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Chapter 1 

Targeting of antigen presenting cells with 
mannosylated conjugates 

Introduction 

The immune system consists of a large variety of cells that continuously control and protect the 

body against foreign and aberrant cells. It can be divided into an innate and an adaptive part, that 

recognize these malignant cells through non-specific general traits (the innate part) or through 

highly specific interactions, as developed in the adaptive part of the immune system. Innate 

immune cells can instantly battle pathogens and aberrant cells after sensing danger or pathogen-

associated molecular patterns (DAMPs and PAMPs). When the innate system does not suffice in 

eradication, adaptive immune cells are recruited to generate a selective response. The adaptive 

immune system serves two goals. It generates a strong tailored immune response with high 

specificity, and secondly, it generates lasting immunity by the formation of memory cells. Upon 

recognition of their specific target, the adaptive immune cells start to proliferate to form large 

numbers of specific cells. A small portion of these cells transforms into memory cells, which can 

be readily reactivated and allows the immune system to generate a fast and specific response when 

re-challenged by the same pathogen or aberrant cell.  
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The adaptive immune system has been exploited for centuries in the treatment of diseases. At the 

end of the eighteenth century, Edward Jenner successfully immunized the first human by 

challenging his immune system with cowpox, thereby effectively protecting him from smallpox.1 

Since Jenner, many other therapies that exploit the power and specificity of immune cells have 

been developed. In the last decades, immunotherapies have revolutionized cancer treatment with 

the development of chimeric antigen receptor (CAR) T cells and checkpoint inhibitors.2,3 The 

inhibition of checkpoints can result in the restoration of immune responses and has successfully 

treated various tumors were traditional cytotoxic therapies failed.4,5 Immunotherapies often rely 

on T cells, a specific set of adaptive immune cells and the amount of tumor-infiltrating T cells has 

been shown to be a prognostic marker for success in immunotherapy.6,7 However, the presence of 

T cells does not guarantee a sufficient response if the T cells are not tumor-reactive. For example, 

by sequencing the T cell receptor (TCR) of intratumoral T cells, Scheper et al.8, demonstrated that 

the majority of the T cells were not tumor-reactive. Furthermore, other immune cells, besides T 

cells, are required to generate a long-lasting response against malignant cells.9 A possible method 

to improve T cell based therapies is by active immunization against cancer cells by challenging the 

immune system with specific tumor-associated antigens (TAAs) to mount a specific T cell response 

to target aberrant cells or help improve and elongate the immune-response.10,11 

Innate immune cells can distinguish foreign and damaged cells from normal cells using pathogen 

recognizing receptors (PRRs). These receptors recognize distinct molecular motives that have been 

preserved in pathogens such as viral and bacterial DNA, RNA, carbohydrates, and lipids. Upon 

recognition, the innate immune cells are activated and generate signals to recruit other immune 

cells to the site of infection. Among the innate cells are dendritic cells (DCs) that play a pivotal 

role in the activation of the adaptive immune system. DCs are antigen-presenting cells (APCs) that 

can present (peptide) antigens on their cell surface in a protein called the major histocompatibility 

complex (MHC). Two types of (classic) MHC proteins exist of which class I (MHC-I) presents 

antigens from endogenous proteins from the cytosol and class II (MHC-II) antigens from 

endocytosed (pathogenic) proteins. MHC-I is present on all cells and presents epitopes containing 

8-11 amino acids. It allows for the detection of aberrant cells through the interaction with cytotoxic 

T cells (CTL or CD8+), to induce programmed cell death. MHC-II is only expressed by 

professional APCs such as dendritic cells (DCs), B cells, and macrophages. MHC-II presents 

epitopes with a less stringent size restriction (generally in the 13-17 amino acids length range) to T 

helper cells (Th cells or CD4+), that in turn stimulate effector cells and help prolong the immune 

response.12 T cells recognize the combination of MHC occupied with an epitope via the T cell 

receptor (TCR). Although antigens presented in MHC-II are obtained via endocytosis of pathogens 
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and antigens presented in MHC-I are derived from the cytosol, professional APCs present a small 

amount of the endocytosed antigen in the MHC-I. This route is called antigen cross-presentation 

and allows for immunity against tumors and viruses.13 Importantly, the recognition of epitope-

MHC is not sufficient to activate T cells and additional stimuli from the APC, in the form of co-

stimulatory proteins such as CD40 and cytokines, are required. APCs upregulate the levels of these 

stimuli when their PRRs recognize PAMPs.  

Mammalian immune cells express a multitude of PRRs which are divided into subfamilies based 

on their structure and the ligands they bind. The four well-defined families are the C-type lectin 

receptors (CLRs), toll-like receptors (TLRs), nucleotide-binding oligomerization domain-like 

receptors (NOD-like or NLRs) and the retinoic acid-inducible gene-I-like receptors (RIG-like, or 

RLRs).14 Occasionally, new PRRs are identified that could potentially increase the number of PRR 

families.15 The focus of this thesis is on the CLR and TLR families. TLRs recognize different type 

of PAMPs such as bacterial lipopeptides and bacterial and viral RNA and DNA and have been 

extensively explored to acquire adjuvants for vaccine development.16,17 CLRs recognize viral, 

bacterial, and fungal derived glycans. Both soluble and transmembrane CLRs exist that bind 

carbohydrates in a calcium depending manner. The transmembrane CLRs are classified into two 

classes based on whether the position of their N-terminus is extra- (type I) or intra-cellular (type 

II). The CLR family recognizes various carbohydrates, for example, dectin-1 recognizes β-glucans, 

and the macrophage galactose-type lectin (MGL) recognizes N-acetyl galactosamine containing 

structures. Several CLRs can recognize mannose structures, which is the main subject of the 

research described in this Thesis. These include the mannose-binding lectin (MBL), the mannose 

receptor (MR, or CD206), dendritic cell-specific intercellular adhesion molecule-3-grabbing non-

integrin (DC-SIGN or CD209), and Langerin (CD207) and are discussed in the following sections. 

MBL 

The mannose-binding lectin (MBL) is a soluble CLR, which contains an N-terminal cysteine-rich 

region and a C-type lectin domain that can bind mannose, fucose, and GlcNAc type of 

carbohydrates. The cysteine-rich domain forms disulfide bonds with other MBL peptides, creating 

a trimeric structure with 45 Å spacing between the CRDs.18 These subunits can multimerize further 

into a tetrameric complex, forming a bouquet-like structure with 12 CRDs per complex (See Figure 

1).19 The affinity of a single MBL protein is low, but when multimerized it can bind with high 

avidity to the neutral carbohydrates mentioned above.20 Pathogen recognition by MBL can initiate 

activation of the innate complement system via the lectin pathway.21 Additionally, binding of MBL 

enhances phagocytosis,22 thereby trafficking pathogens towards phagosomes, where it can lead to 
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the engagement of TLR2/TLR6, and MBL can thus act as a TLR co-receptor.23 Due to the 

complexity of the complement system, antigen targeting using MBL is hardly explored. However, 

it can help to target antigens toward germinal centers which could start an appropriate adaptive 

immune response.24 

MR 

The mannose receptor (MR, or CD206) is a C-type lectin receptor that is found on the surface of 

endothelial cells, macrophages, Langerhans cells (LCs) and (immature) DCs. The MR occurs both 

as a monomer and dimer, and both complexes can bind mannosides,25,26 but dimerization is 

required for the binding of larger particles such as HIV-1.27 The receptor consists of a short C-

terminal intracellular domain (type I CLR), a transmembrane domain linked to eight C-type 

carbohydrate recognition domains (CRDs), which can bind mannose, fucose, and N-acetyl 

glucosamine containing carbohydrates in a Ca2+ dependent manner.26,28 These are followed by a 

fibronectin type-II domain and a cysteine-rich domain on the N-terminus (see Figure 1). The 

cysteine-rich domain can bind sulfated carbohydrates in a Ca2+ independent manner,29,30 and the 

fibronectin domain can bind and endocytose collagen.31 Human MR has eight CRDs with only a 

small amount of homology between them and varying affinities towards mannose structures.32 

CRD-8 is the closest to the C-terminus and the transmembrane domain. Of all eight CRDs, only 

isolated CRD-4 is able to bind mannosides with a significant affinity, and it binds monosaccharides 

with similar specificity as the MBL.33 However, CRDs 4-8 are required to achieve the binding 

affinities of the natural MR, indicating that these also have a role to play in the binding of 

mannosides.25,28 Targeting antigens towards the MR can serve two functions: enhancing cell 

maturation and antigen presentation. Although the MR lacks an intracellular signaling motive, 

engagement of the receptor can induce cytokine production, although the pathway through which 

this occurs remains unknown29,34 and it has been speculated that other mannose-binding receptors 

are responsible for these signals.35 Colocalization of the MR and antigen suggest that they can be 

transported together toward early endosomes, which enables the cross-presentation of the 

antigen.36,37 Together, these findings make the MR an attractive target for cell-specific vaccine 

development, as described in previous reviews.38,39 However, it has proven to be challenging to 

study the binding affinity of this receptor in vivo because of the low expression levels of the MR 

on the cell surface. In addition,  the poor stability of the receptor, when overexpressed, complicates 

the determination of ligand affinity in vitro. The stability of the MR can be improved through small 

alterations in the receptor's amino acid sequence, but this often modifies the properties of the 

receptor.40  
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DC-SIGN 

Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN or 

CD209) is a C-type lectin present on dendritic cells and specific macrophage subsets.41 DC-SIGN 

is a type II CLR and bears multiple internalization motives and a signaling motive on its 

intracellular domain. The extracellular part of DC-SIGN contains a flexible neck region and a CRD 

that can both bind mannose, fucose, and GlcNAc-like structures. DC-SIGN multimerizes into 

tetrameric structures on the cell surface, improving the binding avidity to pathogens (see Figure 

1).42 In these tetrameric structures, the minimal distance between CRDs is 40 Å.43 Upon binding 

of these CRDs, the receptor can induce signaling and it has been shown that mannosylated 

antigens can activate Ras-1 signaling resulting in an inflammatory response.44 Binding the same 

CRD with fucosylated antigen, however, induces a different inflammatory response resulting in 

different T cell subsets. Thus, DC-SIGN can effectively skew the T cell response to stimulate TH1 

or TH17 cell (through mannoside activation) or induce a TH2 response (by binding of fucoses).44–

46 DC-SIGN is also a scavenging receptor that can rapidly internalize antigens upon binding.47–49 

These combined functions make DC-SIGN an attractive target for vaccine development.50,51 DC-

SIGN mediated endocytosis can traffic antigens towards different types of endosomes.52 For 

example, large structures such as HIV-1 are trafficked towards late endosomes/lysosomes 

resulting in MHC-II presentation,53 while smaller fragments can be trafficked towards early 

endosomes, thereby improving cross-presentation.54 

Langerin 

The skin is an attractive site for vaccinations since it contains large quantities of Langerhans cells 

(LCs), professional APCs which are a subset of DCs.55 LCs express the CLR Langerin (CD207),56 

which is a type II transmembrane protein with a CRD that has a preference for mannose, fucose, 

and GlcNAc, similar to DC-SIGN. Affinity studies with an array of carbohydrates suggest that 

langerin can also bind sulfated oligosaccharides.57,58 The receptor is expressed as a trimeric complex 

on the cell surface, binding multivalent carbohydrates (see Figure 1). Unlike DC-SIGN, scavenging 

by Langerin traffics antigens to Birbeck granules instead of endosomes. These Birbeck granules 

can degrade particles such as viruses, which allows LCs to act as a natural barrier against viral 

infections, for example, by HIV-1.59,60 These findings have sparked a large interest in the 

development of ligands that are either specific for Langerin or DC-SIGN.58,61 More information 

on vaccine strategies via Langerin is reviewed by Dam et al.51 and Stoitzner et al.62 
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Figure 1: Mannose-binding C-type Lectin Receptors.  

 

Schematic representation of mannose-binding C-type lectin receptors and the ligands that bind the different binding 

domains of the receptors.   

 

Targeting of mannose-binding CLRs 

Endocytosis by APCs via CLRs has gained much attention in the last decades, focusing on two 

distinct approaches. Ligands have been developed to block CLR-mediated endocytosis to prevent 

pathogens from hijacking the CLR internalization pathway for transfection. Alternatively, CLR-

binders have been developed to target specific cargo into APCs via the CLRs. Although both 

strategies serve opposite functions, the design principles underlying the development of ligands 
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designed for either purpose is of relevance for the other application as well. The design of 

endocytosis blocking ligands has resulted in a large number of glycomimics that can bind with high 

affinity and selectivity for one CLR over another.63–69 Besides improved affinity and selectivity, 

replacing native ligands with glycomimics can improve their stability against enzymatic 

degradation.70 For example, Bordoni et al.71 synthesized 2 and 3, carba-analogues of the α1,2-

dimannoside 1, which lack the endocyclic oxygen, as enzymatic stable ligands for DC-SIGN 

(Figure 2). Tamburrini et al.72 improved the stability of the α1,2-glycosidic bond in carba pseudo 

mannoside 4 by the introduction of a thioglycosidic bond, forming pseudo disaccharide 5 (Figure 

2). The affinity for CLRs can be further enhanced by the multivalent presentation of mannoside(-

mimic)s by clustering the ligands on different types of carriers. Viral infection can be stopped 

effectively using ligands with nM affinities based on carriers systems such as dendrimers,73,74 

molecular rods,75 gold nanoparticles (AuNPs),76,77 and polymers.43  

Figure 2: Stabilized pseudo mannosides. 

 

 

Exploiting CLRs to target antigens towards antigen-presenting cells 

The second approach to utilize CLR mediated endocytosis aims at the delivery of cargo towards 

APCs. One potential method to achieve this comprises the use of antibodies. Sehgal et al.78 have 

recently reviewed different strategies for DC vaccination, including anti-CLR antibody conjugates. 

Cruz et al.79 combined antigen-coated nanoparticles with anti-DC-SIGN antibodies and Breman 

et al.80 combined anti-MR antibodies with a peptide antigen to deliver the antigens to APCs. 

Although both approaches improved the uptake efficacy, the level of T cell reactivity was similar 

to unconjugated antigens, suggesting that antigen presentation was not improved.  

Carriers to deliver antigens. 

Targeting CLRs with mannosylated constructs is a popular method to deliver cargo to APCs. This 

targeting is often achieved with multivalent carriers that contain mannosides and a cargo of 

interest, such as an antigen, and this approach has been reviewed extensively.78,81,82 Carriers 

exploited for selective targeting are often similar to those used for blocking of viral entry. For 

example, Zhu et al.83 reported a mannosylated cationic lipid-hybrid polymersome, that combined 
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an ovalbumin antigen with two TLR agonists (Imiquimod and monophosphoryl lipid A) and 

induced strong activation and a synergistic antitumor immune response. Schulze and Wamhoff et 

al.61,84 selectively targeted antigens to LCs, using liposomes coated with Langerin specific 

glycomimic 6 or mannoses 7 (Figure 3). Liposomes with 6 could selectively deliver their content 

(e.g., fluorophore84 or Doxorubicin61) to Langerin+ cells when compared with the mannosylated 

liposomes which were also endocytosed by other CLRs. As a proof of concept, Frison et al.85 used 

an oligopeptide carrier with lysine repeats that were functionalized with carbohydrates to provide 

constructs such as 8 (See Figure 3). Incorporation of a fluorescein label allowed to track the uptake 

and routing of the conjugates via either the MR or DC-SIGN. Their results have shown that 

binding avidity increased with a higher number of mannosides (n=2 < n=3) and also that 

fucosylated constructs (Lewis A, Lewis B, or Lewis X) could be internalized by DC-SIGN, but not 

by the MR, demonstrating that these receptors can be discriminated using the appropriate glycans. 

Dong et al.86 grafted mannosides on carbon nanotubes (9) which could adsorb a model OVA 

antigen. These nanotubes were efficiently engulfed by DCs indicating that such nanotubes could 

be potent nanovectors for antigen delivery, which could lead to selective drug delivery applications. 

Shinchi et al.87 conjugated both mannosides and a TLR7 agonist to gold nanoparticles (10, Figure 

3), which improved the activity of the TLR7 ligand. Co-administration of these nanoparticles with 

OVA as a model epitope resulted in a more efficient presentation due to improved activation of 

the APC. Wilson et al.88 developed methacrylic acid co-polymers equipped with mannosides and a 

resiquimod analog as side groups, that were reversibly conjugated to an antigen (11, Figure 3). 

When both the mannoside and resiquimod were combined in a single polymer, the humoral 

response and the cellular immunity were improved. These results demonstrate that the 

introduction of ligands for both TLR7 and mannose-binding CLRs in one construct can improve 

the effectiveness of the immune response. Another mannosylated polymer carrier was synthesized 

by Jarvis et al.,54 who utilized a ring-opening polymerization approach to generate multiple 

functionalized polymers (12, Figure 3). Both soluble polymers and polymer aggregates were 

obtained, and the fate of antigen routing proved to be dependent on the physical properties of the 

carrier.89 These results showed that soluble antigen is routed toward early endosomes, ideal for 

antigen cross-presentation,52 while aggregates are directed to compartments that are more suitable 

for CD4+ presentation.90 This size-dependent routing is not only affected by the size of the carrier, 

but also by the type of CLR targeted. When Fehres et al.91 compared Lewis Y functionalized 

synthetic long peptides (SLPs) with liposomes, the routing fate and antigen presentation capacity 

proved to depend on the CLR responsible for the trafficking. The best antigen presentation via 

langerin was achieved with SLPs, and presentation via DC-SIGN using antigen-loaded liposomes. 
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Figure 3: Multivalent CLR targeting carriers. 

 

 

Although multivalent systems, such as those described above, have been successfully applied for 

improvement of antigen (cross-)presentation, the heterogeneous character of the carriers can result 

in incoherent effects. Therefore, much effort has been directed at the development of well-defined 
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single molecules such as synthetic long peptides and defined dendrimers. For example, based on 

the results obtained with 8, Srinivas et al.92 synthesized constructs such as 13 (Figure 4) in which 

four repeating lysines were functionalized with glycosyl residues and conjugated to a Melan-

A/Mart-1 melanoma epitope (Melan-A16-40). The antigen cross-presentation was enhanced by 

binding to MR or DC-SIGN. Similar  immunological results were obtained by Rauen et al.93 who 

generated mannosylated SLPs (14, Figure 4) comprising a lysine residue with two α-mannosides 

connected to either the MHC-I restricted OVA257-264, the MHC-II restricted OVA323-339, or the 

MHC-I restricted HPV E743-63 epitope. It was demonstrated that mannosylation94,95 of the synthetic 

long peptide enhanced cross-presentation but not MHC-II antigen presentation, indicating that 

the mannosides in this construct routes the antigen towards the early endosomes. Grandjeun et 

al.96 developed a synthetic approach to generate mannosylated dendrimers (15, Figure 4) to 

specifically target mannose-binding CLRs on DCs. Their dendrimers are based on branching 

lysines that were conjugated to an epitope via an N-terminal hydrazino-ligation. In an alternative 

approach, McIntosh et al.97 conjugated one or two complex Man9 structures to a synthetic peptide 

using an enzymatic glycosylation strategy to form native N glycan 16. The mannosylation improved 

binding to APCs, and the antigen was effectively presented as long as the epitope was not 

glycosylated. Glaffig et al.98 combined a MUC-1 epitope with both a mannose targeting moiety and 

a tetanus toxoid (TTox) as an helper T cell epitope via squarate conjugation (17, Figure 4). Mouse 

immunized with this construct exhibited stronger IgG antibody titers in comparison with a control 

construct that lacked the mannosides. 

The incorporation of additional adjuvants can further improve the effectiveness of mannosylated 

antigens.99 For example, Moyle et al.100 synthesized mannosylated conjugates 18 bearing an HPV 

E744-62 epitope and a lipid-core-peptide (LCP) adjuvant.101 The trifunctional conjugates were able 

to protect against TC-1 tumor cells. Sedaghat et al.102 synthesized similar constructs in which an 

OVA323-339 MHC-II epitope was combined with self-adjuvating lipids, a reporter group, and 

targeting mannosides (19, Figure 5). Both the lipids and mannosides in the constructs played a 

significant role in the receptor-mediated uptake.  
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Figure 4: Mannosylated antigen. 
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Figure 5: Mannosylated trifunctional conjugates. 
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Outline of this Thesis 

This Thesis presents studies on the targeting of mannosylated conjugates to C-type lectin receptors 

(CLRs) present on antigen presenting cells. Chapter 2 describes a systematic approach to 

determine the effect of both the number and type of mannosides on the affinity for the three 

mannoside binding transmembrane CLRs: the MR, DC-SIGN, and Langerin. The affinities of the 

clusters was determined using different in vitro techniques, including a new method that utilizes 

super-resolution microscopy. The established affinities directed the selection of the mannoside 

clusters to be used in follow-up studies in this Thesis. Chapter 3 describes improvements in the 

synthesis of a known Toll-like receptor (TLR) agonist which allows the use in solid-phase peptide 

synthesis. This agonist is combined with clusters selected from Chapter 2 to more effectively target 

the ligand to APCs. Combining the results of Chapters 2 and 3, Chapter 4 describes the synthesis 

of peptide conjugates in which the TLR agonist, the CLR targeting mannoside clusters, and a 

peptide antigen are incorporated. These peptides are evaluated for their ability to mature APCs 

and cross-present the antigen. Analogs of these conjugates in which amino acids, functionalized 

with an acid-stable C-mannoside is incorporated are the subject of Chapter 5. Both the synthesis 

of a C-mannosyl lysine building block and its use in the inline SPPS synthesis of peptides are 

described. The antigen-presenting capacities of these conjugates are assessed and compared to the 

O-mannose analogs. As an alternative to peptidic mannoside carriers, Chapter 6 describes the 

synthesis of glycosylated benzene tri-amides (BTAs) that can self-assemble into supramolecular 

fibers. Such systems could be considered in future work for a dynamic carrier for antigen and 

adjuvants. Finally, Chapter 7 summarizes all the findings in this Thesis and discusses future 

directions that could be taken to follow up on data generated in this Thesis.  
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Mannose-binding C-type lectin receptors (CLRs) have been studied extensively because of the role 

they play on immune cells in signaling and internalization of antigens.4–7 The mannose receptor 

(MR or CD206), DC-specific ICAM-3 grabbing non-integrin (DC-SIGN or CD209), and Langerin 

(CD207) have been successfully exploited for the (prevention of) uptake of antigens, via multiple 

strategies including the use of antibodies and ligands that can bind the receptor’s carbohydrate-

recognition domains (CRDs, see Chapter 1). Although all three receptors contain mannose-

binding CRDs, the structures of the receptors are quite distinct (see Chapter 1). Where DC-SIGN 

and Langerin both have only one CRD, the human MR has eight CRDs that can bind mannosides 

with differing affinities.8 The receptors are able to multimerize: DC-SIGN can form a tetramer,9 

while Langerin forms a trimeric structure.10 The MR occurs as either a monomer11 or as a dimer12 

in the presence of Ca2+. As a result of the multimerization of the receptor and the multiple CRDs, 

 
aPart of this work is published in Hogervorst & Li et al. 20191 

bPart of this work has been submitted by Hogervorst & Li et al. 20202  
cPart of this work is part of Riera Brillas et al. 20203, manuscript in preparation 
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the affinity for mannosides increases when mannosides are presented in a clustered manner with 

multiple mannosides in close proximity of each other. This so-called multivalent effect, in which 

the affinity increases more than the sum of affinities of the presented mannosides, is often 

exploited when targeting ligands to these CLRs. By incorporating readily available mono-

mannosides in dendrimers, nanoparticles, liposomes or viral particles, these mannosides are 

presented in a multivalent manner resulting in high-avidity binding.13–17 The binding affinity of a 

mono-mannoside however, is generally smaller than the affinity of more complex oligo-

mannosides.18 Targeting the CLRs with more complex larger oligomannosides with distinct stereo- 

and regio-isomers and intrinsic multivalency results in increased affinity.19,20 An often-utilized 

mannoside is the Man9 scaffold (Figure 1) that is known to bind DC-SIGN with high affinity. Both 

strategies have previously been used to deliver cargo to DCs to enhance uptake of constructs.21–25 

Utilizing more complex mannosides allows for a smaller scaffold and fewer number of mannoside 

copies. However, the synthesys of high mannose structures is time and labor-intensive and 

obtaining these structures in large quantities is challenging.26–29 

Due to the differences in the receptors, different preferences for mannosides in terms of their 

configuration and multivalent presentation is expected.30,31 However, studies that simultaneously 

study the effect of mannoside configuration and varying multivalent presentation in a defined 

manner are scarce,32 and often only determine binding affinity for one of the receptors. The goal 

of the present chapter is to study the effect of different mannoside configurations and the number 

of presented oligomannosides on binding affinity, in a defined and systematic approach. By 

dissecting the Man9-structure in smaller oligomannosides, five fragments were selected that each 

represents a part of the main structure. The selected fragments are the mono-, α1,2-di-, α1,3-di-, 

α1,6-di- and α1,3-α1,6-tri-mannoside, coded as A-E (See Figure 1). By the use of a scaffold that 

allowed the incorporation of 1, 2, 3, or 6 copies of these mannoside fragments, an array of 

constructs was obtained that can be used to systematically study the effect of multivalency and 

configuration on the affinity for each of the three CLRs. 



CHAPTER 2 

23 

Figure 1. Man9 “high mannose” N-glycan structure. 

 

Mono-, di- and tri-mannosides used in this chapter are based on the substructures in the “high mannose” N-glycan above. 

 

Results and Discussion 

The assembly of the mannoside array hinges on the Cu(I) catalyzed azide-alkyne cycloaddition 

(CuAAC) of propargyl mannosides with azide functionalized peptide scaffolds. The synthesis of 

the scaffolds was achieved via solid-phase peptide synthesis (SPPS) and resulted in five different 

backbones with 1, 2, 3, or 6 azides, forming scaffolds 20-24 (Scheme 1). 

Scheme 1: Synthesis of backbone.  

 

Reagents and conditions: HCTU, DIPEA, DMF (20: 81%; 21: 50%; 22: 44%; 23: 44%; 24: 30%). 
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The design of the scaffolds 20-24 is based on the following considerations. To match the length 

of the largest, hexavalent scaffold 23 with the trivalent backbone 22, glycine residues were 

incorporated in the latter scaffold to separate the azidolysines. Similarly, the azidolysines in the 

divalent scaffold 21 were also separated by glycine residues. In divalent scaffold 24, the same 

spacing in terms of the number of atoms between the outermost azides, as in hexavalent scaffold 

23, was introduced. This spacing was achieved with a glycine and a tri-ethylene glycol moiety, to 

ensure water solubility while maintaining similar spacing. All scaffolds contained a lysine at the C-

terminus for further functionalization. SPPS of the scaffolds started with the coupling of Fmoc-

Lys(Boc)-OH as the first amino acid on Tentagel® S-RAM amide resin followed by elongation 

using standard Fmoc protocol with HCTU as condensating agent. After completion of the 

oligopeptides, the scaffolds were deprotected and cleaved from resin under acidic conditions 

followed by purification via RP-HPLC resulting in peptides: 20 (in 81% yield, 93% per step); 21: 

(in 50% yield, 87% per step); 22: (in 44% yield, 89% per step); 23: (in 44% yield, 90% per step) 

and 24: (in 30% yield, 82% per step).a 

With the azidopeptide scaffolds 20-24 in hand, propargyl mannosides 25-29, galactose 30 and sulfo 

GalNAc 31 were prepared using reported procedures (Scheme 2).1,3,33–35 These propargyl glycosides 

were selected based on their ability to bind the CLRs of interest. They can either bind all three 

CLRs (mannosides 25-29), none of the three receptors (galactose 30, to be used as a negative 

control) or only the MR via its cysteine-rich domain (sulfo GalNAc 31). Series A-E are derived 

from the N-glycan high mannose structure Man9 (see Figure 1). The A series combines the azido 

peptides with propargyl α-ᴅ-mannose (25);33 the B series uses propargyl α1,2-di-α-ᴅ-mannosides 

(26);1 representing the mono- and di-saccharides found at the end of the Man9-antennas; the C 

series uses propargyl α1,3-di-α-ᴅ-mannosides (27);1 the D series uses propargyl α1,6-di-α-ᴅ-

mannosides (28);1 the E series employs propargyl α1,3-α1,6-tri-α-ᴅ-mannosides (29),34 representing 

the di- and tri-saccharides found in the core motive. The G series uses propargyl β-ᴅ-galactoside 

(30);35 and the S series uses a propargyl 4-sulfo-β-ᴅ-N-acetyl-galactosamine (31).3 

The assembly of the array was achieved by conjugation of the propargyl glycosides 25-29 and azido 

peptides 20-24 by CuAAC (Scheme 2). Many aqueous CuAAC conjugations have been described 

in literature,36 but many of these require the use of significant amounts of copper.37–39 Although 

the use of a large amount of copper catalyst did provide fast and high yielding conjugation 

reactions, the purification and especially the removal of copper, proved to be troublesome. An 

 
a Whether the low conversion for 24 is caused by the lower temperature during the coupling or whether the product 
is lost during workup and/or purification was not determined. 
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earlier described method to remove copper with Cuprisorb™,40 gave variable results. Attempts to 

circumvent these issues by reducing the amount of copper resulted in varying yields. Major 

improvements in the conjugation were achieved by i) lowering the amount of copper in 

combination with the addition of tris(3-hydroxypropyltriazolylmethyl)amine (THPTA) to stabilize 

the Cu(I) species;36 ii) reducing the concentration of dissolved oxygen in the reaction mixture by 

purging solvents with argon; iii) increasing the temperature of the reaction; iv) addition of N,N-

diisopropylethylamine (DIPEA); and v) reduction of Cu(II) with a smaller amount of sodium 

ascorbate to prevent over-reduction of Cu cations to metallic copper. The remaining copper was 

scavenged using Quadrasil® AP resin, and the 27 prepared clusters 32-58 were purified by either 

HPLC or gel filtration. 

 

All the conjugation reactions leading to the clusters 32-58 required separation of unreacted 

glycosides from the desired products, for which size exclusion gel filtration and RP-HPLC were 

explored. Due to the hydrophilic character of both the products and unreacted propargyl 

glycosides only minimal differences in retention times were observed using either C18 or C30 RP-

HPLC columns. To prevent co-elution, only small injection volumes were tolerated, making 

purification by RP-HPLC very solvent and time-demanding. In addition, the constructs showed 

little UV absorption and tended to fragment during electron spray ionization (ESI), leading to 

relatively high loss of product during HPLC purification when relying on these monitoring 

techniques. On the other hand, the use of an HW40S size exclusion column provided a large 

difference in retention time between the clusters and the monomers, allowing for single run 

purifications. Unlike the HPLC, the gel filtration setup allowed for fraction monitoring by 

refractive index (RI) and the synthesized clusters displayed a strong RI signal. This high sensitivity 

allowed for high recovery during fraction collection. Altogether, the larger difference in elution 

time, the single run purifications, and the smaller losses because of the more sensitive monitoring, 

made gel filtration the method of choice for purification of these clusters. In total 27 clusters (32-

58) were obtained that varied in the type of glycosides and varied in number of presented 

glycosides (Scheme 2). All 27 clusters contain an unfunctionalized C-terminal lysine for further 

conjugation purposes.  
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Scheme 2: Synthesis of library. 

 

Reagents and conditions: a) starting from ᴅ-mannose 33; b) starting from 25 1; c) starting from 25 34; d) starting from ᴅ-galactose 35; e) 

starting from ᴅ-galactose 3; f) CuI, THPTA, DIPEA, DMSO, H2O (32: 39%; 33: 68%; 34: 99%; 35: 85%; 36: 99%; 37: 57%; 

38: 61%; 39: 41%; 40: 14%; 41: 28%; 42: 43%; 43: 53%; 44: 30%; 45: 69%; 46: 80%; 47: 82%; 48: 85%; 49: 80%; 50: 

82%; 51: 98%; 52: 99%; 53: 57%; 54: 85%; 55: 88%; 56: 83%; 57: 99%; 58: 17%); g) BiotinO-NHS, DIPEA, DMSO (59: 

99%; 60: 16%; 61: 17%; 62: 50%; 63: 14%; 64: 19%; 65: 49%; 66: 99%; 67: 76%; 68: 49%; 69: 63%; 70: 33%; 71: 96%; 

72: 90%; 73: 51%; 74: 59%; 75: 62%; 76: 62%; 77: 56%; 78: 85%); g) ATTO655-NHS, DIPEA, DMSO (79: 88%; 80: 

84%; 81: 45%; 82: 95%; 83: 100%; 84: 6%; 85: 62%; 86: 34%; 87: 81%; 88: 89%; 89: 43%; 90: 26%; 91: 11%); h) 

AlexaFluor488-NHS, DIPEA, DMSO (92: 46%; 93: 34%; 94: 6%); i) ATTO565-NHS, DIPEA, DMSO (95: 43%; 96: 

43%; 97: 17%). 
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Table 1: SPR results. 

 DC-SIGN Langerin 
Cluster Kd app (µM) IC50 (µM) Kd app (µM) IC50 (µM) 

1A = 32  N.D.  N.D 

2A = 38  2605±95  2424±30 

3A = 45  736.7±3.4 43  
6A = 50 7.8±0.4  3.4±1.4  
1B = 33  2343±109  4138±773 

2B = 39  189.3±3.4  181±4 

3B = 46 19.5±0.5  48  
6B = 51 0.95±0.04  3.2±1.7  
1C = 34  N.D  N.D. 

2C = 40  567.5±1.2  1415±13 

3C = 47  172.0±1.5  281±14 

6C = 52 1.17±0.25  3.9±1.5  
1D = 35  6961.5±3038.5  N.D. 

2D = 41  410.9±0.3 16  
3D = 48 48.7±2.6  9.8  
6D = 53 6.6±1.2  12.3±0.7  
1E = 36  1518.5±250.5  N.D. 

2E = 42  305.6±4.8 278  
3E = 49 2.44±0.04  4.2  
6E = 54 2.78±0.02  6.5±2.7  
1G = 37  N.D.  N.D. 

2G = 43  N.D.  N.D. 
 

Surface plasmon resonance (SPR) analysis of clusters for ECD DC-SIGN and ECD Langerin. Direct interaction experiments resulted 

in an apparent Kd, and competition experiments resulted in an IC50. N.D. = Not Determined because binding affinity was too low to 

assess a reliable IC50. 

 

The majority of the constructs were tested for their affinity for DC-SIGN and Langerin via Surface 

plasmon resonance (SPR) assays (Table 1).41 The apparent Kd was calculated in direct interaction 

mode using a surface functionalized with the DC-SIGN extracellular domains (ECDs) in an 

oriented manner. In this assay, the tetrameric DC-SIGN ECD was attached to the surface of the 

sensor chip via the N-terminus of its neck oligomerization domain, thus presenting its four 

carbohydrate recognition domains towards the solvent, realistically mimicking the presentation of 

the receptor on the cell surface.42 For some of the low-affinity ligands, binding in the mM range, 

it was not possible to determine their affinity with this assay, and therefore a competition 

experiment was performed providing IC50 values.43 When the galactose clusters 37 and 43 were 

tested, their affinity was too low to be determined, thereby excluding a-specific binding interactions 



Multivalent oligomannoside clusters to probe C-type lectin receptor binding 

28 

of the scaffold. When comparing equivalent clusters, the α1,2-di-mannoside (B series) bound with 

the highest affinity. The hexavalent presentation (n=6) of the oligomannosides led to micromolar 

affinity of these clusters for DC-SIGN. 51 showed the highest affinity in the library with an 

apparent Kd of 0.95 µM, followed by the α1,3-dimannoside cluster 52 (1.17 µM), the trimannoside 

clusters 49 (2.44 µM) and 54 (2.78 µM). Interestingly, the affinity of the trisaccharide series (E 

series) did not improve from the tri- to the hexavalent representation (49 versus 54). A potential 

explanation for this effect could be that the spacing of clusters is more important for the larger tri-

mannosides. For the monovalent mannosides 32 and 34, a reliable IC50 could not be determined 

in this setup, indicating that their binding affinity for DC-SIGN is too weak to establish a reliable 

measurement. For Langerin the results were very similar to DC-SIGN with avidity improving with 

an increasing amount of mannoside copies, although the effect of the mannoside configuration 

appeared to be less prominent (Table 1). 

To enable visualization of the clusters in cellular experiments, a biotin handle was introduced that 

could be identified using fluorescent streptavidin antibodies. Treatment of mannoside clusters 32-

54 with biotin-N-hydroxysuccinimide (NHS) ester gave biotinylated mannoside clusters 59-78 (R 

= R2, Scheme 2). Because of the large differences in polarity between the products and starting 

compounds, and the small scale of the biotinylation, RP-HPLC proved to be the most efficient 

purification method for the biotinylated clusters. The twenty biotinylated mannoside clusters (59-

78) were next tested for their affinity for and uptake by CLRs on monocyte derived DCs (moDCs). 

When the biotinylated clusters were assessed for their binding to cellular DC-SIGN, similar trends 

as revealed by the SPR experiments were observed. In the used assay, clusters 59-78 were allowed 

to bind to moDCs for 30 minutes at 4°C. After washing of the cells at 4°C, the number of attached 

clusters were quantified by staining with a fluorescent streptavidin and quantification by flow 

cytometry (Figure 2, top). The α1,2-mannosides (B series) showed enhanced binding in 

comparison to the mono-mannoside and the α1,6- or α1,3-dimannosides, in line with the SPR data 

and earlier results.44 When increasing the number of mannosides from 3 to 6 for the tri-mannoside 

(73 to 78) and the α1,6-dimannoside (72 to 77), the affinity did not increase, again illustrating the 

potential influence of the spacing in the used scaffold. Similar experiments were performed with a 

transfected B-cell line expressing Langerin (EBV Langerin+). Again, the results were in line with 

the affinities obtained via SPR, showing a strong effect of the number of mannoside copies. The 

type of mannoside appeared to have relatively little influence on binding in this assay, although the 

highest affinities were observed for the α1,6-di and tri-mannoside clusters. (Figure 2, bottom) 
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Figure 2: Affinity towards DC-SIGN (top) or Langerin (bottom) via FACS. 

 

Binding of the biotinylated mannoside library to DC-SIGN on moDCs (top) or to Langerin on EBV cells (bottom) was measured by 

flow cytometry. Normalized to the negative control. MoDCs were incubated with biotinylated constructs (30 min, 4 °C, 10 µM). (-) = 

negative control (PBS); (+) = positive control (1 µg/mL of Lewis Y conjugated polyacrylamide); Serie A in gray; B in blue; C in red; D 

in green; and E in orange. 

Figure 3: Internalization of cluster by moDCs (DC-SIGN) via FACS. 

 

The internalization of the mannoside clusters by moDCs was measured by flow cytometry. One donor is depicted here as representation of 

four. Cells were incubated with clusters (20 µM on ice for one hour and after incubated at 37 °C for different time spans). Quantification 

with an external fluorophore allowed quantification of the remaining clusters on the cell surface as an indirect measure of uptake. clusters 

75, 76 & 77 are rapidly internalized, while 78 remains longer at the surface. 
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Active internalization can take place when the cells are allowed to warm up, leading to the 

diminished presence of the ligand on the surface of the cells. Quantifying the amount of 

biotinylated clusters on the cell surface as a function of time can then provide an indication for 

the rate of uptake over time (Figure 3). Using this assay, the rate of uptake for clusters 75-78 was 

determined to show a difference with respect to the affinity for DC-SIGN. The di-mannosides 75-

77 were internalized relatively fast, while the tri-mannoside 78 remained longer on the cell surface. 

Although the DC-SIGN mediated uptake mechanism is known,45 the initiation trigger for 

endocytosis upon DC-SIGN-ligand binding remains unclear. Recognition of the di-mannoside 

clusters could lead to different signaling and a difference in the rate of uptake. Experiments to 

determine the affinity on cellular langerin are still ongoing.  

Although affinity for, and uptake via the MR of mannose ligands has been the subject of many 

studies, stable expression of functional MR remains challenging. The receptor can be stabilized 

through small alterations in its amino acid sequence, but this often modifies the properties of the 

receptor.46 In an attempt to study the kinetics of the MR in a more natural setting, the kinetics of 

the natural cellular receptor was studied with stochastic optical reconstruction microscopy 

(STORM). A selection of conjugates was functionalized with a laser dye using their activated N-

hydroxysuccinimide (NHS) esters to generate the clusters within minutes with high conversion 

(Scheme 2). Besides the default ATTO655 dye (R = R3), AlexaFluor488 (R = R4) and ATTO565 

(R = R5) were appended on the clusters, to allow for co-localization and Förster resonance energy 

transfer (FRET) experiments. For optimal results, the clusters containing the sulfate-carrying 

glycans 44, 55, 58 were converted from the ammonium salts, obtained after their purification using 

aqueous NH4HCO3, into the corresponding sodium salts using a Na+-exchange resin. The clusters 

decorated with the ATTO655 or ATTO565 laser dyes allow for tracking of single molecules 

binding to the mannose receptor (also see Chapter 5).  

In this STORM experiment, only clusters that remain at the same location for a certain time will 

be observed. Since unbound clusters move to fast due to diffusion, only clusters that are fixed will 

be observed. This can be either in cellular compartments or bound to receptors. When Chinese 

hamster ovary (CHO) cells transfected with the MR were subjected to cluster 81, the clusters 

localized on the cell surface (see Figure 4, right panel). When the same experiments were 

performed with CHO cells that lack the MR, the clusters did not localize, indicating that this 

localization is MR dependent (Figure 4, left panel). When these MR+ CHO cells were subjected to 

a selection of ATTO655 clusters, cellular localization of fluorophores showed a trend with more 

signal for the hexavalent clusters, indicating that larger clusters are trafficked more readily into the 

CHO cells (see Figure 5). Additionally, by following individual fluorescent events, an average 
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binding time can be determined, which correlates with the affinity of the cluster for the receptor 

(Figure 6). This binding time was determined for a selection of clusters and demonstrated that 

affinity increases from mono- to di- to tri-mannoside. When comparing clusters bearing the 

monomannoside (79, 81, 89, and 85), affinity is similar for the clusters bearing one or two 

mannoside copies, and only increases for the hexavalent clusters 85. One potential explanation for 

the increase in affinity could be that the distance between the two outermost mannosides in the 

hexavalent cluster is long enough to bind two CRDs simultaneously. However, since bi-valent 

cluster 89 was designed to match the spacer length with that of hexavalent cluster 85, and these 

do not match in affinity, this hypothesis seems unlikely. For the trisaccharide series (80, 83, 90, 

and 87) similar trends were observed. The α12-dimannoside cluster 82 shows an affinity between 

the mono- and tri-mannoside analogs. Finally, clusters bearing the sulfo GalNAc were tested (84, 

91, and 88). These clusters are designed to bind the cysteine-rich domain, of which unlike CRDs, 

only one is present per receptor. Strikingly, no change in affinity was observed when the number 

of sulfo GalNAc copies were increased. This observation, in combination with the fact that 

increasing the spacing between two mannoside copies did not increase the affinity, could indicate 

that the multivalent effect observed for the mannoside clusters is due to the presence of multiple 

CRDs in one receptor and not due to binding multiple receptors simultaneously.  

Figure 4: comparison between CHO and MR transfected CHO cells using 81. 

 

CHO-K1 (left) and CHO-MR (right) cells were incubated with 81 (5 nM, at 4 °C), in this experiment the focus area is photo-bleach, 

followed by a short restoration time in which new ATTO-655 clusters can bind the receptors present on the cell surface. Area imaged with 

a 640 nm laser (40 mW). 
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Figure 5: Density map using STORM microscopy.  

 

CHO-MR cells were incubated with ATTO655 functionalized mannoside clusters (5 nM) and imaged with a 640 nm laser (40 mW) 

Clusters with high affinity are endocytosed faster compared with lower affinity clusters, resulting in higher density of clusters within the cells. 

Figure 6: binding time (τ) from combined trajectories (± SE) determined by STORM. 

 

Incubation of CHO-MR cells with ATTO655 functionalized mannoside clusters at 37°C allowed for singe particle tracking. Trajectory 

lengths from at least 5 images per probes were combined, plotted in a histogram and fitted with a single exponential decay function wherefrom 

τ was determined. Serie A in gray; B in blue; E in orange; and S in purple. 
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Conclusion 

This chapter has described the synthesis of a systematic library of clusters, consisting of defined 

mannosides (mono-, di- and tri-mannosides) that are presented in an increasing number (n=1, 2, 

3, or 6) on a well-defined oligopeptide scaffold, which allowed the simultaneous studying of the 

effect of mannoside configuration and multivalency on the binding affinity for DC-SIGN, 

langerin, and the MR. The reaction conditions to conjugate the azidopeptides with the propargyl 

mannosides and the purification procedures were optimized to allow for the effective assembly of 

the sizable library of clusters. Further decoration of the constructs via the C-terminal lysine with 

either a biotin affinity tag or fluorescent dyes was successful and enabled the use of the conjugates 

in FACS and STORM experiments. The highest affinity for DC-SIGN can be obtained by the 

highest number of copies and the α1,2-dimannoside (B series). The type of mannoside appeared 

to have relatively little influence on the affinity for Langerin, and the highest affinity is mainly 

obtained by the highest number of copies. The introduction of laser dyes allowed for the MR to 

be studied in a more natural setting. These results indicate that the binding affinity for either one 

or two mannoside copies does not differ significantly, however affinity increases when six copies 

are presented. This increase is most likely not caused by the simultaneous binding of the outermost 

mannosides since bivalent clusters with similar spacing do not display this increment in affinity. 

