The method can be used to detect clinically 
relevant errors.   

Keywords:  Unity MR-Linac, Deep Learning, in vivo EPID dosimetry
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6.1. Introduction

The Unity MR-Linac system offers real-time soft-tissue visualization 
to allow for more precise delivery and online plan adaptation 164–

166. Independent quality assurance (QA) tools are required for the 
verification of the online adaptive strategies in magnetic resonance 
image-guided radiotherapy  167. MR-compatible detector devices are 
currently employed to perform patient plan specific QA 97,98,100,168. 
However, these solutions are typically time-consuming and not directly 
suitable for online adaptive workflows. Alternative solutions have been 
proposed, such as fast sanity checks for each adapted plan 169 or the 
use of online independent dose calculations 159. The limitation of such 
checks is that they verify only parts of the workflow. 

For conventional linacs, Electronic Portal Image Devices (EPIDs) 
are commonly used as an independent end-to-end dosimetric check 
of the Radiotherapy (RT) chain  148–150,170–175. The process can be fully 
automated, which is essential to reduce the number of labor-intensive 
and error prone tasks 87. The Unity MR-Linac is also equipped with 
an EPID which is mounted on the rotating gantry, opposite to the 
accelerator head 156. For each plan adaptation, EPID images are acquired 
automatically containing information about the dose absorbed by the 
patient. Therefore, the implementation of an automated EPID-based 
dosimetric verification solution for the MR-Linac adapted workflow 
would be within reach once EPID dosimetry becomes feasible. To that 
purpose, our conventional dose back-projection algorithm 58,176 has been 
adapted to the Unity MR-Linac 177. The algorithm utilizes pixel values 
of EPID images acquired during delivery to estimate the dose delivered 
to the patient. Patient plan specific QA is performed by comparing 
EPID-reconstructed dose distributions with those calculated by the 
Treatment Planning System (TPS) for each adapted plan. The main 
limitation of the method is that dose reconstruction is only accurate for 
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the parts of the beam that arrive at the EPID through the MRI central 
unattenuated region free of gradient coils, resulting in a maximum field 
size of ~10x22 cm2 at isocenter. EPID-based dosimetric verification for 
larger fields is currently not possible, excluding, for instance, Intensity 
Modulated radiotherapy (IMRT) rectum plans. 

Recent advances in deep learning are highly impacting various fields 
in science including healthcare and medical imaging 178. In particular, 
convolutional neural networks (CNNs) have been largely applied in 
image detection and recognition 179, image segmentation 180, image 
registration 181 or image reconstruction 182. The U-Net architecture, 
which comprises decoder, encoder and skip-connection modules 
integrated in a single network, has become the de-facto standard for 
image segmentation 183. Recent studies have also modified the original 
design of the U-Net for dose prediction 184. 

In this study, we present a Deep Learning-based method to improve 
the accuracy of 2D EPID reconstructed dose distributions outside the 
central unattenuated region, accounting for the effects of the extra 
attenuation and scatter. A U-Net was trained using 2D EPID and TPS 
dose images calculated at the isocenter inside a cylindrical phantom 
as training data. The goal was to use U-Net corrected dose images (the 
so-called DEEPID dose images) to accurately reconstruct in vivo 2D 
patient dose distributions using the entire EPID image, thus allowing 
for dosimetric verification of field sizes up to ~19x22 cm2 at isocenter. 
The clinical validity of DEEPID was assessed with in vivo verification 
data of 45 rectum IMRT fields. To ensure that the presented Deep 
Learning-based method is capable of detecting clinically relevant 
errors, the sensitivity of DEEPID to leaf bank position errors and 
monitor unit (MU) errors was also tested.
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6.2 Methods