Clusters that target the cysteine-rich domain show no multivalent effect, which would indicate that 

the multivalent effect observed for the mannoside clusters is not due to the simultaneous binding 

of two receptors. 
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Experimental 

General procedures: 

Reactions: All reactions were carried out in oven-dried glassware (85 °C). Prior to reactions traces 

of water and solvents were removed by co-evaporation with toluene where appropriate. Reactions 

sensitive to oxygen or moisture were carried out under an atmosphere of nitrogen. Solvents for 

reactions were of reagent grade and when anhydrous conditions were required, were stored over 

4Å molecular sieves (3Å for CH2Cl2, MeOH & HFIP) Et3N was dried over KOH pellets; and 

pyridine and DMF were used without molecular sieves. Solvents used for workup and column 

chromatography were of technical grade and used as received. Unless stated otherwise, solvents 

were removed by rotary evaporation under reduced pressure at 40 °C. All other chemicals (Sigma-

Aldrich, TCI, Carbosynth, Iris-Biotech, Merck, Boom, Honeywell & Biosolve) were used as 

received. The solid-phase peptide synthesis was performed on a TRIBUTE® Peptide Synthesizer 

(Gyros Protein Technologies AB, Arizona, USA) applying Fmoc based protocol. 

Purification: Silica gel column chromatography was performed on Screening Devices silica gel 60 

(0.004 - 0.063 mm). Gel filtrations were performed with an ÄKTA™explorer (GE Healthcare, 

Illinois, USA) using either a 1.6 x 60 cm, or 2.6 x 60 cm column with Toyopearl HW-40S resin 

eluting with a solution of NH4HCO3 (150 mM) or NH4OAc (150 mM) in MilliQ with 0 – 20% 

ACN. Fraction monitoring was performed using refractive index and with UV absorption at 260 

nm unless stated otherwise. Preparative high-pressure liquid chromatography was conducted on 

either a Gilson GX281 with an automatic fraction collector, Waters auto purifier prep LCMS 

coupled to a Waters SQ detector, or an Agilent1200 semi-prep system coupled to an Agilent 6120 

quadruple detector. Columns used are either: Gemini-NX 5µm C18, 110 Å, 250 x 10.0 mm, 5 

mL/min or Develosil RPAQUEOUS 10.0 x 250 mm, 5 mL/min in combination with eluents A: 

0.1% TFA in MilliQ in B: ACN. 

Analysis: Reaction progress was monitored using LC-MS analysis or TLC-analysis. TLC-analysis 

was performed on Merck 25 DC plastikfolien 60 F254. Visualization was carried out by irradiation 

with UV light (λ: 254 nm, 360 nm), followed by spraying with either 20% H2SO4 in EtOH (w/v); 

(NH4)6Mo7O24·4H2O (25 g/L) and (NH4)4Ce(SO4)4·2H2O (10 g/L) in 10% H2SO4 (aq.); ninhydrin 

(3 g/L) in EtOH/AcOH (20/1, v/v); or by dipping in anisaldehyde/H2SO4/EtOH (1/1/18, 

v/v/v); followed by charring >150 °C. LC-MS analysis was performed on one of the following 

LC-MS systems: A Thermo Finnigan LCQ Advantage MAX ion-trap mass spectrometer with an 

electrospray ion source coupled to Surveyor HPLC system (Thermo Finnegan), A Thermo 

Finnigan LCQ Fleet MAX ion-trap mass spectrometer with an electrospray ion source coupled to 
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Vanquish UHPLC system (Thermo Finnegan) or an Agilent Technologies 1260 Infinity LC system 

(detection simultaneously at 214 and 254 nm) coupled to a Agilent Technologies 6120 Quadrupole 

MS. Using an analytical Gemini C18 column (Phenomex, 50 x 4.60 mm, 3 microns) in combination 

with eluents A: H2O; B: ACN and C: 1% TFA (aq.) as the solvent system, in which the gradient 

was modified by changing the ratio of A in B in combination with 10% C. 1H and 13C NMR spectra 

were recorded on a 300/75, 400/100, or a 500/125 MHz spectrometer. Chemical shifts (δ) are 

given in ppm relative to tetramethylsilane as an internal standard. Coupling constants are given in 

Hz. All individual signals were assigned using 2D-NMR spectroscopy, HH-COSY, and HSQC. 

Optical rotations were measured on an Anton Paar Modular Circular Polarimeter MCP 100/150. 

IR spectra are reported in cm-1, and recorded on a Shimadzu FTIR-8300 or a PerkinElmer 

universal attenuated total reflectance (UATR; Single Reflection Diamond) Spectrum Two 

instrument. High resolution mass spectra were recorded either by direct injection (2 µL of a 2 µM 

solution in water/acetonitrile 50/50 (v/v) and 0.1% formic acid) on a Thermo Finnigan LTQ 

Orbitrap equipped with an electrospray ion source in positive mode (source voltage 3.5 kV, sheath 

gas flow 10, capillary temperature 250°C) with resolution R = 60,000 at m/z 400 (mass range m/z 

= 150-2,000) and dioctylphthalate (m/z = 391.2843) as a “lock mass”. Or were measured by direct 

injection (2 µL of a 1 µM solution in water/acetonitrile 50/50 (v/v) and 0.1% formic acid) using 

an ultimate 3000 UHPLC on a Thermo Finnigan Q executive HF Orbitrap equipped with an 

electrospray ion source in positive mode (source voltage 3.5 kV, sheath gas flow 10, capillary 

temperature 250°C) with resolution R = 240,000 at m/z 400 (mass range m/z = 150-3,000) with 

external lock and calibration. The high-resolution mass spectrometers were calibrated prior to 

measurements when δ > 1 ppm with a calibration mixture (Thermo Finnigan). 

 

General procedure for automated solid-phase synthesis: 

The solid-phase peptide synthesis was performed on a TRIBUTE® Peptide Synthesiser (Gyros Protein 

Technologies AB, Arizona, USA) applying Fmoc based protocol starting with Tentagel® S-RAM resin 

(~0.22 mmol/g) on a 100 µmol scale using established synthetic protocols.47 The consecutive steps 

performed in each cycle were: 

1) DMF wash (1x) followed by nitrogen purge; 2) Deprotection of the Fmoc-group with 20% piperidine in 

DMF (4 mL)(3 x 5 min); 3) DMF wash (3x) followed by nitrogen purge; 4) Coupling of the appropriate 
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amino acida in five-fold excess (unless stated otherwise);b 5) DMF wash (3x) followed by nitrogen purge; 6) 

capping with an Ac2O/DMF/DIPEA solution (4mL, 20/88/2, v/v/v) for 2 min; 7) DMF wash (2x). 

After the complete sequence capping was achieved by utilization of steps 1,2, 3, and 6 followed by washing 

with DMF (3x), DCM (3x), Et2O (2x), and nitrogen purge. 

Ac-Lys(N3)-Gly-Lys-NH2 (20). 

Ac-Lys(N3)-Gly-Lys(Boc)-Tentagel® S-RAM was transferred to a flask and treated for 

90 minutes with a cleavage cocktail (10 mL, TFA/TIS/H2O, 190/5/5, v/v/v). the 

resin was filtered off and washed with neat TFA (3 x 1 mL). The filtrate was 

concentrated, co-evaporated with toluene (2x). Purification via RP-HPLC (linear-gradient 5-30% B, 10 min) 

yielded title compound 20 as an clear oil after lyophilization (32.2 mg, 80.9 µmol, 81%). LC-MS: Rt = 2.79 

min (0 - 90% ACN; 13 min); 1H NMR (500 MHz, DMSO) δ 8.27 (t, J = 5.8 Hz, 1H, NH (G)), 8.14 (d, J = 

7.2 Hz, 1H, NH (K)), 7.77 (d, J = 8.2 Hz, 1H, NH (K)), 7.68 (s, 2H, CH2NH2), 7.29 (s, 1H, (CO)NHH), 

7.08 (s, 1H, (CO)NHH), 4.18 - 4.10 (m, 2H, CH), 3.75 (dd, J = 16.6, 6.0 Hz, 1H, CHH (G)), 3.66 (dd, J = 

16.6, 5.6 Hz, 1H, CHH (G)), 3.31 (td, J = 6.8, 1.2 Hz, 2H, CH2-N3), 2.74 (p, J = 6.5 Hz, 2H, CH2-NH2), 

1.85 (s, 3H, Ac), 1.75 - 1.61 (m, 2H, CH2), 1.51 (td, J = 12.1, 10.9, 4.7 Hz, 6H, CH2), 1.42 - 1.21 (m, 4H, 

CH2); 13C NMR (126 MHz, DMSO) δ 173.5, 172.4, 169.8, 168.7 (C=O), 52.9, 52.1 (CH), 50.5 (CH2-N3), 

42.2 (CH2 (G)), 38.7 (CH2-NH2), 31.3, 31.0, 27.9, 26.6, 22.6 (CH2), 22.5 (Ac), 22.2 (CH2); HRMS 

[C16H30N8O4 + H]+: 399.2475 found , 399.2463 calculated. 

Ac-Lys(N3)-Gly-Lys(N3)-Gly-Lys-NH2 (21).  

Ac-Lys(N3)-Gly-Lys(N3)-Gly-Lys(Boc)-Tentagel® S-RAM was transferred to a flask 

and treated for 90 minutes with a cleavage cocktail (10 mL, TFA/TIS/H2O, 190/5/5, 

v/v/v). The mixture was concentrated to approximately one mL after which the resin 

was filtered off into a cold mixture of diethylether/pentane (45 mL, 5/4, v/v) and the resin was washed off 

with neat TFA (3 x 1 mL) into the ether solution. This solution was centrifuged (10 minutes, 5000 rpm) 

after which the supernatant was removed and the precipitate was dried under nitrogen flow. Purification 

via RP-HPLC (linear-gradient 10-40% B, 10 min) yielded title compound 21 as a white powder after 

lyophilization (30.47 mg, 49.9 µmol, 49.9%). LC-MS: Rt = 4.21 min (0 - 90% ACN; 13 min); 1H NMR (500 

MHz, DMSO) δ 8.25 (dt, J = 17.2, 5.5 Hz, 2H, NH (G)), 8.13 (d, J = 7.1 Hz, 1H, NH (K)), 7.90 (d, J = 7.6 

Hz, 1H, NH (K)), 7.82 - 7.69 (m, 3H, NH (K), CH2NH2), 7.32 (s, 1H, (CO)NHH), 7.05 (s, 1H, (CO)NHH), 

4.28 - 4.06 (m, 3H, CH), 3.79 - 3.64 (m, 4H, CH2 (G)), 3.29 (q, J = 6.8 Hz, 4H, CH2-N3), 2.75 (q, J = 6.3 

Hz, 2H, CH2NH2), 1.85 (s, 3H, Ac), 1.75 - 1.44 (m, 12H, CH2), 1.42 - 1.20 (m, 6H, CH2); 13C NMR (126 

 
a The Fmoc amino acids applied in this synthesis were: Fmoc-Lys(Boc)-OH, Fmoc-Gly-OH, Fmoc-AEEA-OH 
(Carbosynth) and Fmoc-Lys(N3)-OH (4eq per coupling, IRIS biotech). 
 
b Generally, the Fmoc amino acid was dissolved in a HCTU solution in DMF (2.50 mL ,0.20 M, 0.5 mmol, 5 eq) This 
solution was transferred to the reaction vessel followed by a DIPEA solution in DMF (2.00 mL, 0.50 M, 1.0 mmol, 
10 eq) to initiate the coupling. Next, the reaction vessel was shaken for 60 min at room temperature. 



CHAPTER 2 

37 

MHz, DMSO) δ 173.5, 172.3, 172.0, 169.8, 169.1, 168.6 (C=O), 52.9, 52.6, 52.1 (CH), 50.5 (CH2-N3), 42.2, 

42.1 (CH2 (G)), 38.7 (CH2-NH2), 31.3, 31.2, 31.2, 31.1, 27.9, 27.9, 26.6, 22.6, 22.5 (CH2), 22.5 (Ac), 22.3 

(CH2); HRMS [C24H43N13O6 + H]+: 610.3539 found , 610.3532 calculated. 

Ac-Lys(N3)-Gly-Lys(N3)-Gly-Lys(N3)-Gly-Lys-NH2 (22).  

Ac-Lys(N3)-Gly-Lys(N3)-Gly-Lys(N3)-Gly-Lys(Boc)-Tentagel® S-RAM was 

transferred to a flask and treated for 90 minutes with a cleavage cocktail (10 mL, 

TFA/TIS/H2O, 190/5/5, v/v/v). The resin was filtered off into a cold mixture of 

diethylether/pentane (45 mL, 5/4, v/v) and the resin was washed off with neat TFA (3 x 1 mL) into the 

ether solution. This solution was centrifuged (10 minutes, 5000 rpm) after which the supernatant was 

removed and the precipitate was dried under nitrogen flow. Purification via RP-HPLC (linear-gradient 16-

38% B, 10 min) yielded title compound 22 as a white powder after lyophilization (36.01 mg, 43.9 µmol, 

43.9% (89% per step)). LC-MS: Rt = 4.80 min (0 - 90% ACN; 13 min); 1H NMR (400 MHz, DMSO) δ 8.33 

- 8.20 (m, 3H, NH (G)), 8.14 (d, J = 7.3 Hz, 1H, NH (K)), 7.97 (d, J = 7.7 Hz, 1H, NH (K)), 7.90 (d, J = 

7.8 Hz, 1H, NH (K)), 7.85 (d, J = 8.2 Hz, 1H, NH (K)), 7.70 (s, 2H, CH2NH2), 7.36 (s, 1H, (CO)NHH), 

7.09 (s, 1H, (CO)NHH), 4.33 - 4.09 (m, 4H, CH), 3.87 - 3.63 (m, 6H, CH2 (G)), 3.31 (tt, J = 6.9, 2.8 Hz, 

6H, CH2N3), 2.76 (t, J = 7.2 Hz, 2H, CH2NH2), 1.86 (s, 3H, Ac), 1.76 - 1.20 (m, 24H, CH2); 13C NMR (101 

MHz, DMSO) δ 173.9, 172.7, 172.4, 172.3, 170.2, 169.4, 169.3, 169.0 (C=O), 53.2, 52.9, 52.5 (CH), 51.0 

(CH2N3), 42.5 (CH2 (G)), 39.2 (CH2NH2), 31.7, 28.4, 28.3, 27.1, 23.1 (CH2), 22.9 (Ac), 22.9, 22.7 (CH2); 

HRMS [C32H56N18O8 + H]+: 821.4608 found, 821.4601 calculated. 

Ac-Lys(N3)-Lys(N3)-Lys(N3)-Lys(N3)-Lys(N3)-Lys(N3)-Gly-Lys-NH2 (23). 

Ac-Lys(N3)-Lys(N3)-Lys(N3)-Lys(N3)-Lys(N3)-Lys(N3)-Gly-Lys(Boc)-Tentagel® S-

RAM was transferred to a flask and treated for 90 minutes with a cleavage cocktail (10 

mL, TFA/TIS/H2O, 190/5/5, v/v/v). The mixture was concentrated to 

approximately one mL after which the resin was filtered off into a cold mixture of diethylether/pentane 

(45 mL, 5/4, v/v) and the resin was washed off with neat TFA (3 x 1 mL) into the ether solution. This 

solution was centrifuged (10 minutes, 5000 rpm) after which the supernatant was removed and the 

precipitate was dried under nitrogen flow and dissolved (1mL, t-BuOH/ACN/H2O, 1/1/1, v/v/v). 

Purification via RP-HPLC (linear-gradient 30-60% B, 10 min) yielded title compound 23 as a white powder 

after lyophilization (51.57 mg, 44.1 µmol, 44.1% (90% per step)). LC-MS: Rt = 6.70 min (0 - 90% ACN; 13 

min); 1H NMR (400 MHz, DMSO) δ 8.14 (t, J = 5.6 Hz, 1H, NH (G)), 8.09 - 8.01 (m, 2H, NH (K)), 7.92 

(dt, J = 18.6, 6.4 Hz, 5H, NH (K)), 7.70 (s, 2H, CH2NH2), 7.36 (s, 1H, (CO)NHH), 7.09 (s, 1H, (CO)NHH), 

4.32 - 4.10 (m, 7H, CH), 3.78 - 3.72 (m, 2H, CH2 (G)), 3.34 - 3.26 (m, 12H, CH2N3), 2.76 (s, 2H, CH2NH2), 

1.86 (s, 3H, Ac), 1.77 - 1.18 (m, 42H, CH2); 13C NMR (101 MHz, DMSO) δ 173.4, 171.9, 171.8, 171.5, 

171.4, 169.5, 168.5 (C=O), 52.3, 52.0 (CH), 50.5 (CH2N3), 42.5 (CH2 (G)), 38.7 (CH2NH2), 31.4, 27.9, 26.7, 

22.6 (CH2), 22.5 (Ac), 22.4 (CH2); HRMS [C46H80N28O9 + H]+: 1169.6738 found, 1169.6736 calculated. 



Multivalent oligomannoside clusters to probe C-type lectin receptor binding 

38 

Ac-Lys(N3)-AEEA-Gly-Lys(N3)-Gly-Lys-NH2 (24). 

Ac-Lys(N3)-AEEA-Gly-Lys(N3)-Gly-Lys(Boc)-Tentagel® S-RAM 

was synthesized using the general protocol, with 1 hour couplings at 

rt after it was washed and transferred to a flask and treated for 90 

minutes with a cleavage cocktail (10 mL, TFA/TIS/H2O, 190/5/5, v/v/v). The mixture was concentrated 

to approximately one mL after which the resin was filtered off into a cold mixture of diethylether/pentane 

(45 mL, 5/4, v/v) and the resin was washed off with neat TFA (3 x 1 mL) into the ether solution. This 

solution was centrifuged (10 minutes, 5000 rpm) after which the supernatant was removed and the 

precipitate was dried under nitrogen flow and dissolved (1mL, t-BuOH/ACN/H2O, 1/1/1, v/v/v). 

Purification via RP-HPLC (linear-gradient 30-60% B, 10 min) yielded title compound 24  as a white powder 

after lyophilization (22.57 mg, 29.6 µmol, 29.6% (82% per step)). LC-MS: Rt = 5.08 min (0 - 90% ACN; 13 

min); 1H NMR (400 MHz, DMSO) δ 8.28 (t, J = 5.7 Hz, 1H, NH), 8.17 (d, J = 7.6 Hz, 1H, NH), 8.04 – 

7.96 (m, 2H, NH), 7.88 – 7.81 (m, 2H, NH), 7.72 (s, 2H, NH2), 7.34 (s, 1H, CONHH), 7.08 (s, 1H, 

CONHH), 4.29 – 4.09 (m, 3H, CH (K)), 3.92 (s, 2H, O-CH2-CO), 3.81 (t, J = 4.9 Hz, 2H, CH2 (PEG)), 

3.72 (t, J = 5.8 Hz, 2H, CH2 (PEG)), 3.63 – 3.52 (m, 4H, CH2 (G, 2x)), 3.41 (t, J = 5.9 Hz, 2H, CH2 (PEG)), 

3.30 (td, J = 6.8, 2.8 Hz, 4H, CH2-N3), 3.25 – 3.16 (m, 2H, CH2 (PEG)), 2.75 (q, J = 6.5 Hz, 2H, CH2-

NH2), 1.83 (s, 3H, Ac), 1.76 – 1.16 (m, 18H, CH2 (K)); 13C NMR (101 MHz, DMSO) δ 173.9, 172.4, 172.3, 

170.0, 169.7, 169.3, 169.0 (C=O), 70.7, 70.3, 69.8, 69.4 (CH2 (PEG, 2x), CH2 (G, 2x)), 53.0, 52.7, 52.5 (CH 

(K)), 51.0 (CH2-N3), 42.6, 41.9, 39.2 (CH2 (PEG, 3x)), 38.9 (CH2-NH2), 32.1, 31.8, 31.7, 28.4, 27.1, 23.0, 

23.0 (CH2 (K)), 22.9 (Ac), 22.7(CH2 (K)); HRMS [C30H54N14O9 + 2H]2+: 378.21718 found, 378.21719 

calculated. 

 

General procedure for propargyl azide conjugation: 

All solvents used in these reactions were degassed by sonicating while bubbling argon through the 

solutions. The “general click protocol” used was the following procedure: A solution of 

azidopeptides in DMSO (0.5 M, 1eq) was mixed with a solution of propargyl glycoside in water 

(0.5 M, 1.2eq per azide) followed by addition of an aliquot of a stock solution of CuI (0.1 eq), 

THPTA (0.3 eq) and DIPEA (0.2 eq) in water ([Cu+] = 0.5 M). The reaction was stirred at 40°C, 

and the process was followed via LC-MS. When reactions do not progress and turn blue, a sodium 

ascorbate solution (0.2 - 1 eq, 1 M, aq.) was added. Generally, reactions were stirred overnight at 

40°C. When not complete after 16 hours, an extra aliquot of the copper stock was added. After 

completion a small amount of Quadrasil® AP (washed with water) was added, stirred for 1 h, 

filtered and applied on gel filtration (Toyopearl HW40S, 150 mM NH4HCO3 (aq., in some cases a 

percentage of ACN was added to the elution buffer), 1.6x60 cm, 1 mL/min) followed by 

lyophilization. 
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Ac-Lys(Man1)-Gly-Lys-NH2 (32). 

Azide 20 (5.37 mg, 13.48 µmol) was conjugated to propargyl mannoside 25 using 

the general click protocol. Compound 32 was obtained after purification by gel 

filtration (eluting buffer contains 10% ACN, eluted at 49.5 - 57 mL) followed by 

RP-HPLC (linear-gradient 8 - 16% B, 12 min) as a white powder (3.30 mg, 5.34 

µmol, 39%). LC-MS: Rt = 4.01 min (0 - 50% ACN; 13 min); 1H NMR (400 MHz, 

D2O) δ 8.03 (s, 1H, trzl), 4.94 (d, J=1.6, 1H, H-1), 4.68 (d, J=12.5, 1H Hz, CHH), 4.42 (t, J=6.6 Hz, 2H), 

4.27 (dd, J=9.4, 4.9 Hz, 1H), 4.18 (dd, J=8.7 Hz, 5.9, 1H), 3.97 - 3.52 (m, 8H), 2.94 (t, J=7.6 Hz, 2H), 1.98 

(s, 3H, Ac), 1.96 - 1.56 (m, 8H), 1.51 - 1.18 (m, 4H); HRMS [C25H44N8O10 + H]+: 617.3254 found, 617.3253 

calculated. 

Ac-Lys(1,2-Man2)-Gly-Lys-NH2 (33). 

Azide 20 (11.03 mg, 27.67 µmol) was conjugated to propargyl mannosides 26 

using the general click protocol. Compound 33 was obtained after purification by 

gel filtration (eluted at 50-62 mL) followed by RP-HPLC (linear-gradient 8 - 16% 

B, 12 min) as a white powder (14.71 mg, 18.88 µmol, 68%). LC-MS: Rt = 3.87 min 

(0 - 50% ACN; 13 min); 1H NMR (500 MHz, D2O) δ 8.07 (s, 1H, trzl), 5.19 (d, J 

= 1.6 Hz, 1H, H-1), 5.01 (d, J = 1.8 Hz, 1H, H-1′), 4.84 (d, J = 12.6 Hz, 1H, O-

CHH-trzl), 4.73 (d, J = 12.6 Hz, 1H, O-CHH-trzl), 4.47 (t, J = 6.9 Hz, 2H, CH2-trzl), 4.32 (dd, J = 9.5, 5.0 

Hz, 1H, CH), 4.23 (dd, J = 8.8, 5.7 Hz, 1H, CH), 4.08 (dd, J = 3.3, 1.8 Hz, 1H, H-2), 3.99 - 3.58 (m, 14H, 

CH, H-2′, H-3, H-3′, H-4, H-4′, H-5, H-5′, H-6, H-6′, CH2 (G)), 3.01 (td, J = 8.0, 2.1 Hz, 2H, CH2-NH2), 

2.03 (s, 3H, Ac), 2.00 - 1.64 (m, 8H, CH2), 1.54 - 1.24 (m, 4H, CH2); HRMS [C31H54N8O15 + H]+: 779.3784 

found,779.3781 calculated. 

Ac-Lys(1,3-Man2)-Gly-Lys-NH2 (34). 

Azide 20 (5.28 mg, 13.24 µmol) was conjugated to propargyl mannosides 27 

using the general click protocol. Compound 34 was obtained after purification 

by gel filtration (eluted at 42-55 mL) followed by RP-HPLC (linear-gradient 8 

- 16% B, 12 min) as a white powder (10.16 mg, 13.05 µmol, 99%). LC-MS: Rt 

= 3.89 min (0 - 50% ACN; 13 min); 1H NMR (500 MHz, D2O) δ 8.07 (s, 1H, 

trzl), 5.12 (d, J = 1.6 Hz, 1H, H-1), 4.97 (d, J = 1.7 Hz, 1H, H-1′), 4.85 (d, J = 12.4 Hz, 1H, O-CHH-trzl), 

4.76 - 4.72 (m, 1H, O-CHH-trzl), 4.47 (t, J = 7.1 Hz, 2H, CH2-trzl), 4.32 (dd, J = 9.4, 5.0 Hz, 1H, CH), 4.23 

(dd, J = 8.8, 5.8 Hz, 1H, CH), 4.09 (ddd, J = 12.9, 3.3, 1.8 Hz, 2H), 4.00 - 3.62 (m, 12H, CH2 (G), H-2, H-

2′, H-3, H-3′, H-4, H-4′, H-5, H-5′, H-6, H-6′), 3.06 - 2.95 (m, 2H, CH2NH2), 2.03 (s, 3H, Ac), 2.00 - 1.63 

(m, 8H, CH2), 1.54 - 1.27 (m, 4H, CH2); HRMS [C31H54N8O15 + H]+: 779.3785 found, 779.3781 calculated. 
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Ac-Lys(1,6-Man2)-Gly-Lys-NH2 (35). 

Azide 20 (4.81 mg, 12.06 µmol) was conjugated to propargyl mannosides 28 using 

the general click protocol. Compound 35 was obtained after purification by gel 

filtration (eluted at 51 - 60 mL) followed by RP-HPLC (linear-gradient 8 - 16% B, 

12 min) as a white powder (7.99 mg, 10.26 µmol, 85%). LC-MS: Rt = 3.95 min (0 

- 50% ACN; 13 min); HRMS [C31H54N8O15 + H]+: 779.3785 found, 779.3781 

calculated. 

Ac-Lys(Man3)-Gly-Lys-NH2 (36). 

Azide 20 (5.52 mg, 13.84 µmol) was conjugated to propargyl mannosides 29 

using the general click protocol. Compound (36) was obtained after 

purification by gel filtration (eluted at 46 - 55 mL) followed by RP-HPLC 

(linear-gradient 8 - 16% B, 12 min) as a white powder (12.99 mg, 13.80 µmol, 

99%). LC-MS: Rt = 4.15 min (0 - 50% ACN; 13 min); 1H NMR (500 MHz, 

D2O) δ 8.06 (s, 1H, trzl), 5.09 (s, 1H), 4.94 (s, 1H), 4.90 (s, 1H, H-1, H-1′, H-

1′′), 4.82 (d, J = 12.4 Hz, 1H, O-CHH-trzl), 4.74 (d, J = 12.6 Hz, 1H, O-CHH-trzl), 4.46 (t, J = 6.8 Hz, 2H, 

CH2-trzl), 4.30 (dd, J = 9.4, 4.9 Hz, 1H, CH), 4.22 (dd, J = 8.6, 5.8 Hz, 1H, CH), 4.14 - 3.58 (m, 20H, 

CH2(G), H-2, H-2′, H-2′′, H-3, H-3′, H-3′′, H-4, H-4′, H-4′′, H-5, H-5′, H-5′′, H-6, H-6′, H-6′′), 3.00 (t, J = 

7.4 Hz, 2H, CH2NH2), 2.02 (s, 3H, Ac), 1.92 - 1.23 (m, 18H, CH2); HRMS [C37H64N8O20 + H]+: 941.4316 

found, 941.4310 calculated. 

Ac-Lys(Gal)-Gly-Lys-NH2 (37). 

Azide 20 (5.54 mg, 13.90 µmol) was conjugated to propargyl galactoside 30 using 

the general click protocol. Compound 37 was obtained after purification by gel 

filtration (eluted at 46.5 - 51 mL) as a white powder (4.93 mg, 7.99 µmol, 57%). 

LC-MS: Rt = 4.02 min (0 - 50% ACN; 13 min); 1H NMR (500 MHz, D2O) δ 7.97 

(s, 1H, trzl), 5.03 (s, 1H, H-1), 4.75 (d, J = 13.4 Hz, 1H, O-CHH-trzl), 4.73 - 4.67 (m, 1H, O-CHH-trzl), 

4.39 (t, J = 6.8 Hz, 2H, CH2-trzl), 4.23 (dd, J = 9.5, 5.0 Hz, 1H, CH), 4.14 (dd, J = 8.7, 5.7 Hz, 1H, CH), 

4.00 (dd, J = 3.6, 1.7 Hz, 2H, CH2), 3.92 - 3.71 (m, 4H, H-2, H-3, H-4, H-5), 3.64 - 3.50 (m, 2H, H-6), 2.93 

(td, J = 8.0, 2.1 Hz, 2H, CH2NH2), 1.94 (s, 3H, Ac), 1.92 - 1.14 (m, 12H, CH2); HRMS [C25H44N8O10 + 

H]+: 617.32531 found, 617.3253 calculated. 

 

Ac-Lys(Man1)-Gly-Lys(Man1)-Gly-Lys-NH2 (38). 

Azide 21 (17.00 mg, 27.89 µmol) was conjugated to propargyl mannoside 25 using 

the general click protocol. Compound 38 was obtained after purification by gel 

filtration (eluted at 42-52 mL) as a white powder (17.66 mg, 16.88 µmol, 61%). LC-

MS: Rt = 4.37 min (0 - 50% ACN; 13 min); 1H NMR (500 MHz, D2O) δ 8.07 (s, 
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2H, trzl), 4.98 (s, 2H, H-1), 4.84 (dd, J = 12.5, 2.1 Hz, 2H, O-CHH-trzl), 4.73 (d, J = 12.4 Hz, 2H, O-CHH-

trzl), 4.51 - 4.42 (m, 4H, CH2-trzl), 4.36 (d, J = 2.6 Hz, 1H), 4.34 - 4.19 (m, 3H, CH), 4.14 - 4.10 (m, 1H), 

4.05 (d, J = 2.6 Hz, 2H), 4.03 - 3.57 (m, 16H, H-2, H-3, H-4, H-5, H-6, CH2 (G)), 3.01 (t, J = 6.6 Hz, 2H, 

CH2-NH2), 2.01 (s, 3H, Ac), 1.98 - 1.23 (m, 18H, CH2); HRMS [C42H71N13O18 + H]+: 1046.5118 found, 

1046.5113 calculated. 

Ac-Lys(1,2-Man2)-Gly-Lys(1,2-Man2)-Gly-Lys-NH2 (39). 

Azide 21 (4.58 mg, 7.51 µmol) was conjugated to propargyl mannosides 26 using 

the general click protocol. Compound 39 was obtained after purification by gel 

filtration (instead of HW40S resin a superdex30, 1.6x60 cm, column was used with 

150 mM NH4HCO3 aq. 1 mL/min as elution buffer; eluted at 65 - 76 mL) as a 

white powder (4.27 mg, 3.12 µmol, 41%). LC-MS: Rt = 4.31 min (0 - 50% ACN; 

13 min); HRMS [C54H91N13O28 + H]+: 1370.6175 found 1370.6169 calculated. 

Ac-Lys(1,3-Man2)-Gly-Lys(1,3-Man2)-Gly-Lys-NH2 (40). 

Azide 21 (8.14 mg, 13.36 µmol) was conjugated to propargyl mannosides 27 

using the general click protocol. Compound 40 was obtained after purification 

by gel filtration (eluted at 38.5 - 46 mL) as a white powder (2.48 mg, 1.81 µmol, 

14%). LC-MS: Rt = 4.46 min (0 - 50% ACN; 13 min); HRMS [C54H91N13O28 

+ H]+: 1370.6176 found, 1370.6169 calculated. 

Ac-Lys(1,6-Man2)-Gly-Lys(1,6-Man2)-Gly-Lys-NH2 (41). 

Azide 21 (4.22 mg, 6.92 µmol) was conjugated to propargyl mannosides 28 using 

the general click protocol. Compound 41 was obtained after purification by gel 

filtration (eluted at 39.5 - 47 mL) as a white powder (2.69 mg, 1.96 µmol, 28%). 

LC-MS: Rt = 4.31 min (0 - 50% ACN; 13 min); HRMS [C54H91N13O28 + H]+: 

1370.6177 found, 1370.6169 calculated. 

 

Ac-Lys(Man3)-Gly-Lys(Man3)-Gly-Lys-NH2 (42). 

Azide 21 (7.91 mg, 12.98 µmol) was conjugated to propargyl mannosides 29 

using the general click protocol. Compound 42 was obtained after purification 

by gel filtration (eluted at 34 - 44.5 mL) as a white powder (9.44 mg, 5.57 µmol, 

43%). LC-MS: Rt = 4.18 min (0 - 50% ACN; 13 min); HRMS [C66H111N13O38 

+ H]+: 1694.7229 found, 1694.7226 calculated. 
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Ac-Lys(Gal)-Gly-Lys(Gal)-Gly-Lys-NH2 (43). 

Azide 21 (6.07 mg, 9.95 µmol) was conjugated to propargyl galactoside 30 using the 

general click protocol. Compound 43 was obtained after purification by gel 

filtration (eluted at 44 - 52 mL) as a white powder (5.54 mg, 5.29 µmol, 53%). LC-

MS: Rt = 4.38 min (0 - 50% ACN; 13 min); 1H NMR (500 MHz, D2O) δ 7.97 (s, 

2H, trzl), 5.06 - 4.91 (m, 2H, H-1), 4.72 - 4.68 (m, 4H, O-CH2-trzl), 4.38 (t, J = 6.7 Hz, 4H, CH2-trzl), 4.27 

- 4.17 (m, 2H, CH), 4.14 (dd, J = 8.8, 5.7 Hz, 1H, CH), 4.04 - 3.98 (m, 4H, CH2 (G)), 3.92 - 3.71 (m, 8H, 

H-2, H-3, H-4, H-5), 3.64 - 3.50 (m, 4H, H-6), 2.92 (td, J = 8.0, 2.2 Hz, 2H, CH2NH2), 1.93 (s, 3H, Ac), 

1.91 - 1.07 (m, 18H, CH2 (K)); HRMS [C42H71N13O18 + H]+: 1046.51147 found, 1046.5113 calculated. 

Ac-Lys(4-SO3-GalNAc)-Gly-Lys(4-SO3-GalNAc)-Gly-Lys-NH2 (44). 

Azide 21 (5.0 µL, 0.2 M, 1.0 µmol) was conjugated to propargyl mannosides 31 

using the general click protocol. Compound 44 was obtained after purification by 

gel filtration (eluted at 34 - 44.5 mL) as a white powder (0.395 mg, 299 nmol, 30%). 

LC-MS: Rt = 3.69 min (0 - 50% ACN; 13 min); 1H NMR (400 MHz, D2O) δ 7.98 

(s, 2H, trzl), 4.89 (d, J = 12.9 Hz, 2H, O-CHH-trzl), 4.76 (d, J = 1.8 Hz, 2H, O-CHH-trzl), 4.65 (d, J = 2.9 

Hz, 2H, H-1), 4.57 (d, J = 7.8 Hz, 2H, H-2), 4.41 (t, J = 6.8 Hz, 4H, CH2-trzl), 4.24 (ddd, J = 11.8, 9.1, 5.3 

Hz, 2H, CH (K)), 4.17 (dd, J = 8.7, 5.8 Hz, 1H, CH (K)), 3.94 – 3.74 (m, 14H, H-3, H-4, H-5, H-6, CH2 

(G, 2x)), 2.95 (t, J = 7.0 Hz, 2H, CH2-NH2), 1.96 (s, 3H, Ac), 1.92 – 1.59 (m, 18H, NHAc (2x), CH2 (K)), 

1.46 – 1.20 (m, 6H, CH2 (K)); HRMS [C46H77N15O24S2 + 2H]2+: 644.74259 found, 644.74264 calculated. 

 

Ac-Lys(Man1)-Gly-Lys(Man1)-Gly-Lys(Man1)-Gly-Lys-NH2 (45). 

Azide 22 (2.92 mg, 3.56 µmol) was conjugated to propargyl mannosides 25 using 

the general click protocol. Compound 45 was obtained after purification by gel 

filtration (eluted at 38-46 mL) followed by RP-HPLC as a white powder (3.61 mg, 

2.44 µmol, 69%). LC-MS: Rt = 4.60 min (0 - 50% ACN; 13 min); 1H NMR (400 

MHz, D2O) δ 7.96 - 7.89 (m, 3H, trzl), 4.84 (s, 3H, H-1), 4.71 - 4.67 (m, 3H, O-

CHH-trzl), 4.58 (d, J = 12.5 Hz, 3H, O-CHH-trzl), 4.32 (t, J = 6.8 Hz, 6H, CH2-trzl), 4.22 - 4.04 (m, 4H, 

CH), 3.90 - 3.43 (m, 24H, CH2 (G), H-2, H-3, H-4, H-5, H-6), 2.87 (t, J = 7.5 Hz, 2H, CH2NH2), 1.87 (s, 

3H, Ac), 1.84 - 1.07 (m, 24H, CH2); 13C NMR (101 MHz, D2O) δ 143.4, 99.4 (C-1), 72.9, 70.4, 69.9, 66.6 

(C-2, C-3, C-4, C-5), 60.8 (C-6), 28.7; HRMS [C59H98N18O26 + 2H]2+: 738.3528 found, 738.3523 calculated.  
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Ac-Lys(1,2-Man2)-Gly-Lys(1,2-Man2)-Gly-Lys(1,2-Man2)-Gly-Lys-NH2 (46). 

Azide 22 (4.20 mg, 5.12 µmol) was conjugated to propargyl mannosides 26 using 

the general click protocol. Compound 46 was obtained after purification by gel 

filtration (eluted at 34 - 44.5 mL) as a white powder (8.01mg, 4.08 µmol, 80%). 

LC-MS: Rt = 4.45 min (0 - 50% ACN; 13 min); 1H NMR (500 MHz, D2O) δ 8.07 

(d, J = 2.3 Hz, 3H, trzl), 5.18 (s, 3H, H-1), 5.01 (s, 3H, H-1′), 4.83 (d, J = 12.4 Hz, 

3H, O-CHH-trzl), 4.72 (d, J = 12.7 Hz, 3H, O-CHH-trzl), 4.45 (t, J = 6.9 Hz, 6H, 

CH2-trzl), 4.30 (tt, J = 9.4, 5.1 Hz, 3H, CH), 4.23 (dd, J = 8.5, 6.0 Hz, 1H, CH), 4.08 (dd, J = 3.3, 1.8 Hz, 

3H, H-2), 4.00 - 3.59 (m, 42H, CH2 (G), H-2′, H-3, H-3′, H-4, H-4′, H-5, H-5′, H-6, H-6′), 3.01 (t, J = 7.0 

Hz, 2H, CH2NH2), 2.01 (s, 3H, Ac), 1.98 - 1.60 (m, 16H, CH2), 1.55 - 1.28 (m, 8H, CH2); HRMS 

[C77H128N18O41 + H]+: 1961.8643 found, 1961.8557 calculated. 

Ac-Lys(1,3-Man2)-Gly-Lys(1,3-Man2)-Gly-Lys(1,3-Man2)-Gly-Lys-NH2 (47). 

Azide 22 (2.92 mg, 3.56 µmol) was conjugated to propargyl mannosides 27 

using the general click protocol. Compound 47 was obtained after purification 

by gel filtration (buffer contains 10% ACN, eluted at 33.5 - 42.5 mL) as a white 

powder (5.71 mg, 2.91 µmol, 82%). LC-MS: Rt = 4.37 min (0 - 50% ACN; 13 

min); 1H NMR (400 MHz, D2O) δ 7.99 - 7.84 (m, 3H, trzl), 4.98 (s, 3H, H-1), 

4.83 (d, J = 1.5 Hz, 3H, H-1′), 4.76 - 4.66 (m, 3H, O-CHH-trzl), 4.60 (d, J = 12.4 Hz, 3H, O-CHH-trzl), 

4.32 (t, J = 6.8 Hz, 6H, CH2-trzl), 4.22 - 4.12 (m, 3H, CH), 4.09 (dd, J = 8.7, 5.6 Hz, 1H, CH), 4.00 - 3.42 

(m, 42H, CH2 (G), H-2, H-2′, H-3, H-3′, H-4, H-4′, H-5, H-5′, H-6, H-6′), 2.85 (t, J = 7.5 Hz, 2H, CH2NH2), 

1.87 (s, 3H, Ac), 1.85 - 1.09 (m, 24H, CH2); HRMS [C77H128N18O41 + H]+: 1961.8589 found 1961.8557 

calculated. 

Ac-Lys(1,6-Man2)-Gly-Lys(1,6-Man2)-Gly-Lys(1,6-Man2)-Gly-Lys-NH2 (48). 

Azide 22 (3.92 mg, 3.56 µmol) was conjugated to propargyl mannosides 28 using 

the general click protocol. Compound 48 was obtained after purification by gel 

filtration (eluted at 34 - 41.5 mL) as a white powder (5.96 mg, 3.04 µmol, 85%). 

LC-MS: Rt = 4.37 min (0 - 50% ACN; 13 min); 1H NMR (500 MHz, D2O) δ 8.03 

- 7.91 (m, 3H, trzl), 4.88 (s, 3H, H-1), 4.83 (s, 3H, H-1′), 4.74 (d, J = 12.6 Hz, 3H, 

O-CHH-trzl), 4.64 (d, J = 12.5 Hz, 3H, O-CHH-trzl), 4.37 (t, J = 6.9 Hz, 6H, 

CH2-trzl), 4.21 (tt, J = 9.2, 5.3 Hz, 3H, CH), 4.14 (dd, J = 8.8, 5.7 Hz, 1H, CH), 3.95 - 3.56 (m, 42H, CH2 

(G), H-2, H-2′, H-3, H-3′, H-4, H-4′, H-5, H-5′, H-6, H-6′), 2.88 (t, J = 7.1 Hz, 2H, CH2NH2), 1.92 (s, 3H, 

Ac), 1.90 - 1.51 (m, 16H, CH2), 1.44 - 1.14 (m, 8H, CH2); HRMS [C77H128N18O41 + H]+: 1961.8616 found, 

1961.8557 calculated. 
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Ac-Lys(Man3)-Gly-Lys(Man3)-Gly-Lys(Man3)-Gly-Lys-NH2 (49). 

Azide 22 (2.92 mg, 3.56 µmol) was conjugated to propargyl mannosides 29 

using the general click protocol. Compound 49 was obtained after purification 

by gel filtration (eluted at 31- 39.5 mL) as a white powder (6.97 mg, 2.85 µmol, 

80%). LC-MS: Rt = 4.54 min (0 - 50% ACN; 13 min); 1H NMR (500 MHz, 

D2O) δ 8.06 (d, J = 1.8 Hz, 3H, trzl), 5.10 (s, 3H), 4.95 (d, J = 1.5 Hz, 3H), 

4.91 (d, J = 1.2 Hz, 3H, H-1, H-1′ & H-1′′), 4.83 (d, J = 12.7 Hz, 3H, O-CHH-

trzl), 4.74 (d, J = 12.6 Hz, 3H, O-CHH-trzl), 4.46 (t, J = 6.9 Hz, 6H, CH2-trzl), 4.35 - 4.27 (m, 3H, CH), 

4.23 (dd, J = 8.8, 5.7 Hz, 1H, CH), 4.13 - 3.60 (m, 60H, CH2(G), H-2, H-2′, H-2′′, H-3, H-3′, H-3′′, H-4, H-

4′, H-4′′, H-5, H-5′, H-5′′, H-6, H-6′, H-6′′), 2.95 (t, J = 7.3 Hz, 2H, CH2NH2), 2.01 (s, 3H, Ac), 1.99 - 1.23 

(m, 24H, CH2); HRMS [C95H158N18O56 + 2H]2+: 1225.0138 found, 1225.01225 calculated. 

 

Ac-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Gly-Lys-NH2 (50). 

Azide 23 (2.51 mg, 2.15 µmol) was conjugated to propargyl mannosides 25 using the 

general click protocol. Compound 50 was obtained after purification by gel filtration 

(buffer contained 20% ACN, eluted at 39-47 mL) as a white powder (4.31 mg, 1.76 

µmol, 82%). LC-MS: Rt = 4.73 min (0 - 50% ACN; 13 min); 1H NMR (500 MHz, 

D2O) δ 8.03 (d, J = 5.1 Hz, 6H, trzl), 4.96 (d, J = 1.8 Hz, 6H, H-1), 4.89 - 4.71 (m, 

146H, HDO, O-CHH-trzl), 4.67 (dd, J = 12.5, 2.9 Hz, 6H, O-CHH-trzl), 4.40 (t, J = 6.4 Hz, 12H, CH2-

trzl), 4.34 - 4.09 (m, 7H, CH (K)), 3.99 - 3.57 (m, 38H, H-2, H-3, H-4, H-5, H-6, CH2 (G)), 3.05 - 2.98 (m, 

2H, CH2-NH2), 2.01 (s, 3H, Ac), 1.97 - 1.20 (m, 42H, CH2); 13C NMR (126 MHz, D2O) δ 160.3, 143.5, 

125.0 (CH-trzl), 99.5 (C-1), 73.0, 70.6, 70.0, 66.7 (C-2, C-3, C-4, C-5), 60.9 (C-6), 59.8 (O-CH2-trzl), 50.1 

(CH2-trzl), 39.3 (CH2-NH2), 28.9, 22.1 (CH2); HRMS [C100H164N28O45 + 2H]2+: 1240.0857 found, 

1240.0790 calculated. 

Ac-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-

Gly-Lys-NH2 (51). 

Azide 23 (3.84 mg, 3.28 µmol) was conjugated to propargyl mannosides 26 using 

the general click protocol. Compound 51 was obtained after purification by gel 

filtration (buffer contained 20% ACN, eluted at 28 - 38 mL) as a white powder 

(11.10 mg, 3.21 µmol, 98%). LC-MS: Rt = 4.51 min (0 - 50% ACN; 13 min); 1H 

NMR (500 MHz, D2O) δ 8.09 - 7.91 (m, 6H, trzl), 5.13 (s, 6H, H-1), 4.95 (s, 6H, 

H-1’), 4.74 (d, J=12.6, 6H, O-CHH-trzl), 4.63 (d, J=12.5, 6H, O-CHH-trzl), 4.36 

(s, 12H, CH2-trzl), 4.30 - 4.05 (m, 7H, CH), 4.02 (dd, J = 3.2, 1.7 Hz, 6H, H-2), 4.01 - 3.50 (m, 68H, CH2 

(G), H-2′, H-3, H-3′, H-4, H-4′, H-5, H-5′, H-6, H-6′), 2.98 - 2.92 (m, 2H, CH2NH2), 1.95 (s, 3H, Ac), 1.91 

- 1.12 (m, 42H, CH2); 13C NMR (126 MHz, D2O) δ 143.4, 125.0 (CH-trzl), 105.0 (CH2), 102.3, 97.7 (C-1, 
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C-1′), 78.6, 73.2, 72.9, 70.3, 70.1, 69.9, 69.5, 66.8, 66.7, 60.9, 60.8, 59.8, 50.0, 22.0; HRMS [C136H224N28O75 

+ 2H]2+: 1726.2408 found, 1726.2375 calculated.  

Ac-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-

Gly-Lys-NH2 (52). 

Azide 23 (3.78 mg, 3.23 µmol) was conjugated to propargyl mannosides 27 

using the general click protocol. Compound 52 was obtained after purification 

by gel filtration (eluted at 30.5 - 39 mL) as a white powder (11.04 mg, 3.19 

µmol, 99%). LC-MS: Rt = 4.63 min (0 - 50% ACN; 13 min); 1H NMR (500 

MHz, D2O) δ 7.92 (d, J = 4.1 Hz, 6H, trzl), 4.97 (s, 6H, H-1), 4.81 (s, 6H, H-

1′), 4.69 - 4.66 (m, 6H, O-CHH-trzl), 4.56 (d, J = 12.6 Hz, 6H, O-CHH-trzl), 

4.28 (s, 12H, CH2-trzl), 4.19 - 3.97 (m, 7H, CH), 3.97 - 3.48 (m, 74H, CH2 (G), H-2, H-2′, H-3, H-3′, H-4, 

H-4′, H-5, H-5′, H-6, H-6′), 2.79 - 2.72 (m, 2H, CH2NH2), 1.87 (s, 3H, Ac), 1.84 - 1.44 (m, 28H, CH2), 1.40 

- 1.05 (m, 14H, CH2); 13C NMR (126 MHz, D2O) δ 143.5, 125.0, 102.4, 99.5 (C-1, C-1′), 78.3, 73.4, 73.1, 

70.4, 70.1, 69.6, 66.8, 66.0, 61.0, 60.8, 59.9, 50.1, 28.9; HRMS [C136H224N28O75 + 2H]2+: 1726.2405 found, 

1726.2375 calculated. 

Ac-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-

Gly-Lys-NH2 (53). 

Azide 23 (2.63 mg, 2.25 µmol) was conjugated to propargyl mannosides 28 using 

the general click protocol. Compound 53 was obtained after purification by gel 

filtration (eluted at 36 - 50 mL) as a white powder (4.45 mg, 1.29 µmol, 57%). LC-

MS: Rt = 4.63 min (0 - 50% ACN; 13 min); HRMS [C136H224N28O75 + 2H]2+: 

1726.2408 found, 1726.2375 calculated. 

 

Ac-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Gly-Lys-NH2 (54). 

Azide 23 (6.90 mg, 5.90 µmol) was conjugated to propargyl mannosides 29 

using the general click protocol. Compound 54 was obtained after purification 

by gel filtration (eluted at 28 - 39 mL) as a white powder (22.22 mg, 5.02 µmol, 

85%). LC-MS: Rt = 4.34 min (0 - 50% ACN; 13 min); 1H NMR (500 MHz, 

D2O) δ 8.01 (s, 6H, trzl), 5.04 (s, 6H), 4.89 (s, 6H), 4.86 (s, 6H, H-1, H-1′, H-

1′′), 4.77 - 4.73 (m, 6H, O-CHH-trzl), 4.69 - 4.62 (m, 6H, O-CHH-trzl), 4.37 

(s, 12H, CH2-trzl), 4.28 - 4.14 (m, 7H, CH), 4.13 - 3.50 (m, 110H, CH2(G), H-2, H-2′, H-2′′, H-3, H-3′, H-

3′′, H-4, H-4′, H-4′′, H-5, H-5′, H-5′′, H-6, H-6′, H-6′′), 2.93 (t, J = 6.7 Hz, 2H, CH2NH2), 1.96 (s, 3H, Ac), 

1.91 - 1.14 (m, 42H, CH2); 13C NMR (126 MHz, D2O) δ 143.4, 124.9, 102.4, 99.6, 99.4 (C-1,C-1’& C-1’’), 

78.6, 73.3, 72.6, 71.2, 70.6, 70.3, 70.0, 69.9, 69.5, 69.5, 66.7, 65.4, 64.9, 60.9, 60.0, 50.0, 39.2, 28.9, 22.0; 

HRMS [C172H284N28O105 + 2H]2+: 2212.9033 found, 2212.8975 calculated. 
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Ac-Lys(4-SO3-GalNAc)-Lys(4-SO3-GalNAc)-Lys(4-SO3-GalNAc)-Lys(4-SO3-GalNAc)-Lys(4-SO3-

GalNAc)-Lys(4-SO3-GalNAc)-Gly-Lys-NH2 (55). 

Azide 23 (5.0 µL, 0.2 M, 1.0 µmol) was conjugated to propargyl mannosides 31 

using the general click protocol. Compound 55 was obtained after purification by 

gel filtration (eluted at 28 - 39 mL) as a white powder (1.17 mg, 884 nmol, 88%). 

LC-MS: Rt = 3.75 min (0 - 50% ACN; 13 min); 1H NMR (400 MHz, D2O) δ 7.87 

(s, 6H, trzl), 4.81 – 4.74 (m, 6H, O-CHH-trzl), 4.68 – 4.64 (m, 6H, O-CHH-trzl), 4.57 (d, J = 2.2 Hz, 6H, 

H-1), 4.47 (d, J = 7.4 Hz, 6H, H-2), 4.27 (d, J = 6.3 Hz, 12H, CH2-trzl), 4.19 – 3.93 (m, 7H, CH (K)), 3.84 

– 3.64 (m, 32H, H-3, H-4, H-5, H-6, CH2 (G)), 2.87 (t, J = 7.6 Hz, 2H, CH2NH2), 1.87 (s, 3H, Ac), 1.81 – 

1.48 (m, 46H, NHAc (6x), CH2 (K)), 1.20 (d, J = 7.0 Hz, 14H, CH2 (K)); HRMS [C112H182N34O63S6 + 3H]3+: 

1069.02205 found, 1069.02176 calculated. 

 

Ac-Lys(Man1)-AEEA-Gly-Lys(Man1)-Gly-Lys-NH2 (56). 

Azide 24 (5.28 mg, 7.00 µmol) was conjugated to propargyl 

mannosides 25 using the general click protocol. Compound 56 

was obtained after purification by gel filtration (buffer contained 

20% ACN, eluted at 39.5 - 47.5 mL) as a white powder (6.95 mg, 

5.84 µmol, 83%). LC-MS: Rt = 4.11 min (0 - 50% ACN; 13 min); 

1H NMR (400 MHz, D2O) δ 8.01 (d, J = 1.4 Hz, 2H, trzl), 4.92 (d, J = 1.5 Hz, 2H, H-1), 4.79 – 4.75 (m, 

2H, O-CHH-trzl), 4.67 (d, J = 2.3 Hz, 2H, O-CHH-trzl), 4.47 – 4.35 (m, 4H, CH2-trzl), 4.25 (td, J = 9.2, 

5.4 Hz, 3H, CH (K)), 4.13 (dd, J = 8.5, 5.9 Hz, 1H), 4.09 (s, 2H, CH2), 4.04 – 3.49 (m, 23H, H-2, H-3, H-

4, H-5, H-6, CH2 (PEG, 3x), CH2 (G, 2x)), 3.41 – 3.26 (m, 2H, CH2 (PEG)), 2.95 (t, J = 7.5 Hz, 2H, CH2-

NH2), 1.95 (s, 3H, Ac), 1.93 – 1.56 (m, 12H, CH2 (K)), 1.48 – 1.14 (m, 6H, CH2 (K)); HRMS [C48H82N14O21 

+ H] +: 1191.58528 found, 1191.58517 calculated. 

Ac-Lys(Man3)-AEEA-Gly-Lys(Man3)-Gly-Lys-NH2 (57). 

Azide 24 (5.28 mg, 7.00 µmol) was conjugated to propargyl 

mannosides 29 using the general click protocol. Compound 

57 was obtained after purification by gel filtration (buffer 

contained 20% ACN, eluted at 38 - 46 mL) as a white powder 

(12.8 mg, 7.00 µmol, 99%). LC-MS: Rt = 3.89 min (0 - 50% 

ACN; 13 min); 1H NMR (400 MHz, D2O) δ 8.01 (d, J = 1.7 

Hz, 2H, trzl), 5.03 (d, J = 1.5 Hz, 2H), 4.89 (s, 2H), 4.85 (d, J = 1.4 Hz, 2H, H-1, H-1′, H-1′′), 4.77 – 4.75 

(m, 2H, O-CHH-trzl), 4.68 (dd, J = 12.6, 1.5 Hz, 2H, O-CHH-trzl), 4.40 (q, J = 4.7 Hz, 4H, CH2-trzl), 4.24 

(td, J = 8.6, 7.9, 5.5 Hz, 2H, CH (K)), 4.13 (dd, J = 8.6, 5.9 Hz, 1H, CH (K)), 4.09 (s, 2H, CH2 (PEG)), 4.07 

– 3.53 (m, 46H, H-2, H-2′, H-2′′, H-3, H-3′, H-3′′, H-4, H-4′, H-4′′, H-5, H-5′, H-5′′, H-6, H-6′, H-6′′, CH2 

(PEG, 3x), CH2 (G, 2x)), 3.34 (q, J = 5.3 Hz, 2H, CH2 (PEG)), 2.95 (t, J = 7.5 Hz, 2H, CH2-NH2), 1.95 (s, 
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3H, Ac), 1.93 – 1.56 (m, 12H, CH2 (K)), 1.46 – 1.15 (m, 6H, CH2 (K)); HRMS [C72H122N14O41 + 2H] 2+: 

920.40110 found, 920.40187 calculated. 

Ac-Lys(4-SO3-GalNAc)-AEEA-Gly-Lys(4-SO3-GalNAc)-Gly-Lys-NH2 (58). 

Azide 24 (5.0 µL, 0.2 M, 1.0 µmol) was conjugated to propargyl 

mannosides 31 using the general click protocol. Compound 58 

was obtained after purification by gel filtration (buffer contained 

20% ACN, eluted at 38 - 46 mL) as a white powder (0.25 mg, 167 

nmol, 17%). LC-MS: Rt = 3.91 min (0 - 50% ACN; 13 min); 1H NMR (400 MHz, D2O) δ 7.99 (d, J = 2.3 

Hz, 2H, trzl), 4.90 (d, J = 12.9 Hz, 2H, O-CHH-trzl), 4.81 – 4.72 (m, 2H, O-CHH-trzl), 4.66 (d, J = 2.8 

Hz, 2H, H-1), 4.58 (d, J = 7.8 Hz, 2H, H-2), 4.41 (q, J = 3.5 Hz, 4H, CH2-trzl), 4.29 – 4.21 (m, 2H, CH 

(K)), 4.18 – 4.11 (m, 1H, CH (K)), 4.10 (s, 2H, CH2 (PEG)), 4.04 – 3.63 (m, 18H, H-3, H-4, H-5, H-6, CH2 

(PEG, 2x), CH2 (G, 2x)), 3.57 (t, J = 5.5 Hz, 2H, CH2 (PEG)), 3.41 – 3.30 (m, 2H, CH2 (PEG)), 2.96 (t, J 

= 7.3 Hz, 2H, CH2NH2), 1.96 (s, 3H, Ac), 1.93 – 1.57 (m, 18H, NHAc (2x), CH2 (K)), 1.48 – 1.18 (m, 6H, 

CH2 (K)); HRMS [C52H88N16O27S2 + 2H]2+: 717.27926 found, 717.27959 calculated. 

 

General procedure for biotinylation: 

The “general procedure” to introduce the biotin handle: Glycoclusters described above with a free 

amine were dissolved in DMSO (0.02 M). To this, a stock solution of Biotin-NHS (0.15 M, 3-4 

eq) and DIPEA (0.015 M, 0.3-0.4 eq) in DMSO was added and shaken overnight after which 

compounds were purified via RP-HPLC (linear gradient 10 - 16 % B in A, 12 min, 5 mL/min, 

Develosil RPAQUEOUS 10.0 x 250 mm) followed by lyophilization.  

 

Ac-Lys(Man1)-Gly-Lys(biotin)-NH2(59). 

Compound 32 (1.01 mg, 1.64 µmol) was coupled with biotin-NHS using the general 

procedure. Compound 59 was obtained after purification by RP-HPLC as a white 

powder (1.37 mg, 1.62 µmol, 99%). LC-MS: Rt = 5.28 min (0 - 50% ACN; 13 min); 

HRMS [C35H58N10O12S + H]+: 843.4031 found, 843.4029 calculated. 
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Ac-Lys(1,2-Man2)-Gly-Lys(biotin)-NH2(60). 

Compound 33 (8.97 mg, 11.51 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 60 was obtained after purification by RP-HPLC as 

a white powder (1.90 mg, 1.89 µmol, 16%). LC-MS: Rt = 5.18 min (0 - 50% ACN; 

13 min); HRMS [C41H68N10O17S + 2H]2+: 503.2315 found, 503.2315 calculated. 

 

Ac-Lys(1,3-Man2)-Gly-Lys(biotin)-NH2 (61). 

Compound 34 (6.46 mg, 8.30 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 61 was obtained after purification by RP-HPLC 

as a white powder (1.44 mg, 1.44 µmol, 17%). LC-MS: Rt = 5.23 min (0 - 50% 

ACN; 13 min); HRMS [C41H68N10O17S +2H]2+: 503.2316 found, 503.2315 

calculated. 

 

Ac-Lys(1,6-Man2)-Gly-Lys(biotin)-NH2 (62). 

Compound 35 (1.50 mg, 1.93 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 62 was obtained after purification by RP-HPLC 

as a white powder (0.97 mg, 0.97 µmol, 50 %). LC-MS: Rt = 5.23 min (0 - 50% 

ACN; 13 min); HRMS [C41H68N10O17S + 2H]2+: 503.2314 found, 503.2315 

calculated. 

 

Ac-Lys(Man3)-Gly-Lys(biotin)-NH2 (63). 

Compound 36 (8.25 mg, 8.77 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 63 was obtained after purification by RP-

HPLC as a white powder (1.48 mg, 1.26 µmol, 14%). LC-MS: Rt = 5.15 min 

(0 - 50% ACN; 13 min); HRMS [C47H78N10O22S + 2H]2+: 584.2582 found, 

584.2579 calculated. 
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Ac-Lys(Man1)-Gly-Lys(Man1)-Gly-Lys(biotin)-NH2(64). 

Compound 38 (11.06 mg, 10.57 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 64 was obtained after purification by RP-HPLC as 

a white powder (2.62 mg, 2.06 µmol, 19%). LC-MS: Rt = 5.30 min (0 - 50% ACN; 

13 min); HRMS [C52H85N15O20S + 2H]2+: 636.7984 found, 636.7981 calculated. 

 

 

Ac-Lys(1,2-Man2)-Gly-Lys(1,2-Man2)-Gly-Lys(biotin)-NH2 (65). 

Compound 39 (2.67 mg, 1.95 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 65 was obtained after purification by RP-HPLC as 

a white powder (1.52 mg, 0.95 µmol, 49%). LC-MS: Rt = 5.14 min (0 - 50% ACN; 

13 min); HRMS [C64H105N15O30S+2H]2+: 798.8514 found, 798.8509 calculated. 

 

 

Ac-Lys(1,3-Man2)-Gly-Lys(1,3-Man2)-Gly-Lys(biotin)-NH2 (66). 

Compound 40 (1.50 mg, 1.10 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 66 was obtained after purification by RP-

HPLC as a white powder (1.74 mg, 1.09 µmol, 99%). LC-MS: Rt = 5.18 min 

(0 - 50% ACN; 13 min); HRMS [C64H105N15O30S+2H]2+: 798.8516 found, 

798.8509 calculated. 

 

Ac-Lys(1,6-Man2)-Gly-Lys(1,6-Man2)-Gly-Lys(biotin)-NH2 (67). 

Compound 41 (1.68 mg, 1.22 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 67 was obtained after purification by RP-HPLC 

as a white powder (1.48 mg, 0.93 µmol, 76%). LC-MS: Rt = 5.11 min (0 - 50% 

ACN; 13 min); HRMS [C64H105N15O30S + 2H]2+: 798.8512 found, 798.8509 

calculated. 
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Ac-Lys(Man3)-Gly-Lys(Man3)-Gly-Lys(biotin)-NH2 (68). 

Compound 42 (6.02 mg, 3.55 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 68 was obtained after purification by RP-

HPLC as a white powder (3.34 mg, 1.74 µmol, 49%). LC-MS: Rt = 5.02 min 

(0 - 50% ACN; 13 min); HRMS [C76H125N15O40S+ 2H]2+: 960.9051 found, 

960.9037 calculated. 

 

 

Ac-Lys(Man1)-Gly-Lys(Man1)-Gly-Lys(Man1)-Gly-Lys(biotin)-NH2(69). 

Compound 45 (2.63 mg, 1.78 µmol) was coupled with biotin-NHS using the general 

procedure. Compound 69 was obtained after purification by RP-HPLC as a white 

powder (1.92 mg, 1.13 µmol, 63%). LC-MS: Rt = 5.26 min (0 - 50% ACN; 13 min); 

HRMS [C69H112N20O28S +2H]2+: 851.3912 found, 851.3911 calculated. 

 

Ac-Lys(1,2-Man2)-Gly-Lys(1,2-Man2)-Gly-Lys(1,2-Man2)-Gly-Lys(biotin)-NH2 (70). 

Compound 46 (4.91 mg, 2.50 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 70 was obtained after purification by RP-HPLC as 

a white powder (1.82 mg, 0.83 µmol, 33%). LC-MS: Rt = 5.07 min (0 - 50% ACN; 

13 min); HRMS [C87H142N20O43S + 2H]2+: 1094.9727 found, 1094.9718 

calculated. 

 

Ac-Lys(1,3-Man2)-Gly-Lys(1,3-Man2)-Gly-Lys(1,3-Man2)-Gly-Lys(biotin)-NH2 (71). 

Compound 47 (3.53 mg, 1.80 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 71 was obtained after purification by RP-HPLC 

as a white powder (3.78 mg, 1.72 µmol, 96%). LC-MS: Rt = 5.13 min (0 - 50% 

ACN; 13 min); HRMS [C87H142N20O43S + 2H]2+: 1094.9719 found, 1094.9718 

calculated. 
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Ac-Lys(1,6-Man2)-Gly-Lys(1,6-Man2)-Gly-Lys(1,6-Man2)-Gly-Lys(biotin)-NH2 (72). 

Compound 48 (3.53 mg, 1.80 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 72 was obtained after purification by RP-HPLC 

as a white powder (3.55 mg, 1.62 µmol, 90%). LC-MS: Rt = 5.09 min (0 - 50% 

ACN; 13 min); HRMS [C87H142N20O43S + 2H]2+: 1094.9721 found, 1094.9718 

calculated. 

 

Ac-Lys(Man3)-Gly-Lys(Man3)-Gly-Lys(Man3)-Gly-Lys(biotin)-NH2 (73). 

Compound 49 (4.41 mg, 1.80 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 73 was obtained after purification by RP-

HPLC as a white powder (2.44 mg, 0.91 µmol, 51%). LC-MS: Rt = 4.94 min 

(0 - 50% ACN; 13 min); HRMS [C105H172N20O58S + 2H]2+: 1338.0503 found, 

1338.0510 calculated. 

 

 

Ac-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Gly-Lys(biotin)-NH2(74). 

Compound 50 (1.75 mg, 0.72 µmol) was coupled with biotin-NHS using the general 

procedure. Compound 74 was obtained after purification by RP-HPLC as a white 

powder (1.14 mg, 0.42 µmol, 59%). LC-MS: Rt = 5.26 min (0 - 50% ACN; 13 min); 

HRMS [C110H178N30O47S + 2H]2+: 1353.1169 found, 1353.1178 calculated. 

 

Ac-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-

Gly-Lys(biotin)-NH2 (75). 

Compound 51 (5.24 mg, 1.60 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 75 was obtained after purification by RP-HPLC as 

a white powder (3.65 mg, 0.99 µmol, 62%). LC-MS: Rt = 4.94 min (0 - 50% ACN; 

13 min); HRMS [C146H238N30O77S + 3H]3+: 1226.5201 found, 1226.5200 

calculated. 
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Ac-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-

Gly-Lys(biotin)-NH2 (76). 

Compound 52 (5.24 mg, 1.60 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 76 was obtained after purification by RP-

HPLC as a white powder (3.65 mg, 0.99µmol, 62%). LC-MS: Rt = 5.00 min (0 

- 50% ACN; 13 min); HRMS [C146H238N30O77S + 3H]3+: 1226.5195 found, 

1226.5200 calculated. 

 

Ac-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-

Gly-Lys(biotin)-NH2 (77). 

Compound 53 (1.82 mg, 0.53 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 77 was obtained after purification by RP-HPLC 

as a white powder (1.08 mg, 0.29 µmol, 56%). LC-MS: Rt = 4.94 min (0 - 50% 

ACN; 13 min); HRMS [C146H238N30O77S + 3H]3+: 1226.5203 found, 1226.5200 

calculated. 

 

Ac-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Gly-Lys(biotin)-NH2 (78). 

Compound 54 (8.40 mg, 1.90 µmol) was coupled with biotin-NHS using the 

general procedure. Compound 78 was obtained after purification by RP-

HPLC as a white powder (7.50 mg, 1.61 µmol, 85%). LC-MS: Rt = 4.68 min 

(0 - 50% ACN; 13 min); HRMS [C182H298N30O107S + 3H]3+: 1550.9603 found, 

1550.9599 calculated. 

 

 

General procedure to introduce ATTO655: 

Glycoclusters with a free amine were dissolved in DMSO (2.0 mM). To this, a stock solution of 

ATTO655-NHS (5.0 mM, 2 eq) and DIPEA (0.01 M, 2 eq) in DMSO was added and shaken 

protected from light for one hour. After which the product was isolated either via RP-HPLC (linear 

gradient B in A, Gemini-NX 5µm C18, 110 Å, 250 x 10.0 mm, 5 mL/min, collection on λ: 610 

nm), or gel filtration (Toyopearl HW-40S, 150 mM NH4HCO3 aq. with 20% ACN, 1.6x60 cm, UV 

monitoring λ: 610 nm) followed by lyophilization. 
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Ac-Lys(Man1)-Gly-Lys(ATTO655)-NH2 (79). 

Compound 32 (267 nmol) was coupled with ATTO655-NHS using the general 

procedure. Compound 79 was obtained after purification by gel filtration (eluted 

at 130 - 165 mL) as a blue powder after lyophilization (0.265 mg, 235 nmol, 88%). 

LC-MS: Rt = 6.01 min (0 - 50% ACN; 13 min); HRMS [C52H75N11O15S+ 2H]2+: 

563.76566 found, 563.76552 calculated. 

 

Ac-Lys(Man3)-Gly-Lys(ATTO655)-NH2 (80). 

Compound 36 (200 nmol) was coupled with ATTO655-NHS using the 

general procedure. Compound 80 was obtained after purification by gel 

filtration (eluted at 95 - 110 mL) as a blue powder after lyophilization (0.245 

mg, 169 nmol, 84%). LC-MS: Rt = 6.83 min (0 - 50% ACN; 13 min); HRMS 

[C64H95N11O25S + 2H]2+: 725.81835 found, 725.81834 calculated. 

 

 

Ac-Lys(Man1)-Gly-Lys(Man1)-Gly-Lys(ATTO655)-NH2 (81). 

Compound 38 (200 nmol) was coupled with ATTO655-NHS using the general 

procedure. Compound 81 was obtained after purification by RP-HPLC (5 - 50 

% B in A, 10 min) as a blue powder after lyophilization (0.140 mg, 89 nmol, 

45%). LC-MS: Rt = 6.05 min (0 - 50% ACN; 13 min); HRMS [C69H102N16O23S 

+ 2H]2+: 778.35840 found, 778.35850 calculated. 

 

Ac-Lys(1,2-Man2)-Gly-Lys(1,2-Man2)-Gly-Lys(ATTO655)-NH2 (82). 

Compound 39 (100 nmol) was coupled with ATTO655-NHS using the general 

procedure. Compound 82 was obtained after purification by RP-HPLC (5 - 50 

% B in A, 10 min) as a blue powder after lyophilization (0.18 mg, 95 nmol, 

95%). LC-MS: Rt = 5.95 min (0 - 50% ACN; 13 min); HRMS [C81H122N16O33S 

+ 2H]2+: 940.41153 found, 940.41132 calculated. 
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Ac-Lys(Man3)-Gly-Lys(Man3)-Gly-Lys(ATTO655)-NH2 (83). 

Compound 42 (200 nmol) was coupled with ATTO655-NHS using the 

general procedure. Compound 83 was obtained after purification by RP-

HPLC (5 - 50 % B in A, 10 min) as a blue powder after lyophilization (0.45 

mg, 204 nmol, qnt). LC-MS: Rt = 5.86 min (0 - 50% ACN; 13 min); HRMS 

[C93H142N16O43S+ 2H]2+: 1102.96588 found, 1102.96567 calculated. 

 

Ac-Lys(4-SO3-GalNAc)-Gly-Lys(4-SO3-GalNAc)-Gly-Lys(ATTO655)-NH2 (84). 

Compound 44 (100 nmol) was coupled with ATTO655-NHS using the general 

procedure. Compound 84 was obtained after purification by RP-HPLC (linear-

gradient 7 - 46 % B in A, 10 min) as a blue powder after lyophilization (5.82 

nmol, 6%, ABS = 0.364 (2 mL, λ = 663 nm)). LC-MS: Rt = 5.29 min (0 - 50% 

ACN; 13 min); HRMS [C73H108N18O29S3 + 2H]2+: 899.34175 found, 899.34186 

calculated. 

 

Ac-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Gly-Lys(ATTO655)-NH2 

(85). 

Compound 50 (293 nmol) was coupled with ATTO655-NHS using the general 

procedure. Compound 85 was obtained after purification by gel filtration (eluted 

at 46 - 58 mL) as a blue powder after lyophilization (0.54 mg, 180 nmol, 62%). 

LC-MS: Rt = 5.46 min (0 - 50% ACN; 13 min); HRMS [C127H195N31O50S + 3H]3+: 

996.78798 found, 996.78791 calculated. 

 

Ac-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-

Gly-Lys(ATTO655)-NH2 (86). 

Compound 51 (100 nmol) was coupled with ATTO655-NHS using the 

general procedure. Compound 86 was obtained after purification by gel 

filtration (eluted at 36 – 48 mL) as a blue powder after lyophilization (34 

nmol, 34%, ABS = 1.063 (4 mL, λ = 663 nm)). LC-MS: Rt = 5.32 min (0 - 

50% ACN; 13 min); HRMS [C163H255N31O80S + 3H]3+: 1320.89485 found, 

1320.89359 calculated. 
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Ac-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Gly-Lys(ATTO655)-NH2 

(87). 

Compound 54 (234 nmol) was coupled with ATTO655-NHS using the general 

procedure. Compound 87 was obtained after purification by gel filtration (eluted 

at 33 - 45 mL) as a blue powder after lyophilization (0.935 mg, 190 nmol, 81%). 

LC-MS: Rt = 5.78 min (0 - 50% ACN; 13 min); HRMS [C199H315N31O110S + 

3H]3+: 1645.33311 found, 1645.33352 calculated. 

 

Ac-Lys(4-SO3-GalNAc)-Lys(4-SO3-GalNAc)-Lys(4-SO3-GalNAc)-Lys(4-SO3-GalNAc)-Lys(4-SO3-

GalNAc)-Lys(4-SO3-GalNAc)-Gly-Lys(ATTO655)-NH2 (88). 

Compound 55 (100 nmol) was coupled with ATTO655-NHS using the general 

procedure. Compound 90 was obtained after purification by RP-HPLC (linear-

gradient 7 - 47 % B in A, 10 min) as a blue powder after lyophilization (89 nmol, 

89%, ABS = 1.597 (7 mL, λ = 663 nm)). LC-MS: Rt = 4.57 min (0 - 50% ACN; 

13 min); HRMS [C139H213N37O68S7 + 2H + Na]3+: 1246.41578 found, 

1246.41561 calculated. 

 

Ac-Lys(Man1)-AEEA-Gly-Lys(Man1)-Gly-Lys(ATTO655)-NH2 (89). 

Compound 56 (100 nmol) was coupled with ATTO655-NHS 

using the general procedure. Compound 89 was obtained after 

purification by RP-HPLC (linear-gradient 7 - 46 % B in A, 10 

min) as a blue powder after lyophilization (43 nmol, 43%, ABS 

= 1.344 (4 mL, λ = 663 nm)). LC-MS: Rt = 5.44 min (0 - 50% 

ACN; 13 min); HRMS [C75H113N17O26S + 2H]2+: 850.89550 

found, 850.89544 calculated. 

Ac-Lys(Man3)-AEEA-Gly-Lys(Man3)-Gly-Lys(ATTO655)-NH2 (90). 

Compound 57 (100 nmol) was coupled with ATTO655-

NHS using the general procedure. Compound 90 was 

obtained after purification by RP-HPLC (linear-gradient 7 

- 47 % B in A, 10 min) as a blue powder after 

lyophilization (26.1 nmol, 26%, ABS = 0.818 (4 mL, λ = 

663 nm)). LC-MS: Rt = 5.23 min (0 - 50% ACN; 13 min); 

HRMS [C99H153N17O46S + 2H]2+: 1175.50270 found, 1175.50253 calculated. 
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Ac-Lys(4-SO3-GalNAc)-AEEA-Gly-Lys(4-SO3-GalNAc)-Gly-Lys(ATTO655)-NH2 (91). 

Compound 58 (100 nmol) was coupled with ATTO655-NHS 

using the general procedure. Compound 91 was obtained after 

purification by RP-HPLC (linear-gradient 7 - 47 % B in A, 10 

min) as a blue powder after lyophilization (10.6 nmol, 11%, 

ABS = 0.666 (2 mL, λ = 663 nm)). LC-MS: Rt = 5.30 min (0 - 

50% ACN; 13 min); HRMS [C79H119N19O32S3 + 2H]2+: 

971.87872 found, 971.87881 calculated. 

 

General procedure for the introduction of AlexaFluor488: 

Glycoclusters with a free amine were dissolved in DMSO (2.0 mM). To this, a stock solution of 

AF488-NHS (5.0 mM, 2 eq) and DIPEA (0.01 M, 2 eq) in DMSO was added and shaken protected 

from light for one hour. After which the product was isolated via gel filtration (Toyopearl HW-

40S, 1.6x60 cm, 150 mM NH4HCO3, 20% ACN, UV monitoring λ: 494 nm) followed by 

lyophilization. 

 

Ac-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Gly-Lys(AF488)-NH2 (92). 

Compound 50 (200 nmol) was coupled with AF488-NHS using the general 

procedure. Compound 92 was obtained after purification by gel filtration 

(eluted at 28 – 35.5 mL) as a green solution or orange powder after 

lyophilization (94 nmol, 47%, ABS = 0.869 (8 mL, λ = 494 nm)). LC-MS: 

Rt = 5.59 min (0 - 50% ACN; 13 min); HRMS [C121H176N30O55S2 + 3H]3+: 

999.05260 found, 999.05286 calculated. 

Ac-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Gly-Lys(AF488)-NH2 (93). 

Compound 54 (200 nmol) was coupled with AF488-NHS using the 

general procedure. Compound 87 was obtained after purification by gel 

filtration (eluted at 26.5 – 34 mL) as a green solution or orange powder 

after lyophilization (68 nmol, 34%, ABS = 1.243 (4 mL, λ = 494 nm)). 

LC-MS: Rt = 4.88 min (0 - 50% ACN; 13 min); HRMS 

[C193H296N30O115S2+ 3H]3+: 1647.59818 found, 1647.59842 calculated. 
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Ac-Lys(4-SO3-GalNAc)-Lys(4-SO3-GalNAc)-Lys(4-SO3-GalNAc)-Lys(4-SO3-GalNAc)-Lys(4-SO3-

GalNAc)-Lys(4-SO3-GalNAc)-Gly-Lys(AF488)-NH2 (94). 

Compound 55 (100 nmol) was coupled with AF488-NHS using the general 

procedure. Compound 90 was obtained after purification by gel filtration 

(eluted at 28 – 37 mL) as a green solution or orange powder after 

lyophilization (5.9 nmol, 6%, ABS = 0.216 (2 mL, λ = 494 nm)). LC-MS: 

Rt = 5.60 min (0 - 50% ACN; 13 min); HRMS [C133H194N36O73S8 + 

Na+3NH3]4+: 948.72085 found, 948.77796 calculated. 

 

General procedure for the introduction of ATTO565: 

Glycoclusters with a free amine were dissolved in DMSO (2.0 mM). To this, a stock solution of 

ATTO565-NHS (10 mM, 2 eq) and DIPEA (0.01 M, 2 eq) in DMSO was added and shaken 

protected from light for one hour. After which the product was isolated via gel filtration 

(Toyopearl HW-40S, 1.6x60 cm, 150 mM NH4HCO3, 20% ACN, UV monitoring λ: 564 nm) 

followed by lyophilization. 

 

Ac-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Gly-Lys(ATTO565)-NH2 

(95). 

Compound 50 (300 nmol) was coupled with ATTO565-NHS using the 

general procedure. Compound 95 was obtained after purification by gel 

filtration (eluted at 29.5 – 37 mL) as a pink powder after lyophilization (127.8 

nmol, 43%, ABS = 1.704 (9 mL, λ = 564 nm)). LC-MS: Rt = 6.42 min (0 - 

50% ACN; 13 min); HRMS [C131H192N30O49 + 3H]3+: 991.12431 found, 

991.12341 calculated. 

Ac-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Gly-Lys(ATTO565)-NH2 

(96). 

Compound 54 (300 nmol) was coupled with ATTO565-NHS using the 

general procedure. Compound 96 was obtained after purification by gel 

filtration (eluted at 26.5 – 34 mL) as a pink powder after lyophilization 

(128.6 nmol, 43%, ABS = 1.715 (9 mL, λ = 564 nm)). LC-MS: Rt = 5.75 

min (0 - 50% ACN; 13 min); HRMS [C203H312N30O109 + 4H]4+: 

1230.00614 found, 1230.00363 calculated. 
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Ac-Lys(4-SO3-GalNAc)-Lys(4-SO3-GalNAc)-Lys(4-SO3-GalNAc)-Lys(4-SO3-GalNAc)-Lys(4-SO3-

GalNAc)-Lys(4-SO3-GalNAc)-Gly-Lys(ATTO565)-NH2 (97). 

Compound 55 (100 nmol) was coupled with ATTO565-NHS using the 

general procedure. Compound 97 was obtained after purification by gel 

filtration (eluted at 30 – 42 mL) as a pink powder after lyophilization (17 

nmol, 17%, ABS = 1.031 (2 mL, λ = 564 nm)). LC-MS: Rt = 5.82 min (0 - 

50% ACN; 13 min); HRMS [C143H210N36O67S6 + 3H]3+: 1233.42735 found, 

1233.42389 calculated. 
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Chapter 3 

Large scale synthesis of a conjugation-
ready 2-butoxy-8-oxo-adenine analog 
TLR7-liganda 

Introduction 1 

Effective vaccines require at least two functionalities, a recognizable disease-related antigen and 

an adjuvant. Adjuvants can be derived from pathogen-associated molecular patterns (PAMPs) that 

induce signaling through binding of pattern recognition receptors (PRRs) stimulating antigen-

presenting cells (APCs) to mature. Maturation results in the secretion of inflammatory cytokines 

and upregulation of antigen processing and presentation, which are a necessity for an adequate 

adaptive response. The Toll-like receptor (TLR) family is intensively explored for the development 

of new vaccine adjuvants.2 Ten different TLRs which recognize different types of PAMPs can be 

found on human immune cells. They are either expressed on the cell surface (TLR1, TLR2, TLR4, 

TLR5, TLR6, and TLR10) or endosomal (TLR3, TLR7, TLR8, and TLR9).3,4 Endosomal TLRs 

 
aPart of this work is published in Hogervorst & Gential et al. 20191 
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recognize nucleic acid-based PAMPs such as viral double-stranded RNA (TLR3),5 single-stranded 

bacterial and viral RNA (TLR7 and TLR8)6–8 and bacterial and viral DNA (TLR9).9 

Small molecule agonists have been discovered as ligands for TLR7 and TLR8. Prime examples are 

imidazoquinolines based structures such as imiquimod (98) and resiquimod (99, Figure 1),10 of 

which the latter is used in the clinic for the treatment of an uncommon epidermal cancer11 and is 

tested as vaccine adjuvant.12 Derivatives of 8-oxo-adenine and 8-hydroxy-adenine are another class 

of TLR7/TLR8 agonists. Based on lead compound 100 (Figure 1), developed by Hirota et al.13 a 

multitude of structure-activity relationship studies have been described resulting in agonists such 

as SM-324405 (101).14–17 

Figure 1: TLR7/TLR8 agonists. 

 

Both classes of agonists have been functionalized to give conjugation-ready compounds such as 

102, which can be conjugated via either an isothiocyanate or a maleimide handle.18 Fujita et al. 

described the norleucine amino acid derivative 103 that can be incorporated in a peptide via solid-

phase peptide synthesis.19 Several derivatives of 8-oxo-adenine have been used for conjugation to 

antigens. For example, Weterings et al.20 generated 104, having an 2-azidoalkoxy spacer for 

attachment to a peptide antigen. The resulting conjugate showed enhanced antigen presentation 

but lost the ability to induce maturation.20 Conjugation of 105 via its 9-benzyl function as first 

described by Chan et al.,21 resulted in conjugates that maintained the maturation ability and 105 

has since been successfully used in peptide-adjuvant conjugates.22 Similar results were obtained 

with the 2-butoxy analog 106.17 
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Although structures such as 106 and 105 have been successfully used in adjuvant-antigen 

conjugates, their synthesis and subsequent conjugation are far from ideal. Two synthetic routes 

towards 106 have been described. Akinbobuyi et al.23 obtained 106 in four steps with an 61% 

overall yield starting from 6-amino-2-chloropurine (107, Scheme 1, route A). In this route, the 

benzoic acid was introduced with cyanobenzylbromide (108) to afford (109), which was converted 

to free acid 110, after the butoxy group was installed. Subsequent bromination, followed by sodium 

hydroxide treatment gave ligand 106. The authors described that the main advantage of this route 

is that all intermediates could be purified via precipitation in reactions with high conversion.  

In the second route to 106, developed by G.P.P. Gential,24 the benzoic acid is masked as a 

butylester that was deprotected in the final stage of the synthesis (route B, Scheme 1). Starting 

from purine (107), adenine 106 was obtained in four steps in a 23% overall yield. In this route, the 

butylester protection circumvented solubility issues caused by the free benzoic acid as experienced 

in route A. It was described that the electrophilic aromatic bromination to obtain 115 proceeded 

sluggishly and could only be achieved in high yield with the aid of a large excess of bromine. 

Nucleophilic aromatic substitution, demethylation and ester hydrolysis resulted in 106. The main 

advantage of route B is the solubility of all intermediates, allowing the purification by for example 

flash column chromatography. A major disadvantage is the large excess of reagents that are needed 

to introduce and substitute the bromine and the low overall yield of the route. 

A drawback of small molecule agonists for TLR7 and TLR8 is their toxicity. Therefore, imiquimod 

can only be administered topically.25 Chan et al.21 achieved a significant reduction of toxicity by 

conjugation of TLR ligand 105 to phospholipids and polyethylene glycols. Unfortunately, 

conjugation of ligands 106 and 105 via their carboxylic acid function resulted in poor yields, due 

to the poor solubility of the ligand.21 The solubility of 106 could be improved by the introduction 

of a tert-butoxycarbonyl (Boc) protecting group, but the yield of a small scale (0.15 mmol) synthesis 

of 116 did not exceed 10% (Scheme 1).24 
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Scheme 1: Previously described routes towards 106. 

 

 

This Chapter presents an improved route of synthesis of 116. Because Route A could not be 

reproduced providing enough material in sufficient purity, Route B was optimized to enable the 

production of 116 on a large scale. Having sufficient amounts of 116 available, conjugates can be 

developed that can be targeted to the endosomes of immune cells, thereby potentially increasing 

their effectiveness. Conjugation of 116 to the oligomannoside clusters, described in Chapter 2, 

would not only increase the water solubility of the TLR7 ligand, but also allow for the active 

transport toward endosomes. To test this hypothesis, this Chapter also describes the synthesis of 

three bifunctional conjugates that target both TLR7 and trafficking receptors.  
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Results and Discussion 

An improved synthetic route towards Boc protected TLR7 agonist 116 is described in Scheme 2. 

To allow for the synthesis of 116 with higher yields and on a larger scale, the synthetic procedures 

applied in route B (Scheme 1)24 were modified, learning lessons from route A.23 The main drawback 

in route B was the conversion of 114 to 116, requiring a large excess of reagents for the introduction 

and the substitution of the bromine, hindering efficient scale-up. Furthermore, 90% of 106 was 

lost in the final step introducing the Boc protection group.  

The electrophilic aromatic bromination of 114, according to route B, required nineteen equivalents 

of bromine. Subsequent quenching of the excess of bromine with a sodium thiosulphate solution 

generated HBr that lowered the pH of the solution, leading to the formation of solid elementary 

sulfur.26 On a small scale, these solids made the work-up time consuming, because they clogged 

the glassware and filters. On a larger scale, this problem was so prominent that it made work-up 

impossible. The addition of sodium acetate (as in route A)23 improved both the efficiency of 

reaction and the work-up procedure. Using only five equivalents of bromine, 115 was obtained 

within an hour in 94% yield on a 40 mmol scale (Scheme 2). Not only did the smaller excess of 

bromine reduce the amount of required thiosulphate, but the presence of sodium acetate also 

increased the pH resulting in the formation of less solid sulfur.  

Attempts to hydrolyze bromine 115 directly with NaOH were unsuccessful in route B. This was 

circumvented by using a more nucleophilic methoxide, followed by acidic cleavage of the resulting 

methyl ether and finally saponification of the remaining benzoic ester under basic condition. The 

large amount of acidic and basic solutions required for scale-up of the reaction made this three-

step method cumbersome. The two extra steps could be circumvented by refluxing 115 for three 

days in a solution of NaOH in a mixture of methanol and water. In this procedure, in situ formed 

methanolate can displace the bromine while the ether and ester are also cleaved. After acidification 

of the resulting solution, 106 could be precipitated and filtered off to provide the free acid in 89% 

yield on a multigram scale.  

106 proved to be insoluble in most organic solvents, which makes this building block unsuitable 

for conjugation. Gential described the enhancement of the solubility of the building block by the 

introduction of a Boc group. To introduce the tert-butyl carbamate, 106 was suspended in a 

water/dioxane mixture after which it was stirred with triethylamine and ten equivalents of 2-(tert-

butoxycarbonyloxyimino)-2-phenylacetonitrile (Boc-ON) for five days. The reaction proceeded 

sluggishly with only 10% conversion after five days. This result was explained by the poor solubility 

of both 106 and Boc-ON and the moderate nucleophilicity of the aromatic amine.24 Optimization 
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of this reaction (Table 1) by either changing the solvent system (entries 2 and 3), changing to the 

more soluble di-tert-butyl dicarbonate (Boc2O, entries 4-11) or changing Et3N to DMAP (entries 

2-5) improved the reaction slightly but still more than 80% of product was lost. Notably, in all 

entries, 106 was not completely dissolved, not even when diluted in DMSO (entries 2,4,8). In an 

attempt to obtain a homogenous solution, 106 was dissolved in a NaOH (1.0 M, aq.) generating 

its sodium salt, after which a solution of Boc2O in dioxane was added dropwise (entry 9). Upon 

neutralization with HCl (1.0 M, aq.) both 106 and 116 crashed out, and subsequent centrifugation 

of the suspension allowed for removal of excess reagents after which extraction of the solids with 

chloroform gave 116 in 30-40% yield while starting compound 106 could be recovered from the 

residue (entries 9-11).  

 

Scheme 2: Synthesis of building block 116 

 

Reagents and conditions a) 112, K2CO3, DMSO, 63%; b) i. NaH, n-BuOH, 120 °C; ii. H2SO4, 80 °C, 71%; c) Br2, NaOAc, 

DCM, 94%; d) NaOH, H2O, MeOH, reflux, 89%; e) NaOH, Boc2O, H2O, Dioxane, 35% (95% recovery of 106). 