6.2.1. Equipment 

The Unity MR-linac system combines a 7 MV flattening filter free 
(FFF) beam linac (Elekta AB, Stockholm, Sweden) with an integrated 
wide bore 1.5 T MRI scanner (Philips Medical Systems, Best, the 
Netherlands) 126. An a-Si flat panel X-ray detector (XRD 1642 AP, Perkin 
Elmer Optoelectronics, Wiesbaden, Germany) is mounted on the ring 
gantry built around the MRI scanner at a fixed source-to-detector 
distance (SDD) of 265.3 cm, and with a detection area of 41x41 cm2 156, 
see Fig. 6.1. EPID images were down sampled from their original size 
of 1024x1024 pixels to 256x256 pixels yielding a pixel pitch of 1.6 mm. 
The central region of the magnet is free of gradient coils, allowing for 
minimal and homogenous attenuation of the beam for field sizes up 
to ±11 cm in the cranial-caudal (CC) direction at isocenter (±20.2 cm 
at EPID level). However, since the effective size of the beam exiting 
the MRI scanner is larger due to divergence, the EPID acquisition of 
un-attenuated beams is limited to ±4.8 cm in the CC direction at the 
isocenter (±8.8 cm at EPID level). The EPID image is therefore divided 
into a central region receiving un-attenuated signal and an outer region 
receiving signal with extra attenuation and scatter due to exceeding 
the free-coils region. Since the detector is displaced 5.7 cm in the 
cranial direction with respect to the beam axis, fields exceeding 8.1 cm 
in the caudal direction at isocenter plane cannot be entirely acquired 
by the EPID and parts of the beam fall outside the panel. After the 
EPID images were cropped to remove the region where beams cannot 
be received (> 20.5 cm in cranial direction), the size of the input EPID 
images for dose reconstruction was 35.3 x 41 cm2 (224x256 pixels). 

Plans were generated using the Monaco 5.4 (Elekta AB, Stockholm, 
Sweden) treatment planning system (TPS). EPID images were measured 
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using Elekta’s MVIC acquisition software. 

Fig. 6.1. (a) Unity MR-Linac sagittal cross section showing in yellow the maximum 
field size of 22 cm in the cranial-caudal (CC) direction at isocenter (black circle). The 
scale of the diagram has been adapted for viewing purposes. (b) Beams at the level of 
the EPID are received in a central unattenuated region (light grey) and in an outer 
attenuated region (dark grey). In the context of this study, a field is considered ‘large’ if 
the corresponding acquired EPID image contains signal in the outer region. The 
dashed black rectangle represents the cropped EPID image used for dose reconstruction.

6.2.2. Limitations of EPID dosimetry for large fields

For EPID dose reconstruction in this study, an adapted version of 
IViewDose software (Elekta, AB, Stockholm, Sweden) was used, which 
incorporates the adaptation of the conventional back-projection 
algorithm to the MR-Linac geometry 177. The algorithm has two modes 
of operation: non-transit and transit EPID dosimetry 115,185. In non-
transit mode, in air EPID images acquired without a phantom/patient 
in the beam are utilized to reconstruct dose in any arbitrary geometry 
186. This mode is commonly used for pre-treatment verification of the 
reference plan. In transit mode, EPID images acquired behind the 
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patient are utilized to reconstruct dose within the patient. This mode 
is commonly used for in vivo verification of adapted plans. 

To illustrate the limitations of transit EPID dosimetry for large 
fields, square fields (5x5, 10x10, 15x15 and 20x20 cm2, 100MU) were 
irradiated at gantry angle 0° to a 20 cm thick slab phantom consisting 
of 30x30x1 cm3 polystyrene slabs. Note that the measurements behind 
the phantom were used as a surrogate for in vivo measurements made 
behind the patient. TPS and EPID reconstructed dose profiles through 
the isocenter of the phantom were calculated and compared in both 
left-right (LR) and CC directions. 

6.2.3. Deep learning architecture

Fig. 6.2 displays the U-Net architecture used in this study. A U-Net 
of depth 4 was used, where each down-sampling block consists 
of two blocks containing a convolution layer, followed by batch 
normalization 187 and a rectified linear unit (ReLu) activation function 
188. This block was subsequently followed by a max pooling layer of 
size 2x2. Convolutional filters in same mode with kernel 5x5 were 
selected. The number of filters started at 16 and was doubled for each 
subsequent block. The encoder was connected to the decoder by a last 
layer involving two 5x5 convolution layers. At the decoder parts, the 
up-convolutions were concatenated with the feature maps from the 
same layer of the encoding path 189. The concatenated features followed 
the same sequence of convolution layers as in the decoder parts. This 
succession was repeated also four times. The final layer used a 1×1 
convolution with a sigmoid as activation function. Each max pooling 
and concatenated layer was followed by a dropout layer with a drop 
rate of 0.3 190. The network was optimized using Adam 191, an algorithm 
for first-order gradient-based optimization of stochastic objective 
functions using default values of 0.9 and 0.999 for β1 and β2, respectively 
and a learning rate of 0.001. Mean squared error was utilized as loss 
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function for the training. The algorithm was trained for a maximum 
of 150 epochs but training could stop earlier if no improvement was 
found after 50 epochs. The U-Net was implemented in Python 3.6 
with TensorFlow v1.7, an open source deep learning software library 
192. Training and evaluation of the network was performed on a GTX 
1080 NVIDIA GPU. The hyperparameters of the network were tuned 
manually using the results of one of the cross-validation folds. As this 
showed the relative insensitivity to the selected hyperparameters, they 
were fixed for the rest of the study.