 

When the reaction was performed on a 30 mmol scale (entry 11), the final extraction proved to be 

more difficult due to large amounts of solids. However, using a Soxhlet extraction apparatus, 116 

could be isolated in high yield, delivering 10.5 mmol of product (35%). By extraction of the 

remaining residue in the sock using a NaOH solution (1 M, aq.) and subsequent acidification of 

the filtrate, the precipitated 106 could be recovered in high yield (18.5 mmol, 95% recovery) and 

it could be re-subjected to the bocylation reaction. Together these optimizations improved the 
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conversion of 114 into 116 from 4% to 29%. The synthesis of 116 on a multi-mmol scale makes it 

a feasible conjugation-ready building block to be used in SPPS (as described in Chapter 4 and 5) 

or solution-based synthesis (below). 

Before conjugation of 116 to the projected glycoside clusters, a spacer was introduced (Scheme 3). 

Condensation of 116 with known triethylene glycol 117,27,28 obtained via previously described 

procedures resulted in tert-butyl ester protected 118. Simultaneous acid-mediated removal of the 

Boc group and butyl ester29 resulted in a compound that caused gelation in water and DMSO, 

thereby hindering its purification. In the end, the compound could be dissolved using NH4OAc 

(0.033 M) in a mixture of H2O/ACN/t-BuOH/AcOH (4/1/1/3, v/v/v/v) allowing the 

purification of 119 via RP-HPLC. Conversion of carboxylic acid 119 into the pentafluorophenol 

(Pfp) ester 120 improved the solubility in water and DMSO which enabled the synthesis of three 

bi-functional conjugates (Scheme 3). The mannoside clusters 50 and 54 (mono- or tri-mannoside 

clusters on a hexavalent scaffold), described in Chapter 2, were conjugated to Pfp ester 120 

resulting in clusters 121 and 122. Both clusters should be able to target DC-SIGN (see Chapter 2) 

and could route the bi-functional conjugates toward endosomes. A similar hexavalent scaffold 123 

containing six mannose-6-phosphates, described by R.N.M. Reintjes,30 was conjugated to Pfp ester 

120 forming cluster 124. This conjugate was designed to target the mannose-6-phospate receptor 

which could result in endo-/lysosomal routing. Unlike the previously described 9-benzyl-8-oxo 

adenine analog, all these bi-functional conjugates are highly water-soluble. All three conjugates are 

being tested for their ability to mature APCs and this evaluation is ongoing.  

Table 1: Optimization of Boc introduction 

Entry Boc source Solvent Base [106] Yield 

124 Boc-ON (13 eq) H2O/dioxane (1/1) Et3N (3 eq) 0.5 M 10%a 

2 Boc-ON (2 eq) DMSO DMAP (0.1 eq) 0.5 M 8%a 

3 Boc-ON (2 eq) THF DMAP (0.1 eq) 0.5 M 7%a 

4 Boc2O (4 eq) DMSO DMAP (0.1 eq) 0.5 M 14% 

5 Boc2O (4 eq) THF DMAP (0.1 eq) 0.5 M 13% 

6 Boc2O (4 eq) MeOH/H2O/Et3N (10/10/7) Et3N 0.5 M 0% 

7 Boc2O (8 eq) H2O/dioxane (1/1) Et3N (3 eq) 0.5 M 13% 

8 Boc2O (8 eq) DMSO Et3N 0.15 M 15% 

9 Boc2O (1.5 eq) H2O/dioxane (1/1) NaOH (2 eq) 0.5 M 24% 

10 Boc2O (1.2 eq) H2O/dioxane (3/1) NaOH (3 eq) 0.25 M 41% 

11 Boc2O (1.2 eq) H2O/dioxane (3/1) NaOH (3 eq) 0.25 M 35% 

 
a Formation of butyl ester was observed on LC-MS 
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Scheme 3: Synthesis of mannosylated - TLR7 agonist - conjugates 

Reagents and conditions: a) HCTU, DIPEA, DCM/DMF, 84%; b) H3PO4, H2O/toluene, 43%; c) pentafluorophenol, DIC, 

DMAP, DMSO; d) 50, 120, DIPEA, DMSO/H2O, 73%; e) 54, 120, DIPEA, DMSO/H2O, 46%; f) 120, DIPEA, 

DMSO/H2O, 2.8%. 
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Conclusion 

A major improvement in the synthesis of 2-butoxy-8-oxo-adenine analog 116 was achieved. In 

particular, the overall total yield for the conversion of 114 into 116, comprising electrophilic 

aromatic bromination, bromine hydrolysis, and introduction of a Boc group, was increased from 

4% to 29%. Furthermore, it was possible to regenerate unprotected adenine 106 during the 

introduction of the Boc group, by which the Boc-protection could be repeated, increasing the total 

overall yield further. The new synthetic procedures improved the workability of the synthetic 

route, in terms of work-up and purification, allowing for a significant increment of reaction scale. 

Which resulted in the isolation of 116 on a 10.5 mmol scale, making this building block readily 

available for further conjugations. Together with the improvement in solubility due to the 

introduction of the Boc-group, makes 116 a suitable building block for application in both solution 

and solid-phase peptide syntheses. The applicability of 116 was successfully demonstrated by the 

solution phase conjugation to three mannoside clusters forming three highly water-soluble bi-

functional conjugates of which their effectiveness to induce DC-maturation is under current 

evaluation.  
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Experimental 

General procedures: 

All reactions, purifications, and analyses were performed as described in the general procedures of 

Chapter 2. 

Butyl 4-methylbenzoate (125). 

p-Toluic acid (53.3 g, 390 mmol) was dissolved in dry n-BuOH (500 mL, 0.8 M). H2SO4 (1.9 

mL 35 mmol, 0.09 eq) was added and the mixture was refluxed for 5 hours, after which the 

reaction mixture was diluted with DCM (1 L) and washed with NaHCO3 (sat. aq.) twice. The organic layer 

was collected, dried over MgSO4, filtered and concentrated in vacuo. The mixture was co-evaporated with 

toluene (2x) yielding ester 125 as a clear oil (56.13 g, 370 mmol, 95%). TLC Rf 0.63 (Et2O/PE, 5/95, v/v); 

IR (neat, cm-1): 2957, 1713; 1H NMR (400 MHz, CDCl3, HH-COSY, HSQC): δ 7.93 (d, J = 8.3 Hz, 2H, H-

3/H-4), 7.20 (d, J = 8.0 Hz, 2H, H-3/H-4), 4.30 (t, J = 6.6 Hz, 2H, H-7), 2.37 (s, 3H, H-1), 1.80 - 1.66 (m, 

2H, H-8), 1.53 - 1.39 (m, 2H, H-9), 0.97 (t, J = 7.4 Hz, 3H, H-10); 13C NMR (100 MHz, CDCl3, HSQC): δ 

166.7 (C-6), 143.4 (C-5), 129.6, 129.0 (C-3, C-4), 127.8 (C-2), 64.6 (C-7), 30.8 (C-8), 21.6 (C-1), 19.3 (C-9), 

13.8 (C-10); HRMS [C12H16O2 +H]+: 193.12226 found, 193.12231 calculated. 

Butyl 4-(bromomethyl) benzoate (112). 

Compound 125 (54.45 g, 283 mmol) was dissolved in CCl4 (283 mL, 1.0 M) in a three liter flask 

equipped with a bump-trap and a large cooler loosely stoppered with a septum under nitrogen. 

NBS (86.5 g, 311 mmol, 1.1 eq) and α,α′-Azoisobutyronitrile (AIBN, 2.4 g, 14.6 mmol, 0.05 eq) were added 

and the mixture was carefully heated to 90 °C for six hours. After TLC analysis showed full conversion of 

the starting material the reaction mixture was concentrated in vacuo, diluted in EtOAc and washed with 

H2O. The organic layer was collected, dried over MgSO4, filtered and concentrated. Compound 112 was 

obtained after purification by silica gel chromatography (absorbed on Celite → 1/199 → 2/98, Et2O/PE, 

v/v) as a yellow oil (49.62 g, 183 mmol, 65%). TLC Rf 0.55 (Et2O/PE, 5/95, v/v); IR (neat, cm-1): 3197, 

2957, 1713; 1H NMR (400 MHz, CDCl3): δ 8.04 (d, J = 8.3 Hz, 2H, H-3/H-4), 7.48 (d, J = 8.3 Hz, 2H, H-

3/H-4), 4.52 (s, 2H, H-1), 4.35 (t, J = 6.6 Hz, 2H, H-7), 1.83 - 1.72 (m, 2H, H-8), 1.56 - 1.44 (m, 2H, H-9), 

1.01 (t, J = 7.4 Hz, 3H, H-10); 13C NMR (100 MHz, CDCl3): δ 166.2 (C-6), 142.6 (C-2), 130.6 (C-5), 130.1, 

129.1 (C-3, C-4), 65.1 (C-7), 32.4 (C-1), 30.9 (C-8), 19.4 (C-9), 13.9 (C-10); HRMS [C12H15BrO2 + H]+: 

271.11816 found, 271.03282 calculated. 

Butyl 4-((6-amino-2-chloro-9H-purin-9-yl)methyl)benzoate (113). 

To a suspension of 6-amino-2-chloropurine (107) (22.11 g, 130 mmol) in DMSO (300 mL, final 

0.3 M) at 0 °C, K2CO3 (54 g, 390 mmol, 3 eq) and a solution of compound 112 (42.3 g, 156 

mmol, 1.2 eq) in DMSO (133 mL) were added successively and the mixture was stirred for a 

day. After complete consumption of 107 the mixture was poured in H2O (3 L) and stored at 4 °C overnight. 

The suspension was filtered off, washed with H2O (3x) and the powder was dried in vacuo. Purification by 
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silica gel column chromatography (absorbed on Celite → 1/99 → 6/94, MeOH/DCM, v/v) yielded title 

compound 113 as an off-white solid (29.88 g, 83.0 mmol, 63%). TLC Rf 0.34 (MeOH/DCM, 5/95, v/v); 

IR (neat, cm-1): 3297, 3122, 2957, 1736, 1597; 1H NMR (400 MHz, CDCl3): δ 8.03 (d, J = 8.3 Hz, 2H, H-

12/H-13), 7.72 (s, 1H, H-8), 7.33 (d, J = 8.3 Hz, 2H, H-12/H-13), 6.06 (s, 2H, NH2), 5.39 (s, 2H, H-10), 

4.32 (t, J = 6.7 Hz, 2H, H-16), 1.80 - 1.71 (m, 2H, H-17), 1.51 - 1.42 (m, 2H, H-18), 0.97 (t, J = 7.4 Hz, 3H, 

H-19); 13C NMR (101 MHz, CDCl3): δ166.1, 156.3 (C-2, C-4, C-5, C-6, C-11, C-14), 140.7 (C-8), 140.0 (C-

2, C-4, C-5, C-6, C-11, C-14), 130.5, 127.8 (C-12, C-13), 65.2 (C-16), 47.1 (C-10), 30.9 (C-17), 19.4 (C-18), 

13.9 (C-19); HRMS [C17H18ClN5O2 + H]+: 360.12143 found, 360.12218 calculated. 

Butyl 4-((6-amino-2-butoxy-9H-purin-9-yl)methyl)benzoate (114). 

Compound 113 (29.88 g, 83.0 mmol) was dissolved in anhydrous n-BuOH (500 mL, 0.17 M) 

and cooled to 0 °C. To this solution NaH (33.2 g, 830 mmol, 10 eq) was added in small portions 

over three hours. The mixture was stirred at 120°C overnight, after which LC-MS analysis 

showed full conversion of the starting material into the product and a small portion hydrolyzed product. 

The mixture was cooled to 0°C and H2SO4 (53 mL, 1 mol, 1.2 eq, 98%) was added dropwise over three 

hours under vigorous stirring. After addition the reaction mixture was stirred at 80 °C for two hours. The 

mixture was diluted in DCM (1.5 L), washed with NaHCO3 (sat. aq., 3x) after which the organic layer was 

collected, dried over MgSO4, filtered and concentrated in vacuo. Remaining n-BuOH was removed by co-

evaporating with toluene (3x). Purification by silica gel column chromatography (applied in CHCl3 → 1/99 

→ 1/1, MeOH/DCM, v/v) followed by crystallization (CHCl3/toluene, 1/1, v/v) yielding title compound 

114 as an off-white solid (23.46 g, 59.0 mmol, 71%). TLC Rf 0.26 (MeOH/DCM, 5/95, v/v); IR (neat, cm-

1): 3282, 3110, 2955, 1736, 1597; 1H NMR (400 MHz, CDCl3): δ 8.01 (d, J = 8.3 Hz, 2H, H-12/H-13), 7.61 

(s, 1H, H-8), 7.34 (d, J = 8.3 Hz, 2H, H-12/H-13), 5.69 (s, 2H, NH2), 5.33 (s, 2H, H-10), 4.35 - 4.25 (m, 

4H, H-16, H-20), 1.83 - 1.69 (m, 4H, H-17, H-21), 1.56 - 1.40 (m, 4H, H-22, H-18), 0.97 (td, J = 7.4, 2.0 

Hz, 6H, H-19, H-23); 13C NMR (100 MHz, CDCl3): δ 166.2, 162.6, 156.6, 152.1, 140.8, 138.8, 130.6 (C-2, 

C-4, C-5, C-6, C-11, C-14), 130.3, 127.8 (C-12, C-13), 67.2, 65.1 (C-16, C-20), 46.7 (C-10), 31.2, 30.8 (C-17, 

C-21), 19.4, 19.4, 14.0, 13.9; HRMS [C21H27N5O3 + H]+: 398.21702 found, 398.21867 calculated. 

Butyl 4-((6-amino-8-bromo-2-butoxy-9H-purin-9-yl)methyl)benzoate (115). 

Compound 114 (16.93 g, 42.5 mmol) was dissolved in DCM (430 mL, 0.1 M), cooled to 0 °C 

and NaOAc (13.95 g, 85 mmol, 2 eq) and Br2 (10.9 mL, 212.5 mmol, 5 eq) were added 

successively. After one hour the reaction was quenched with Na2S2O3 (sat. aq.). The mixture 

was transferred to a separation funnel and the organic layer was washed with Na2S2O3 (sat. aq. 3x) and H2O 

(1x), dried over MgSO4, filtered and concentrated in vacuo. Purification by silica gel column chromatography 

(1/99, MeOH/DCM, v/v) yielded title compound 115 as an orange solid (19.0 g, 39.9 mmol, 94%). TLC 

Rf 0.52 (MeOH/DCM, 5/95, v/v); IR (neat, cm-1): 3320, 3196, 2957, 1722, 1652, 1589; 1H NMR (400 MHz, 

CDCl3): δ 8.00 (d, J = 8.3 Hz, 2H, H-12/13), 7.37 (d, J = 8.4 Hz, 2H, H-12/13), 5.89 (s, 2H, NH2), 5.35 (s, 

2H, H-10), 4.31 (td, J = 6.1, 0.9 Hz, 4H, H-16, H-20), 1.81 - 1.68 (m, 4H, H-17, H-21), 1.55 - 1.40 (m, 4H, 
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H-18, H-22), 0.96 (td, J = 7.4, 1.1 Hz, 6H, H-19, H-23); 13C NMR (100 MHz, CDCl3): δ 166.2, 162.4, 155.4, 

153.1,140.2, 130.5 (C-2, C-4, C-5, C-6, C-11, C-14, C-15), 130.2, 127.8, (C-12, C-13), 124.5 (C-8), 116.2 (C-

2, C-4, C-5, C-6, C-11, C-14, C-15), 67.4, 65.1 (C-16, C-20), 47.1 (C-10), 31.1, 30.9 (C-17, C-21), 19.4, 19.2 

(C-18, C-22), 14.0, 13.9 (C-19, C-23); HRMS [C21H26BrN5O3 + H]+: 478.12507 measured, 478.12740 

calculated. 

4-((6-Amino-2-butoxy-8-oxo-7,8-dihydro-9H-purin-9-yl)methyl)benzoic acid (106). 

Compound 115 (13.03 g, 27.3 mmol) was dissolved in MeOH (182 mL, 0.15 M) and NaOH 

(240 mL, 10 M, aq., 2.4 mol, 88 eq) was added dropwise after which the cream white 

suspension was refluxed for three days. After LC-MS analysis showed full conversion of the 

starting material the clear brown solution was cooled to 0 °C and quenched with HCl (420 mL, 6 M, aq., 

2.52 mol, 92 eq). The solution changed to a white suspension and the reaction volume was reduced by halve 

under reduced pressure. The solids were filtered off and washed with water and dried in vacuo yielding 

compound 106 as an orange solid (8.71 g, 24.4 mmol, 89%). LC-MS: Rt = 5.09 min (0 - 50% ACN; 13 min); 

IR (neat, cm-1): 3418, 3168, 1689; 1H NMR (400 MHz, DMSO-d6): δ 12.94 (s, 1H, CO2H), 10.93 (s, 1H, 

NH-7), 7.88 (d, J = 8.1 Hz, 2H, H-12/H-13), 7.36 (d, J = 8.1 Hz, 2H, H-12/H-13), 6.98 (s, 2H, NH2), 4.92 

(s, 2H, H-10), 4.11 (t, J = 6.6 Hz, 2H, H-16), 1.67 - 1.51 (m, 2H, H-17), 1.42 - 1.27 (m, 2H, H-18), 0.87 (t, 

J = 7.3 Hz, 3H, H-19); 13C NMR (101 MHz, DMSO-d6): δ 167.0, 160.0, 152.0, 148.9, 148.0, 142.2, 129.8 

(C-2, C-4, C-5, C-6, C-11, C-14, C-15), 129.6, 127.3 (C-13, C-12), 98.4 (C-2, C-4, C-5, C-6, C-11, C-14, C-

15), 65.9 (C-16), 42.1 (C-10), 30.6 (C-17), 18.7 (C-18), 13.7 (C-19); HRMS [C17H19N5O4 + H]+: 358.15009 

found, 358.15098 calculated. 

4-((6-amino-2-butoxy-7-(tert-butoxycarbonyl)-8-oxo-7,8-dihydro-9H-purin-9-yl) methyl) 

benzoic acid (116). 

Compound 106 (10.7 g, 30.0 mmol) was dissolved in a NaOH solution (1.0 M, 100 mL, 100 

mmol, 3.3 eq). To this clear dark-brown solution a solution of Boc2O in dioxane (1.2 M, 33 

mL, 39.6 mmol, 1.3 eq) was added dropwise over 10 minutes under vigorous stirring. After 

2.5 hours the reaction mixture was diluted with CHCl3 (200 mL) and acidified with HCl (1.0 M, 100 mL, 

100 mmol, 3.3 eq) dropwise over 20 minutes in which a clouded suspension formed. Separation of layers 

was achieved by spinning the mixture down at 4000 rpm for 5 min. The aqueous layer was removed and 

the solid and organic layer were combined and transferred to a soxhlet extractor. This solid was extracted 

with CHCl3 in the soxhlet apparatus until no clear color emerged from the sock (7 times). The organic layer 

was dried over MgSO4, filtered and concentrated. Purification by silica gel column chromatography (1/99 

→ 4/96, MeOH/DCM, v/v) yielded title compound 116 as an off-white solid. (4.83 g, 10.5 mmol, 35%) 

Starting material was recovered by rinsing the soxhlet with NaOH (1 M, aq.) followed by acidification of 

the aqueous layer (HCl, 1 M, aq.), results in starting material 106 as a solid that could be obtained by filtration 

(6.60 g, 18.5 mmol, 95% recovery). TLC Rf 0.27 (MeOH/DCM, 1/9, v/v); IR (neat, cm-1): 3431, 3163, 

2958, 1753, 1720, 1637; 1H NMR (400 MHz, DMSO-d6): δ 12.96 (s, 1H, CO2H), 7.90 (d, J = 8.0 Hz, 2H, 



CHAPTER 3 

75 

H-12/H-13), 7.41 (d, J = 8.0 Hz, 2H, H-12/H-13), 7.06 (s, 2H, NH2), 4.94 (s, 2H, H-10), 4.16 (t, J = 6.5 

Hz, 2H, H-16), 1.66 - 1.57 (m, 2H, H-17), 1.54 (s, 9H, t-Bu), 1.35 (dq, J = 14.7, 7.4 Hz, 2H, H-18), 0.89 (t, 

J = 7.3 Hz, 3H, H-19); 13C NMR (101 MHz, DMSO-d6): δ 167.0, 161.2, 150.5, 150.2, 149.6, 149.1, 141.1, 

130.0 (C-2, C-4, C-5, C-6, C-11, C-14, C-15), 129.6, 127.6 (C-13, C-12), 96.4 (C-2, C-4, C-5, C-6, C-11, C-

14, C-15), 85.2 (Cq t-Bu), 66.2 (C-16), 42.7 (C-10), 30.5 (C-17), 27.6 (t-Bu), 18.7 (C-18), 13.7 (C-19); HRMS 

[C22H27N5O6 + H]+: 458.2046 found, 458.2034 calculated.  

tert-butyl 6-amino-2-butoxy-9-(4-((13,13-dimethyl-11-oxo-3,6,9,12-tetraoxatetradecyl) 

carbamoyl) benzyl)-8-oxo-8,9-dihydro-7H-purine-7-carboxylate (118). 

Amine 117 (313.9 mg, 1.19 mmol 1.03 eq), Boc protected adenine 116 (528.3 mg, 1.15 mmol, 

1 eq) and HCTU (475 mg, 1.15 mmol, 1 eq) were combined and dissolved in DCM/DMF 

(4 mL, 0.28 M, 3/1, v/v) to which DIPEA (400 µL, 2.30 mmol, 2eq) was added dropwise. 

After two hours the mixture was diluted with CHCl3 washed with HCl (1 M, aq., 1x) dried 

over MgSO4 (s), filtered, concentrated in vacuo and purified by silica gel column chromatography (1/19 → 

3/22, acetone/DCM, v/v) to yield title compound 118 as a yellow oil (678 mg, 0.96 mmol, 84%). TLC Rf 

0.65 (MeOH/DCM, 1/49, v/v); 1H NMR (500 MHz, CDCl3) δ 8.01 (s, 1H), 7.75 (d, J = 8.3 Hz, 2H, H-

12/H-13), 7.47 (d, J = 8.2 Hz, 2H, H-12/H-13), 7.00 (s, 2H, NH2), 5.01 (s, 2H, H-10), 4.27 (t, J = 6.7 Hz, 

2H, H-16), 3.99 (s, 2H, O-CH2-CO), 3.69 - 3.62 (m, 12H, CH2 PEG), 1.77 - 1.68 (m, 2H, H-17), 1.62 (s, 

9H, t-Bu), 1.47 - 1.39 (m, 11H, t-Bu, H-18), 0.95 (t, J = 7.4 Hz, 3H, H-19); 13C NMR (126 MHz, CDCl3) δ 

170.2, 167.9, 161.9 (C=O), 150.9, 150.3, 150.1, 149.6, 139.2, 134.0, 128.9 (Cq), 128.7, 127.6 (C-12/C-13), 

125.9, 120.3, 109.7, 97.2 (Cq), 86.4 (Cq t-Bu), 82.5, 70.8, 70.2, 70.1, 70.0, 69.9(CH2 PEG), 68.7 (O-CH2-CO), 

67.5 (C-16), 55.6 (Cq), 43.4 (C-10), 31.0 (C-17), 28.1, 28.1 (t-Bu), 18.6 (C-18), 13.9 (C-19); HRMS 

[C34H50N6O10 + H]+: 703.36517 found, 703.36612 calculated. 

 

1-(4-((6-amino-2-butoxy-8-oxo-7,8-dihydro-9H-purin-9-yl)methyl)phenyl)-1-oxo-5,8,11-

trioxa-2-azatridecan-13-oic acid (119). 

Butyl ester 118 (170.7 mg, 0.243 mmol, 1 eq) was dissolved in toluene (0.4 mL, 0.5 M) and 

H3PO4 (0.1 mL, 85-90% wt) was added. After LCMS analysis indicated complete conversion 

the mixture was concentrated in vacuo, dissolved in a solution of NH4OAc (0.033 M) in a 

mixture of AcOH/ACN/t-BuOH/H2O (3/1/1/4, v/v/v/v, 6 mL) and purified via RP-

HPLC (linear gradient 25 - 40% B in A, 10 min, Gemini-NX 5µm C18, 110 Å, 250 x 10.0 mm, 5 mL/min) 

to yield title compound 119 as a white powder after lyophilization (57.54 mg, 105 µmol, 43%). LC-MS: Rt 

= 4.80 min (10 - 90% ACN; 13 min); 1H NMR (400 MHz, DMSO) δ 10.17 (s, 1H, COOH), 8.50 (t, J = 5.6 

Hz, 1H, NH), 7.79 (d, J = 8.3 Hz, 2H, H-12/H-13), 7.34 (d, J = 8.3 Hz, 2H, H-12/H-13), 6.56 (s, 2H, 

NH2), 4.90 (s, 2H, H-10), 4.12 (t, J = 6.6 Hz, 2H, H-16), 4.00 (s, 2H, O-CH2-CO), 3.57 - 3.48 (m, 11H, 

(CO)NH, CH2 PEG), 3.39 (q, J = 5.8 Hz, 2H, CH2-NH), 1.65 - 1.56 (m, 2H, H-17), 1.35 (dq, J = 14.7, 7.4 
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Hz, 2H, H-18), 0.89 (t, J = 7.4 Hz, 3H, H-19); 13C NMR (101 MHz, DMSO) δ 171.7, 166.0, 160.1 (C=O), 

152.3, 149.1, 147.8, 140.2, 133.5 (Cq), 127.4, 127.2 (C-12/C-13), 98.3 (Cq), 69.8, 69.7, 69.7, 69.6, 68.9 (CH2 

PEG), 67.6 (O-CH2-CO), 65.9 (C-16), 42.1 (C-10), 39.2 (CH2-NH), 30.6 (C-17), 18.8 (C-18), 13.7 (C-19); 

HRMS [C25H34N6O8 + H]+: 547.25105 found, 547.25109 calculated. 

perfluorophenyl 1-(4-((6-amino-2-butoxy-8-oxo-7,8-dihydro-9H-purin-9-yl)methyl)phenyl)-1-

oxo-5,8,11-trioxa-2-azatridecan-13-oate (120). 

Carboxylic acid 119 (11.04 mg, 20.1 µmol, 1 eq) was dissolved in a solution of 

pentafluorophenol (120 µL, 0.34 M, 40.8 µmol, 2 eq) and N,N′-Diisopropylcarbodiimide 

(3.42 µL, 22.1 µmol, 1.1 eq) was added. After two hours, this solution was used without 

further workup. 

 

Ac-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Gly-Lys[1-(4-((6-amino-2-

butoxy-8-oxo-7,8-dihydro-9H-purin-9-yl)methyl)phenyl)-1-oxo-5,8,11-trioxa-2-azatridecan-

13-oic amide]-NH2 (121). 

To a solution of 50 in water (250uL, 4.0 mM, 1.0 µmol, 1 eq) a stock solution of 

Pfp ester 120 (30 µL, 0.17 M, 5.0 µmol, 5 eq) and DIPEA (0.5 µL, 3 µmol, 3 eq) 

were added. The mixture was further diluted with DMSO (250 µL) until the 

mixture was a homogenous solution, and shaken overnight. After purification via 

RP-HPLC (linear gradient 7 - 55% B in A, 10 min, Gemini-NX 5µm C18, 110 Å, 

250 x 10.0 mm, 5 mL/min) compound 121 was isolated as a white powder after 

lyophilization (2.19 mg, 727 nmol, 73%). LC-MS: Rt = 3.68 min (10 - 90% ACN; 13 min); 1H NMR (500 

MHz, D2O) δ 8.01 - 7.91 (m, 6H, trzl), 7.71 (d, J = 8.3 Hz, 2H, H-12*/H-13*), 7.40 (d, J = 8.2 Hz, 2H, H-

12*/H-13*), 5.01 (s, 2H, H-10*), 4.92 (s, 6H, H-1), 4.77 - 4.70 (m, 6H, O-CHH-trzl), 4.65 - 4.56 (m, 6H, 

O-CHH-trzl), 4.37 - 4.25 (m, 12H, CH2-trzl), 4.24 - 4.15 (m, 8H, H-16*, CH (K)), 4.13 - 4.08 (m, 1H, CH 

(K)), 3.93 - 3.50 (m, 52H, H-2, H-3, H-4, H-5, H-6, CH2 (G), CH2 (PEG, 7x)), 3.04 - 2.99 (m, 2H, CH2-

NH(CO) (K)), 1.97 (s, 3H, Ac), 1.87 - 1.62 (m, 24H, CH2 (K)), 1.61 - 1.53 (m, 2H, H-17*), 1.37 - 1.18 (m, 

20H, H-18*, CH2 (K)), 0.82 (t, J = 7.4 Hz, 3H, H-19*); HRMS [C125H196N34O52 + 3H]3+: 1003.13252 found, 

1003.13283 calculated. 
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Ac-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Gly-Lys(1-(4-((6-amino-2-

butoxy-8-oxo-7,8-dihydro-9H-purin-9-yl)methyl)phenyl)-1-oxo-5,8,11-trioxa-2-azatridecan-

13-oic amide)-NH2 (122). 

To a solution of 54 in water (250uL, 3.74 mM, 0.935 µmol, 1 eq) a stock 

solution of Pfp ester 120 (30 µL, 0.17 M, 5.0 µmol, 5.3 eq) and DIPEA (0.5 

µL, 3 µmol, 3.2 eq) were added. The mixture was further diluted with DMSO 

(250 µL) until the mixture was a homogenous solution, and shaken 

overnight. After purification via RP-HPLC (linear gradient 7 - 55% B in A, 

10 min, Gemini-NX 5µm C18, 110 Å, 250 x 10.0 mm, 5 mL/min) 

compound 122 was isolated as a white powder after lyophilization (2.15 mg, 429 nmol, 46%). LC-MS: Rt = 

3.33 min (10 - 90% ACN; 13 min); 1H NMR (500 MHz, D2O) δ 8.02 - 7.92 (m, 6H, trzl), 7.72 (d, J = 8.1 

Hz, 2H, H-12*/H-13*), 7.40 (d, J = 8.2 Hz, 2H, H-12*/H-13*), 5.06 (s, 6H, H-1/H-1′/H-1′′), 5.02 (s, 2H, 

H-10*), 4.90 (s, 6H), 4.88 (s, 6H, H-1/H-1′/H-1′′), 4.69 - 4.59 (m, 6H, O-CHH-trzl), 4.42 - 4.27 (m, 12H, 

CH2-trzl), 4.27 - 4.16 (m, 8H, H-16*, CH (K)), 4.14 (dd, J = 5.5, 1.8 Hz, 1H, CH (K)), 4.10 - 3.50 (m, 124H, 

H-2, H-2′, H-2′′, H-3, H-3′, H-3′′, H-4, H-4′, H-4′′, H-5, H-5′, H-5′′, H-6, H-6′, H-6′′, CH2 (G), CH2 (PEG, 

7x)), 3.02 (d, J = 6.8 Hz, 2H, CH2-NH(CO) (K)), 1.98 (s, 3H, Ac), 1.91 - 1.62 (m, 24H CH2 (K)), 1.62 - 

1.52 (m, 2H, H-17*), 1.42 - 1.16 (m, 20H, H-18*, CH2 (K)), 0.83 (t, J = 7.4 Hz, 3H, H-19*); HRMS 

[C197H316N34O112 + 4H]4+: 1239.01239 found, 1239.01069 calculated. 

 

Ac-Lys(M6P)-Lys(M6P)-Lys(M6P)-Lys(M6P)-Lys(M6P)-Lys(M6P)-Gly-Lys(1-(4-((6-amino-2-

butoxy-8-oxo-7,8-dihydro-9H-purin-9-yl)methyl)phenyl)-1-oxo-5,8,11-trioxa-2-azatridecan-

13-oic amide)-NH2 (124). 

Mannose-6-phospate clusters 12330 (2.45 mg, 8.3 µmol, 1 eq) was dissolved in a 

stock solution of Pfp ester 120 (90 µL, 0.17 M, 15.0 µmol, 1.9 eq) and DIPEA 

(2 µL, 12 µmol, 1.5 eq) was added. After overnight shaking the mixture was 

purified via gel filtration (Toyopearl HW-40S, 1.6x60 cm, 150 mM NH4OAc, 

20% ACN, 1mL/min) (25 - 37 mL) followed by RP-HPLC (linear gradient 5 - 

55% B in A, 10 min, Gemini-NX 5µm C18, 110 Å, 250 x 10.0 mm, 5 mL/min) 

to isolate compound 124 as a white powder after lyophilization (0.80 mg, 231 nmol, 2.8%). LC-MS: Rt = 

5.68 min (0 - 50% ACN; 13 min); HRMS [C131H208N34O64P66- + 4NH4+ +2 Na+ + 3H+]3+: 1197.05295 

found, 1197.13554 calculated. 
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Chapter 4 

Synthesis of trifunctional mannosylated 
peptide antigen conjugates targeting DC-
SIGN and TLR7ab 

Introduction 12 

The last decades, immunotherapies have proven to be powerful in the treatment of cancers. For 

instance, inhibition of immune regulatory checkpoints can result in the restoration of immune 

responses, which has led to the successful treatment of various tumors where traditional cytotoxic 

therapies failed.3,4 To be effective, immunotherapies have to elicit or sustain a strong and tumor-

specific T cell response.5,6 A possible method to achieve this is by the use of vaccine strategies, In 

which tumor-associated antigens (TAAs) are combined with an adjuvant to generate a specific 

immune response against these antigens. Adjuvants can be derived from pathogen-associated 

molecular patterns (PAMPs) that induce immune activation via binding to pattern recognition 

receptors (PRRs), thereby stimulating antigen presenting cells (APCs) to mature and initiate an 

immune response. Maturation results in the secretion of inflammatory cytokines and upregulation 

 
aPart of this work is published in Hogervorst & Li et al. 20191 

bPart of this work has been submitted by Hogervorst & Li et al. 20202 
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of antigen processing and presentation, which are a necessity for an adequate adaptive immune 

response.7 Target antigens can be common TAAs, neoantigens, neo open reading frame peptides8 

or a combination of these, allowing to combat each cancer with a personalized treatment.9 One 

possible strategy to obtain such vaccines is to generate them via a synthetic approach. An advantage 

of a synthetic approach is the fact that they can be obtained as well-defined molecular structures, 

reducing the potential risk of raising autoimmune responses against self-antigens, a possible side 

effect when antigens are isolated from cancer cells. In addition, this strategy allows for the covalent 

attachment of adjuvants and antigens, an approach which has previously been successfully 

demonstrated with ligands for the Toll-Like Receptor (TLR) family,10–14 the NOD-like receptor 

(NLR) family15 or combinations thereof.16–19 It has become clear that the covalent attachment of a 

TLR agonist to an antigen can enhance antigen presentation while DC maturation via the TLR-

ligands is maintained.20,21 Another class of PRRs that is often targeted are the C-type lectin receptors 

(CLRs) as described in Chapter 1 and 2. For example, DC-SIGN has previously been successfully 

exploited to deliver cancer antigens to DCs by enhancing uptake and antigen presentation, 

generating more effective anti-cancer immunotherapies.16,17,22–24 Furthermore, it has been shown 

that the simultaneous targeting of CLRs and TLRs can lead to a synergistic more powerful immune 

response. For example, simultaneous triggering of DC-SIGN and TLR4 strengthened and 

prolonged TLR-signaling leading to enhanced pro-inflammatory cytokine production in DCs.25,26 

Based on these results, it is hypothesized that a peptide-antigen conjugate, equipped with both a 

mannose-based DC-SIGN targeting glycan and a TLR-ligand, could lead to synergy in antigen 

presentation and improve specific T cell activation.  

This Chapter describes the design and synthesis of trifunctional conjugates composed of CLR-

targeting clusters, a synthetic long peptide, and a TLR7-agonist (Figure 1). Targeting of DC-SIGN 

will be achieved with the mannoside clusters, as described in Chapter 2. As a model antigen, the 

effector T cell epitope gp100280-288 and helper T cell epitope gp10044-59 are combined to form a 

synthetic long peptide (SLP). The addition of a helper T cell epitope can result in a more durable 

immune response when compared with a stand-alone effector T cell epitope and is included for 

future assays.27 As agonist of endosomal TLR7 the 8-oxo-adenosine analog, described in Chapter 

3, is selected.28–30 The hypothesis is, that upon binding and internalization via DC-SIGN, these 

conjugates are trafficked towards the endosomes where they can activate TLR7. The benefit of 

using an endosomal receptor, instead of a PRRs residing on the cell surface, would be the 

prevention of competition between the binding of DC-SIGN and other surface PRRs.  
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Figure 1: The global structure of trifunctional mannosylated conjugates. 

 

 

Results and Discussion 

To determine the effect of the mannoside clusters on the activity of the antigen conjugates, control 

peptides were synthesized lacking these clusters (Scheme 1). These peptides were obtained using a 

Fmoc-SPPS strategy starting from Tentagel® S-RAM amide resin. A monomethoxy trityl (Mmt) 

protected lysine was used as the first amino acid to introduce an orthogonal side-chain protecting 

group that could later be selectively removed for further functionalization. The immobilized lysine 

was elongated using standard Fmoc protected amino acids generating the gp100280-288 sequence 

(YLEPGPVTA) for antigen cross-presentation to CD8+ T cells connected to the N-terminus of 

the gp10044-59 sequence for antigen presentation to CD4+ T cells (NRQLYPEWTEAQRLD). The 

presence of both CD8+ and CD4+ epitopes in the same antigen-conjugate platform will allow the 

study of both cross-presentation and presentation, which in combination with different adjuvants 

can help to determine the optimal adjuvant combinations on the same conjugate platform. The 

epitope was extended both at the C- and the N-terminus with four extra amino acids, acting as 

spacers (Figure 1). To prevent potential oxidation, Cys60 was replaced by its isosteric analog α-

aminobutyric acid, a modification that should have minimal impact on biological processing.31 

Acetylation of the N-terminus yielded immobilized peptide 126. For further functionalization of 

this peptide, the Mmt group on the C-terminal lysine was removed selectively, after which the 

lysine was elongated with spacer moiety 127 and TLR7 ligand 116 (see Chapter 3) to give 

immobilized TLR7 conjugate 128. Both 126 and 128 were released from resin by treatment with a 

cleavage cocktail (TFA/TIS/H2O, 190/5/5, v/v/v) to generate gp100 peptide 129 and 

bifunctional conjugate 130, containing the gp100 peptide and the TLR7 agonist.29 To validate that 



Synthesis of trifunctional conjugates targeting DC-SIGN and TLR7 

84 

the replacement of cysteine by α-aminobutyric acid does not hamper the antigen presentation 

capacity, bifunctional conjugate 133 was synthesized via similar chemistry as its isosteric isomer 130 

(Scheme 1). Both TLR-antigen conjugates 130 and 133 were tested for their antigen cross-

presentation ability. In short, five-day-old monocyte-derived dendritic cells (moDCs) were 

incubated with these conjugates, after which the moDCs were washed and co-cultured with a CD8+ 

cell clone that is specific for the gp100280-288 MHC-I epitope. Interferon γ cytokine secretion was 

measured by sandwich ELISA as a measure for T cell activation. Quantification of antigen 

presentation was achieved by normalization of the interferon γ cytokine production to secretion 

levels induced by short gp100 peptide (gp100280-288 set to 100%). Both 130 and 133 resulted in 

similar levels of antigen presentation, indicating that the replacement of cysteine in the epitope 

indeed did not hamper the presentation capacity (See Figure 2). 

 

Figure 2: Comparison of the antigen cross-presenting ability of 130 and 133. 

 

The gp100(Cys) (133) was compared to the gp100 methyl analog (130). No significant difference was seen between the two peptides in 

presence of TLR7 ligand. One representative donor out of six is shown. 
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Scheme 1: Synthesis of control gp100 peptide and control gp100-TLR7 conjugates. 
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Reagents and conditions: a) i. Fmoc-SPPS (HCTU, DIPEA, DMF); ii. Ac2O, DIPEA, DMF; b) i. TFA, DCM; ii. Fmoc-SPPS 

(127 or 116, HCTU, DIPEA, DMF); c) TFA, TIS, H2O,(phenol) (129: 9.1% over 33 couplings (93% per step); 130: 1.78% over 

35 couplings (89% per step);133: 0.23% over 35 couplings (84% per step)). 
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Two different strategies for the incorporation of the mannose clusters in mannosylated-gp100-

TLR7 conjugates were considered (Scheme 2). Route A comprises the synthesis of a gp100-TLR7 

conjugate provided with six azides (n = 6) followed by copper(I)-catalyzed alkyne-azide 

cycloadditions (CuAACs) with propargylated mannosides. The modular approach of route B 

applies the pre-assembled mannoside clusters described in Chapter 2 for a single CuAAC with a 

gp100-TLR7 conjugate provided with a single azide (Route B, Scheme 2). Both routes allow for 

the introduction of different ligands in the final stage of assembly, enabling screening of different 

PAMP combinations on the same gp100 platform. Route A would be most straightforward as six 

simultaneous cycloadditions and one purification are required. However, incomplete CuAACs may 

result in a complicated product mixture necessitating a challenging purification. Although route B 

is more lengthy, the availability of the well-defined mannoside clusters (see Chapter 2) and the 

introduction of different PAMPs via a single CuAAC could make this approach overall more 

effective. Based on these considerations, both strategies were evaluated. 

The azido-gp100-peptides were obtained using a similar Fmoc-SPPS strategy as for the control 

peptides described above. Both routes started with immobilized peptide 134, that was further 

elongated on the N-terminal valine with either one (135) or six azidolysines (136, Scheme 3). 

Treatment of resin 136, bearing six azides, with the cleavage cocktail (described above) generated 

a crude mixture of poor quality and attempts to isolate the desired peptide in sufficient amount 

failed. When resin 135, bearing only one azide, was treated with the same cocktail, the quality of 

the crude peptide was somewhat better but still too poor for large scale isolation of 137. 

Optimization of the synthesis of peptide 137 was achieved by the use of double couplings at an 

elevated temperature. The quality was further improved by the addition of phenol to the cleavage 

cocktail as an additional scavenger. Together, this allowed for the isolation of 137 in sufficient 

quantities after purification. En route to trifunctional mannosylated conjugates, the monomethoxy 

trityl (Mmt) on the C-terminal lysine of immobilized peptide 135 was selectively removed, followed 

by elongation of this position with a spacer moiety (127) and the TLR7 ligand 116 (as described in 

Scheme 1) to provide resin 138 bearing the TLR7 agonist on the C-terminus. Release of the peptide-

TLR7 conjugate from the resin and concomitant global deprotection of the side chains with the 

optimized scavenger cocktail resulted in the azido-gp100-TLR7 conjugate 139. Because of the 

successful assembly of the TLR7-functionalized antigens with the conjugation ready azide handle, 

this route was further explored and the first route, with six azidolysines incorporated in the 

antigenic peptide, was abandoned.  

The modular approach of route B requires the introduction of an alkyne handle on the mannoside 

clusters, the synthesis of which is described in Chapter 2. Treatment of mono- and hexa-valent 
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mannoside clusters 32, 33, 35, 36, and 50-54 with pent-4-ynoic acid-N-hydroxysuccinimide (NHS) 

ester (140) and purification via gel filtration yielded alkyne clusters 141-149, suitable for ensuing 

CuAAC (Scheme 4). CuAAC of the monovalent monomannoside cluster 141 with either azido-

gp100 137 or azido-gp100-TLR7 conjugate 139 yielded the bi-functional (containing both CLR 

ligand and gp100 antigen) conjugate 150 and the tri-functional (containing both CLR ligand, gp100 

antigen, and TLR ligand) conjugate 151 (Scheme 4). Applying the same procedure to hexavalent 

monomannosides cluster 145 gave comparable results, resulting in bifunctional and trifunctional 

conjugates 152 and 153, respectively. The four conjugates obtained in this manner could be purified 

and were isolated in sufficient yield, proving the feasibility of route B. This result, in combination 

with the difficulties to obtain a gp100 peptide bearing six azides (i.e. 136), the availability of the 

mannoside clusters described in Chapter 2, the ease of alkyne introduction on these clusters, and 

the possibility to introduce other ligands in a single ligation, made the modular route B preferred 

over direct route A (Scheme 2). The compound library was finalized by the assembly of the 

remaining seven mannoside clusters (142-144 and 146-149) with 137 and 139 to yield bi- and tri-

functional conjugates 154-167 (Scheme 4).  
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Scheme 2: Retrosynthesis of route A and B towards (hexavalent) mannosylated gp100 

conjugates. 
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Scheme 3: Synthesis of azido-gp100 and azido-gp100-TLR7 conjugates. 

 

Reagents and conditions: a) Fmoc-SPPS (HCTU, DIPEA, DMF); b) Ac2O, DIPEA, DMF; c) i. TFA, DCM; ii. Fmoc-SPPS 

(127 or 116, HCTU, DIPEA, DMF); d) TFA, TIS, H2O, (phenol) (137: 8.33% over 34 couplings (93% per step); 139: 5.09% 

over 36 couplings (92% per step)). 

 

Finally these conjugates with either the monovalent clusters bearing the monomannoside (150 & 

151), α1,2-di-mannoside (154 & 157), α1,6-di-mannoside (155 & 158), or α1,3-α1,6-tri-mannoside 

(156 & 159), or the hexavalent clusters with the monomannosides (152 & 153), α1,2-di-mannosides 

(160 & 164), α1,3-di-mannosides (161 & 165), α1,6-di-mannosides (162 & 166), or α1,3-α1,6-tri-

mannosides (163 & 167) were evaluated for their capacity to induce DC-maturation and present 

the model gp100 antigen. Since the number of available moDCs was limited, only the hexavalent 

series (160-167) have been tested. The mono mannoside clusters 150-153 have been evaluated in 

comparison to their C-mannoside analogs as described in Chapter 5.  



Synthesis of trifunctional conjugates targeting DC-SIGN and TLR7 

90 

Scheme 4: Assembly of mannosylated – (TLR7) – bi- and tri-functional gp100 conjugates. 

 

Reagents and conditions: a) 140, DIPEA, DMSO (141: 62%; 142: 71%; 143: 71%; 144: 18%; 145: 66%; 146: 96%; 147: 95%; 

148: 95%; 149: 94%); b) 137, CuI, THPTA, DIPEA, H2O, DMSO (150: 52%; 152: 34%; 154: 91%; 155: 90%; 156: 88%; 

160: 39%; 161: 62%; 162: 68%; 163: 45%;); c) 139, CuI, THPTA, DIPEA, H2O, DMSO (151: 34%; 153: 29%; 157: 21%; 

158: 19%; 159: 32%; 164: 24%; 165: 41%; 166: 18%; 167: 27%). 
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The ability to mature moDCs was quantified by measuring the expression of CD83 and CD86 after 

overnight stimulation with a selection of conjugates (Figure 3A and 3B). As expected, 129, the 

gp100 peptide without any adjuvant, did not induce maturation. All bi- and tri-functional 

conjugates induce the expression of both maturation markers. Generally, the conjugates bearing 

the TLR7 agonist led to enhanced maturation. These results show that the presence of either the 

TLR7 ligand or the mannoside clusters in conjugates does not hamper the maturation abilities of 

the ligands. Inclusion of the TLR agonist improves the maturation capacity of the conjugates most 

significantly. Besides maturation, a selection of the prepared conjugates was tested for their antigen 

cross-presentation ability using gp100 specific T cell clones as described above for 130 and 133 (see 

Figure 3C). Although significant donor variability was observed, almost all conjugates showed 

improvements when mannoside clusters were attached (Figure 3C). Unexpectedly, conjugate 164, 

bearing both the TLR7 agonist and an α1,2-di-mannoside cluster, did not enhance antigen 

presentation. Whether this outcome is due to differences in processing, signaling, uptake, or 

conjugate stability is unclear and needs additional experiments. Overall, conjugate 167 

demonstrated the most consistent and strongest response of the tested conjugates. This conjugate, 

bearing both TLR7 ligand and the tri-mannoside cluster, also effectively induced maturation, which 

would make it a good candidate for further development. Except for 164, all conjugates that 

contained both the mannoside clusters and TLR agonist, induced more maturation and higher 

levels of antigen cross-presentation when compared with their counterpart only bearing the 

mannoside cluster. This result indicates that the combination of two different adjuvants in a single 

adjuvant-antigen conjugate can further improve the effectiveness of antigen conjugates and could 

serve as a starting point for further development of antigen conjugates bearing multiple 

functionalities. 
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Figure 3: Conjugates 160-167 were compared with conjugates 129 and 130 for their ability to 

induce maturation (A and B) and their capacity to cross-present antigen (C).  

 

A, B) Expression of the DC maturation marker CD83 and CD86 upon overnight stimulation with the trifunctional conjugates is 

measured by flow cytometry. LPS stimulation (10 ng/mL) is used as positive control; C) Antigen presentation by the moDCs was 

determined by IFNγ release of the activated T cells, after stimulation with conjugates (20 µM, 30 min).  
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Conclusion 

The synthesis of conjugates that combine a model epitope with both TLR7 and DC-SIGN ligands 

has been reported. All conjugates are assembled on the same gp100 platform, which includes both 

a CD4+ and CD8+ epitope. The gp100 peptides were assembled using automated SPPS. C-terminal 

functionalization of the gp100 epitope with the TLR7 agonist, described in Chapter 3, could be 

achieved on resin via selective removal of the Mmt group on lysine. The assembly of azido 

functionalized gp100 peptides of sufficient quality and quantity required double couplings at 

elevated temperature and the presence of phenol in the cleavage cocktail. For the introduction of 

mannoside clusters, the simultaneous CuAACs of multiple propargylmannosides with the azides in 

the gp100 platform and a single CuAAC of alkyne functionalized pre-assembled clusters with one 

azide in the gp100 were planned. However, isolation of gp100 peptides bearing six azides in 

sufficient quantities proved difficult. Because the alkyne functionalized mannoside clusters were 

readily obtained and the CuAAC of these alkyne functionalized clusters to the gp100 platform was 

successful, the former route was abandoned and the latter was used to assemble a set of 

trifunctional conjugates. A selection of these conjugates was tested for their ability to induce DC 

maturation and their capacity to induce antigen cross-presentation. Although significant variation 

between DC-donors was observed, the results have shown that the combination of a TLR7 and 

DC-SIGN ligand improves the effectiveness of the antigen conjugates. Additional experiments 

with the monovalent clusters will show whether the hexavalent presentation of the mannosides is 

a requirement for the activity of the conjugates. Overall, the conjugate that combines the TLR7 

agonist with the hexavalent tri-mannoside cluster has demonstrated the most potential, inducing 

strong maturation and consistent levels of antigen-presentation, and could serve as a starting point 

for further conjugate development.  

With the here described gp100 platform and optimized synthetic protocols, further conjugates can 

be designed bearing different combinations of adjuvants that could target different PRRs such as 

other members of the TLR-, NLR- or CLR-families. Adjuvants with carboxylic acid handles could 

be introduced on either the C-terminal lysine or N-terminus on resin. The azide handle could be 

used for either addition of other alkyne functionalized adjuvants or be used in conjunction with 

“clickable” reporter groups to study the fate of these conjugates during the processing from uptake 

to presentation. The presence of the CD4+ epitope in the peptide would allow determining the 

level of antigen presentation of helper T cell epitopes. The trifunctional conjugates described in 

this Chapter and novel conjugates based on the methods described in combination with the current 

cross-presentation assay could be used to determine the best combination of adjuvants to obtain 

the most durable anti-cancer response with a single vaccine modality.  
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Experimental 

General procedures: 

All reactions, purifications, and analyses were performed as described in the general procedures of 

Chapter 2. 

General procedure for automated solid-phase synthesis of gp100 peptides: 

The solid-phase peptide synthesis was performed on a TRIBUTE® Peptide Synthesizer (Gyros 

Protein Technologies AB, Arizona, USA) applying Fmoc based protocol starting with Tentagel® 

S-RAM resin (~0.22 mmol/g) on a 100-250 µmol scale using established synthetic protocols.32 The 

consecutive steps for synthesis on 250 µmol scalea performed in each cycle were: 

1) DMF wash (1x) followed by nitrogen purge; 2) Deprotection of the Fmoc-group with 20% piperidine in 

DMF (8 mL)(3 x 3 min at 50 °C); 3) DMF wash (3x) followed by nitrogen purge; 4.1) Coupling of the 

appropriate amino acidb in four-fold excess (unless stated otherwise);c,d 4.2) Step 4.1 was repeated 5) DMF 

wash (3x) followed by nitrogen purge; 6) capping with a solution of Ac2O/DMF/DIPEA (8 mL, 10/88/2, 

v/v/v) for 2 min; 7) DMF wash (2x).  

After the complete sequence the resin was washed with DMF (3x), DCM (3x), Et2O (3x), followed by 

nitrogen purge before treatment with the cleavage cocktail. 

Val-Thr(tBu)-His(Trt)-Thr(tBu)-Tyr(tBu)-Leu-Glu(OtBu)-Pro-Gly-Pro-Val-Thr(tBu)-Ala-Asn(Trt)-

Arg(Pbf)-Gln(Trt)-Leu-Tyr(tBu)-Pro-Glu(OtBu)-Trp(Boc)-Thr(tBu)-Glu(OtBu)-Ala-Gln(Trt)-

Arg(Pbf)-Leu-Asp(OtBu)-αAbu-Trp(Boc)-Arg(Pbf)-Gly-Lys(Mmt)-Tentagel® S-Rink amide (134). 

Peptide synthesis was performed on a 250 µmol scale using the general procedure. Resulting in 

functionalized resin 134, which was used in further reactions.  

 
a All amounts are scaled-down in equimolar proportions for smaller scale. 

b The amino acids applied in this synthesis were: Fmoc-Lys(Mmt)-OH, Fmoc-Gly-OH, Fmoc-Arg(Pbf)-OH, Fmoc-
Trp(Boc)-OH, Fmoc-L-α-aminobutyric acid, Fmoc-Asp(OtBu)-OHd, Fmoc-Leu-OHd, Fmoc-Gln(Trt)-OH, Fmoc-
Ala-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Pro-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Asn(Trt)-OH, 
Fmoc-Val-OH, Fmoc-His(Trt)-OH, Fmoc-Cys(Trt)-OH and Fmoc-Lys(N3)-OH (IRIS biotech). Fmoc-AEEA-OH 
(Fmoc-8-amino-3,6-dioxaoctanoic acid)(Carbosynth) and 116. 

c Generally, the Fmoc amino acid is dissolved in a HCTU solution in DMF (5.00 mL ,0.20 M, 1.0 mmol, 4 eq) The 
resulting solution was transferred to the reaction vessel followed by a DIPEA solution in DMF (4.00 mL, 0.50 M, 2.0 
mmol, 8 eq) to initiate the coupling. The reaction vessel was shaken for 30 min at 50 °C (unless stated otherwise). 

d Aspartic acid and the adjacent Leucine and Arginine were introduced at with one hour reaction time at room 
temperature. Fmoc removal was achieved with piperide/DMF in 3 x 5 min at room temperature.35 
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Ac-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-

Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-Lys-NH2 (129). 

Resin 134 (theoretical loading of 25 µmol), was capped with Ac2O/DMF/DIPEA (4 mL, 10/88/2, purge 

to yield Ac-Val-Thr(tBu)-His(Trt)-Thr(tBu)-Tyr(tBu)-Leu-Glu(OtBu)-Pro-Gly-Pro-Val-Thr(tBu)-Ala-

Asn(Trt)-Arg(Pbf)-Gln(Trt)-Leu-Tyr(tBu)-Pro-Glu(OtBu)-Trp(Boc)-Thr(tBu)-Glu(OtBu)-Ala-Gln(Trt)-

Arg(Pbf)-Leu-Asp(OtBu)-αAbu-Trp(Boc)-Arg(Pbf)-Gly-Lys(Mmt)-Tentagel® S-RAM. The resin was 

transferred to a flask and treated for 120 minutes with a cleavage cocktail (10 mL, TFA/TIS/H2O, 190/5/5, 

v/v/v). The resin was filtered off and washed with neat TFA (3 x 1 mL). The filtrate was concentrated and 

transferred dropwise into a cold mixture of Et2O/pentane (45 mL, 5/4, v/v). This solution was centrifuged 

(10 minutes, 5000 rpm) after which the supernatant was removed and the precipitate was dried under 

nitrogen flow and dissolved (4 mL, DMF/H2O, 1/3, v/v). Purification via RP-HPLC (linear-gradient 19.5 

- 29.5 % B in A, 10 min, 5 mL/min, Gemini-NX 5 µm C18, 110 Å, 250 x 10.0 mm) yielded title compound 

129 as a white powder after lyophilization (8.97 mg, 2.28 µmol, 9.1% over 33 couplings, 93% per step). LC-

MS: Rt = 6.01 min (10 - 50% ACN; 13 min); Rt = 4.25 min (10 - 90% ACN; 13 min); HRMS [C178H269N51O51 

+ 5H]5+: 788.8100 found, 788.80888 calculated. 

 

Ac-Lys(N3)-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-

Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-Lys-NH2 (137).  

Resin 134 (theoretical loading of 250 µmol) was elongated using the general protocol after which the N-

terminus was capped with Ac2O/DMF/DIPEA (4mL, 10/88/2, v/v/v, 3 x 5 min) and the resin was washed 

with DMF (3x), DCM (3x), Et2O (3x) and dried by nitrogen purge to yield Ac-Lys(N3)-Val-Thr(tBu)-

His(Trt)-Thr(tBu)-Tyr(tBu)-Leu-Glu(OtBu)-Pro-Gly-Pro-Val-Thr(tBu)-Ala-Asn(Trt)-Arg(Pbf)-Gln(Trt)-

Leu-Tyr(tBu)-Pro-Glu(OtBu)-Trp(Boc)-Thr(tBu)-Glu(OtBu)-Ala-Gln(Trt)-Arg(Pbf)-Leu-Asp(OtBu)-

αAbu-Trp(Boc)-Arg(Pbf)-Gly-Lys(Mmt)-Tentagel® S-RAM. The resin was transferred to a flask and treated 

for 120 minutes with a cleavage cocktail (25 mL, TFA/TIS/H2O/phenol, 188/5/5/2, v/v/v/w). The 

mixture was concentrated to approximately one mL and the resin was filtered off into a cold mixture of 

Et2O/pentane (45 mL, 5/4, v/v). The resin was washed off extra with neat TFA (3x 1 mL) into the ether 

solution. This solution was centrifuged (10 minutes, 5000 rpm) after which the supernatant was removed 

and the precipitate was dried under nitrogen flow. Purification via RP-HPLC (linear-gradient 23 - 34% B in 

A, 11 min, 5 mL/min, Gemini-NX 5 µm C18, 110 Å, 250 x 10.0 mm) yielded title compound 137 as a white 

powder after lyophilization (85.2 mg, 20.8µmol, 8.33% over 34 couplings, 93% per step). LC-MS: Rt = 4.32 

min (10 - 90% ACN; 13 min); HRMS [C184H279N55O52 + 5H]5+: 819.6255 found, 819.62596 calculated. 
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Ac-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-

Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-Lys(Peg-TLR7L)-NH2 (130). 

Resin 134 (100 µmol scale, single couplings at room temperature) was loaded in a syringe with frit and 

treated with a TFA solution (1% in DCM) shaken for five minutes followed by filtration. This was repeated 

until the filtrate lost the orange/yellow color (~ 12x). After which the resin was washed with DCM (5x), 

DMF (5x) Piperidine (20% in DMF, 1x) and DMF (5x). The lysine was elongated with Fmoc-AEEA-OH 

using the general protocol followed by introduction of 116 (91.5 mg, 200 µmol, 2 eq) by shaking for two 

hour with HCTU (82.7 mg, 200 µmol, 2 eq) and DIPEA (69.7 µL, 400 µmol, 4 eq) in DMF (1.8 mL, 0.11 

M of 116). The resin was washed with DMF (3x), DCM (3x) and Et2O (2x) followed by nitrogen purge, 

transferred to a flask and treated for 120 minutes with a cleavage cocktail (10 mL, TFA/TIS/H2O, 190/5/5, 

v/v/v). The mixture was concentrated to approximately one mL and the resin was filtered off into a cold 

mixture of Et2O/pentane (45 mL, 5/4, v/v). The resin was washed off extra with neat TFA (3x 1 mL) into 

the ether solution. This solution was centrifuged (10 minutes, 5000 rpm) after which the supernatant was 

removed and the precipitate was dried under nitrogen flow. Purification via RP-HPLC (linear-gradient 24 - 

36 % B in A, 12 min, 5 mL/min, Gemini-NX 5 µm C18, 110 Å, 250 x 10.0 mm) yielded title compound 

130 as a white powder after lyophilization (7.85 mg, 1.78 µmol, 1.78% over 35 couplings, 89% per step). 

LC-MS: Rt = 4.94 min (10 - 90% ACN; 13 min); HRMS [C201H297N57O57 + 5H]5+: 885.6479 found, 

885.65029 calculated. 

Ac-Lys(N3)-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-

Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-Lys(Peg-TLR7L)-NH2 (139). 

Resin 134 (theoretical loading of 100 µmol) was elongated using the general protocol resulting in Ac-

Lys(N3)-Val-Thr(tBu)-His(Trt)-Thr(tBu)-Tyr(tBu)-Leu-Glu(OtBu)-Pro-Gly-Pro-Val-Thr(tBu)-Ala-

Asn(Trt)-Arg(Pbf)-Gln(Trt)-Leu-Tyr(tBu)-Pro-Glu(OtBu)-Trp(Boc)-Thr(tBu)-Glu(OtBu)-Ala-Gln(Trt)-

Arg(Pbf)-Leu-Asp(OtBu)-αAbu-Trp(Boc)-Arg(Pbf)-Gly-Lys(Mmt)-Tentagel® S-RAM. This was loaded in a 

syringe with frit and treated with a TFA solution (1% in DCM) shaken for five minutes, followed by 

filtration. This was repeated until the filtrate lost the orange/yellow color (~ 12x). After which the resin was 

washed with DCM (5x), DMF (5x) Piperidine (20% in DMF, 1x) and DMF (5x). The lysine was elongated 

with Fmoc-AEEA-OH using the general protocol followed by introduction of 116 (183 mg, 400 µmol, 4 

eq) by shaking for one hour with HCTU (165.4 mg, 400 µmol, 4 eq) and DIPEA (140 µL, 800 µmol, 8 eq) 

in DMF (3.6 mL, 0.11 M of 116). The resin was washed with DMF (3x), DCM (3x) and Et2O (2x) followed 

by nitrogen purge, transferred to a flask and treated for 120 minutes with a cleavage cocktail (25 mL, 

TFA/TIS/H2O/phenol, 188/5/5/2, v/v/v/w). The mixture was concentrated to approximately one mL 

and the resin was filtered off into a cold mixture of Et2O/pentane (45 mL, 5/4, v/v). The resin was washed 

off extra with neat TFA (3x 1 mL) into the ether solution. This solution was centrifuged (10 minutes, 5000 

rpm) after which the supernatant was removed and the precipitate was dried under nitrogen flow. 

Purification via RP-HPLC (linear-gradient 23 - 36 % B in A, 12 min, 5 mL/min, Gemini-NX 5 µm C18, 
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110 Å, 250 x 10.0 mm) yielded title compound 139 as a white powder after lyophilization (23.30 mg, 5.09 

µmol, 5.09% over 36 couplings, 92% per step). LC-MS: Rt = 7.05 min (10 - 50% ACN; 13 min); Rt = 4.71 

min (10 - 90% ACN; 13 min); HRMS [C207H307N61O58 + 5H]5+: 916.4700 found, 916.46737 calculated. 

Ac-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-

Glu-Ala-Gln-Arg-Leu-Asp-Cys-Trp-Arg-Gly-Lys(Peg-TLR7L)-NH2 (133). 

Ac-Val-Thr(tBu)-His(Trt)-Thr(tBu)-Tyr(tBu)-Leu-Glu(OtBu)-Pro-Gly-Pro-Val-Thr(tBu)-Ala-Asn(Trt)-

Arg(Pbf)-Gln(Trt)-Leu-Tyr(tBu)-Pro-Glu(OtBu)-Trp(Boc)-Thr(tBu)-Glu(OtBu)-Ala-Gln(Trt)-Arg(Pbf)-

Leu-Asp(OtBu)-Cys(Trt)-Trp(Boc)-Arg(Pbf)-Gly-Lys(Mmt)-Tentagel® S-RAM (100 µmol scale, single 

couplings at room temperature) was loaded in a syringe with frit and treated with a TFA (1% in DCM) 

shaken for five minutes followed by filtration. This was repeated until the filtrate lost the orange/yellow 

color (12x). After which the resin was washed with DCM (5x), DMF (5x) Piperidine (20% in DMF, 1x) and 

DMF (5x). The lysine was elongated with Fmoc-AEEA-OH using the general protocol followed by 

introduction of 116 (91.5 mg, 200 µmol, 2 eq) by shaking for two hour with HCTU (82.7 mg, 200 µmol, 2 

eq) and DIPEA (69.7 µL, 400 µmol, 4 eq) in DMF (1.8 mL, 0.11 M of 116). The resin was washed with 

DMF (3x), DCM (3x) and Et2O (2x) followed by nitrogen purge, transferred to a flask and treated for 120 

minutes with a cleavage cocktail (10 mL, TFA/TIS/H2O, 190/5/5, v/v/v). The mixture was concentrated 

to approximately one mL and the resin was filtered off into a cold mixture of Et2O/pentane (45 mL, 5/4, 

v/v). The resin was washed off extra with neat TFA (3x 1 mL) into the ether solution. This solution was 

centrifuged (10 minutes, 5000 rpm) after which the supernatant was removed and the precipitate was dried 

under nitrogen flow. Purification via RP-HPLC (linear-gradient 24 - 36 % B in A, 12 min, 5 mL/min, 

Gemini-NX 5 µm C18, 110 Å, 250 x 10.0 mm) yielded title compound 133 as a white powder after 

lyophilization (1.03 mg, 0.232 µmol, 0.23% over 35 couplings, 84% per step). LC-MS: Rt = 5.01 min (10 - 

90% ACN; 13 min); HRMS [C201H296N56O57S + 5H]5+: 889.0417 found, 889.04249 calculated. 

Pent-4-ynoic acid succinimidyl ester (140). 

Synthesis and spectral data were as described in previous literature.33 

 

General alkyne introduction procedure:  

The “general procedure” to introduce the alkyne handle: A solution of glycoclusters with a free 

amine (0.2 M, aq., 1 eq) was mixed with a stock solution of 140 (0.15 M, 3 eq) and DIPEA (0.05 

M, 1 eq) in DMSO and shaken for one hour. Reaction progress was followed via LC-MS and when 

completed, the 4-pentynoic amides were purified via gel filtration (Toyopearl HW-40S, 150 mM 

NH4HCO3, 1.6 x 60 cm, 1 mL/min) or RP-HPLC (linear-gradient, 5 mL/min, Gemini-NX 5 µm 

C18, 110 Å, 250 x 10.0 mm) followed by lyophilization. 
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Ac-Lys(Man1)-Gly-Lys(pent-4-ynoic amide)-NH2 (141). 

Compound 32 (5.72 mg, 9.28 µmol) was coupled with 140 using the general 

procedure. Compound 141 was obtained after RP-HPLC (linear-gradient 5 - 45% 

B, 10 min) as a white powder (4.01 mg, 5.75 µmol, 62%). LC-MS: Rt = 4.48 min (0 

- 50% ACN; 13 min); 1H NMR (400 MHz, D2O) δ 8.03 (s, 1H, trzl), 4.93 (d, J = 1.7 

Hz, 1H, H-1), 4.82 - 4.80 (m, 1H, O-CHH-trzl), 4.68 (d, J = 12.4 Hz, 1H, O-CHH-

trzl), 4.42 (t, J = 6.9 Hz, 2H, CH2-trzl), 4.26 - 4.14 (m, 2H, CH), 3.92 - 3.57 (m, 8H, CH2 (G), H-2, H-3, H-

4, H-5, H-6), 3.16 (t, J = 6.9 Hz, 2H, CH2-NH2), 2.49 - 2.42 (m, 2H, CH2), 2.42 - 2.36 (m, 2H, CH2), 2.32 

(t, J = 2.5 Hz, 1H, C≡CH), 1.97 (s, 3H, Ac), 1.89 (q, J = 7.3 Hz, 2H, CH2), 1.85 - 1.62 (m, 4H, CH2), 1.48 

(q, J = 8.2, 7.5 Hz, 2H, CH2), 1.34 (ddd, J = 23.0, 15.9, 7.4 Hz, 4H, CH2); 13C NMR (101 MHz, D2O) δ 

174.9 (C=O), 99.4 (C-1), 72.9, 70.4, 70.1, 69.9, 66.6, 60.8, 59.7, 53.8, 50.1, 42.4, 39.0, 34.5, 30.5, 22.3, 21.8, 

21.6 (Ac), 14.6; HRMS [C30H48N8O11 + H]+: 697.35147 found, 697.35153 calculated. 

Ac-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Gly-Lys(pent-4-ynoic 

amide)-NH2 (145). 

Compound 50 (8.0 mg, 2.1 µmol) was coupled with 140 using the general procedure. 

Compound 145 was obtained after purification by gel filtration (eluted at 41 - 52 

mL) or RP-HPLC (linear-gradient 5 - 45% B, 10 min) as a white powder (3.52 mg, 

1.38 µmol, 66%). LC-MS: Rt = 5.09 min (0 - 50% ACN; 13 min); 1H NMR (500 

MHz, D2O) δ 7.95 (d, J = 5.6 Hz, 6H, trzl), 4.87 (d, J = 1.7 Hz, 6H, H-1), 4.71 (d, J 

= 12.5, 3.9 Hz, 6H, O-CHH-trzl), 4.58 (d, J = 12.5 Hz, 6H, O-CHH-trzl), 4.31 (t, J = 6.5 Hz, 12H, CH2-

trzl), 4.20 - 3.99 (m, 7H, CH (K)), 3.91 - 3.49 (m, 38H, H-2, H-3, H-4, H-5, H-6, CH2 (G)), 3.08 (t, J = 6.8 

Hz, 2H, CH2-NH(CO)), 2.39 - 2.22 (m, 5H, CH2, CH2, CH), 1.92 (s, 3H, Ac), 1.86 - 1.08 (m, 42H, CH2); 

13C NMR (126 MHz, D2O) δ 160.5, 99.4 (C-1), 72.9, 70.5, 69.9, 66.6 (C-2, C-3, C-4, C5), 60.8 (C-6), 59.8 

(O-CH2-trzl); HRMS [C105H168N28O46 + 2H]2+: 1280.09306 found, 1280.09210 calculated. 

Ac-Lys(1,2-Man2)-Gly-Lys(pent-4-ynoic amide)-NH2 (142). 

Compound 33 (2.37 mg, 3.04 µmol) was coupled with 140 using the general 

procedure. Compound 142 was obtained after purification by gel filtration (eluted 

at 53.5 - 61 mL) as a white powder (1.86 mg, 2.16 µmol, 71%). LC-MS: Rt = 4.72 

min (0 - 50% ACN; 13 min); HRMS [C36H58N8O16 + H] +: 859.40447 found, 

859.40435 calculated. 
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Ac-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-

Gly-Lys(pent-4-ynoic amide)-NH2 (146). 

Compound 51 (7.06 mg, 2.04 µmol) was coupled with 140 using the general 

procedure. Compound 146 was obtained after purification by gel filtration (buffer 

contained 20% ACN, eluted at 25 - 40 mL) as a white powder (6.95 mg, 1.96 µmol, 

96%). LC-MS: Rt = 4.76 min (0 - 50% ACN; 13 min); 1H NMR (500 MHz, D2O) 

δ 7.93 - 7.88 (m, 6H, trzl), 5.04 (s, 6H, H-1), 4.86 (s, 6H, H-1′), 4.66 (d, J = 12.4 

Hz, 6H, O-CHH-trzl), 4.54 (d, J = 12.7 Hz, 6H, O-CHH-trzl), 4.27 (t, J = 6.4 Hz, 

12H, CH2-trzl), 4.18 - 3.97 (m, 7H, CH), 3.96 - 3.43 (m, 74H, CH2 (G), H-2, H-2′, H-3, H-3′, H-4, H-4′, H-

5, H-5′, H-6, H-6′), 3.03 (t, J = 6.4 Hz, 2H, CH2NH2), 2.35 - 2.17 (m, 5H, CH2, CH2, C≡CH), 1.87 (s, 3H, 

Ac), 1.82 - 1.03 (m, 42H, CH2); HRMS [C141H228N28O76 + 3H]3+: 1177.83838 found, 1177.83618 calculated. 

Ac-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-

Gly-Lys(pent-4-ynoic amide)-NH2 (147). 

A solution of compound 52 (150 µL, 5mM, 750 nmol, aq.) was coupled with 

140 using the general procedure. Compound 147 was obtained after purification 

by gel filtration (buffer contained 20% ACN, eluted at 23.5 - 40 mL) as a white 

powder (2.23 mg, 645 nmol, 95%). LC-MS: Rt = 4.60 min (0 - 50% ACN; 13 

min); 1H NMR (500 MHz, D2O) δ 7.93 - 7.88 (m, 6H, trzl), 4.96 (s, 6H, H-1), 

4.80 (s, 6H, H-1′), 4.66 (d, J = 5.8 Hz, 6H, O-CHH-trzl), 4.55 (d, J = 12.6 Hz, 6H, O-CHH-trzl), 4.26 (d, J 

= 6.3 Hz, 12H, CH2-trzl), 4.14 - 3.96 (m, 7H, CH), 3.96 - 3.43 (m, 74H, CH2 (G), H-2, H-2′, H-3, H-3′, H-

4, H-4′, H-5, H-5′, H-6, H-6′), 3.03 (t, J = 6.7 Hz, 2H, CH2NH2), 2.39 - 2.16 (m, 5H, CH2, CH2, C≡CH), 

1.86 (s, 3H, Ac), 1.82 - 1.04 (m, 42H, CH2); HRMS [C141H228N28O76 + 3H]3+: 1177.83747 found, 1177.83618 

calculated. 

Ac-Lys(1,6-Man2)-Gly-Lys(pent-4-ynoic amide)-NH2 (143). 

Compound 35 (2.32 mg, 2.99 µmol) was coupled with 140 using the general 

procedure. Compound 143 was obtained after purification by gel filtration (eluted 

at 53.5 - 61 mL) as a white powder (1.81 mg, 2.11 µmol, 71%). LC-MS: Rt = 4.73 

min (0 - 50% ACN; 13 min); HRMS [C36H58N8O16 + H]+: 859.40439 found, 

859.40435 calculated. 
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Ac-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-

Gly-Lys(pent-4-ynoic amide)-NH2 (148). 

Compound 53 (2.35 mg, 679 nmol) was coupled with 140 using the general 

procedure. Compound 148 was obtained after purification by gel filtration (eluted 

at 31.5 - 42 mL) as a white powder (2.23 mg, 645 nmol, 95%). LC-MS: Rt = 4.76 

min (0 - 50% ACN; 13 min); HRMS [C141H228N28O76 + 3H]3+: 1177.83621 found, 

1177.83618 calculated. 

 

Ac-Lys(Man3)-Gly-Lys(pent-4-ynoic amide)-NH2 (144). 

Compound 36 (4.53 mg, 4.81 µmol) was coupled with 140 using the general 

procedure. Compound 144 was obtained after purification by gel filtration 

(eluted at 44.5 - 50.5 mL) as a white powder (0.98 mg, 872 nmol, 18%). LC-

MS: Rt = 4.64 min (0 - 50% ACN; 13 min); HRMS [C42H68N8O21 + H]+: 

1021.45725 found, 1021.45718 calculated. 

 

Ac-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Gly-Lys(pent-4-ynoic 

amide)-NH2 (149). 

Compound 54 (18.77 mg, 4.24 µmol) was coupled with 140 using the general 

procedure. Compound 149 was obtained after purification by gel filtration 

(buffer contained 20% ACN, eluted at 26 - 38.5 mL) as a white powder (17.96 

mg, 3.98 µmol, 94%). LC-MS: Rt = 4.64 min (0 - 50% ACN; 13 min); 1H NMR 

(500 MHz, D2O) δ 7.92 (s, 6H, trzl), 4.95 (s, 6H, H-1), 4.80 (s, 6H, H-1′), 4.76 

(s, 6H , H-1′′), 4.68 - 4.63 (m, 6H, O-CHH-trzl), 4.57 (d, J = 12.7 Hz, 6H, O-

CHH-trzl), 4.28 (t, J = 6.3 Hz, 12H, CH2-trzl), 4.18 - 4.05 (m, 6H, CH), 4.05 - 3.39 (m, 111H, CH, CH2 (G), 

H-2, H-2′, H-2′′, H-3, H-3′, H-3′′, H-4, H-4′, H-4′′, H-5, H-5′, H-5′′, H-6, H-6′, H-6′′), 3.04 (t, J = 6.7 Hz, 2H, 

CH2NH2), 2.41 - 2.18 (m, 5H, CH2, CH2, C≡CH), 1.87 (s, 3H, Ac), 1.84 - 1.01 (m, 42H, CH2); 13C NMR 

(126 MHz, D2O) δ 143.5, 124.2 (CH trzl), 102.4, 99.7, 99.4 (C-1, C-1′, C-1′′), 78.6, 73.3, 72.7, 71.2, 70.6, 

70.3, 70.0, 69.9, 69.5, 69.5, 66.7, 65.4, 64.9, 60.9 (C-2, C-2′, C-2′′, C-3, C-3′, C-3′′, C-4, C-4′, C-4′′, C-5, C-5′, 

C-5′′, C-6, C-6′, C-6′′), 59.8 (O-CH2trzl), 53.9, 53.5 (CH), 50.0 (CH2-trzl), 42.4 (CH2 (G)), 39.1 (CH2NH2), 

34.5 (CH2), 30.0, 28.9, 22.0 (CH2), 21.7 (Ac), 14.6 (CH2); HRMS [C177H288N28O106 + 3H]3+: 1502.27589 

found, 1502.27616 calculated. 
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General procedure for the CuAAC of alkyne mannoside clusters and azido-gp100 

peptides: 

The “general click protocol” used for the conjugation of alkynes and azido-gp100 peptides: All 

solvents used in these reactions were degassed by sonicating while bubbling argon through the 

solutions. A solution of azido-peptides 137 or 139 in DMSO was mixed with a solution of alkyne 

functionalized glycoclusters in water 141-149 followed by addition of an aliquot of a stock solution 

of CuI (0.1 eq), THPTA (0.3 eq) and DIPEA (0.2 eq) in water ([Cu+] = 0.5 M). The reaction was 

stirred at 45°C and the process was followed via LC-MS. When reactions did not progress and 

turned blue, a stock solution of sodium ascorbate (0.25 M) and arginine34 (0.5 M, 0.2 - 1 eq 

ascorbate) in water was added. After completion a small amount of Quadrasil® AP (washed with 

water) was added, stirred for 1 h, filtered and purified by either gel filtration (Toyopearl HW-40S, 

150 mM NH4HCO3, buffer contained 20% ACN, 1.6x60 cm, 1 mL/min) and/or RP-HPLC (linear-

gradient, 5 mL/min, Gemini-NX 5 µm C18, 110 Å, 250 x 10.0 mm) followed by lyophilization.  

 

Ac-Lys(*[Ac-Lys(Man1)-Gly-Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-Glu-

Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-

Trp-Arg-Gly-Lys-NH2 (150). 

A solution of mannosides cluster 141 (100 µL, 0.02 M, 2.0 µmol, 1.15 eq, 

aq.) and undecorated gp100 137 in DMSO (88 µL, 0.2 M, 1.75 µmol, 1 

eq) were conjugated using the general click protocol. After purification 

by RP-HPLC (linear-gradient 7 - 38% B, 10 min) compound 150 was 

obtained as a white powder (4.365 mg, 911 nmol, 52%). LC-MS: Rt = 

4.09 min (10 - 90% ACN; 13 min); 1H NMR (500 MHz, D2O) δ 8.55 (d, J = 1.1 Hz, 1H, Harom (H)), 7.99 (s, 

1H, trzl), 7.71 (s, 1H, trzl), 7.48 (dd, J = 31.8, 7.9 Hz, 1Hz, 2H, Harom (W)), 7.38 (dd, J = 16.5, 8.2 Hz, 4H, 

Harom (W)), 7.26 - 7.10 (m, 5H, Harom), 7.10 - 6.95 (m, 6H, Harom), 6.83 - 6.65 (m, 4H, Harom (Y)), 4.92 (d, J = 

1.4 Hz, 1H, H-1), 4.77 - 4.51 (m, 7H), 4.47 - 4.00 (m, 34H), 3.99 - 3.47 (m, 20H), 3.35 - 2.65 (m, 31H), 2.53 

(t, J = 7.3 Hz, 2H, CH2NH2 (K)), 2.50 - 2.29 (m, 7H), 2.29 - 2.15 (m, 8H), 2.14 - 1.02 (m, 92H), 1.01 - 0.69 

(m, 30H); HRMS [C214H327N63O63 + 5H]5+: 958.89471 found, 958.89482 calculated. 
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Ac-Lys(*[Ac-Lys(Man1)-Gly-Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-Glu-

Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-

Trp-Arg-Gly-Lys(Peg-TLR7L)-NH2 (151). 

A solution of mannosides cluster 141 (75 µL, 0.02 M, 1.50 µmol, 1.5 

eq, aq.) and TLR-decorated gp100 139 in DMSO (100 µL, 0.01 M, 1.0 

µmol, 1 eq) were conjugated using the general click protocol. After 

purification by RP-HPLC (linear-gradient 7 - 42% B, 11 min) 

compound 151 was obtained as a white powder (1.800 mg, 341 nmol, 

34%). LC-MS: Rt = 4.51 min (10 - 90% ACN; 13 min); 1H NMR (500 

MHz, D2O) δ 8.55 (s, 1H, Harom (H)), 8.00 (s, 2H, trzl), 7.77 - 7.66 (m, 2H, Harom), 7.48 - 6.62 (m, 21H, 

Harom), 4.92 (s, 1H, H-1), 4.68 - 2.59 (m, ~106H), 2.54 (t, J = 7.0 Hz, 2H, CH2NH2 (K)), 2.49 - 0.64 (m, 

~144H); HRMS [C237H355N69O69 + 5H]5+: 1055.93685 found, 1055.93678 calculated. 

Ac-Lys(*[Ac-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Gly-

Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-

Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-Lys-NH2 (152). 

A solution of mannosides cluster  (96 µL, 0.005 M, 480 nmol, 1 eq, aq.) 

and undecorated gp100 137 in DMSO (100 µL, 0.005 M, 500 nmol, 1.05 

eq) were conjugated using the general click protocol. After purification 

by RP-HPLC (linear-gradient 8 - 42% B, 10 min) compound 152 was 

obtained as a white powder (1.090 mg, 163 nmol, 34%). LC-MS: Rt = 

6.46 min (0 - 50% ACN; 13 min); 1H NMR (500 MHz, D2O) δ 8.51 (s, 1H, Harom (H)), 7.92 (s, 6H, trzl), 

7.63 (s, 1H, trzl), 7.52 - 7.28 (m, 4H, Harom), 7.25 - 6.93 (m, 11H, Harom), 6.79 - 6.62 (m, 4H, Harom), 4.87 (s, 

6H, H-1), 4.64 - 2.56 (m, nd), 2.47 (t, J = 7.8 Hz, 2H, CH2NH2 (K)), 2.41 - 0.58 (m, nd). HRMS 

[C289H447N83O98 + 5H]5+: 1331.25941 found, 1331.25988 calculated. 

Ac-Lys(*[Ac-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Lys(Man1)-Gly-

Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-

Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-Lys(Peg-TLR7L)-

NH2 (153). 

A solution of mannosides cluster 145 (120 µL, 0.01 M, 1.20 µmol, 1.2 

eq, aq.) and TLR-decorated gp100 139 in DMSO (100 µL, 0.01 M, 1.0 

µmol, 1 eq) were conjugated using the general click protocol. After 

purification by RP-HPLC (linear-gradient 8 - 42% B, 10 min) 

compound 153 was obtained as a white powder (2.085 mg, 292 nmol, 

29%). LC-MS: Rt = 7.19 min (0 - 50% ACN; 13 min); Rt = 4.38 min 

(10 - 90% ACN; 13 min); 1H NMR (500 MHz, D2O) δ 8.56 (s, 1H, Harom (H)), 7.96 (s, 7H, trzl), 7.91 - 6.62 
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(m, 23H, Harom), 4.89 (s, 6H, H-1), 4.76 - 0.64 (m, nd); HRMS [C312H475N89O104 + 6H]6+: 1190.41891 found, 

1190.41941 calculated. 

Ac-Lys(*[Ac-Lys(1,2-Man2)-Gly-Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-

Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-

αAbu-Trp-Arg-Gly-Lys-NH2 (154). 

A solution of mannosides cluster 142 (80 µL, 0.01 M, 0.80 µmol, 1 eq, 

aq.) and undecorated gp100 137 in DMSO (100 µL, 0.01 M, 1.0 µmol, 

1.25 eq) were conjugated using the general click protocol. After 

purification by gel-filtration (eluted at 42 - 57 mL) compound 154 was 

obtained as a white powder (3.633 mg, 734 nmol, 91%). LC-MS: Rt = 

4.48 min (10 - 90% ACN; 13 min); HRMS [C220H337N63O68 + 5H]5+: 

991.30528 found, 991.30539 calculated. 

Ac-Lys(*[Ac-Lys(1,2-Man2)-Gly-Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-

Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-

αAbu-Trp-Arg-Gly-Lys(Peg-TLR7L)-NH2 (157). 

A solution of mannosides cluster 142 (80 µL, 0.01 M, 0.80 µmol, 1 eq, 

aq.) and TLR-decorated gp100 139 in DMSO (100 µL, 0.01 M, 1.0 

µmol, 1.25 eq) were conjugated using the general click protocol. After 

purification by gel-filtration (eluted at 32 - 54.5 mL) compound 157 

was obtained as a white powder (0.915 mg, 168 nmol, 21%). LC-MS: 

Rt = 4.83 min (10 - 90% ACN; 13 min); HRMS [C243H365N69O74 + 

5Na]5+: 1110.78537 found, 1110.73038 calculated. 

Ac-Lys(*[Ac-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-

Man2)-Gly-Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-

Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-Lys-

NH2 (160). 

A solution of mannosides cluster 146 (125 µL, 0.01 M, 1.25 µmol, 1 eq, 

aq.) and undecorated gp100 137 in DMSO (125 µL, 0.016 M, 1.95 µmol, 

1.5 eq) were conjugated using the general click protocol. After 

purification by gel-filtration (eluted at 28 - 35.5 mL) compound 160 was 

obtained as a white powder (3.73 mg, 491 nmol, 39%). LC-MS: Rt = 6.99 

min (0 - 50% ACN; 13 min); 1H NMR (500 MHz, D2O) δ 8.03 - 7.89 (m, 

7H, trzl), 7.71 - 6.62 (m, 19H, Harom), 5.12 (s, 6H, H-1), 4.94 (s, 6H, H-1′), 4.89 - 0.61 (m, nd); HRMS 

[C325H507N83O128 + 5H]5+: 1525.72868 found, 1525.72330 calculated. 
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Ac-Lys(*[Ac-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-Man2)-Lys(1,2-

Man2)-Gly-Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-

Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-

Lys(Peg-TLR7L)-NH2 (164). 

A solution of mannosides cluster 146 (71.5 µL, 0.01 M, 715 nmol, 1 eq, 

aq.) and TLR-decorated gp100 139 in DMSO (75 µL, 0.01 M, 750 

µmol, 1.05 eq) were conjugated using the general click protocol. After 

purification by RP-HPLC (linear-gradient 8 - 42% B, 10 min) 

compound 164 was obtained as a white powder (1.395 mg, 172 nmol, 

24%). LC-MS: Rt = 7.10 min (0 - 50% ACN; 13 min); HRMS 

[C348H535N89O134 + 6H]6+: 1352.47638 found, 1352.47226 calculated. 

Ac-Lys(*[Ac-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-

Man2)-Gly-Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-

Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-Lys-

NH2 (161). 

A solution of mannosides cluster 147 (112 µL, 0.005 M, 560 nmol, 1 

eq, aq.) and undecorated gp100 137 in DMSO (168 µL, 0.01 M, 1.68 

µmol, 3 eq) were conjugated using the general click protocol. After 

purification by gel-filtration (eluted at 28 - 35.5 mL) compound 161 

was obtained as a white powder (2.650 mg, 349 nmol, 62%). LC-MS: 

Rt = 6.40 min (10 - 50 % ACN; 13 min); 1H NMR (500 MHz, D2O) 

δ 8.32 (s, 1H, Harom (H)), 7.88 (s, 7H, trzl), 7.64 - 6.51 (m, 19H, Harom), 4.96 (s, 6H, H-1), 4.79 (s, 6H, H-1′), 

4.76 - 0.46 (m, nd); HRMS [C325H507N83O128 + 6H]6+: 1271.77597 found, 1271.77109 calculated. 

Ac-Lys(*[Ac-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-Man2)-Lys(1,3-

Man2)-Gly-Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-

Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-

Lys(PEG-TLR7L)-NH2 (165). 

A solution of mannosides cluster 147 (38 µL, 0.005 M, 190 nmol, 1 

eq, aq.) and TLR-decorated gp100 139 in DMSO (28.5 µL, 0.01 M, 

285 µmol, 1.5 eq) were conjugated using the general click protocol. 

After purification by RP-HPLC (linear-gradient 8 - 42% B, 10 min) 

compound 165 was obtained as a white powder (0.630 mg, 78 nmol, 

41%). LC-MS: Rt = 7.12 min (10 - 50% ACN; 13 min); HRMS 

[C348H535N89O134 + 6H]6+: 1352.47991 found, 1352.47226 calculated. 
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Ac-Lys(*[Ac-Lys(1,6-Man2)-Gly-Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-

Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-

αAbu-Trp-Arg-Gly-Lys-NH2 (155). 

A solution of mannosides cluster 143 (80 µL, 0.01 M, 0.80 µmol, 1 eq, 

aq.) and undecorated gp100 137 in DMSO (100 µL, 0.01 M, 1.0 µmol, 

1.25 eq) were conjugated using the general click protocol. After 

purification by gel-filtration (eluted at 32 - 54.5 mL) compound 155 was 

obtained as a white powder (3.570 mg, 721 nmol, 90%). LC-MS: Rt = 

4.48 min (10 - 90% ACN; 13 min); HRMS [C220H337N63O68 + 5H]5+: 

991.30570 found, 991.30539 calculated. 

Ac-Lys(*[Ac-Lys(1,6-Man2)-Gly-Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-

Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-

αAbu-Trp-Arg-Gly-Lys(Peg-TLR7L)-NH2 (158). 

A solution of mannosides cluster 143 (80 µL, 0.01 M, 0.80 µmol, 1 eq, 

aq.) and TLR-decorated gp100 139 in DMSO (100 µL, 0.01 M, 1.0 

µmol, 1.25 eq) were conjugated using the general click protocol. After 

purification by gel-filtration (eluted at 32 - 54.5 mL) compound 158 

was obtained as a white powder (0.840 mg, 154 nmol, 19%). LC-MS: 

Rt = 4.77 min (10 - 90% ACN; 13 min); HRMS [C243H365N69O74 + 

6H]6+: 906.82311 found, 906.78974 calculated. 