Fig. 6.2. Encoder and decoder pathways of our U-Net architecture.

6.2.4. Model training and validation 

In-air EPID measurements were acquired for 90 IMRT fields 
corresponding to 12 adapted rectum plans of 6 patients. The in air 
EPID raw images were utilized in combination with the CT data set of 
the OctaviusMR 4D phantom (PTW, Freiburg, Germany) to reconstruct 
2D EPID dose distributions at the isocenter plane in the phantom 
geometry using non-transit EPID dosimetry. More details regarding 
the employed methodology can be found elsewhere 185. These EPID 
reconstructed dose images were utilized as input data for the training. 
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The corresponding dose distributions recalculated by the TPS on the 
phantom geometry were used as ground truth, or ideal output of the 
U-Net. The training of the model is performed with phantom data in 
order to have a well-controlled environment. The use of in vivo dose 
distributions for training would be problematic as the actual delivered 
dose to the patient is unknown (i.e. no ‘ground truth’ for training). 
Non-transit EPID reconstructed dose distributions were chosen for 
training to eliminate the need for phantom positioning. The choice of 
the OctaviusMR 4D phantom was made because TPS dose calculations 
were already available for that geometry.

The iViewDose software stored the EPID reconstructed 2D dose 
images in AVS field file format (Advance Visual Systems Inc, Waltham, 
MA, USA). Planned dose distributions were exported from the TPS 
in DICOM format and imported into iViewDose to calculate 2D dose 
distributions at the isocenter plane which were also stored in AVS 
format. The AVS files were then converted into numpy arrays for 
network training using in-house developed python code. 

Regarding data augmentation, the EPID dose images were flipped 
around the cranial-caudal axis first and then split into nine crops of 
128x224 pixels along the same axis. A total of 1620 (90x2x18) image 
patches were available as training pairs (EPID, TPS) to the network. 
The model was evaluated using a 5-fold cross validation procedure. The 
evaluation was scored by comparing U-Net corrected DEEPID dose 
images with TPS dose images by γ-analysis using 3% of the maximum 
dose and 3 mm as dose-difference and distance-to-agreement criteria, 
respectively. The results were calculated within the region surrounded 
by the 10% isodose line. γ-statistics were obtained for the outer 
attenuated region separately.  
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6.2.5. in vivo DEEPID dosimetry 

in vivo EPID images were acquired behind the patient for 45 IMRT fields 
corresponding to 5 adapted rectum plans of 3 patients. Approximately 
half of these IMRT fields were large fields. The EPID raw images 
were utilized in combination with the CT data set of the patient to 
reconstruct in vivo 2D EPID dose distributions at the isocenter plane in 
the patient geometry using transit EPID dosimetry. The resulting 2D 
EPID dose images were passed to the U-Net to calculate the corrected 
DEEPID dose images. in vivo EPID and DEEPID 2D dose distributions 
at the isocenter were then compared with TPS dose distributions by 
γ-analysis. γ-statistics were obtained for the central and for the outer 
regions separately.  

6.2.6. Introduction of errors

Machine delivery errors were introduced by manual modification of 
the treatment prescription file before import into the record-and-
verify system (MOSAIQ version 2.65, Elekta Inc., Sunnyvale, CA, USA). 
An adapted rectum plan was delivered correctly first and then with 
leaf bank position errors introduced: leaves moved 1.5 mm inwards 
(closing the fields) and leaves moved 1.5 mm outwards (opening the 
fields). Similarly, another adapted rectum plan corresponding to a 
different treatment was also delivered correctly first and then with 
an increase and a decrease in the number of MUs of 5%. In air EPID 
raw measurements were acquired for all cases and were utilized in 
combination with the CT data set of the patient to reconstruct 2D 
EPID dose distributions at the isocenter plane in the patient using 
non-transit EPID dosimetry. The resulting EPID 2D dose images were 
passed to the     U-Net to calculate the corrected DEEPID dose images.  
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6.3. Results

6.3.1. Limitations of EPID dosimetry for large fields  

Fig. 6.3 displays TPS and EPID-reconstructed dose profiles through 
the isocenter in a phantom for four square fields. In the LR direction, 
the agreement was good for all field sizes. In the CC direction, however, 
for the 10x10 cm2 and 15x15 cm2 fields there was an overestimation of 
the EPID reconstructed dose outside the field. For the 15x15 cm2 field, 
there was an underestimation of the EPID reconstructed dose inside 
the field. The agreement was again good for the 20x20 cm2 field, see 
discussion section for more details.  