Ac-Lys(*[Ac-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-

Man2)-Gly-Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-

Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-Lys-

NH2 (162). 

A solution of mannosides cluster 148 (35 µL, 0.01 M, 350 nmol, 1 eq, 

aq.) and undecorated gp100 137 in DMSO (40 µL, 0.01 M, 400 nmol, 

1.15 eq) were conjugated using the general click protocol. After 

purification by gel-filtration (eluted at 36 - 45 mL) compound 162 was 

obtained as a white powder (1.805 mg, 238 nmol, 68%). LC-MS: Rt = 

4.32 min (10 - 90% ACN; 13 min); HRMS [C325H507N83O128 + H + Na 

+ 3NH3]5+: 1540.12657 found, 1540.13201 calculated. 
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Ac-Lys(*[Ac-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-Man2)-Lys(1,6-

Man2)-Gly-Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-

Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-

Lys(Peg-TLR7L)-NH2 (166). 

A solution of mannosides cluster 148 (35 µL, 0.01 M, 350 nmol, 1 eq, 

aq.) and TLR-decorated gp100 139 in DMSO (40 µL, 0.01 M, 400 

nmol, 1.15 eq) were conjugated using the general click protocol. After 

purification by gel-filtration (eluted at 37.5 - 49.5 mL) compound 166 

was obtained as a white powder (0.520 mg, 64 nmol, 18%). LC-MS: Rt 

= 4.68 min (10 - 90% ACN; 13 min); HRMS [C348H535N89O134 + 5H]5+: 

1622.56900 found, 1622.56470 calculated. 

Ac-Lys(*[Ac-Lys(Man3)-Gly-Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-Glu-

Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-

Trp-Arg-Gly-Lys-NH2 (156). 

A solution of mannosides cluster 144 (40 µL, 0.01 M, 400 nmol, 1 eq, 

aq.) and undecorated gp100 137 in DMSO (45 µL, 0.01 M, 450 µmol, 

1.13 eq) were conjugated using the general click protocol. After 

purification by gel-filtration (eluted at 30 - 54.5 mL) compound 156 

was obtained as a white powder (1.802 mg, 352 nmol, 88%). LC-MS: 

Rt = 4.48 min (10 - 90% ACN; 13 min); HRMS [C226H347N63O73 + 

4Na]4+: 1301.63838 found, 1301.62576 calculated. 

Ac-Lys(*[Ac-Lys(Man3)-Gly-Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-Glu-

Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-

Trp-Arg-Gly-Lys(Peg-TLR7L)-NH2 (159). 

A solution of mannosides cluster 144 (40 µL, 0.01 M, 400 nmol, 1 

eq, aq.) and TLR-decorated gp100 139 in DMSO (45 µL, 0.01 M, 

450 µmol, 1.13 eq) were conjugated using the general click protocol. 

After purification by gel-filtration (eluted at 30 - 54.5 mL) 

compound 159 was obtained as a white powder (0.721 mg, 129 

nmol, 32%). LC-MS: Rt = 5.56 min (10 - 90% ACN; 13 min); HRMS 

[C249H375N69O79 + 4Na]4+: 1421.97944 found, 1422.17613 calculated. 
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Ac-Lys(*[Ac-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Gly-

Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-

Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-Lys-NH2 (163). 

A solution of mannosides cluster 149 (175 µL, 0.01 M, 1.75 µmol, 1 

eq, aq.) and undecorated gp100 137 in DMSO (263 µL, 0.01 M, 263 

µmol, 1.5 eq) were conjugated using the general click protocol. After 

purification by gel-filtration (eluted at 29 - 38 mL) followed by RP-

HPLC (linear-gradient 8 - 42% B, 10 min) compound 163 was 

obtained as a white powder (6.760 mg, 786 nmol, 45%). LC-MS: Rt = 

6.37 min (10 - 50% ACN; 13 min); 1H NMR (500 MHz, D2O) δ 8.40 (s, 1H, Harom (H)), 7.90 (d, J = 11.1 

Hz, 7H, trzl), 7.63 - 6.50 (m, 19H, Harom), 4.94 (s, 6H, H-1), 4.79 (s, 6H, H-1′), 4.76 (s, 6H, H-1′′), 4.71 - 0.54 

(m, nd); HRMS [ C361H567N83O158+ 6H]6+: 1433.82676 found, 1433.82394 calculated. 

Ac-Lys(*[Ac-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Lys(Man3)-Gly-

Lys(*triazolylpentyl-5-amide)-NH2])-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-

Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-Lys(Peg-TLR7L)--

NH2 (167). 

A solution of mannosides cluster 149 (200 µL, 0.01 M, 2.0 µmol, 2 

eq, aq.) and TLR-decorated gp100 139 in DMSO (100 µL, 0.01 M, 

1.0 µmol, 1 eq) were conjugated using the general click protocol. 

After purification by RP-HPLC (linear-gradient 8 - 42% B, 10 min) 

compound 167 was obtained as a white powder (2.483 mg, 273 

nmol, 27%). LC-MS: Rt = 7.07 min (10 - 50% ACN; 13 min); 1H 

NMR (500 MHz, D2O) δ 8.55 (s, 1H, Harom (H)), 7.98 (s, 7H, trzl), 7.74 - 6.60 (m, 23H, Harom), 5.03 (s, 6H, 

H-1), 4.88 (s, 6H, H-1′), 4.85 (s, 6H, H-1′′), 4.77 - 1.40 (m, nd), 1.38 (s, 3H, Ac), 1.36 (s, 3H, Ac), 1.35 - 0.66 

(m, nd); HRMS [C384H595N89O164 + 6H]6+: 1514.69741 found, 1514.69225 calculated. 
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Chapter 5 

Development of a C-mannoside function-
alized lysine for the synthesis of acid-stable 
mannosylated peptidesa 

Introduction1 

The uptake, processing, and (cross)-presentation of antigens is a complex process, which has not 

yet been fully elucidated.2,3 Studying the process, starting from cellular uptake and ending with the 

presentation at the surface of antigen-presenting cells remains challenging, since the introduction 

of accessory molecular motives to follow the fate of the antigens, such as fluorescent labels, can 

influence the antigen processing pathway significantly.4 To circumvent this issue, small bio-

orthogonal handles with minimal impact on the structure of peptide conjugates can be applied, 

allowing the introduction of reporter groups during the process. Especially the azide-alkyne 

cycloaddition is ideal for this purpose since the conjugation of these reaction partners is selective 

and fast, with the small azide and alkyne handles being well tolerated in biological systems and 

usually only having minimal effects on biological processes.5,6 The tri-functional conjugates, 

described in Chapter 4, demonstrate the potential of combining ligands for C-type lectin receptors 

 
aPart of this work is published by Hogervorst & Li et al. 20201 
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(CLRs) and Toll-like receptors (TLRs) with an antigenic peptide in a single conjugate. The 

development of these conjugates comprised the incorporation of an azide handle in the peptide, 

allowing the introduction of an additional adjuvant after the solid-phase peptide synthesis (SPPS). 

This approach however, requires an extra azide-alkyne cycloaddition and an extra purification step 

to obtain the final conjugates. Furthermore, the use of an azide/alkyne combination limits the 

options for the inclusion of orthogonal handles for further conjugation and excludes the use of 

alkyne reporter groups that could help study antigen-conjugate processing in more detail. 

 

This Chapter describes the design and synthesis of a C-mannose functionalized lysine building 

block that can be used in SPPS (168, Scheme 1). Utilizing a C-mannoside derivative that lacks the 

exo-cyclic anomeric oxygen, the glycosidic linkage can withstand the acidic conditions required for 

the release from resin and general deprotection that is part of a standard automated SPPS. The 

stabilized sugar amino acid block can be incorporated in an ‘in-line’ fashion, obviating the post-

synthesis conjugation step and thus preventing the use of an azide-alkyne click reaction. Building 

block 168 is designed with a spacer of similar length as the previously described triazole O-

mannoside conjugates in Chapter 2 and 4, allowing a side by side comparison. Potential side 

reactions on the mannose hydroxyls during peptide assembly are prevented by the protection of 

these functionalities with the acid-labile para-methoxybenzyl (PMB) groups which can be removed 

simultaneously with the amino acid side-chain protecting groups during the general deprotection 

and cleavage protocol of the projected peptide conjugates. Protection of the N-terminus with a 

temporary Fmoc protecting group allows for the controlled use of 168 in standard Fmoc-SPPS. 

Scheme 1: Retrosynthesis of C-mannoside peptide conjugates. 
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Results and Discussion 

The key step in the synthesis of 168 is the introduction of the α-C-glycosidic bond (Scheme 2). 

Based on previously reported work by Girard et al.7, the anomeric allyl was introduced via a 

Hosomi-Sakurai reaction using allyltrimethylsilane (allyl-TMS). In this reaction, the glycosyl donor 

is activated using a strong Lewis acid forming an electrophilic oxocarbenium ion that can react 

with the poor nucleophilic allyl-TMS. When peracetylated mannose 169 was used, it gave allyl 173 

with poor stereoselectivity.8–10 On the other hand, a similar reaction with non-participating 

perbenzylated donor 171 gave allyl 172 almost exclusively as the α-anomer (α:β; ≥15:1).10,11 Since 

separation of the anomeric mixtures in initial experiments proved to be tedious, the additional 

steps accompanying the perbenzylated route were considered an unavoidable obstacle that had to 

be taken. 

The synthetic route to 168 shown in Scheme 2 starts with the benzylation of methyl α-ᴅ-

mannopyranoside 170 to obtain methyl 2,3,4,6-tetra-O-benzyl-α-ᴅ-mannopyranoside 171. The allyl 

group was introduced by treatment of the methyl mannoside with allyltrimethyl silane and 

trimethylsilyl triflate in acetonitrile to provide C-mannoside 172. This reaction proceeded with high 

stereoselectivity and was complete within an hour when assisted by ultrasound irradiation.12 

Selective removal of the benzyl ethers in the presence of the allyl functionality was achieved using 

BCl3. Unfortunately, this reaction proved to be difficult to scale up. The recently described method 

using a Birch-type reduction in liquid ammonia13 was discarded because condensation of large 

volumes of toxic ammonia was considered too time-consuming and hazardous. Therefore, an 

alternative method was sought, and a Birch-type reduction using lithium naphthalenide in THF 

allowed for the removal of the four benzyls from 172. This reaction could be run on a 80 mmol 

scale, to provide the desired tetra-ol, which was acetylated to allow for easy purification, yielding 

173. After the installment of four PMB ethers, allyl 174 was elongated by cross-metathesis with 

methyl acrylate or benzyl acrylate to afford α,β-unsaturated ketones 175 & 176, respectively. The 

reduction of the double bond in these products with RuCl3 in the presence of NaBH4 and MeOH,14 

was followed by saponification of the resulting esters 177 & 178 to obtain carboxylic acid 179. On 

a small scale, these three reactions gave the highest yield with the methyl ester, so the synthesis on 

large scale was performed with methyl acrylate. Fully protected amino acid 180 was obtained by 

coupling of carboxylic acid 179 with the methyl ester of Nα-Fmoc protected lysine 181, using 

HCTU as condensation agent. Selective hydrolysis of the ester in the presence of the Fmoc group 

was achieved with LiOOH,15,16 which is more nucleophilic but less basic than LiOH,a resulting in 

 
a pKa of H2O2 = 11.6; pKa of H2O = 15.827 
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the isolation of 168 in 79% yield.17 Altogether, SPPS compatible C-mannose functionalized lysine 

building block 168 was synthesized in 20% over 11 steps. 

 

Scheme 2: Synthesis of C-mannoside lysine 168. 
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Reagents and conditions: a) NaH, BnBr, TBAI, DMF, 78%; b) allylTMS, TMSOTf, ACN, 73%; c) either i. BCl3, DCM; ii. 

Ac2O, pyridine 95% or i. Li, naphthalene, THF, -20°C; ii. Ac2O, pyridine, 54%; d) i. NaOMe, MeOH; ii. NaH, PMBCl, TBAI, 

DMF, 69%; e) methyl acrylate or benzyl acrylate, Grubbs 2nd gen. catalyst, DCM (175: 74%; 176: 73%); f) RuCl3, NaBH4, 

DCE/MeOH: (177: 91%; 178: 93%); g) KOH, THF/H2O (177 → 179: 90%; 178 → 179: qnt.); h) 181, HCTU, DIPEA, 

DMF, 99% ; i) LiOH, H2O2, THF/H2O/t-BuOH, 79%. 

 

With sufficient amounts of building block 168 available, the assembly of clusters containing 1, 2, 

3, or 6 copies of the C-mannose lysine was undertaken via SPPS (Scheme 3). Using Tentagel® S-

RAM amide resin, Fmoc-Lys(Boc)-OH and Fmoc-Gly-OH were introduced successively followed 

by elongation with C-mannose functionalized lysine building block 168 using a standard Fmoc 

protocol and HCTU as coupling agent. To prevent the use of a large excess of 168, it was 

introduced manually, using fewer equivalents of the building block than commonly used in SPPS 

with prolonged coupling times (2eq, overnight). After completion of the sequence, the N-termini 

were capped with acetyls resulting in immobilized peptides 182-185 (Scheme 3). When resins 182-
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185 were subjected to a cleavage cocktail of TFA/TIS/H2O (190/5/5, v/v/v), the Boc and PMB 

ethers were successfully removed and the peptide clusters were isolated after RP-HPLC 

purification to obtain monovalent- (186), bivalent- (187), trivalent- (188) and hexavalent- (189) 

clusters in 7%, 14%, 6%, and 2% yield, respectively. It was initially hypothesized that the relatively 

low yield originated from incomplete precipitation of the peptides after cleavage from the solid 

support, but when a different workup method was applied for 186 & 189, in which the cleavage 

cocktail was concentrated instead of precipitated, the yields were not increased. LC-MS analysis of 

the crude products showed multiple side products, possibly due to side reactions during the 

cleavage reaction which will be addressed later in this chapter. 

To validate whether C-mannosides were able to bind the target CLRs, the clusters 186-189 were 

functionalized with a biotin moiety to enable the visualization of the clusters using fluorescently 

labeled streptavidin. The clusters were treated with biotin-N-hydroxysuccinimide (NHS) ester to 

give the biotinylated mannoside clusters 190-193 (R = R2, Scheme 3). This allowed for the side by 

side comparison with their O-mannoside analogs 59, 64, 69, and 74 via flow cytometry as described 

in Chapter 2.18 Thus, DC-SIGN expressing MoDCs were exposed to the C- and O-mannoside 

clusters at 4 oC, after which the cells were washed and treated with fluorescent streptavidin which 

was quantified by FACS analysis. Figure 1A shows that the C-mannoside clusters are binding 

equally as well as their O-counterparts, with better binding with an increasing number of 

mannosides on the scaffold. Similar to the experiments described in Chapter 2, the clusters were 

tested for their rate of uptake. Active internalization can take place when the cells are allowed to 

warm to room temperature, and the rate of reduction of the signal as a function of time, is an 

indication for the rate of uptake over time. Also, in these experiments, the C-mannose clusters 

behaved very similar to their O-mannose analogs (Figure 1B).  
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Scheme 3: Synthesis of C-mannoside clusters. 

 

Reagents and conditions: a) Fmoc-SPPS (168, HCTU, DIPEA, DMF); b) TFA, TIS, H2O, (octanethiol, phenol) (186: 7.0%; 187: 

14%; 188: 6.0%; 189: 2.1%); c) Biotin-NHS, DIPEA, DMSO (190: 94%; 191: 72%; 192: 99%; 193: 80%); d) ATTO655-

NHS, DIPEA, DMSO, 194: 55%. 
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Figure 1: comparison of affinity and uptake of O- and C- mannoside clusters for DC-SIGN. 

 
A) Binding of the biotinylated mannoside library to DC-SIGN on moDC was measured by flow cytometry. Normalized to the negative 

control. MoDCs were incubated with biotinylated constructs (30 min, 4 °C, 10 µM).  (-) = negative control (PBS); (+) = positive control 

(1 µg/mL of Lewis Y conjugated polyacrylamide); Serie A in gray; C-mannoside in green; B) The internalization of the mannoside 

clusters by moDCs was measured by flow cytometry. One donor is depicted here as representation of four. Cells were incubated with clusters 

(20 µM on ice for one hour and after incubated at 37 °C for different time spans). Quantification with an external fluorophore allowed 

quantification of the remaining clusters on the cell surface as an indirect measure of uptake.  

Figure 2: STORM experiments. 

 

 

A) CHO-MR cells were incubated with 194 (5 nM) and imaged with a 640 nm laser (40 mW); B) CHO-MR cells were incubated 

with 85 (5 nM) and imaged with a 640 nm laser (40 mW); C) CHO-K1 cells were incubated with 194 (5 nM) and imaged with a 640 

nm laser (40 mW); D) Incubation of CHO-MR cells with probes 85, 194, 87 and 88 at 37°C allowed for singe particle tracking. 

Trajectory lengths from at least 5 images per probes were combined, plotted in a histogram and fitted with a single exponential decay function 

wherefrom τ was determined. The used structures are depicted on the next page. 
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Finally, 189 was decorated with an ATTO655 laser dye (R = R3, Scheme 2) to obtain 194, which 

was compared with its O-analogue 85 in a mannose receptor (MR) binding experiment. In this 

setup for stochastic optical reconstruction microscopy (STORM) (As used in Chapter 2), only 

clusters that remain at the same location for a certain time will be observed. Since unbound clusters 

move to fast due to diffusion, only clusters that are fixed will be observed. This can be either in 

cellular compartments or bound to receptors. When Chinese hamster ovary (CHO) cells 

transfected with the MR were subjected to cluster 194, the clusters were localized on the cell 

surface (see Figure 2A). When the same experiments were performed with CHO cells that lack the 

MR, the clusters did not localize indicating that this localization is MR dependent (Figure 2C). 

When these MR+ CHO cells were subjected to 85, the O-analogue of 194 (see Figure 2B), both 

clusters showed similar localization. Additionally, by following individual fluorescent events, an 

average binding time can be determined, which correlates with the affinity of the cluster for the 

receptor. Both C- and O- mannoside clusters showed similar affinities (Figure 2D). Together these 

results indicated that DC-SIGN and the MR well tolerate the O to CH2 modification, encouraging 

the use of such clusters in an antigen-adjuvant conjugate. 

Encouraged by these results, the synthesis of C-mannose peptide conjugates in which the 

melanoma tumor antigen gp100 is incorporated were undertaken (see also Chapter 4). The SPPS 

of the gp100 antigen 134 containing the N-terminal monomethoxy trityl (Mmt) protected lysine, 

as described in Chapter 4, was followed by either one or six couplings with 168 to obtain C-

mannosylated 195 & 196, respectively (Scheme 4). Next, 195 & 196 were functionalized at their N-

termini with theTLR7 ligand 2-butoxy-8-oxo-adenine, using the building block described in 

Chapter 3, to give immobilized conjugates 197 & 198. Alternatively, the N-termini were acetylated 

to obtain resins 199 & 200, which could be further functionalized at the C-termini by subsequent 

selective removal of the monomethoxy trityl (Mmt) on the C-terminal lysines followed by the 

introduction of the TLR7 ligand to provide 201 & 202 bearing the TLR7 agonist on the C-

terminus.19 Having fully protected and immobilized conjugates 197-202 available, the ensuing 

deprotection and cleavage from the solid support was evaluated. When resin 199 was treated with 

a cleavage cocktail of TFA/TIS/H2O (190/5/5, v/v/v, Chapter 4), LC-MS analysis revealed the 
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formation of a complex mixture. It was hypothesized that the poor quality of the crude material 

was due to side reactions of the cleavage and deprotection step and not due to incomplete 

couplings. Reactive cationic species are liberated during the acidic removal of the PMB ethers, 

which could potentially react with functional groups in the unprotected peptide.20 Howard et al.21 

effectively scavenged PMB-cations using phenol as an electron-rich aromatic additive and when 

resin 199 was subjected to a modified cleavage cocktail, that included octanethiol and phenol, LC-

MS analysis showed a crude mixture with improved quality and 203 as the main product. Further 

optimization of the cleavage cocktail was achieved by increasing concentration of the scavengers 

(up to 10% of the total volume) and increasing the volume of cleavage medium (effectively diluting 

the concentration of reactive cationic species and reactive functional groups on the peptide). Using 

this optimized cleavage protocol, bi-functional conjugates 203 & 204 were effectively released and 

deprotected to give the purified conjugates in 2.5% yield over 34 couplings and 0.7% yield over 

39 couplings respectively (90% and 88% per step). The treatment of resin 197 with these optimized 

conditions resulted in tri-functional monovalent C-mannose conjugate 205 in 2.6% yield over 36 

couplings (average of 90% per step). Exposure of 198 delivered the tri-functional hexavalent C-

mannose conjugate 206 in 1.3% yield over 41 couplings (average of 90% per step). When resins 

201 & 202 were treated with this optimized cocktail however, a complex mixture was obtained. 

LC-MS analysis of the crude of 207 indicated not only the formation of the desired product but 

also more lipophilic products, having a higher molecular mass increasing with 484.2 Da per step. 

This increment corresponded with the addition of an extra ethylene glycol - TLR7 ligand (PEG-

TLR7L, see Figure 4A). Since this was not observed for the C-mannose conjugates without C-

terminal elongation, it was hypothesized that PMB ethers were partly removed during the removal 

of the Mmt, liberating C-mannose hydroxyls, which could then react with the activated HCTU 

esters in the next coupling reaction. This was confirmed by treatment of the cleaved crude peptide 

mixture with aqueous ammonia, which removed the heavier ester byproducts (Figure 4B). 

Therefore milder conditions were explored for the removal of the C-terminal Mmt-group. 

Eventually it was found that the use of acetic acid in a mixture of trifluoroethanol (TFE) and DCM 

(1/2/7, v/v/v), a cocktail first described to selectively cleave the Mmt over methyltrityl and trityl-

groups,22 was effective. After the introduction of the ethylene glycol moiety and TLR7 ligand 116, 

no byproducts were observed that contained additional PEG-TLR7L esters, supporting the notion 

that the previously observed side products were formed due to partial cleavage of PMB ethers 

during the Mmt removal. Using the milder AcOH/TFE/DCM Mmt removal conditions, 

trifunctional conjugates 207 & 208 were successfully synthesized and isolated in 2.1% over 36 

couplings and 0.6% over 41 couplings respectively (90% and 88% per step). 



Development of a C-mannoside functionalized lysine for acid-stable mannosylated peptides 

120 

Scheme 4: Synthesis of gp100 conjugates. 
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Reagents and conditions: a) Fmoc-SPPS (168, HCTU, DIPEA, DMF); b) Fmoc-SPPS (127 or 116, HCTU, DIPEA, DMF); c) 

Ac2O, DIPEA, DMF; d) AcOH, TFE, DCM; e) TFA, TIS, H2O, octanethiol, phenol (205: 2.60% over 36 couplings (90% per 

step); 206: 1.30% over 41 couplings (90% per step); 203: 2.51% over 34 couplings (90% per step); 204: 0.73% over 39 couplings 

(88% per step); 207: 2.10% over 36 couplings (90% per step); 208: 0.60% over 41 couplings (88% per step)). 
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Figure 4: LC-MS spectra of 207 after release from resin. 

 

A) LC-MS spectra of 207 (Mmt removal with 1% TFA); B) LC-MS Spectra of the same batch of 207 after treatment with aqueous 

ammonia. 

 

These conjugates were tested for their ability to induce maturation, activation, and their antigen 

(cross-)presentation capacity. DC maturation is a necessity for the induction of an efficient 

immune response. By quantification of co-stimulatory molecules, maturation was measured 

(Figure 5B). All conjugates induced higher levels of CD86 when compared with the 

unfunctionalized gp100 129, and the O to C modification did not result in different expression 

levels. To determine whether these constructs were still able to activate DCs, the concentration of 

secreted cytokines from four donors were determined as a measure of activation by the 

quantification of four key cytokines. IL-6 and IL-12 are primarily inflammatory cytokines that help 

with DC maturation and Th1 skewing. IL-10 is an anti-inflammatory cytokine that interferes with 

DC maturation and can skew naïve T cells to regulatory T cells (Tregs).23 TNFα is an inflammatory 

cytokine required for DC activation and proliferation.24 When comparing the cytokine profiles of 

the here described C-mannoside conjugates with their O-mannoside analogs (Figure 5C), similar 

cytokine profiles are induced. However, for the conjugates with both C-mannoside and TLR ligand 
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on the N-terminus (205 and 206), the production of inflammatory cytokines (IL-6, IL-12, TNFα) 

was almost completely diminished.a  

Finally, the prepared clusters were tested for their antigen presentation ability using gp100 specific 

T cell clones (see Figure 5D). In short, five-day-old moDCs were incubated with the peptide 

conjugates, after which the moDcs were washed and co-cultured with either a CD8 cell clone that 

is specific for the gp100280-288 MHC-I epitope or with a CD4 cell clone, specific for the gp10040-59 

MHC-II epitope. Interferon γ cytokine secretion was measured by sandwich ELISA as a measure 

for T-cell activation. Quantification of antigen presentation was achieved by normalization of the 

interferon γ cytokine production with secretion levels induced by short gp100 peptide (gp100280-

288) and long gp100 peptide (gp100280-288, 40-59) set to 100%. The C-mannoside-conjugates (203-208) 

were tested side-by-side with the O-mannoside-conjugate conjugates (150-153) described in 

Chapter 4 to reveal any differences between the two types of conjugates.  

When the antigen presentation induced by the monovalent O-mannose-clusters 150 & 151 and C-

mannose-clusters 203 & 207 are compared it becomes clear that both conjugates induce antigen 

and cross-presentation equally well. Furthermore, when compared with the stand-alone gp100 

peptide (129) or the TLR7-gp100 conjugate (130), antigen (cross)-presentation capacity was 

enhanced. However, conjugation of both the C-mannoside and the TLR7 ligand to the N-terminus 

of the peptide (205) led to a decrease in antigen presentation. Comparable effects were observed 

for the hexavalent clusters, although here, the C-mannoside conjugates (204 & 208) showed 

somewhat lower antigen presentation than their O-counterparts (152 & 153). The difference 

appears to be larger for MHC-II presentation than for the MHC-I mediated presentation, which 

could be the result of the effect that the metabolically stable C-mannosides have on the processing 

of the conjugates. Antigen (cross)-presentation was again significantly diminished when the TLR7 

ligand and the hexavalent C-mannose clusters where both conjugated to the N-terminus of the 

peptide (206). This effect could be caused by steric hindrance preventing the TLR7 ligand to bind 

properly to its receptor, the TLR7 appendage hindering CLR mediated uptake, or because the 

processing of a longer sequence of unnatural amino acids hampers the processing and presentation 

of these conjugates.  

 

 

 
a Expression levels of CD86 however showed similar levels compared with the other conjugates bearing the TLR7 
ligand. 
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Figure 5: Effectiveness of conjugates. 

 
A) Cartoon representation of used C- and O-conjugates; B) Expression of the DC maturation marker CD86 upon overnight stimulation 
with the trifunctional conjugates is measured by flow cytometry. LPS stimulation (10 ng/mL) is used as positive control; C) IL-6, IL-
10, IL-12p70, and TNFα secretion of four donors was measured using ELISA upon overnight stimulation with conjugates; D) Antigen 
cross-presentation (left) and presentation (right) by the moDCs was determined by IFNγ release of the activated T cells, after stimulation 
with conjugates (20 µM, 30 min). 
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Conclusion 

The synthesis of a new C-mannoside lysine building block has been reported. This building block 

is synthetically readily accessible and the C-glycosidic linkage renders it stable towards acidic 

reaction conditions. This, in combination with the temporary Fmoc-group installed on the lysine-

Nα, and the permanent PMB protection, masking the mannose hydroxyl groups, enabled the use 

of this building block in online SPPS. The building block was successfully applied for the 

generation of various glycopeptide-conjugates. All these conjugates were synthesized on resin, 

which obviates post-SPPS conjugation steps after release from resin. At first, the cleavage and 

global deprotection of these conjugates were met with poor results, due to side reactions caused 

by the release of reactive PMB cations during the cleavage/deprotection step, that reacted with 

functional groups on the peptide. The addition of extra scavengers and dilution of the reaction 

mixture prevented these undesired side reactions. The assembly of the conjugates, functionalized 

at the C-terminal end, required the chemoselective removal of the C-terminal lysine Mmt group, 

for which the use of AcOH in a mixture of TFE and DCM proved effective. Different peptidic 

antigen conjugates were generated. First, it was established that clusters, comprising 1, 2, 3, or 6 

copies of the C-mannose lysine show similar binding to, and similar uptake in moDCs compared 

with their O-mannose analogs. The retention time for the clusters bound to the MR on transfected 

CHO cells were also identical. These results show that the O to CH2 modification is well-tolerated 

by these CLRs. Next gp100-peptide antigens were equipped with multiple copies of the C-

mannoside and an additional TLR7 ligand. Conjugates having both the mannose cluster and the 

TLR7 ligand on the same (N-terminal) side of the antigen, or attached to different sides of the 

antigen (the mannose cluster on the N-terminal side, the TLR7 ligand on the C-terminus), were 

successfully assembled. Evaluation of the conjugates in antigen (cross)-presentation assays 

revealed that the antigen (cross)-presentation of the conjugates was not significantly hampered by 

the O to CH2 modification. The monovalent C-mannose conjugates with the TLR7 ligand on the 

C-terminus significantly enhanced the antigen presentation. The combination of both the TLR7 

ligand and the C-mannoside cluster on the N-terminus hampered (cross)-presentation and 

maturation, likely due to the steric hindrance of the TLR7 ligand. With the ‘SPPS-compatible’ 

mannoside amino acid building block 168 available and chemistry developed for its introduction 

and deprotection, further conjugates can now be designed that employ mannose-binding lectins 

for enhanced uptake. In these conjugates, chemically or enzymatically labile spacers may be 

introduced to enhance the processing of the antigen-conjugates.25 Azide-alkyne handles can be 

introduced to follow the processing of these glycopeptide conjugates in more detail. 
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Experimental 

General procedures: 

All reactions, purifications, and analyses were performed as described in the general procedures of 

Chapter 2. 

 

Nα-Fmoc-Nε-(Boc)-L-lysine-methyl ester (209). 

Fmoc-lys-(Boc)-OH (14.06 g, 30.0 mmol, 1 eq) was dissolved in DMF (50 mL, 0.2 M), K2CO3 

(12.4 g, 90 mmol, 3 eq) and stirred at rt for 15 min. The mixture was cooled to 0 ◦C and MeI 

(1.87 mL, 30 mmol, 3 eq) was added and the mixture was stirred for two hour after which it 

was quenched with H2O. The mixture was extracted with Et2O (2x) and the organic layers where combined, 

and washed with brine (1x), dried over MgSO4 (s), filtered, and concentrated in vacuo. Purification using 

silica gel column chromatography (1/9, → 4/1, Et2O/PE, v/v) yielded title compound 209 as a white solid 

(14.34 g, 29.7 mmol, 99%). TLC Rf: 0.68 (Et2O/PE, 4/1, v/v); 1H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 

7.5 Hz, 2H, Harom), 7.63 - 7.51 (m, 2H, Harom), 7.38 (t, J = 7.4 Hz, 2H, Harom), 7.34 - 7.23 (m, 2H, Harom), 

5.60 (d, J = 7.5 Hz, 1H, NαH), 4.69 (s, 1H, NεH), 4.36 (m, 3H, H-2, CH2-Fmoc), 4.20 (t, J = 7.0 Hz, 1H, 

CH-Fmoc),3.72 (s, 3H, OMe), 3.09 (s, 2H, H-6), 1.86 - 1.58 (m, 2H, H-3), 1.47 - 1. 32 (m, 13H, H-4, H-5, 

tBu); 13C NMR (101 MHz, CDCl3) δ 143.9, 141.5 (Cq), 127.8, 127.2, 125.2, 120.1 (CHarom), 67.14 (CH2-

Fmoc), 53.8 (C-2), 52.6 (COOMe), 47.3 (CH-Fmoc), 40.1 (C-6), 32.3 (C-3), 29.8 (C-5), 28.5 (CH3 Boc), 22.5 

(C-4); HRMS [C27H34N2O6+ Na]+: 505.23094 found, 505.23091 calculated. 

Nα-Fmoc-Nε-(HCl)-L-lysine-methyl ester (181). 

Boc protected lysine 209 (4.74 g, 9.8 mmol, 1 eq) was dissolved in HCl (20 mL, 4.0 M in 

dioxane) at 0 °C. After four hours the solvent was partly removed in vacuo after which the 

product was precipitated, filtered, washed with little EtOAc and dried in vacuo to yield title 

compound 181 as a white solid (4.744 g, 9.1 mmol, 94%). TLC Rf: 0 (EtOAc/PE, 1/1, v/v); 1H NMR (400 

MHz, MeOD) δ 7.83 (d, J = 7.5 Hz, 2H, Harom), 7.69 (t, J = 7.5 Hz, 2H, Harom), 7.42 (t, J = 7.4 Hz, 2H, 

Harom), 7.34 (td, J = 7.4, 0.9 Hz, 2H, Harom), 4.55 – 4.33 (m, 2H, CH2-Fmoc), 4.28 – 4.17 (m, 2H, CH-Fmoc, 

H-2), 3.74 (s, 3H, OMe), 2.94 (t, J = 7.0 Hz, 2H, H-6), 1.98 – 1.82 (m, 1H, H-3a), 1.82 – 1.60 (m, 3H, H-

3b, H-5), 1.58 – 1.39 (m, 2H, H-4); 13C NMR (101 MHz, MeOD) δ 142.6, 141.5 (Cq), 128.8, 128.2, 126.2, 

126.1, 121.0 (CHarom), 67.9 (CH2-Fmoc), 55.0 (C-2), 52.8 (COOMe), 48.4 (CH-Fmoc), 40.5 (C-6), 32.0 (C-

3), 28.0 (C-5), 23.8 (C-4); HRMS [C22H26N2O4+ H]+: 383.1973 found, 383.19653 calculated. 
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Methyl 2,3,4,6-tetra-O-benzyl-α-ᴅ-mannopyranoside (171). 

Methyl α-ᴅ-mannopyranoside (29.13 g, 150 mmol) was co-evaporated with toluene (2x), 

dissolved in DMF (900 mL, 0.17 M) and cooled to 0 °C. NaH (60% dispersion in mineral oil) 

(36.0 g, 900 mmol, 6 eq) was added in small portions under a continuous flow of argon. BnBr (80.28 mL, 

675 mmol, 4.5 eq) and TBAI (5.54 g, 15 mmol, 0.1 eq) were added and the reaction mixture was stirred at 

room temperature. After three days the mixture was quenched with MeOH at 0°C, diluted in Et2O and 

washed with brine. The aqueous layer was back-extracted with Et2O, the organic fractions combined, 

washed with brine (2x), dried over MgSO4 (s), filtered and concentrated in vacuo. Purification using silica gel 

column chromatography (1/8, → 1/4, PE/Et2O/PE, v/v) yielded compound 171 as a colorless oil (64.5 

g, 116.3 mmol, 77.5% ). TLC Rf: 0.67 (1/4, EtOAc/PE, v/v); IR (neat, cm−1): 3020, 2905, 1495, 1453, 

1362, 1261, 1098, 1058, 1026, 967, 910, 846, 801, 733, 695; 1H NMR (400 MHz, CDCl3) δ 7.40 - 7.22 (m, 

18H, Harom), 7.18 - 7.14 (m, 2H, Harom), 4.88 (d, J = 10.8 Hz, 1H, CHH Bn), 4.79 - 4.64 (m, 4H, CHH-Bn, 

CH2-Bn, H-1), 4.61 (s, 2H, CH2-Bn), 4.53 (dd, J = 20.7, 11.5 Hz, 2H, CHH-Bn (2x)), 3.97 (t, J = 9.1 Hz, 

1H, H-4), 3.88 (dd, J = 9.3, 3.1 Hz, 1H, H-3), 3.81 - 3.70 (m, 4H, H-2, H-5, H-6), 3.32 (s, 3H, OMe); 13C 

NMR (101 MHz, CDCl3) δ 138.6, 138.6, 138.5, 138.5 (Cq), 128.4, 128.4, 128.4, 128.0, 127.9, 127.8, 127.7, 

127.6, 127.6, 127.5 (CHarom), 99.0 (C-1), 80.3 (C-3), 75.1 (CH2-Bn), 75.0(C-4), 74.6 (C-2), 73.4, 72.6, 72.2 

(CH2-Bn), 71.8 (C-5), 69.4 (C-6), 54.8 (OMe); HRMS [C35H38O6 + H]+: 555.27512 found, 555.27412 

calculated. 

 

3-(2,3,4,6-Tetra-O-benzyl-α-ᴅ-mannopyranoside)-1-propene (172). 

Compound 171 (53.61 g, 96.64 mmol) was co-evaporated with toluene (3x) under argon, 

dissolved in ACN (133 mL, 0.73 M) and cooled to 0 °C. Allyltrimethylsilane (41.5 mL, 260.93 

mmol, 2.7 eq) and TMSOTf (21.0 mL, 116.0 mmol, 1.2 eq) were added and the reaction mixture was 

irradiated with ultrasound for 50 min after which the reaction mixture was quenched by addition of Et3N. 

The reaction mixture was diluted in Et2O washed with brine (3x), dried over MgSO4 (s), filtered and 

concentrated in vacuo. Purification using silica gel column chromatography (1/4, → 1/1, Et2O/PE, v/v) 

yielded compound 172 as a colorless oil (56.1 g, 70.48 mmol, 73%). TLC Rf: 0.61 (EtOAc/PE, 1/4, v/v); 

IR (neat, cm−1): 3021, 2905, 2855, 1495, 1453, 1363, 1262, 1090, 1072, 1027, 1001, 912, 733, 695; 1H NMR 

(400 MHz, CDCl3) δ 7.39 - 7.24 (m, 18H, Harom), 7.22 - 7.18 (m, 2H, Harom), 5.83 - 5.68 (m, 1H, H-2), 5.08 

- 4.93 (m, 2H, H-1), 4.70 (d, J = 11.3 Hz, 1H, CHH-Bn), 4.62 - 4.49 (m, 7H, CH2-Bn (3x), CHH-Bn), 4.04 

(q, J = 6.3 Hz, 1H, H-4), 3.92 - 3.66 (m, 5H, H-6, H-7, H-8, H-9), 3.62 (dd, J = 4.6, 3.1 Hz, 1H, H-5), 2.32 

(hept, J = 6.8 Hz, 2H, H-3); 13C NMR (101 MHz, CDCl3) δ 138.5, 138.4, 138.3, 138.2 (Cq), 134.4 (C-2), 

128.5, 128.4, 128.4, 128.1, 128.1, 128.0, 127.8, 127.8, 127.7, 127.5 (CHarom), 117.3 (C-1), 76.9 (C-6/7/8), 

75.2 (C-5), 75.0 (C-6/7/8), 73.9 (CH2-Bn), 73.8 (C-6/7/8), 73.4 (CH2-Bn), 72.4 (C-4), 72.1, 71.6 (CH2-Bn), 

69.2 (C-9), 34.7 (C-3); HRMS [C37H40O5 + H]+: 565.29569 found, 565.29485 calculated. 
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3-(2,3,4,6-Tetra-O-Acetyl-α-ᴅ-mannopyranoside)-1-propene (173). 

Method a) BCl3 

Compound 172 (6.44 g, 11.4 mmol) was co-evaporated with toluene (3x) under argon, dissolved in DCM 

(10 mL) and cooled to -78°C. To this solution BCl3 (100 mL, 1.0 M in DCM, 100 mmol, >8 eq) was added 

dropwise. After overnight stirring at -78°C the reaction mixture was quenched by the addition of MeOH 

(100 mL) at -78°C after which the mixture was concentrated in vacuo and co-evaporated with toluene (5x). 

The crude pink oil was dissolved in pyridine (20 mL, 0.6 M) and Ac2O (6.5 mL, 69.0 mmol, 6 eq) was added 

dropwise at 0°C. After overnight stirring at rt the reaction was quenched with MeOH, diluted in Et2O and 

washed with HCl (1 M, aq., 4x). The organic layer was collected, dried over MgSO4 (s), filtered, and 

concentrated in vacuo. Purification using silica gel column chromatography (1/9, → 1/1, Et2O/PE, v/v) 

yielded title compound 173 as a colourless oil (4.003 g, 10.7 mmol, 95%). 

Method b) Li-naphthalenide 

Compound 172 (45.8 g, 81 mmol) was co-evaporated with toluene (3x) under argon and dissolved in 

distilled anhydrous THF (180 mL). This solution was added dropwise to a lithium napthalenide solution at 

-78°C and stirred for five days at -20°C with a glass stirring rod. Li-napthalenide solution was prepared 

from Li (9.2 g, 1.3 mol, 14 eq) and naphthalene (15.5 g, 121 mmol, 1.5 eq) in distilled anhydrous THF (400 

mL). The reaction was quenched with MeOH, neutralized with Amberlite H+ resin, filtered and 

concentrated in vacuo. After co-evaporation with toluene (3x) the mixture was dissolved in pyridine (135 

mL, 0.6 M), cooled to 0°C and Ac2O (46 mL, 486 mmol, 6 eq) was added dropwise. After overnight stirring 

at rt, the reaction was quenched with MeOH, diluted with Et2O and washed with HCl (1 M, aq.). The 

aqueous layer was back-extracted with Et2O (2x) and the organic layers were combined, washed with HCl 

(1.0 M, aq., 2x), dried over MgSO4 (s), filtered and concentrated in vacuo. Purification using silica gel column 

chromatography (1/9, → 1/1, Et2O/PE, v/v) yielded title compound 173 as a colorless oil (16.38 g, 44 

mmol, 54%). 

TLC Rf: 0.34 (Et2O/PE, 6/4, v/v); IR (neat, cm−1): 2905, 1739, 1369, 1213, 1144, 1114, 1045, 

986, 918, 802; 1H NMR (400 MHz, CDCl3) δ 5.78 (ddt, J = 17.1, 10.2, 6.9 Hz, 1H, H-2), 5.27 

(dd, J = 8.9, 3.3 Hz, 1H, H-6), 5.23 - 5.13 (m, 4H, H-7, H-5, H-1), 4.33 (dd, J = 12.1, 6.3 Hz, 1H, H-9a), 

4.11 (dd, J = 12.1, 2.9 Hz, 1H, H-9b), 4.08 - 4.02 (m, 1H, H-4), 3.90 (ddd, J = 8.9, 6.5, 2.9 Hz, 1H, H-8), 

2.59 - 2.48 (m, 1H, H-3a), 2.48 - 2.36 (m, 1H, H-3b), 2.13 (s, 3H, Ac), 2.09 (s, 3H, Ac), 2.07 (s, 3H, Ac), 

2.03 (s, 3H, Ac); 13C NMR (101 MHz, CDCl3) δ 170.8, 170.3, 170.0, 169.8 (C=O), 132.6 (C-2), 118.4 (C-1), 

74.2 (C-4), 70.7 (C-8), 70.1 (C-5), 68.9 (C-6), 67.1 (C-7), 62.5 (C-9), 33.7 (C-3), 21.0, 20.8, 20.8 (Ac (4x)); 

HRMS [C17H24O9 + H]+: 373.14931 found, 373.14931 calculated. 
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3-(2,3,4,6-Tetra-O-paramethoxybenzyl-α-ᴅ-mannopyranoside)-1-propene (174). 

Compound 173 (18.84 g, 50.6 mmol) was dissolved in MeOH (83 mL, 0.6 M) and NaOMe (4.5 

mL, ~5.4 M, 20.25 mmol, 0.4 eq) was added dropwise. After overnight stirring, the mixture 

was neutralized with Amberlite H+ resin, filtrated and concentrated in vacuo. After co-evaporation with 

toluene (3x) the crude was dissolved in DMF (253 mL, 0.2 M) cooled to 0°C and NaH (12.14 g, 60% wt 

dispersion in mineral oil, 303.6 mmol, 6 eq), PMBCl (41.2 mL, 303.6 mmol, 6 eq) and TBAI (3.7 g, 10.1 

mmol, 0.2 eq) were added in portions. After overnight stirring at rt, the mixture was quenched with H2O 

at 0°C and extracted with Et2O (2x). The organic layers were combined, washed with brine (3x), dried over 

MgSO4 (s), filtrated and concentrated in vacuo. Purification using silica gel column chromatography (1/9, → 

1/4, EtOAc/PE, v/v) yielded title compound 174 as a colorless oil (23.8 g, 34.7 mmol, 69%). TLC Rf: 0.38 

(EtOAc/PE, 1/4, v/v); IR (neat, cm−1): 3054, 2988, 1612, 1514, 1422, 1264, 1174, 1083, 896, 824, 732, 

704; 1H NMR (400 MHz, CDCl3) δ 7.24 (t, J = 8.3 Hz, 4H, Harom), 7.18 (d, J = 8.6 Hz, 2H, Harom), 7.09 (d, 

J = 8.6 Hz, 2H, Harom), 6.87 - 6.79 (m, 8H, Harom), 5.74 (ddt, J = 18.2, 9.1, 6.9 Hz, 1H, H-2), 5.06 - 4.96 (m, 

2H, H-1), 4.61 (d, J = 10.9 Hz, 1H, CHH-PMB), 4.56 - 4.37 (m, 7H, CH2-PMB (3x), CHH-PMB), 4.04 - 

3.94 (m, 1H, H-4), 3.84 - 3.75 (m, 14H, OMe (4x), H-6, H-8), 3.71 (dt, J = 7.4, 4.0 Hz, 2H, H-9a, H-7), 3.65 

(dd, J = 10.1, 2.9 Hz, 1H, H-9b), 3.57 (dd, J = 4.6, 3.1 Hz, 1H, H-5), 2.32 (tt, J = 12.2, 6.6 Hz, 2H, H-3); 

13C NMR (101 MHz, CDCl3) δ 159.3, 159.3, 159.2 (Cq), 134.6 (C-2), 130.7, 130.6, 130.5, 130.4 (Cq), 129.7, 

129.7, 129.6, 129.5 (CHarom), 117.2 (C-2), 113.8, 113.8, 113.8 (CHarom), 76.5 (C-7), 74.7 (C-5), 74.6, 73.8 (C-

6, C-8), 73.5, 73.0 (CH2-PMB), 72.4 (C-4)), 71.7, 71.1 (CH2-PMB), 68.9 (C-9), 55.4, 55.3 (OMe (4x)), 34.8 

(C-3); HRMS [C41H48O9 + Na]+: 707.31913 found, 707.31905 calculated. 