Fig. 6.3. LR and CC profiles of EPID-reconstructed and TPS dose distributions through 
the isocenter in a 20cm thick slab phantom consisting of 30x30x1 cm3 polystyrene slabs 
for four representative square fields (5x5, 10x10, 15x15 and 20x20 cm2, 100MU).   

6.3.2. Model validation

Fig. 6.4.a illustrates the results of the 5-fold cross validation by 
presenting boxplots of γ-pass rate values for each fold calculated for 
the outer attenuated region only. The average median and interquartile 
range (IQR) values were 91.9±1.3%(1SD) and 8.2±1.7%(1SD), respectively. 
For comparison, Fig. 6.4.b presents the corresponding results obtained 
with EPID dosimetry before the DEEPID correction. The average 



132   |   Chapter 6

γ-pass rate values corresponding to the results of all folds combined 
were 91.6% (80.7%-100%) and 42.2% (4.9%-98.3%), for DEEPID and EPID 
respectively. Over the entire field, the average γ-pass rate values were 
92.2% (80.8%, 99.6%) and 76.4% (51.7%,98.9%), for DEEPID and EPID 
respectively. 

Fig. 6.4.  5-fold validation results presented as boxplots of γ-pass rate values 
corresponding to the comparison for the outer attenuated region between TPS dose 
distributions with (a) U-Net corrected DEEPID dose images and (b) EPID dose images 
before the correction. The box extends from the lower to upper quartile values of the 
data, with a line at the median. The whiskers are set at the 5th and 95th percentiles of 
the data. Outliers are not shown.

6.3.3. In vivo DEEPID dosimetry

Table 6.1 presents the results of the comparison between DEEPID 
and EPID with TPS dose distributions corresponding to the in vivo 
verification of 45 rectum IMRT fields. The agreement between 
DEEPID and TPS was similar for the central attenuated and the 
outer unattenuated regions. This can be also observed in the example 
presented in Fig. 6.5 where in vivo EPID and DEEPID cranio-caudal 
dose profiles of a large rectum IMRT field are shown. Without the 
DEEPID correction, similar to the results of Fig. 3, there was an 
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underestimation of the EPID-reconstructed dose for the parts that were 
within the field. A good agreement with the TPS was only observed in 
the central unattenuated region. With DEEPID, the agreement with 
the TPS is also good in the outer attenuated region. TPS, EPID and 
DEEPID 2D dose distributions and γ-distributions for five rectum 
IMRT fields are displayed in Fig. 6.6.

Fig. 6.5.  TPS, EPID and DEEPID 2D dose distributions at the isocenter corresponding 
to the in vivo verification of a large rectum IMRT field. Cranial-caudal dose profiles 
are displayed in black, red and blue, respectively.  The dotted grey lines represent the 
boundaries between central and outer regions.    

DEEPID EPID

γ-pass rate % γ-mean γ-pass rate % γ-mean

Central region 91.6 ± 6.6 0.47 ± 0.11 88.8 ± 7.5 0.56 ± 0.12

Outer region 90.2 ± 8.9 0.52 ± 0.14 44.5 ± 22.4 2.22 ± 2.70 

Entire field 91.0 ± 6.7 0.49 ± 0.11 79.2 ± 13.3 0.84 ± 0.35

Table 6.1. Results of the comparison between DEEPID and EPID with TPS 2D dose 
distributions corresponding to the in vivo verification of 45 rectum IMRT fields. 
Results are presented as AVG±(1SD).
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Fig. 6.6.  TPS, EPID and DEEPID 2D dose distributions and γ-maps for five 
representative rectum IMRT fields. Only the last one is not a large field.    

6.3.4. Introduction of errors

Results after ±1.5 mm movements of the leaf bank are displayed in 
Fig. 6.7 for both EPID and DEEPID dose reconstructions. As in the 
example of Fig. 5, the DEEPID correction accurately reconstructs the 
dose in the outer region. The sensitivity to the error is also higher with 
DEEPID, as can be deduced from the presented γ-maps. Regarding the 
effect of -5% and +5% MU errors on DEEPID dose images, the isocenter 
dose difference for all fields combined with respect to the no-error 
situation was found to be -4.4% and +5.3%, respectively. The sensitivity 
of DEEPID to this error is further illustrated in Fig. 6.8. where dose 
profiles corresponding to one rectum field are displayed. Note that, in 
this case, the DEEPID correction improved also the agreement with 
the TPS in the central region for the no-error case, see Figs. 6.8.c and 
6.8.d.
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Fig. 6.7.  Effect of ±1.5 mm leaf bank errors on EPID and DEEPID dose distributions. 
(a) EPID dose distributions for the no-error delivery of a large rectum field, (b,c) 
γ-distributions (2% / 1 mm) between no-error and error EPID dose distributions and (d) 
dose profiles. The same is displayed in (e,f,g,h) for DEEPID. The TPS dose profile for 
the no-error delivery is displayed for comparison. 