Benzyl-but-4-(2,3,4,6-tetra-O-paramethoxybenzyl-α-ᴅ-mannopyranoside)-cis/trans-2-enoate 

(175). 

Allyl 174 (803.1 mg, 1.17 mmol, 1 eq) and benzylacrylate (531.3 mg, 3.276 mmol, 2.8 eq) where 

combined and co-evaporated with toluene (3x) under argon after which they were dissolved in 

DCM (40 mL, 1 M) and purged by bubbling with N2 gas for twenty minutes. Grubbs second 

generation catalyst (19,9 mg, 23.4 µmol, 0.02 eq) was added and the reaction mixture was refluxed protected 

from light. After three days the mixture was concentrated on Celite and purified via silica gel column 

chromatography (1/9 → 1/3, EtOAc/PE, v/v) to yield 175 as a brown oil (707.8 mg, 0.86 mmol, 74%). 

TLC Rf: 0.23 (EtOAc/PE, 1/4, v/v); IR (neat, cm−1): 2920, 2880, 1716, 1610, 1511, 1318, 1302, 1244, 1210, 

1171, 1082, 1030, 990, 845, 755; 1H NMR (400 MHz, CDCl3) δ 7.39 – 7.27 (m, 5H, Harom), 7.20 (d, J = 8.4 

Hz, 4H, Harom), 7.12 (t, J = 8.7 Hz, 4H, Harom), 6.97 (dt, J = 15.5, 7.1 Hz, 1H, H-3), 6.82 (t, J = 8.7 Hz, 8H, 

Harom), 5.89 (d, J = 15.7 Hz, 1H, H-2), 5.16 (s, 2H, CH2-Bn), 4.53 – 4.36 (m, 8H, CH2-PMB), 4.05 – 3.93 

(m, 1H, H-5), 3.88 – 3.66 (m, 16H, Ome (4x), H-7, H-8, H-9, H-10a), 3.61 (dd, J = 10.3, 4.6 Hz, 1H, H-

10b), 3.51 (dd, J = 6.4, 2.6 Hz, 1H, H-6), 2.55 – 2.34 (m, 2H, H-4); 13C NMR (101 MHz, CDCl3) δ 166.2 

(C-1), 159.4, 159.2 (Cq), 145.8 (C-3), 130.5, 130.3, 130.2, 130.1 (Cq), 129.8, 129.6, 129.6, 129.5, 128.6, 128.3, 

128.2 (CHarom), 123.2 (C-2), 113.9, 113.9, 113.8 (CHarom), 75.1, 74.8, 74.3, 74.1 (C-6, C-7, C-8, C-9), 73.0, 
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72.7, 71.9, 71.1 (CH2-PMB), 70.4 (C-5), 68.3 (C-10), 66.1 (CH2-Bn), 55.4, 55.4, 55.4 (OMe), 33.8 (C-4); 

HRMS [C49H54O11 + H]+: 819.37936 found, 819.37389 calculated. 

Benzyl-4-(2,3,4,6-tetra-O-paramethoxybenzyl-α-ᴅ-mannopyranoside)-butanoate (177). 

Compound 175 (937.3 mg, 1.14 mmol, 1 eq) and RuCl3 (47.5 mg, 0.228 mmol, 0.2 eq) were 

dissolved in 1,2-dichloroethane (4.4 mL, 0.2 M) and purged with N2 for twenty minutes. To 

this solution NaBH4 (138.5 mg, 3.65 mmol, 3.2 eq) was added, the flask was sealed with a 

septum and three empty balloons were fitted. The mixture was cooled to 0°C and MeOH (1.3 mL) was 

added dropwise over thirty minutes time after which the reaction was allowed to warm up and stirred for 

five hours. The septum was removed and the reaction was quenched by addition of a small amount of H2O 

at 0°C, after which it was concentrated and purified via silica gel column chromatography (1/9 → 3/7, 

EtOAc/PE, v/v) to yield 177 as a colorless oil (847.1 mg, 1.03 mmol, 91%). TLC Rf: 0.23 (EtOAc/PE, 

1/4, v/v); IR (neat, cm−1): 2905, 2855, 1733, 1612, 1511, 1361, 1301, 1244, 1210, 1172, 1078, 1031, 846, 

818, 752, 686; 1H NMR (400 MHz, CDCl3) δ 7.39 – 7.26 (m, 5H, Harom), 7.26 – 7.16 (m, 6H, Harom), 7.08 

(d, J = 8.5 Hz, 2H, Harom), 6.92 – 6.72 (m, 8H, Harom), 5.09 (s, 2H, CH2-Bn), 4.60 – 4.38 (m, 8H, CH2-PMB), 

3.98 – 3.85 (m, 1H, H-5), 3.84 – 3.58 (m, 17H, Ome (4x), H-7, H-8, H-9, H-10), 3.49 (dd, J = 6.4, 3.1 Hz, 

1H, H-6), 2.35 (t, J = 7.2 Hz, 1H, H-2), 1.86 – 1.39 (m, 4H, H-3, H-4); 13C NMR (101 MHz, CDCl3) δ 

173.3 (C-1), 159.3, 159.2, 136.2, 130.6 (Cq), 130.6, 130.5, 129.7, 129.5, 128.7, 128.3, 113.8, 113.8, 113.8 

(CHarom), 76.9 (C-5), 75.6 (C-6), 74.5, 73.5 (C-7, C-8), 73.5, 73.0, 71.8, 71.2 (CH2-PMB), 72.4 (C-9), 68.8 (C-

10), 66.2 (CH2-Bn), 55.3, 55.3 (OMe), 34.0 (C-2), 29.2 (C-4), 21.4 (C-3); HRMS [C49H56O11 + Na]+: 

843.37181 found, 843.37148 calculated. 

Methyl-but-4-(2,3,4,6-tetra-O-paramethoxybenzyl-α-ᴅ-mannopyranoside)-cis/trans-2-

enoate (176). 

Compound 174 (24.77 g, 36.2 mmol) was co-evaporated with CHCl3 (1x), dissolved in DCM 

(40 mL, 1 M) and purged by bubbling with N2 gas for twenty minutes. To this mixture methyl 

acrylate (16.3 mL, 181 mmol, 5 eq) and Grubbs second generation catalyst (0.68 g, 0.80 mmol, 

0.02 eq) were added, the mixture was purged with N2 for twenty minutes more, after which it was refluxed 

protected from light. After two days the mixture was concentrated on Celite and purified via silica gel 

column chromatography (1/9 → 1/3, EtOAc/PE, v/v) to yield unreacted starting material 174 (6.27 g, 

9.16 mmol, 25%) and product 176 as a brown oil (19.60 g, 26.4 mmol, 73%). TLC Rf: 0.22 (EtOAc/PE, 

1/4, v/v); IR (neat, cm−1): 2936, 2837, 1720, 1659, 1611, 1586, 1512, 1463, 1440, 1362, 1302, 1245, 1172, 

1082, 1033, 819, 733, 702; 1H NMR (400 MHz, CDCl3) δ 7.24 - 7.09 (m, 8H, Harom), 6.96 - 6.87 (m, 1H, H-

3), 6.87 - 6.80 (m, 8H, Harom), 5.83 (d, J = 15.7 Hz, 1H, H-2), 4.51 (d, J = 11.4 Hz, 1H, CHH-PMB), 4.47 - 

4.37 (m, 7H, CH2-PMB (3x), CHH-PMB), 4.04 - 3.96 (m, 1H, H-5), 3.89 - 3.83 (m, 1H, H-9), 3.83 - 3.75 

(m, 12H, OMe (3x)), 3.75 - 3.65 (m, 6H, H-7, H-8, CO2Me , H-10a), 3.65 - 3.59 (m, 1H, H-10b), 3.50 (dd, 

J = 6.4, 2.5 Hz, 1H, H-6), 2.55 - 2.37 (m, 2H, H-4); 13C NMR (101 MHz, CDCl3) δ 166.7 (C-1), 159.3, 159.1 

(Cq), 145.3 (C-3), 130.4, 130.2, 130.1, 130.0 (Cq), 129.7, 129.6, 129.4 (CHarom), 123.0 (C-2), 113.8, 113.7 
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(CHarom), 74.9 (C-6), 74.7, 74.2 (C-7, C-8), 73.9 (C-9), 72.9, 72.6, 71.8, 71.0 (CH2-PMB), 70.3 (C-5), 68.2 (C-

10), 55.3 (OMe (4x)), 51.4 (COOMe), 33.7 (C-4); HRMS [C43H50O11 + Na]+: 765.32463 found, 765.32453 

calculated. 

Methyl-4-(2,3,4,6-tetra-O-paramethoxybenzyl-α-ᴅ-mannopyranoside)-butanoate (178). 

Compound 176 (19.60 g, 26.4 mmol) and RuCl3 (1.1 g, 5.3 mmol, 0.2 eq) were dissolved in 1,2-

dichloroethane (100 mL, 0.26 M) and purged with N2 for twenty minutes. To this solution 

NaBH4 (3.2 g, 84.5 mmol, 3.2 eq) was added, the flask was sealed with a septum and three 

empty balloons were fitted. The mixture was cooled to 0°C and MeOH (34 mL) was added dropwise over 

thirty minutes time after which the reaction was allowed to warm up and stirred for four hours. The septum 

was removed and the reaction was quenched by addition of a small amount of H2O at 0°C, after which it 

was concentrated and purified via silica gel column chromatography (1/9 → 3/7, EtOAc/PE, v/v) to yield 

178 as a yellow oil (18.35 g, 24.6 mmol, 93%). TLC Rf: 0.34 (EtOAc/PE, 3/7, v/v); 1H NMR (400 MHz, 

CDCl3) δ 7.29 - 7.22 (m, 4H, Harom), 7.19 (d, J = 8.6 Hz, 2H, Harom), 7.08 (d, J = 8.6 Hz, 2H, Harom), 6.88 - 

6.80 (m, 8H, Harom), 4.63 - 4.38 (m, 8H, CH2-PMB), 3.90 (dd, J = 8.6, 4.2 Hz, 1H, H-5), 3.84 - 3.60 (m, 

20H, OMe (5x), H-7, H-8, H-9, H-10), 3.50 (dd, J = 4.7, 3.1 Hz, 1H, H-6), 2.30 (t, J = 7.1 Hz, 2H, H-2), 

1.83 - 1.41 (m, 4H, H-3, H-4); 13C NMR (101 MHz, CDCl3) δ 173.6 (C-1), 159.1, 159.1, 159.0, 130.4, 130.3, 

130.2 (Cq), 129.9, 129.4, 129.3, 129.2, 129.0, 113.6, 113.5, 113.5 (CHarom), 76.5 (C-7, C-8, C-9), 75.4 (C-6), 

74.3, 73.4 (C-7, C-8, C-9), 73.1, 72.7 (CH2-PMB), 72.1 (C-5), 71.5, 71.0 (CH2-PMB), 68.5 (C-10), 55.0, 55.0 

(OMe), 51.2 (COOMe), 33.5 (C-2), 29.0, 21.1 (C-3, C-4); HRMS [C43H52O11 + H]+: 745.35731 found, 

745.35824 calculated. 

4-(2,3,4,6-tetra-O-paramethoxybenzyl-α-ᴅ-mannopyranoside)-butanoic acid (179). 

Methyl ester 178 (18.34 g, 24.6 mmol)a was dissolved in THF (123 mL, 0.2 M) and cooled to 

0°C, followed by the dropwise addition of KOH (31 mL, 4.0 M, aq., 124 mmol, 5 eq). The 

mixture was heated to 50°C and stirred overnight. After acidification of the reaction mixture 

with HCl (1 M aq., pH ± 2), the product was extracted with Et2O (3x), the organic layers were combined, 

dried over MgSO4 (s), filtered and concentrated in vacuo. Purification using silica gel column 

chromatography (3/7 → 1/0, EtOAc/PE, v/v) yielded title compound 179 as a clear oil (18.01 g, 24.6 

mmol, qnt.). TLC Rf: 0.27 (EtOAc/PE, 7/3, v/v); IR (neat, cm−1): 3055, 2920, 1513, 1422, 1264, 1034, 896, 

733, 704; 1H NMR (400 MHz, CDCl3) δ 7.27 - 7.21 (m, 4H, Harom), 7.18 (d, J = 8.6 Hz, 2H, Harom), 7.08 (d, 

J = 8.6 Hz, 2H, Harom), 6.83 (ddd, J = 8.5, 5.4, 2.5 Hz, 8H, Harom), 4.60 - 4.36 (m, 8H, CH2-PMB), 3.90 (dt, 

J = 8.5, 4.6 Hz, 1H, H-5), 3.83 - 3.66 (m, 18H, OMe (4x) H-7, H-8, H-9, H-10a), 3.66 - 3.60 (m, 1H, H-

10b), 3.50 (dd, J = 5.0, 2.9 Hz, 1H, H-6), 2.34 (t, J = 7.0 Hz, 2H, H-2), 1.81 - 1.49 (m, 4H, H-3, H-4); 13C 

NMR (101 MHz, CDCl3) δ 178.5 (C-1), 159.3, 159.2, 130.5, 130.5, 130.4 (Cq), 129.7, 129.7, 129.6, 129.6, 

113.9 (CHarom), 76.6 (C-7, C-8, C-9), 75.6 (C-6), 74.5, 73.6 (C-7, C-8, C-9), 73.3, 73.0 (CH2-PMB), 72.2 (C-

 
a Using the same procedure, hydrolysis of 177 (847.1 mg, 1.03 mmol) resulted in 179 (764.4 mg, 0.92 mmol, 90 %). 
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5), 71.9, 71.3 (CH2-PMB), 68.8 (C-10), 55.4, 55.4 (OMe), 33.6 (C-2), 29.1 (C-4), 21.2 (C-3); HRMS 

[C42H50O11 + Na]+: 753.32470 found, 753.32453 calculated. 

Nα-Fmoc-Nε-[butan-4-(2,3,4,6-tetra-O-paramethoxybenzyl-α-ᴅ-mannopyranoside)-amide]-

L-lysine-methyl ester (180). 

Carboxylic acid 178 (6.25 g, 8.55 mmol) was combined with amine 181 (3.58 g, 8.55 mmol, 

1 eq) and HCTU (3.54 g, 8.55 mmol, 1 eq), dissolved in DMF (42.8 mL, 0.2 M) and 

DIPEA (4.47 mL, 25.65 mmol, 3 eq) was added dropwise. After two hours the mixture 

diluted with EtOAc, washed with a mixture of HCl (1 M, aq.) and brine (1/1, v/v) after which ] the aqueous 

layer was backextracted with EtOAc (1x). The organic layers were combined, washed with brine (1x), dried 

over MgSO4 (s), filtered and concentrated in vacuo. Purification using silica gel column chromatography (1/1 

→ 9/1, EtOAc/PE, v/v) yielded title compound 180 as a white solid (9.30 g, 8.49 mmol, 99%). TLC Rf: 

0.34 (EtOAc/PE, 4/1, v/v); IR (neat, cm−1): 3331, 2934, 1720, 1648, 1611, 1585, 1512, 1451, 1301, 1246, 

1173, 1082, 1033, 820, 760, 740; 1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 7.5 Hz, 2H, Harom), 7.60 (d, J = 

7.1 Hz, 2H, Harom), 7.39 (t, J = 7.4 Hz, 2H, Harom), 7.30 (t, J = 7.4 Hz, 2H, Harom), 7.27 - 7.14 (m, 6H, Harom), 

7.09 (d, J = 8.4 Hz, 2H, Harom), 6.83 (dd, J = 7.5, 5.0 Hz, 8H, Harom), 5.94 (s, 1H, NεH), 5.48 (d, J = 8.1 Hz, 

1H, NαH), 4.59 (d, J = 11.1 Hz, 1H, CHH-PMB), 4.53 - 4.36 (m, 9H, CHH-PMB, CH2-PMB (3x), CH2-

Fmoc), 4.36 - 4.27 (m, 1H, H-2), 4.22 (t, J = 6.9 Hz, 1H, CH-Fmoc), 3.94 - 3.86 (m, 1H, H-5′), 3.84 - 3.55 

(m, 21H, OMe (5x), H-7′, H-8′, H-9′, H-10′), 3.51 - 3.45 (m, 1H, H-6′), 3.18 - 3.03 (m, 2H, H-6), 2.29 - 2.09 

(m, 2H, H-2′), 1.86 - 1.58 (m, 4H, H-3, H-3′), 1.58 - 1.44 (m, 2H, H-4′), 1.44 - 1.25 (m, 4H, H-4, H-5); 13C 

NMR (101 MHz, CDCl3) δ 173.4, 173.1 (C-1, C-1′), 159.4, 159.4, 159.4, 159.3, 143.9, 141.4, 130.5, 130.5, 

130.3 (Cq), 129.7, 129.6, 129.6, 127.8, 127.2, 125.2, 120.1, 113.9, 113.9, 113.9 (CHarom),76.8 (C-7′,C-8′, C-9′), 

75.9 (C-6′), 74.8, 73.6 (C-7′,C-8′, C-9′), 73.4 (CH2-PMB), 73.2 (C-5′), 73.2, 71.9, 71.4(CH2-PMB), 69.4 (C-

10′), 67.1 (CH2-Fmoc), 53.8 (C-2), 52.5 (COOMe), 47.3 (CH-Fmoc), 39.0 (C-6), 35.7 (C-2′), 32.1 (C-3), 29.2 

(C-5), 28.3 (C-4′), 22.9 (C-3′), 22.6 (C-4); HRMS [C64H74N2O14 + Na]+: 1117.50383 found, 1117.50323 

calculated. 

Nα-Fmoc-Nε-[butan-4-(2,3,4,6-tetra-O-paramethoxybenzyl-α-ᴅ-mannopyranoside)-amide]-

L-lysine (168). 

Methyl ester 180 (2.19 g, 2.0 mmol) was dissolved in THF (20 mL, 0.1 M) and t-BuOH 

(2 mL) and cooled to 0°C. A solution of LiOH (240 mg, 10.0 mmol, 5 eq) in H2O2 (50% 

wt. aq., 4 mL, 2 M) was added dropwise (pH >10) and stirred at 0°C for four hours. The 

mixture was diluted with EtOAc, washed with HCl (1 M, aq., 1x), the organic layer was dried over MgSO4 

(s), filtered, concentrated in vacuo and purified using silica gel column chromatography (2/8 → 8/2, 

Acetone/DCM, v/v) to yield title compound 168 as a fluffy white powder after lyophilization from 1,4-

dioxane (1.70 g, 1.57 mmol, 79%). TLC Rf: 0.23 (AcOH/EtOAc/PE, 1/80/20, v/v/v); IR (neat, cm−1): 

3333, 2933, 1718, 1612, 1586, 1512, 1451, 1301, 1246, 1174, 1080, 1032, 819, 760, 740; 1H NMR (400 MHz, 

CDCl3) δ 7.76 (d, J = 7.5 Hz, 2H, Harom), 7.61 (d, J = 5.9 Hz, 2H, Harom), 7.39 (t, J = 7.4 Hz, 2H, Harom), 

O
OPMB

PMBO
PMBO
PMBO

O

H
NFmocHN

OHO
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7.30 (t, J = 7.1 Hz, 2H, Harom), 7.27 - 7.08 (m, 8H, Harom), 6.89 - 6.78 (m, 8H, Harom), 5.93 (t, J = 5.9 Hz, 1H, 

NεH), 5.61 (d, J = 7.1 Hz, 1H, NαH), 4.58 (d, J = 11.2 Hz, 1H, CHH-PMB), 4.52 - 4.30 (m, 10H, CHH-

PMB, CH2-PMB (3x), CH2-Fmoc, H-2), 4.22 (t, J = 7.1 Hz, 1H, CH-Fmoc), 3.93 - 3.87 (m, 1H, H-5′), 3.83 

- 3.76 (m, 13H, OMe (4x), H-7′/ H-8′/ H-9′), 3.72 - 3.55 (m, 4H, H-10′, H-7′/ H-8′/ H-9′), 3.49 (dd, J = 

5.4, 2.5 Hz, 1H, H-6′), 3.20 (dt, J = 11.6, 5.3 Hz, 1H, H-6a), 3.09 - 2.96 (m, 1H, H-6b), 2.26 (dt, J = 14.3, 

6.5 Hz, 1H, H-2a′), 2.11 (dt, J = 13.8, 6.3 Hz, 1H, H-2b′), 1.90 - 1.58 (m, 4H, H-3, H-3′), 1.53 - 1.27 (m, 

6H, H-4′, H-4, H-5); 13C NMR (101 MHz, CDCl3) δ 174.1, 173.8 (C-1, C-1′), 159.5, 159.5, 159.4, 156.1, 

143.9, 141.4, 130.2 (Cq), 129.9, 129.8, 129.8, 129.6, 127.8, 127.2, 125.3, 120.1, 113.9, 113.9, 113.9 (CHarom), 

76.2 (C-7′,C-8′, C-9′), 75.9 (C-6′), 74.7, 73.5 (C-7′,C-8′, C-9′), 73.3 (CH2-PMB), 73.2 (C-5′), 73.2, 72.0, 71.5 

(CH2-PMB), 69.1 (C-10′), 67.1 (CH2-Fmoc), 55.4 (OMe), 53.6 (C-2), 47.3 (CH-Fmoc), 39.0 (C-6), 35.5 (C-

2′), 31.8 (C-3), 29.8 (C-5), 28.8 (C-4′), 23.2 (C-3′), 21.9 (C-4); HRMS [C63H72N2O14 + H]+: 1081.50810 found, 

1081.50588 calculated. 

 

General procedure for manual solid phase synthesis: 

The solid-phase peptide synthesis was performed starting with Tentagel® S-RAM resin (~0.22 

mmol/g) on a 45-50 µmol scale using established Fmoc protocols.26 The consecutive steps 

performed in each cycle were: 

1) DMF wash (1x) followed by nitrogen purge; 2) Deprotection of the Fmoc-group with 20% 

piperidine in DMF (4 mL, 3 x 5 min); 3) DMF wash (3x) followed by nitrogen purge; 4) Coupling 

of the appropriate amino acida in five-fold excess (unless stated otherwise)b,c; 5) DMF wash (3x) 

followed by nitrogen purge; 6) capping with a Ac2O/DMF/DIPEA solution (4mL, 20/88/2, 

v/v/v) for 2 min; 7) DMF wash (2x). 

After the complete sequence capping was achieved by utilization of steps 1,2 & 3 followed by 6 

and washing with DMF (3x), DCM (3x) and Et2O (2x) followed by nitrogen purge. 

 

 
a The Fmoc amino acids applied in this synthesis were: Fmoc-Lys(Boc)-OH, Fmoc-Gly-OH, 168c. 

b For couplings on 50 µmol scale: generally the Fmoc amino acid was dissolved in a HCTU solution in DMF (1.25 
mL ,0.20 M, 0.25 mmol, 5 eq) This solution was transferred to the reaction vessel followed by a DIPEA solution in 
DMF (1.00 mL, 0.50 M, 0.50 mmol, 10 eq) to initiate the coupling. Next, the reaction vessel was shaken for 60 min at 
room temperature. 

c For C-mannoside couplings less equivalents with prolonged reaction times were used. Generally 168 (2eq) was 
dissolved in a solution of HCTU in DMF (0,5 mL ,0.20 M, 100 µmol, 2 eq), followed by a DIPEA solution in DMF 
(0.40 mL, 0.5 M, 200 µmol, 4 eq) and shaken overnight. 
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Ac-CMAN-Gly-Lys-NH2 (186). 

Ac-CMAN-Gly-Lys(Boc)-Tentagel® S-RAM (loading: 50 µmol) was transferred to a 

flask and treated for 120 minutes with a cleavage cocktail (20 mL, 

TFA/DCM/TIS/H2O/phenol21/octanethiol, 3600/60/100/72/72/100, v/v/v/v/ 

w/v). The resin was filtered off and washed with neat TFA (3 x 1 mL). The filtrate was 

concentrated and purified via gel filtration (Toyopearl HW40S, 150 mM NH4HCO3, 1.6 x 60 cm, 1 

mL/min, eluted at 51.5 - 60 mL) followed by purification via RP-HPLC (linear gradient 0 - 30% B in A, 10 

min, Gemini-NX 5µm C18, 110 Å, 250 x 10.0 mm, 5 mL/min) yielded title compound 186 as a white 

powder after lyophilization (2.11 mg, 3.49 µmol, 7.0% over 3 couplings, 41% per step). LC-MS: Rt = 3.42 

min (0 - 50% ACN; 13 min); 1H NMR (500 MHz, D2O) δ 4.27 (dd, J = 9.5, 4.9 Hz, 1H, CH (Cman)), 4.19 

(dd, J = 8.6, 5.8 Hz, 1H, CH (K)), 3.96 - 3.86 (m, 3H, CH2 (G), H-5′), 3.86 - 3.79 (m, 2H, H-6′, H-10a′), 

3.76 (dd, J = 9.4, 3.3 Hz, 1H, H-7′), 3.69 (dd, J = 12.2, 6.2 Hz, 1H, H-10b′), 3.59 (t, J = 9.5 Hz, 1H, H-8′), 

3.50 - 3.44 (m, 1H, H-9′), 3.15 (t, J = 7.0 Hz, 2H, CH2-NHC=O), 2.90 (t, J = 7.7 Hz, 2H, CH2-NH2), 2.26 

(hept, J = 7.2 Hz, 2H, H-2′), 2.01 (s, 3H, Ac), 1.91 - 1.27 (m, 16H, H-3′, H-4′, CH2 (6x)); 13C NMR (126 

MHz, D2O) δ 176.7, 176.3, 175.2, 174.5, 171.4 (C=O), 77.9 (C-5′), 73.5 (C-9′), 71.4 (C-6′), 70.8 (C-7′), 67.3 

(C-8′), 61.2 (C-10′), 54.1 (CH (K)), 53.2 (CH (CMan)), 42.5 (CH2 (G)), 39.3 (CH2-NH2), 38.9 (CH2-

NHC=O), 35.2 (C-2′), 30.3, 27.8, 26.9, 26.7, 22.3, 22.0, 21.8 (C-3′, C-4′, CH2 (6x)), 21.6 (Ac); HRMS 

[C26H48N6O10 + H]+: 605.35031 found, 605.35047 calculated. 

Ac-CMAN-Gly-CMAN-Gly-Lys-NH2 (187). 

Ac-CMAN-Gly-CMAN-Gly-Lys(Boc)-Tentagel® S-RAM (loading: 45 µmol) was 

transferred to a flask and treated for 120 minutes with a cleavage cocktail (10 mL, 

TFA/TIS/H2O, 190/5/5, v/v/v). The mixture was concentrated to approximately 

one mL after which the resin was filtered off into cold Et2O (45 mL) and the resin was 

washed off with neat TFA (3 x 1 mL) into the ether solution. This solution was 

centrifuged (10 min, 5000 rpm) after which the supernatant was removed and the precipitate was dried 

under nitrogen flow. Purification via RP-HPLC (linear gradient 0 - 30% B in A, 10 min, Gemini-NX 5µm 

C18, 110 Å, 250 x 10.0 mm, 5 mL/min) yielded title compound 187 as a white powder after lyophilization 

(6.43 mg, 6.29 µmol, 14% over 5 couplings, 67% per step). LC-MS: Rt = 0.91 min (10 - 90% ACN; 13 min); 

1H NMR (400 MHz, CDCl3) δ 4.28 (td, J = 8.6, 7.9, 5.3 Hz, 2H, CH (Cman)), 4.21 (dd, J = 8.7, 5.7 Hz, 1H, 

CH (K)), 3.96 - 3.91 (m, 4H, CH2 (G)), 3.91 - 3.86 (m, 2H, H-5′), 3.86 - 3.80 (m, 4H, H-6′, H-10a′), 3.77 

(dd, J = 9.3, 3.3 Hz, 2H, H-7′), 3.70 (dd, J = 12.1, 6.2 Hz, 2H, H-10b′), 3.61 (t, J = 9.5 Hz, 2H, H-8′), 3.48 

(ddd, J = 9.1, 6.2, 2.2 Hz, 2H, H-9′), 3.16 (t, J = 6.9 Hz, 4H, CH2-NHC=O), 2.98 (t, J = 7.5 Hz, 2H, CH2-

NH2), 2.34 - 2.19 (m, 4H, H-2′), 2.02 (s, 3H, Ac), 1.93 - 1.23 (m, 26H, H-3′, H-4′, CH2); 13C NMR (101 

MHz, CDCl3) δ 176.6, 176.3, 176.3, 175.2, 174.8, 174.5, 171.6, 171.4 (C=O), 77.9 (C-5′), 73.5 (C-9′), 71.4 

(C-6′), 70.8 (C-7′), 67.3 (C-8′), 61.3 (C-10′), 54.2 (CH (K)), 53.9, 53.1 (CH (Cman)), 42.5, 42.4 (CH2 (G)) 
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39.2 (CH2-NH2), 38.9 (CH2-NHC=O), 35.2 (C-2′), 30.3, 27.8, 26.7, 26.1, 22.4, 22.0, 21.98 (C-3′, C-4′, CH2), 

21.7 (Ac); ESI-MS [C44H79N9O18 + H]+: 1022.400 found, 1022.562 calculated. 

Ac-CMAN-Gly-CMAN-Gly-CMAN-Gly-Lys-NH2 (188). 

Ac-CMAN-Gly-CMAN-Gly-CMAN-Gly-Lys(Boc)-Tentagel® S-RAM (loading: 45 

µmol) was transferred to a flask and treated for 120 minutes with a cleavage cocktail 

(10 mL, TFA/TIS/H2O, 190/5/5, v/v/v). The resin was filtered off into cold Et2O 

(45 mL) and the resin was washed off with neat TFA (3 x 1 mL) into the ether solution. 

This solution was centrifuged (10 min, 5000 rpm) after which the supernatant was 

removed and the precipitate was dried under nitrogen flow. Purification via RP-HPLC (linear gradient 0 - 

30% B in A, 10 min, Gemini-NX 5µm C18, 110 Å, 250 x 10.0 mm, 5 mL/min) yielded title compound 188 

as a white powder after lyophilization (3.91 mg, 2.71 µmol, 6.0% over 7 couplings, 67% per step). LC-MS: 

Rt = 4.54 min (20 - 50% ACN; 13 min); 1H NMR (400 MHz, CDCl3) δ 4.32 - 4.24 (m, 3H, CH (Cman)), 

4.21 (dd, J = 8.6, 5.6 Hz, 1H, CH (K)), 3.96 - 3.86 (m, 9H, CH2 (G), H-5′), 3.86 - 3.80 (m, 6H, H-6′, H-

10a′), 3.77 (dd, J = 9.3, 3.3 Hz, 3H, H-7′), 3.70 (dd, J = 12.1, 6.2 Hz, 3H, H-10b′), 3.61 (t, J = 9.5 Hz, 3H, 

H-8′), 3.48 (ddd, J = 9.3, 6.2, 2.2 Hz, 3H, H-9′), 3.15 (d, J = 6.5 Hz, 6H, CH2-NHC=O), 2.98 (t, J = 7.4 Hz, 

2H, CH2-NH2), 2.34 - 2.18 (m, 6H, H-2′), 2.02 (s, 3H, Ac), 1.92 - 1.22 (m, 36H, H-3′, H-4′, CH2); ESI-MS 

[C62H110N12O26 + H]+: 1439.533 found, 1439.773 calculated. 

Ac-CMAN-CMAN-CMAN-CMAN-CMAN-CMAN-Gly-Lys-NH2 (189). 

Ac-CMAN-CMAN-CMAN-CMAN-CMAN-CMAN-Gly-Lys(Boc)-Tentagel® S-

RAM (loading: 50 µmol) was transferred to a flask and treated for 120 minutes with 

a cleavage cocktail (20 mL, TFA/DCM/TIS/H2O/phenol21/octanethiol, 

3600/60/100/72/72/100, v/v/v/v/w/v). The resin was filtered off and washed 

with neat TFA (3 x 1 mL). The filtrate was concentrated and purified via gel 

filtration (Toyopearl HW40S, 150 mM NH4HCO3, 1.6 x 60 cm, 1 mL/min, eluted 

at 34 - 49 mL) followed by purification via RP-HPLC (linear gradient 0 - 30% B in A, 10 min, Gemini-NX 

5µm C18, 110 Å, 250 x 10.0 mm, 5 mL/min) to yield title compound 189 as a white powder after 

lyophilization (2.56 mg, 1.06 µmol, 2.1% over 8 couplings, 62% per step). LC-MS: Rt = 4.22 min (0 - 50% 

ACN; 13 min); 1H NMR (500 MHz, D2O) δ 4.30 - 4.18 (m, 6H, CH (Cman)), 4.18 - 4.14 (m, 1H, CH (K)), 

3.93 (s, 2H, CH2 (G)), 3.88 (dd, J = 10.0, 3.4 Hz, 6H, H-5′), 3.86 - 3.79 (m, 12H, H-6′, H-10a′), 3.76 (dd, J 

= 9.4, 3.3 Hz, 6H, H-7′), 3.69 (dd, J = 12.1, 6.2 Hz, 6H, H-10b′), 3.60 (t, J = 9.5 Hz, 6H, H-8′), 3.47 (ddd, 

J = 9.0, 6.2, 2.1 Hz, 6H, H-9′), 3.17 - 3.09 (m, 12H, CH2-NHC=O), 2.97 (t, J = 7.2 Hz, 2H, CH2-NH2), 

2.24 (hept, J = 7.6 Hz, 12H, H-2′), 2.01 (s, 3H, Ac), 1.89 - 1.25 (m, 66H, H-3′, H-4′, CH2); HRMS 

[C106H188N16O45 + 3H]3+: 803.10536 found, 803.10546 calculated. 
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General procedure for biotinylation: 

The general procedure to introduce the biotin handle: Glycoclusters described above with a free amine 

were dissolved in DMSO (0.02 M). To this, a stock solution of Biotin-NHS (0.15 M, 3-4 eq) and DIPEA 

(0.015M, 0.3-0.4 eq) in DMSO was added and shaken overnight after which compounds were purified via 

RP-HPLC (linear-gradient 10 - 16% B in A, 12 min, 5 mL/min, Develosil RPAQUEOUS 10.0 x 250 mm) 

followed by lyophilization.  

 

Ac-CMAN-Gly-Lys(biotin)-NH2 (190). 

Compound 186 (1.54 mg, 1.23 µmol) was coupled with biotin-NHS using the general 

procedure. Compound 190 was obtained after purification by RP-HPLC as a white 

powder (1.98 mg, 2.38 µmol, 94%). LC-MS: Rt = 5.23 min (0 - 50% ACN; 13 min); 

HRMS [C36H62N8O12S +H]+: 831.42807 found, 831.42807 calculated. 

 

Ac-CMAN-Gly-CMAN-Gly-Lys(biotin)-NH2 (191). 

Compound 187 (6.43 mg, 6.30 µmol) was coupled with biotin-NHS using the general 

procedure. Compound 191 was obtained after purification by RP-HPLC as a white 

powder (5.64 mg, 4.51 µmol, 72%). LC-MS: Rt = 5.21 min (0 - 50% ACN; 13 min); 

1H NMR (500 MHz, D2O) δ 4.62 (dd, J = 7.9, 4.4 Hz, 1H), 4.44 (dd, J = 7.9, 4.5 Hz, 

1H), 4.33 - 4.27 (m, 2H), 4.25 (dd, J = 8.7, 5.7 Hz, 1H), 3.98 - 3.95 (m, 4H), 3.95 - 

3.91 (m, 2H), 3.90 - 3.84 (m, 4H), 3.81 (dd, J = 9.4, 3.4 Hz, 2H), 3.74 (dd, J = 12.1, 6.2 Hz, 2H), 3.65 (t, J 

= 9.5 Hz, 2H), 3.52 (ddd, J = 9.2, 6.2, 2.3 Hz, 2H), 3.35 (dt, J = 9.7, 5.3 Hz, 1H), 3.20 (dt, J = 6.9, 3.6 Hz, 

6H), 3.01 (dd, J = 13.1, 5.0 Hz, 1H), 2.79 (d, J = 13.0 Hz, 1H), 2.36 - 2.23 (m, 6H), 2.06 (s, 3H), 1.92 - 1.30 

(m, 32H); HRMS [C54H93N11O20S +2H]2+: 624.82361 found, 624.82323 calculated. 

Ac-CMAN-Gly-CMAN-Gly-CMAN-Gly-Lys(biotin)-NH2 (192).  

Compound 188 (3.91 mg, 2.72 µmol) was coupled with biotin-NHS using the general 

procedure. Compound 192 was obtained after purification by RP-HPLC as a white 

powder (9.29 mg, 5.58 µmol, 99%). LC-MS: Rt = 5.16 min (0 - 50% ACN; 13 min); 

HRMS [C72H124N14O28S +2H]2+: 833.42889 found, 833.42879 calculated.  
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Ac-CMAN-CMAN-CMAN-CMAN-CMAN-CMAN-Gly-Lys(biotin)-NH2 (193). 

Compound 189 (2.09 mg, 0.87 µmol) was coupled with biotin-NHS using the general 

procedure. Compound 193 was obtained after purification by RP-HPLC as a white 

powder (1.84 mg, 0.70 µmol, 80%). LC-MS: Rt = 5.06 min (0 - 50% ACN; 13 min); 

HRMS [C116H202N18O47S +3H]3+: 1317.19385 found, 1317.19348 calculated. 

 

 

Ac-CMAN-CMAN-CMAN-CMAN-CMAN-CMAN-Gly-Lys(ATTO655)-NH2 (194). 

Compound 189 (155 nmol) was dissolved in DMSO (2.0 mM). To this a solution 

of ATTO655-NHS (5.0 mM, 2 eq) and DIPEA (0.01 M, 2 eq) in DMSO was 

added, shaken protected from light for one hour. After which compound 194 was 

obtained after purification by gel filtration (eluted at 46 - 58 mL) as a blue powder 

after lyophilization (0.247 mg, 85 nmol, 55%). LC-MS: Rt = 6.08 min (0 - 50% 

ACN; 13 min); HRMS [C133H219N19O50S + 3H]3+: 972.83825 found, 972.83828 

calculated. 

 

General procedure for automated solid-phase synthesis of gp100 peptides: 

The solid-phase peptide synthesis was performed on a TRIBUTE® Peptide Synthesizer (Gyros 

Protein Technologies AB, Arizona, USA) applying Fmoc based protocol starting with Tentagel® 

S-RAM resin (~0.22 mmol/g) on a 100-250 µmol scale using established synthetic protocols.26 

The consecutive steps for synthesis on 250 µmol scalea performed in each cycle were: 

1) DMF wash (1x) followed by nitrogen purge; 2) Deprotection of the Fmoc-group with 20% 

piperidine in DMF (8 mL)(3 x 3 min at 50 °C); 3) DMF wash (3x) followed by nitrogen purge; 4.1) 

 

a All amounts were scaled-down in equimolar proportions for smaller scale. 
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Coupling of the appropriate amino acida in four-fold excess (unless stated otherwise);b ,c,d 4.2) Step 

4.1 was repeated 5) DMF wash (3x) followed by nitrogen purge; 6) capping with a solution of 

Ac2O/DMF/DIPEA (8mL, 10/88/2, v/v/v) for 2 min; 7) DMF wash (2x).  

After the complete sequence, the resin was washed with DMF (3x), DCM (3x), Et2O (3x), followed 

by nitrogen purge before treatment with the cleavage cocktail. 

 

Ac-CMAN-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-

Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-Lys-NH2 (203). 

Resin 134 (theoretical loading: 25 µmol) was elongated with 168 (54 mg, 50 µmol, 2 

eq) by shaking overnight at room temperature with HCTU (20.7 mg, 50 µmol, 2 eq) 

and DIPEA (17.4 µL, 100 µmol, 4 eq) in DMF (450 µL, 0.11 M of 168). After washing 

(steps 7,1) and Fmoc removal (steps 2, 3) the N-terminus was capped with 

Ac2O/DMF/DIPEA (4mL, 10/88/2, v/v/v, 3 x 5 min) and the resin was washed 

with DMF (3x), DCM (3x), Et2O (3x) and dried by nitrogen purge to yield Ac-CMAN-Val-Thr(tBu)-

His(Trt)-Thr(tBu)-Tyr(tBu)-Leu-Glu(OtBu)-Pro-Gly-Pro-Val-Thr(tBu)-Ala-Asn(Trt)-Arg(Pbf)-Gln(Trt)-

Leu-Tyr(tBu)-Pro-Glu(OtBu)-Trp(Boc)-Thr(tBu)-Glu(OtBu)-Ala-Gln(Trt)-Arg(Pbf)-Leu-Asp(OtBu)-

αAbu-Trp(Boc)-Arg(Pbf)-Gly-Lys(Mmt)-Tentagel® S-RAM (199). The resin was transferred to a flask and 

treated for 120 minutes with a cleavage cocktail (20 mL, TFA/DCM/TIS/H2O/phenol21/octanethiol, 

3600/60/100/72/72/100, v/v/v/v/w/v). The resin was filtered off and washed with neat TFA (3 x 1 mL). 

The filtrate was concentrated and transferred dropwise into a cold mixture of Et2O/pentane (45 mL, 5/4, 

v/v) This solution was centrifuged (10 minutes, 5000 rpm) after which the supernatant was removed and 

the precipitate was dried under nitrogen flow, re-dissolved in magic (5 mL, t-BuOH/ACN/H2O, 1/1/1, 

v/v/v) and lyophilized. Purification via RP-HPLC (linear-gradient 20 - 30% B in A, 10 min, Gemini-NX 

5µm C18, 110 Å, 250 x 10.0 mm, 5 mL/min) yielded title compound 203 as a white powder after 

 

a The amino acids applied in this synthesis were: Fmoc-Lys(Mmt)-OH, Fmoc-Gly-OH, Fmoc-Arg(Pbf)-OH, Fmoc-
Trp(Boc)-OH, Fmoc-L-α-aminobutyric acid, Fmoc-Asp(OtBu)-OHd, Fmoc-Leu-OHd, Fmoc-Gln(Trt)-OH, Fmoc-
Ala-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Pro-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Asn(Trt)-OH, 
Fmoc-Val-OH, Fmoc-His(Trt)-OH, Fmoc-AEEA-OH (Fmoc-8-amino-3,6-dioxaoctanoic acid), 116 and 168.e 

b Generally, the Fmoc amino acid is dissolved in a HCTU solution in DMF (5.00 mL ,0.20 M, 1.0 mmol, 4 eq) The 
resulting solution was transferred to the reaction vessel followed by a DIPEA solution in DMF (4.00 mL, 0.50 M, 2.0 
mmol, 8 eq) to initiate the coupling. The reaction vessel was shaken for 30 min at 50 °C (unless stated otherwise). 

c Aspartic acid and the adjacent Leucine and Arginine were introduced at with one hour reaction time at room 
temperature. Fmoc removal was achieved with piperide/DMF in 3 x 5 min at room temperature.28 

d For C-mannoside couplings less equivalents with prolonged reaction times were used. Generally for elongation on 
100 µmol scale, 168 (2eq) was dissolved in a solution of HCTU in DMF (1,0 mL ,0.20 M, 200 µmol, 2 eq), followed 
by a DIPEA solution in DMF (0.80 mL, 0.5 M, 400 µmol, 4 eq) and shaken overnight. 
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lyophilization (2.69 mg, 626 nmol, 2.51% over 34 couplings, 90% per step). LC-MS: Rt = 4.16 min (10 - 

90% ACN; 13 min); HRMS [C194H297N53O58 + 4H]4+: 1075.80691 found, 1075.80670 calculated. 

Ac-CMAN-CMAN-CMAN-CMAN-CMAN-CMAN-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-

Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-

Gly-Lys-Tentagel® S-RAM (200). 

Resin 134 (theoretical loading: 100 µmol) was elongated with 168 (216 mg, 200 µmol, 2 eq) by shaking 

overnight at room temperature with HCTU (82.6 mg, 200 µmol, 2 eq) and DIPEA (69.5 µL, 400 µmol, 4 

eq) in DMF (1.8 mL, 0.11 M of 168). followed by Fmoc removal and washing steps as described in general 

protocol (steps 7,1,2 and 3), these steps were repeated (6x total). After these cycles, the resin was washed 

(steps 7,1), the Fmoc removed (steps 2, 3), the N-terminus was capped with Ac2O/DMF/DIPEA (8mL, 

10/88/2, v/v/v, 3 x 5 min) and the resin was washed with DMF (3x), DCM (3x), Et2O (3x) and dried by 

nitrogen purge to yield Ac-CMAN-CMAN-CMAN-CMAN-CMAN-CMAN-Val-Thr(tBu)-His(Trt)-

Thr(tBu)-Tyr(tBu)-Leu-Glu(OtBu)-Pro-Gly-Pro-Val-Thr(tBu)-Ala-Asn(Trt)-Arg(Pbf)-Gln(Trt)-Leu-

Tyr(tBu)-Pro-Glu(OtBu)-Trp(Boc)-Thr(tBu)-Glu(OtBu)-Ala-Gln(Trt)-Arg(Pbf)-Leu-Asp(OtBu)-αAbu-

Trp(Boc)-Arg(Pbf)-Gly-Lys(Mmt)-Tentagel® S-RAM (200).  