Fig. 6.8.  Effect of ±5% MU errors on EPID and DEEPID dose distributions. (a,b) 
EPID and DEEPID 2D dose distributions for the no-error delivery and (c,d) EPID and 
DEEPID dose profiles. The TPS dose profile for the no-error delivery is displayed for 
comparison.

6.4. Discussion

In this study, we have used deep learning to correct the limitations 
of the EPID dose back-projection algorithm in the outer attenuated 
region of EPID images of the Unity MR-linac, making in vivo dosimetric 
validation feasible using the entire EPID image. The deficiencies of 
EPID dosimetry for the Unity MR-Linac were presented with square 
field measurements in Fig. 6.3. They illustrate how the EPID dose 
modelling of the panel fails to account for the differences in scatter 
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and attenuation in a range of field sizes for beams that traverse the 
non-coil free regions. During the last step of the pixel to portal dose 
response fit in the commissioning process 177, the parameters of a kernel 
are fitted to minimize the difference between the reconstructed dose 
at the EPID level and array measurements profiles in both LR and CC 
directions for a set of square fields irradiated at gantry angle 0°. The 
kernel is a rotationally symmetric gaussian kernel with no directional 
bias, producing incorrect results in the outer attenuated region. The 
use of asymmetric kernels and/or dedicated correction masks in the 
dose modelling of the panel was unsuccessfully explored prior to the 
investigation of the Deep Learning-based solution presented in this 
study. 

The results of the 5-fold cross validation demonstrate how DEEPID 
improves the accuracy of dose reconstructions in the outer attenuated 
region. This was also corroborated with the in vivo verification results 
presented in Table 6.1 and with the example of Fig. 6.5. The results 
presented in section 6.3.4. prove that DEEPID is sensitive to errors 
introduced in the outer attenuated region as it was the case with the 
±1.5 mm leaf bank errors introduced for a large rectum IMRT field. The 
dosimetric effects of ±5% MUs errors were also correctly considered 
by DEEPID. This demonstrates the capability of the method to detect 
clinically relevant errors. 

The EPID dose images utilized for training were reconstructed using 
non-transit EPID dosimetry from raw portal data acquired without 
a phantom/patient in the beam. However, the intended use of the 
model is for in vivo verification using transit EPID dosimetry from raw 
portal data acquired behind the patient. Although the dose engines 
for non-transit and transit EPID dosimetry are similar, they are not 
identical. Therefore, a more accurate model is expected if the EPID 
dose images utilized for training were reconstructed using transit 
EPID dosimetry from raw portal data acquired behind a phantom. 



Chapter 6   |   137   

6

Secondly, TPS dose calculations on the OctaviusMR phantom were used 
as the ideal output of the U-Net during training. These calculations 
are believed to be accurate enough for the purpose of the study. 
Absolute dose measurements made with an MR-compatible Octavius 
1500 2D detector array (PTW, Freiburg, Germany) were alternatively 
considered as ground truth for training. However, this option was 
disregarded due to the low resolution of the detector array (1405 vented 
ionization chambers with 7.1 mm center-to-center distance). Finally, 
the attenuation of the cryostat, couch and bridge (at the exit of the 
phantom) varies considerably with gantry angle 177. Results should 
improve if a dedicated U-Net model was trained for each gantry angle 
separately. Finally, beams exceeding 8.1 cm in the caudal direction at 
isocenter plane, or 11 cm in the cranial direction, or ±11 cm in the 
lateral direction, will have parts that fall outside the panel. Evidently, 
no reconstruction method will be able to detect errors when these 
occur in these undetected parts of the beam.

The study demonstrates that Deep Learning can become a very powerful 
technique to correct deficiencies of portal dosimetry algorithms. A 
first estimate of the delivered dose distribution is generated using 
EPID dosimetry and then we pass the results to a convolutional neural 
network for a final correction. 

6.5. Conclusions

A Deep Learning-based method corrects the deficiencies of EPID 
dosimetry to account for the extra attenuation and scatter in the 
outer attenuated region. The method allows for accurate dose back-
projection at the isocenter plane using the entire EPID image. With 
this method, dosimetric verification becomes possible for field sizes up 
to ~19x22 cm2 at isocenter. The method can be used to detect clinically 
relevant errors.   
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