Ac-CMAN-CMAN-CMAN-CMAN-CMAN-CMAN-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-

Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-

Gly-Lys-NH2 (204). 

Resin 200 (theoretical loading: 25 µmol) was transferred to a flask and treated for 120 

minutes with a cleavage cocktail (40 mL, TFA/DCM/TIS/H2O/phenol21/ 

octanethiol, 3600/60/100/72/72/100, v/v/v/v/w/v). The resin was filtered off and 

washed with neat TFA (3 x 1 mL). The filtrate was concentrated and transferred 

dropwise into a cold mixture of Et2O/pentane (45 mL, 5/4, v/v) This solution was 

centrifuged (10 minutes, 5000 rpm) after which the supernatant was removed and the precipitate was dried 

under nitrogen flow, re-dissolved in magic (5 mL, t-BuOH/ACN/H2O, 1/1/1, v/v/v) and lyophilized. 

Purification via RP-HPLC (linear-gradient 20 - 30% B in A, 10 min, Gemini-NX 5µm C18, 110 Å, 250 x 

10.0 mm, 5 mL/min) yielded title compound 204 as a white powder after lyophilization. (1.115 mg, 182 

nmol, 0.73% over 39 couplings, 88% per step). LC-MS: Rt = 3.91 min (10 - 90% ACN; 13 min); HRMS 

[C274H437N63O93 + 5H]5+: 1221.23680 found, 1221.23707 calculated. 
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Ac-CMAN-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-

Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-Lys(Peg-TLR7L)-NH2 (207). 

Resin 134 (theoretical loading: 25 µmol) was elongated with 168 (54 mg, 50 

µmol, 2 eq) by shaking overnight at room temperature with HCTU (20.7 mg, 

50 µmol, 2 eq) and DIPEA (17.4 µL, 100 µmol, 4 eq) in DMF (450 µL, 0.11 

M of 168). After washing (steps 7,1) and Fmoc removal (steps 2, 3) the N-

terminus was capped with Ac2O/DMF/DIPEA (4mL, 10/88/2, v/v/v, 3 x 

5 min) and the resin was washed with DMF (3x), DCM (3x), Et2O (3x) and dried by nitrogen purge to yield 

199. This resin was loaded in a syringe with frit and treated with a mixture of AcOH in TFE and DCM 

(1/2/7, v/v/v) shaken for 15 minutes followed by filtration22. This was repeated until the filtrate lost the 

yellow color (~ 8x). After which the resin was washed with DCM (5x), DMF (5x) Piperidine (20% in DMF, 

2x) and DMF (5x). The lysine was elongated with Fmoc-AEEA-OH (127) using the general protocol 

followed by introduction of 116 (45.7 mg, 100 µmol, 4 eq) by shaking for one hour with HCTU (41.3 mg, 

100 µmol, 4 eq) and DIPEA (35 µL, 200 µmol, 8 eq) in DMF (0.9 mL, 0.11 M of 116) yielding Ac-CMAN-

Val-Thr(tBu)-His(Trt)-Thr(tBu)-Tyr(tBu)-Leu-Glu(OtBu)-Pro-Gly-Pro-Val-Thr(tBu)-Ala-Asn(Trt)-

Arg(Pbf)-Gln(Trt)-Leu-Tyr(tBu)-Pro-Glu(OtBu)-Trp(Boc)-Thr(tBu)-Glu(OtBu)-Ala-Gln(Trt)-Arg(Pbf)-

Leu-Asp(OtBu)-αAbu-Trp(Boc)-Arg(Pbf)-Gly-Lys(PEG-TLR7L)-Tentagel® S-RAM (201). The resin was 

washed with DMF (3x), DCM (3x) and Et2O (3x) and dried by nitrogen purge, transferred to a flask and 

treated for 120 minutes with a cleavage cocktail (20 mL, TFA/DCM/TIS/H2O/phenol21/octanethiol, 

3600/60/100/72/72/100, v/v/v/v/w/v). The resin was filtered off and washed with neat TFA (3 x 1 mL). 

The filtrate was concentrated and transferred dropwise into a cold mixture of Et2O/pentane (45 mL, 5/4, 

v/v) This solution was centrifuged (10 min, 5000 rpm) after which the supernatant was removed and the 

precipitate was dried under nitrogen flow, re-dissolved in magic (5 mL, t-BuOH/ACN/H2O, 1/1/1, v/v/v) 

and lyophilized. Purification via RP-HPLC (linear-gradient 21 - 36% B in A, 15 min, Gemini-NX 5µm C18, 

110 Å, 250 x 10.0 mm, 5 mL/min) yielded title compound 207 as a white powder after lyophilization (2.51 

mg, 525 nmol, 2.10% over 36 couplings, 90% per step) LC-MS: Rt = 4.53 min (10 - 90% ACN; 13 min); 

HRMS [C217H325N59O64 + 5H]5+: 957.68821 found, 957.68822 calculated. 

Ac-CMAN-CMAN-CMAN-CMAN-CMAN-CMAN-Val -Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-

Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-

Gly-Lys(Peg-TLR7L)-NH2 (208). 
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Mmt removal with 1% TFA: 

Resin 200 (theoretical loading: 12.5 µmol) was loaded in a syringe with frit and treated with TFA (1% in 

DCM) shaken for five minutes followed by filtration. This was repeated until the filtrate lost the 

orange/yellow color (~ 12x). After which the resin was washed with DCM (5x), DMF (5x) Piperidine (20% 

in DMF, 2x) and DMF (5x). The lysine was elongated with Fmoc-AEEA-OH (127) using the general 

protocol followed by introduction of 116 (22.9 mg, 50 µmol, 4 eq) by shaking for one hour with HCTU 

(20.7 mg, 500 µmol, 4 eq) and DIPEA (17 µL, 100 µmol, 8 eq) in DMF (0.45 mL, 0.11 M of 116) yielding 

Ac-CMAN-CMAN-CMAN-CMAN-CMAN-CMAN-Val-Thr(tBu)-His(Trt)-Thr(tBu)-Tyr(tBu)-Leu-

Glu(OtBu)-Pro-Gly-Pro-Val-Thr(tBu)-Ala-Asn(Trt)-Arg(Pbf)-Gln(Trt)-Leu-Tyr(tBu)-Pro-Glu(OtBu)-

Trp(Boc)-Thr(tBu)-Glu(OtBu)-Ala-Gln(Trt)-Arg(Pbf)-Leu-Asp(OtBu)-αAbu-Trp(Boc)-Arg(Pbf)-Gly-

Lys(PEG-TLR7L)-Tentagel® S-RAM (202). The resin was washed with DMF (3x), DCM (3x) and Et2O 

(3x) and dried by nitrogen purge, transferred to a flask and treated for 120 minutes with a cleavage cocktail 

(10 mL, TFA/DCM/TIS/H2O/phenol21/octanethiol, 3600/60/100/72/72/100, v/v/v/v/w/v). The 

resin was filtered off and washed with neat TFA (3 x 1 mL). The filtrate was concentrated and transferred 

dropwise into a cold mixture of Et2O/pentane (45 mL, 5/4, v/v) This solution was centrifuged (10 min, 

5000 rpm) after which the supernatant was removed and the precipitate was dried under nitrogen flow, re-

dissolved in magic (5 mL, t-BuOH/ACN/H2O, 1/1/1, v/v/v) and lyophilized. LC-MS analysis showed 

multiple AEEA-TLR conjugations. Treatment of the crude mixture with ammonia (1mL, 35%wt NH3 aq.) 

resulted in the disappearance of peaks corresponding with multiple conjugations. After lyophilization the 

mixture was purified by RP-HPLC (linear-gradient 22.5 - 30% B in A, 15 min, Gemini-NX 5µm C18, 110 

Å, 250 x 10.0 mm, 5 mL/min) to yield title compound 208 as a white powder after lyophilization (0.247 

mg, 37.4 nmol, 0.30% over 41 couplings, 86.8% per step). 

Mmt removal with AcOH in TFE/DCM: 

Resin 200 (theoretical loading: 62.5 µmol) was loaded in a syringe with frit and treated with a mixture of 

AcOH in TFE and DCM (1/2/7, v/v/v) shaken for 15 minutes followed by filtration22. This was repeated 

until the filtrate lost the yellow color (~ 8x). After which the resin was washed with DCM (5x), DMF (5x) 

Piperidine (20% in DMF, 2x) and DMF (5x). The lysine was elongated with Fmoc-AEEA-OH (127) using 

the general protocol followed by introduction of 116 (115 mg, 250 µmol, 4 eq) by shaking for one hour 

with HCTU (103 mg, 250 µmol, 4 eq) and DIPEA (87 µL, 500 µmol, 8 eq) in DMF (2.25 mL, 0.11 M of 

116) yielding resin 202. The resin was washed with DMF (3x), DCM (3x) and Et2O (3x) and dried by 

nitrogen purge, transferred to a flask and treated for 120 minutes with a cleavage cocktail (40 mL, 

TFA/DCM/TIS/H2O/phenol21/octanethiol, 3600/60/100/72/72/100, v/v/v/v/w/v). The resin was 

filtered off and washed with neat TFA (3 x 1 mL). The filtrate was concentrated and transferred dropwise 

into a cold mixture of Et2O/pentane (45 mL, 5/4, v/v) This solution was centrifuged (10 min, 5000 rpm) 

after which the supernatant was removed and the precipitate was dried under nitrogen flow, re-dissolved 

in magic (5 mL, t-BuOH/ACN/H2O, 1/1/1, v/v/v) and lyophilized. LC-MS analysis of this crude mixture 
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showed no ions for multiple AEEA-TLR conjugations. Purification via RP-HPLC (linear-gradient 22.5 - 

30% B in A, 15 min, Gemini-NX 5µm C18, 110 Å, 250 x 10.0 mm, 5 mL/min) yielded title compound 208 

as a white powder after lyophilization (2.48 mg, 376 nmol, 0.60% over 41 couplings, 88.3 % per step). LC-

MS: Rt = 7.11 min (0 - 50% ACN; 13 min); HRMS [C297H465N69O99 + 4H]4+: 1647.34697 found, 1647.34628 

calculated. 

TLR7L-PEG-CMAN-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-

Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-Trp-Arg-Gly-Lys-NH2 (205). 

Resin 134 (theoretical loading: 25 µmol) was elongated with 168 (54 mg, 50 

µmol, 2 eq) by shaking overnight at room temperature with HCTU (20.7 mg, 

50 µmol, 2 eq) and DIPEA (17.4 µL, 100 µmol, 4 eq) in DMF (450 µL, 0.11 

M of 168). Fmoc-AEEA-OH (127)(4eq) was introduced using the general 

protocol followed by introduction of 116 (46 mg, 100 µmol, 4 eq) by shaking 

for two hour with HCTU (41 mg, 100 µmol, 4 eq) and DIPEA (34.8 µL, 200 µmol, 8 eq) in DMF (0.90 

mL, 0.11 M of 116) after which the resin was washed with DMF (3x), DCM (3x), Et2O (3x) and dried by 

nitrogen purge to yield TLR7L-PEG-CMAN-Val-Thr(tBu)-His(Trt)-Thr(tBu)-Tyr(tBu)-Leu-Glu(OtBu)-

Pro-Gly-Pro-Val-Thr(tBu)-Ala-Asn(Trt)-Arg(Pbf)-Gln(Trt)-Leu-Tyr(tBu)-Pro-Glu(OtBu)-Trp(Boc)-

Thr(tBu)-Glu(OtBu)-Ala-Gln(Trt)-Arg(Pbf)-Leu-Asp(OtBu)-αAbu-Trp(Boc)-Arg(Pbf)-Gly-Lys(Mmt)-

Tentagel® S-RAM (197). This resin was transferred to a flask and treated for 120 minutes with a cleavage 

cocktail (20 mL, TFA/DCM/TIS/H2O/phenol21/octanethiol, 3600/60/100/72/72/100, v/v/v/v/w/v). 

The resin was filtered off and washed with neat TFA (3 x 1 mL). The filtrate was concentrated and 

transferred dropwise into a cold mixture of Et2O/pentane (45 mL, 5/4, v/v). This solution was centrifuged 

(10 min, 5000 rpm) after which the supernatant was removed and the precipitate was dried under nitrogen 

flow, re-dissolved in magic (5 mL, t-BuOH/ACN/H2O, 1/1/1, v/v/v) and lyophilized. Purification via 

RP-HPLC (linear-gradient 25 - 35% B in A, 10 min, Gemini-NX 5µm C18, 110 Å, 250 x 10.0 mm, 5 

mL/min) yielded title compound 205 as a white powder after lyophilization (3.09 mg, 651 nmol, 2.60% 

over 36 couplings, 90% per step). LC-MS: Rt = 4.46 min (10 - 90% ACN; 13 min); Rt = 7.29 min (0 - 50% 

ACN; 13 min); HRMS [C215H323N59O63 + 6H]6+: 791.23965 found, 791.23964 calculated. 

TLR7L-PEG-CMAN-CMAN-CMAN-CMAN-CMAN-CMAN-Val-Thr-His-Thr-Tyr-Leu-Glu-Pro-

Gly-Pro-Val-Thr-Ala-Asn-Arg-Gln-Leu-Tyr-Pro-Glu-Trp-Thr-Glu-Ala-Gln-Arg-Leu-Asp-αAbu-

Trp-Arg-Gly-Lys-NH2 (206). 

Resin Val-Thr(tBu)-His(Trt)-Thr(tBu)-Tyr(tBu)-Leu-Glu(OtBu)-Pro-Gly-

Pro-Val-Thr(tBu)-Ala-Asn(Trt)-Arg(Pbf)-Gln(Trt)-Leu-Tyr(tBu)-Pro-

Glu(OtBu)-Trp(Boc)-Thr(tBu)-Glu(OtBu)-Ala-Gln(Trt)-Arg(Pbf)-Leu-

Asp(OtBu)-αAbu-Trp(Boc)-Arg(Pbf)-Gly-Lys(Boc)-Tentagel® S-RAM 

(theoretical loading: 50 µmol) was elongated with 168 (216 mg, 200 µmol, 2 

eq) by shaking overnight at room temperature with HCTU (82.6 mg, 200 µmol, 2 eq) and DIPEA (69.5 µL, 
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400 µmol, 4 eq) in DMF (1.8 mL, 0.11 M of 168). followed by Fmoc removal and washing steps as described 

in general protocol (steps 7,1,2 and 3), these steps were repeated (6x total). Fmoc-AEEA-OH (127, 4 eq) 

was introduced using the general protocol followed by introduction of 116 (92 mg, 200 µmol, 4eq) by 

shaking for two hour with HCTU (82 mg, 200 µmol, 4eq) and DIPEA (70 µL, 400 µmol, 8 eq) in DMF 

(1.80 mL, 0.11 M of 116) after which the resin was washed with DMF (3x), DCM (3x), Et2O (3x) and dried 

by nitrogen purge to yield resin TLR7L-PEG-CMAN-CMAN-CMAN-CMAN-CMAN-CMAN-Val-

Thr(tBu)-His(Trt)-Thr(tBu)-Tyr(tBu)-Leu-Glu(OtBu)-Pro-Gly-Pro-Val-Thr(tBu)-Ala-Asn(Trt)-Arg(Pbf)-

Gln(Trt)-Leu-Tyr(tBu)-Pro-Glu(OtBu)-Trp(Boc)-Thr(tBu)-Glu(OtBu)-Ala-Gln(Trt)-Arg(Pbf)-Leu-

Asp(OtBu)-αAbu-Trp(Boc)-Arg(Pbf)-Gly-Lys(Boc)-Tentagel® S-RAM. This resin was transferred to a flask 

and treated for 120 minutes with a cleavage cocktail (20 mL, TFA/DCM/TIS/H2O/phenol21/octanethiol, 

3600/60/100/72/72/100, v/v/v/v/w/v). The resin was filtered off and washed with neat TFA (3 x 1 mL). 

The filtrate was concentrated and transferred dropwise into a cold mixture of Et2O/pentane (45 mL, 5/4, 

v/v) This solution was centrifuged (10 min, 5000 rpm) after which the supernatant was removed and the 

precipitate was dried under nitrogen flow, re-dissolved in magic (5 mL, t-BuOH/ACN/H2O, 1/1/1, v/v/v) 

and lyophilized. Purification via RP-HPLC (linear-gradient 16 - 28% B in A, 10 min, Gemini-NX 5µm C18, 

110 Å, 250 x 12.0 mm, 5 mL/min) yielded title compound 206 as a white powder after lyophilization. (4.125 

mg, 650 nmol, 1.30% over 41 couplings, 90% per step). LC-MS: Rt = 7.73 min (15 - 40% ACN; 15 min); 

Rt = 5.82 min (10 - 50% ACN; 13 min); HRMS [C295H463N69O98 + 6H]6+: 1091.56505 found, 1091.56485 

calculated. 
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Chapter 6 

Synthesis of glycosylated BTA-core-
monomers for the formation of dynamic 
self-assembling supramolecular fibersa 

Introduction1 

Carbohydrate recognition often requires multiple carbohydrates in close proximity to each other, 

so that the combined weak interaction of each separate carbohydrate and the effective local high 

concentration results in strong enough binding to induce an effect of the recognizing receptor. 

This multivalency-effect allows receptors to distinguish between single carbohydrates or larger 

glycosylated pathogens such as viruses and bacteria.2 Multivalent presentation of mannosides, for 

example, can result in inflammatory responses induced by the binding of C-type lectin receptors 

(CLRs), as described in previous chapters. Alternatively, multivalent macromolecules can also 

mimic natural systems with structural functions. An example would be mimicking the extracellular 

matrix (ECM), which serves functions such as signaling, water immobilization, cell attachment and 

aids in structural properties such as increasing stiffness of the framework around cells. The ECM 

 
aPart of this work is published in Hendrikse and Su et al.1 
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consist of a network of proteins and carbohydrates such as heparin and hyaluronic acid (HA). A 

multitude of multivalent biomaterials have been described such as dendrimers, nanoparticles, and 

polymers, that are designed to mimic the ECM3–5 or viral particles.6–9 However, the synthesis of 

these materials usually requires many reaction steps, and variations in the composition of these 

materials often involve new synthetic approaches. Especially when variations in the ratio between 

components of such polymers are desired, the generation of these static polymers can be labor-

intensive. Dynamic systems such as self-assembling polymers are considered to be an attractive 

alternative. Such systems would allow to more easily adapt the ratio of components by simply 

varying the ratio of the used monomers.  

Self-assembling supramolecular polymer systems have been studied extensively as biomaterial 

mimics.10,11 One of these systems is based on an N,N′,N′′-trialkylbenzene-1,3,5-tricarboxamide 

(BTA) scaffold, that bears three amphipathic arms (210, Figure 1), having a hydrophobic inner 

C12 spacer extended by an outer hydrophilic tetra-ethylene glycol (teEG) arm. These BTA based 

monomers can self-assemble into micrometer long fibers in aqueous solutions due to hydrogen 

bond formation between the amides and hydrophobic effects of the amphipathic arms.12,13 In 

addition, polymerization of functionalized monomers allows for the introduction of additional 

functionality on the surface of the fibers (e.g., fluorophores).14 Combining different monomers 

would in principle allow for an infinite number of different polymers and materials. Such a feature 

could be useful for screening different combinations of adjuvants and antigens in the search for 

the most optimal vaccine formulation. However, a major drawback of this approach is that most 

of these monomer building blocks rely on poly(ethylene glycol) (PEG) moieties for their water 

solubility. This large number of PEG moieties on the surface of the fibers could induce immune 

responses against PEG, which would limit their in vivo application,15–17 especially in combination 

with immuno-stimulating adjuvants. Previous work by Leenders et al.18 successfully incorporated 

glycosides on BTA based scaffolds using click chemistry of propargyl glycosides with azido 

functionalized teEG BTA monomers (211) to obtain glycosylated BTAs (212, Figure 1). This 

chapter describes different synthetic routes toward new BTA based monomeric building blocks 

(213-218), in which glycosides are used instead of tetra-ethylene glycol to form more “natural” 

BTA based fibers. By the incorporation of different glycosides, their effect on the behavior of the 

fibers can be assessed. The results of the self-assembly ability of the mannose, glucose, and 

cellobiose BTA monomers (213, 214, and 215) in comparison with the previously reported tetra-

ethylene-glycol functionalized BTA monomer (210) are also presented. Finally, this chapter 

describes the synthesis of a glucoside based BTA in which one glucose residue is provided with an 

azide handle for the introduction of future functionalities (218).  
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Figure 1: BTA based monomers. 

 

Results and discussion 

The synthesis of the target glycosylated BTA cores comprises glycosylations and amide bond 

formations, the sequence of which can be reversed leading to two strategies (Scheme 1). Route A 

starts with glycosylation of a masked amino-dodecan-1-ol spacer, that after deprotection would 

result in an amine-functionalized glycoside which could be coupled with acyl chloride 219 or other 

BTA activated esters. The second route, route B, entails coupling of an amino-dodecan-1-ol spacer 

and BTA acyl chloride, subsequent glycosylation of the produced triol 220, and finally, global 

deprotection. Route A would allow for the intermediate purification of the individual glycosides, 

which should be more straightforward compared with the purification of three coupled glycosides. 

The benefit of route B would be that incomplete amide formation for 220 would not waste more 

(synthetically) costly glycosides as could happen in route A. Both routes were evaluated to reveal 

the most suitable option (Scheme 1).  



Synthesis of glycosylated BTA-core-monomers for self-assembling supramolecular fibers 

148 

Scheme 1: Retrosynthesis of BTA-core-monomers. 

 

 

Monosaccharides ᴅ-mannose and ᴅ-glucose and disaccharides cellobiose, lactose, and maltose 

were selected to functionalize the BTA cores. All donors should be equipped with a participating 

protecting group on their 2-O position to achieve 1,2-trans-selective glycosylations. The benzoyl 

(Bz) protecting group is preferred over the acetyl (Ac) to minimize unwanted ortho-ester 

formation and potential acyl migration. The trichloroacetimidate method was chosen as the 

glycosylation procedure, and all trichloroacetimidoyl donors were synthesized from the starting 

carbohydrates by successive per-benzoylation, anomeric debenzoylation with hydrazine acetate 

and finally trichloroacetimidate introduction. This approach resulted in mannose donor 221, 

glucose donor 222, cellobiose donor 223, lactose donor 224, and maltose donor 225. Thiophenyl 

maltoside 226 was also synthesized, as an alternative for the imidate donor 225. Finally, the 6-azido 

glucoside donor 228 was synthesized using standard protecting and functional group 

manipulations, as previously reported,19 for further functionalization of the BTA core. 
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Scheme 2: Synthesis of the glycosyl donors. 
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Reagents and conditions: a) i. BzCl, pyridine; ii. H2NNH2·OAc, DMF; iii. K2CO3, CCl3CN, DCM, (references: 221 20; 222 21; 

223 22; 224 23; 225 22); b) reference19; c) i. NIS, TFA, DCM; ii. K2CO3, CCl3CN, DCM, 70%; d) i. BzCl, pyridine; ii. PhSH, 

BF3·OEt2, DCM, 28%. 

With these seven donors at hand, both glyco-BTA assembly routes were explored. The acceptors, 

12-N-phthalimide-dodeca-1-ol (229), and the azido analog 12-azido-dodeca-1-ol (230) were 

synthesized according to published procedures.24,25 As part of route A, the glycosylation efficiency 

was tested using both thio and imidate maltose donors 226 and 225 and both linkers 229 and 230 

(Table 1 and Scheme 3). Glycosylation of thio donor 226 and the phthalimide (Phth) linker 229 

was met with poor conversion (Table 1, entry 1). Increasing the temperature, reaction time, 

equivalents of the acceptor, and concentration of the donor 226 improved the yield (entry 2). 

Coupling of imidate donor 225 with 229 at 0 °C resulted in the formation of the spacer equipped 

maltose in 51% yield (entry 3). Additional experiments demonstrated poor solubility of the 

phthalimide linker (229) at lower temperatures, but decreasing the concentration of the donor and 

using fewer equivalents of acceptor improved the yield to 99% (entry 4). Applying these conditions 

for the condensation of 225 with the azido acceptor 230 gave the same yield (entry 5).  
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Table 1: Glycosylations with dodecanol spacers. 

Entry Donor Acceptor Ratio [Donor] Activation (eq.) T time yield 
1 226 229 1/1.2 0.1 M NIS (1.3), TfOH (0.3) 0°C 3h 25% 
2 226 229 1/2 0.2 M NIS (1.3), TfOH (0.3) 4°C 48h 55% 
3 225 229 1/2 0.1 M TMSOTf (0.2) 0°Ca 4h 51% 
4 225 229 1/1.2 0.05 M TMSOTf (0.2) 4°C 14h 99% 
5 225 230 1/1.2 0.05 M TMSOTf (0.2) 4°C 14h 99% 

 

Scheme 3: Glycosylations with dodecanol spacers. 

 

Reagents and conditions: a) 230, TMSOTf, DCM (232: 99%; 234: 85%; 236: 61%; 238: 67%); b) i. NaOMe, MeOH/DCM; 

ii. PtO, H2, dioxane, t-BuOH, H2O (233: 48%; 235: 93%; 237: 88%; 239: 46%); c) ethylene-1,2-diamine, EtOH, inseparable 

mixture of products. 

 

 
a With lower temperatures than -10°C the reaction mixture crashes out and form a white solid. 
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Unfortunately, the simultaneous deprotection of all benzoyls and the phthalimide from 231 was 

not successful. A complex mixture resulted after refluxing the substrate in ethanol for ten days in 

the presence of ethyl diamine, and the product could not be isolated (Scheme 3). On the other 

hand, removal of the benzoyl groups of azido maltoside 232 was successful. Subsequent reduction 

of the azide was hindered since 232 formed micelles that shielded the azide from the aqueous 

phase. This micelle formation was due to the amphiphilic properties of the starting material, 

originating from the highly hydrophilic maltose residue and the hydrophobic C12-azide spacer. 

Therefore the hydrogenation of the azide was performed in a solvent mixture of t-BuOH/H2O 

with ultrasound irradiation and this protocol delivered the target amine 233 in 48% yield (Scheme 

3). Following this approach, azide linker 230 was also condensed with cellobiose imidate donor 

223, lactose imidate 224, and glucose imidate 222 to result in cellobioside 234, lactoside 236, and 

glucoside 238 in 85%, 61%, and 67% respectively. Benzoyl removal, followed by hydrogenation 

with the optimized conditions, proceeded uneventfully, resulting in cellobioside 235, lactoside 237, 

and glucoside 239 in 93%, 88%, and 46%, respectively (Scheme 3).  

In the next phase of route A, the coupling of the amine-functionalized glycosides with benzene 

triacylchloride 219 was undertaken. (Scheme 4A). Unfortunately, the poor solubility of the reaction 

partners resulted in incomplete couplings, and purification of the target trifunctional BTAs could 

not be achieved at this stage. Therefore, route A was abandoned, and attention was directed to 

route B by condensing benzene triol 220 with glucose donor 222 or cellobiose donor 223 (Scheme 

4B). Condensation of acceptor 220 and donors 222 or 223 resulted in a poor coupling efficiency 

because of poor solubility of the BTA-triol. The use of a large volume of dichloromethane did not 

improve the solubility of 220, which proved to be insoluble in other solvents that are commonly 

used in glycosylations. It appeared that 220 was too polar, necessitating the use of a highly polar 

solvent. Eventually it was found that a homogenous reaction mixture could be obtained using a 

solvent mixture of DCM and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), a combination previously 

described to dissolve poorly soluble peptides.26 HFIP is a weak nucleophile which could potentially 

compete with triol 220 for activated donor, but a test glycosylation in which donor 222 was 

activated in HFIP/DCM (1/4, v/v) did not result in a significant amount the HFIP condensation 

product. De et al.27 have previously described the use of HFIP as a solvent for the synthesis of 

2,3-unsaturated glucosides from an acetyl glucal, and in this synthesis, the condensation of HFIP 

was observed. The difference in reactivity between both systems can be explained by the more 

reactive glucal used by De et al. and the reluctance of dioxolenium ions to react with poor 

nucleophiles.  
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Scheme 4: Attempts toward glycosylated BTA monomers. 
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Donors 222, 221, 223, 224, and 225 were coupled with triol 220 in DCM/HFIP resulting in the 

protected mannoside 240, glucoside 241, cellobioside 242, lactoside 243, and maltoside 244 in 78%, 

92%, 50%, 98%, and 70% yield, respectively (Scheme 5). Unfortunately, in the glycosylations of 

glucose 241 and cellobiose 242, (partial) benzoyl migration to one of the hydroxyls of the BTA 

acceptor was observed. The polarity of these side products was quite similar to the polarity of the 

target compounds, and the products could therefore not be purified at this stage. Therefore, the 

benzoyl groups in glucoside 241 were removed with sodium methanolate, and LC-MS analysis of 

the obtained crude mixture showed a difference in retention between product 214 and the side 

product having two glucosides. Purification via RP-HPLC gave pure 214 in 41% yield. The 

unwanted transesterification of the benzoyls was averted using fewer equivalents of TfOH in the 

glycosylation reaction, but as a consequence, ortho-esters were formed. Eventually, the use of 0.5 

equivalents of TfOH per triol 220 gave the most favorable ratio of product versus side-products 

for all donors. Coupling of the more reactive mannose donor 221 with 220 was completed in the 

shortest reaction time of all used donors. After removal of the benzoyl in 240, LC-MS analysis 

indicated that the mannosylation was not accompanied by benzoyl migration, and mannoside 213 

was isolated in 48% yield. All other BTA-glycosides were subjected to similar benzoyl removal 

conditions as described for glucose-BTA 214 and purification via RP-HPLC delivered cellobioside 

215, lactoside 216, and maltoside 217 in 19%, 13%, and 27% yield, respectively.  
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Scheme 5: Glycosylation with BTA core. 

 

Reagents and conditions: a) 220, TfOH, DCM, HFIP (240: 92%; 241: 78%; 242: 50%; 243: 98%; 244: 70%); b) NaOMe, 

MeOH, t-BuOH, dioxane (213: 48%; 214: 41%; 215: 19%; 216: 13%; 217: 27%). 
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The self-assembly of the glucose, mannose, and cellobiose BTA monomers (213, 214, and 215) 

were assessed and compared with the previously reported tetra-ethylene-glycol functionalized BTA 

monomer (210, see Figure 1). In short, aqueous solutions of the constructs were investigated using 

UV spectroscopy, circular dichroism (CD) spectroscopy, static light scattering (SLS), cryogenic 

transmission electron microscopy (cryo-TEM) and hydrogen/deuterium exchange mass 

spectrometry (HDX-MS).1 These results are summarized in Figure 2 and Figure 3 and show that 

both the mannose (213) and glucose (214) can assemble in supramolecular fibers (two absorption 

maxima at 211 and 225 nm, characteristic of fibrous structures, Figure 2A). Cellobiose 215 was 

only able to form fibers when co-assembled with the ethylene glycol 210), since assembly of solely 

215 generated small micellar aggregates (one maximum at 196 nm, Figure 2A, 2B). Unlike the 

fibers formed from the teEG BTA 210, the fibers formed with 213 and 214 assembled with a 

preference in helicity. CD spectroscopy indicated a biphasic Cotton effect for glucose 214 and a 

mirror image biphasic Cotton effect for mannose 213 (Figure 2C). Surprisingly, co-assembly of 

210 with cellobiose 215 (glucose-β1,4-glucose) displayed a mirror image biphasic Cotton effect 

opposite of 214 (β-glucose, Figure 2D). Micrometers long fibers for 214 and 213 with a diameter 

between 5 and 10 nm were observed using cryogenic transmission electron microscopy (cryo-

TEM, see Figure 3). Cellobiose 215 assembled into small micelles of approximately 5 nm.  

Figure 2: UV and CD spectra of assembled BTA monomers.  

 

A) UV spectra of 213, 214 and 215. 213 and 214 show the typical BTA maxima at 211 and 225 nm, whereas 215 show maxima at 

196 nm; B) UV spectra of 215 co assembled with 210 in different ratios; C) CD spectra of 214, 213 and 215. 213 and 214 show a 

biphasic positive and negative mirror Cotton effect, whereas 215 is CD silent; D) CD spectra of 215 co-assembled with 210 in different 

ratios. 



CHAPTER 6 

155 

Figure 3: Cryo-TEM of fibers. 

 

Cryo-TEM of A) 214; B) 213 and; C) 215; Micrometers long fibrous structures were observed for 213 and 214 while micellar structures 

for 215. Scale bars indicate 50 nm. Used concentrations of BTA = 250 or 500 μM. 

The result of the self-assembly study was an incentive to investigate the synthesis of an azido 

functionalized glucose-BTA monomer. The target structure contains two glucoses and a single 6-

azido-6-deoxy glucose moiety (218, Scheme 6). First attempts towards the target molecule were 

directed at the functionalization of the BTA-triol with a single 6-azido glucoside or a double 

glycosylation with glucose donor 222 with triol 220 (Route A and B, Scheme 6). However, both 

condensations resulted in a complex mixture of various products, differing in glycosylation degree. 

The mixture of the glycosylation with azido donor 228 contained acceptor 220, the expected 

product 245, and the double coupled side product. For the glycosylation with glucose donor 222 

not only the product 246 was obtained, but also single and triple coupled side products. In addition, 

ortho-esters were formed, or benzoyl migration to acceptor 220 occurred. Besides, the purification 

was hindered by the poor solubility of 220 in common eluents and the similar polarity of the 

product, ortho-ester, and benzoylated BTA side products. The ortho-ester formation and the 

benzoyl migration could be partially suppressed by adjusting the amount of activator, but these 

side reactions could never be completely prevented. Together these side reactions hindered the 

isolation of the relevant intermediates in sufficient yields. However, a test glycosylation using 

starting material 245 that was partly purified delivered 247, in a mixture of compounds. 

Debenzoylation of this mixture of compounds provided a mixture that was analyzed by LC-MS to 

show a distinct peak for the desired product. Therefore, a one-pot procedure was performed, 

comprising of an initial glycosylation of acceptor 220 with one equivalent of azido glucose donor 

228, after which two equivalents of donor 222 were added (Route C, Scheme 6). Purification by 

size exclusion gave a mixture of compounds, of which the BTA arms were functionalized with 

either benzoyl, glucose or 6-azido-6-deoxy glucose. NMR analysis of this mixture indicated the 

presence of 0.3 eq. of migrated benzoyl groups, 1.6 eq. of the glucose appendage, and 1.1 eq of 

azido glucose per BTA core. After benzoyl removal with NaOMe, LC-MS analysis showed not 
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only the presence of triple glycosylated BTA compounds such as product 218, tri-glucose 214, 

double azido glucose and another glucose (248) but also BTA compounds originating from 

benzoyl migration, bearing two glycosides (249 and 250). The five BTA products, 

218/214/248/249/250, were formed in an approximate 3/2/2/1/1 ratio as indicated by LC-MS 

analysis. RP-HPLC purification resulted in the isolation of both target 218 and 214 in 9% and 13% 

yield, respectively. With the recovery of the side products, this methodology can produce the target 

molecule and other relevant functionalized BTA monomers in a short amount of time. Further 

assessment of the effect of the azide on the self-assembly is under evaluation. 
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Scheme 6: Synthesis of azido functionalized BTA monomer 218. 
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Reagents and conditions: a) 220, TfOH, DCM, HFIP; b) 222, TfOH, DCM; c) 220, TfOH, DCM, HFIP; d) 228, TfOH, 

DCM; e) 220, TfOH, DCM, HFIP, then 222 (qnt.a); f) NaOMe, MeOH (218: 9%; 214: 13%). 

  

 
a As a mixture of products 
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Conclusion 

The synthesis of benzene-1,3,5-tricarboxyamide (BTA) monomers functionalized with various 

glycosides has been reported. Two different synthetic approaches have been assessed, both of 

which were hampered by solubility issues. The first approach in which glycosides containing 

amino-dodecyl spacer were condensed with activated BTA cores proved to be unsuccessful. The 

second approach in which imidate donors were coupled with a BTA-triol, provided with an amino-

dodecyl spacer was successful when an unusual solvent mixture, composed of 1,1,1,3,3,3-

hexafluoroisopropanol and DCM, was used to dissolve the acceptor. Most glycosylations also 

suffered from the competition of side reactions such as ortho-ester formation and benzoyl 

migration. The formation of the side products could not be completely avoided, but the pure target 

BTA monomers were isolated after removal of the benzoyl protecting groups and RP-HPLC 

purification. Using this methodology, BTA monomers bearing glucose, mannose, cellobiose, 

lactose, and maltose were synthesized. The first three have been tested for their ability to self-

assemble. The cellobiose BTA showed micelle aggregates and could only assemble in fibers when 

co-assembled with other monomers. Both the mannose and glucose constructs were able to self-

assemble in 2D fibers. Notably, the sugar residues induced the formation of fibers of opposite 

helicity. Furthermore, the synthesis of a BTA monomer, bearing two glucose and one 6-azido-6-

deoxy-glucose residue, is described. Different approaches were evaluated, and eventually, a one-

pot glycosylation procedure led to the isolation of the target BTA monomer. Further co-assembly 

studies of the obtained BTA monomers could shed light on the dynamics of glycosylated fibers 

and could be the start to obtain bio-compatible self-assembling fibers. 

 

  



CHAPTER 6 

159 

Experimental 

General procedures: 

All reactions, purifications, and analyses were performed as described in the general procedures of 

Chapter 2. 

General procedure for generation of perbenzylated trichloro imidate donors: 

Per-benzoylated donors were dissolved in DMF (0.2 M) and hydrazine acetate (2 eq) was added at 0°C in 

portions after which the reaction mixture was stirred at 0°C until the starting material was consumed (2-6 

h). After this, the reaction mixture was diluted in Et2O and washed with HCl (1 M, aq., 3x), NaHCO3 (sat. 

aq., 2x) and brine after which the organic layer was dried over MgSO4 (s), filtered, concentrated and when 

necessary purified by silica gel column chromatography (Et2O/PE). The hemi-acetals were re-dissolved in 

DCM (0.2 M) and K2CO3 (4 eq) and trichloro acetonitrile (3 eq) were added at 0°C and the mixture was 

stirred at rt until starting material was consumed (4-16 h). After filtration over Celite, imidate donors were 

purified by silica gel column chromatography (Et2O/PE) and stored under N2 at -20°C. 

2,3,4,6-Tetra-O-benzoyl-1-O-(N-trichloroacetimidoyl)-α/β-ᴅ-mannopyranoside (221). 

Spectral data as described in previous literature.20  

 

2,3,4,6-Tetra-O-benzoyl-1-O-(N-trichloroacetimidoyl)-α/β-ᴅ-glucopyranoside (222). 

Spectral data as described in previous literature.21  

 

4-O-(2,3,4,6-tetra-O-benzoyl-β-ᴅ-glucopyranosyl)-2,3,6-tri-O-benzoyl-1-O-(N-

trichloroacetimidoyl)-α/β-ᴅ-glucopyranoside (223). 

Spectral data as described in previous literature.22 

 

4-O-(2,3,4,6-tetra-O-benzoyl-β-ᴅ-galactopyranosyl)-2,3,6-tri-O-benzoyl-1-O-(N-

trichloroacetimidoyl)-α/β-ᴅ-glucopyranoside (224). 

Spectral data as described in previous literature.23 

 

4-O-(2,3,4,6-tetra-O-benzoyl-α-ᴅ-glucopyranosyl)-2,3,6-tri-O-benzoyl-1-O-(N-

trichloroacetimidoyl)-α/β-ᴅ-glucopyranoside (225). 

Spectral data as described in previous literature.22 
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Phenyl 4-O-(2,3,4,6-tetra-O-benzoyl-α-ᴅ-glucopyranosyl)-2,3,6-tri-O-benzoyl-1-thio-β-ᴅ-

glucopyranoside (226). 

Per-benzoylated lactose (5.27 g, 4.49 mmol) was co-evaporated with toluene (2x) and 

dissolved in anhydrous DCM (5 mL, 0.9 M) under N2. The solution was cooled to 0°C 

and thiophenol (0.46 mL, 4.45 mmol, 0.99 eq) and BF3·OEt2 (1.11 mL, 9 mmol, 2eq) were added dropwise. 

After overnight stirring, the reaction mixture was quenched with Et3N, diluted in DCM, washed with 

NaOH (1 M, aq. 3x) after which the organic layer was dried over MgSO4 (s) filtered and concentrated in 

vacuo. Purification using silica gel column chromatography (1/8, → 1/1, Et2O/PE, v/v) yielded compound 

226 as a white foam (1.44 g, 1.24 mmol, 28%). TLC Rf: 0.35 (3/2, Et2O/PE, v/v); IR (neat, cm−1): 1734, 

1717, 1506, 1264, 1090, 1067, 1026, 705; 1H NMR (400 MHz, CDCl3) δ 8.14 (dd, J = 8.3, 1.2 Hz, 2H, 

Harom), 8.08 - 8.03 (m, 2H, Harom), 7.96 - 7.87 (m, 4H, Harom), 7.78 (ddd, J = 8.4, 3.5, 1.2 Hz, 4H, Harom), 7.69 

- 7.63 (m, 3H, Harom), 7.58 - 7.13 (m, 25H, Harom), 6.13 (t, J = 10.1 Hz, 1H, H-3′), 5.86 (t, J = 9.2 Hz, 1H, 

H-3), 5.78 (d, J = 3.9 Hz, 1H, H-2), 5.71 (t, J = 9.8 Hz, 1H, H-4′), 5.37 - 5.28 (m, 2H, H-2, H-2′), 5.12 - 

5.03 (m, 2H, H-6a′, H-1), 4.79 (dd, J = 12.1, 4.7 Hz, 1H, H-6b′), 4.55 - 4.45 (m, 3H, H-4, H-5′, H-6a), 4.38 

- 4.31 (m, 1H, H-6b), 4.20 (ddd, J = 9.5, 4.6, 2.2 Hz, 1H, H-5); 13C NMR (101 MHz, CDCl3) δ 166.2, 165.9, 

165.7, 165.5, 165.2, 165.1, 165.1 (C=O), 133.6, 133.5, 133.5, 133.3, 133.3, 133.2, 133.2, 132.1 (CHarom), 131.4 

(Cq), 130.0, 130.0, 129.9, 129.9, 129.8, 129.7 (CHarom), 129.6, 129.5, 129.5, 129.2, 129.1, 128.9 (Cq), 128.9, 

128.8, 128.7, 128.6, 128.5, 128.5, 128.4, 128.4, 128.3, 128.2 (CHarom), 96.5 (C-1′), 85.7 (C-1), 76.9 (C-5), 76.3 

(C-3), 73.0 (C-4/C-5′), 70.9 (C-2, C-2′), 69.9 (C-3′), 69.3, 69.2 (C-4′, C-4/C-5′), 63.6 (C-6′), 62.6 (C-6); HRMS 

[C67H54O17S + NH4]+: 1180.34275 found, 1180.34200 calculated. 

Phenyl 6-azido-2,3,4,-tri-O-benzoyl-6-deoxy-1-thio-β-ᴅ-mannopyranoside (227). 

Synthesis and spectral data as described in previous literature.19  

 

6-Azido-2,3,4,-tri-O-benzoyl-6-deoxy-α/β-ᴅ-mannopyranoside (251). 

Thioglycoside 227 (3.34 g, 5.50 mmol) was dissolved in DCM (55 mL, 0.1 M) and cooled to 

0˚C, N-Iodosuccinimide (1.37 g, 6.05 mmol, 1.1 eq) and TFA (0.50 mL, 6.05 mmol, 1.1 eq) 

were added and the mixture was stirred for 1.5 h. The reaction mixture was quenched with Na2S2O3 (sat. 

aq.) and NaHCO3 (sat. aq.) and stirred for an extra hour after which the mixture was extracted with EtOAc. 

The organic layer was washed with brine (2x), dried over MgSO4 (s) filtered and concentrated in vacuo. 

Purification using silica gel column chromatography (3/7, → 1/1, Et2O/PE, v/v) yielded compound 251 

as a colorless oil (2.31 g, 4.46 mmol, 81%, α/β ratio = 4/1). TLC Rf: 0.29 (1/4, EtOAc/PE, v/v); IR (neat, 

cm−1): 3019, 2106, 1728, 1602, 1452, 1263, 1214; 1H NMR (400 MHz, CDCl3) δ 8.01 - 7.81 (m, 6H, Harom), 

7.56 - 7.23 (m, 9H, Harom), 6.23 (t, J = 9.9 Hz, 1H, H-3), 5.79 (d, J = 3.6 Hz, 1H, H-1), 5.55 (t, J = 9.8, 1.6 

Hz, 1H, H-4), 5.31 (dd, J = 10.2, 3.6 Hz, 1H, H-2), 4.54 - 4.47 (m, 1H, H-5), 3.53 - 3.40 (m, 2H, H-6); 13C 

NMR (101 MHz, CDCl3) δ 166.0, 166.0, 165.6 (C=O), 133.7, 133.6, 133.3, 130.1, 130.0, 130.0, 130.0, 129.8, 
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129.8 (CHarom), 129.1, 129.0, 128.7, 128.6 (Cq), 128.6, 128.6, 128.5, 128.4 (CHarom), 90.4 (C-1), 72.3 (C-2), 

70.1, 70.0 (C-3, C-4), 69.0 (C-5), 51.3 (C-6); HRMS [C27H23N3O8 + Na]+: 540.1387 found, 540.13774 

calculated. 

6-Azido-2,3,4,-tri-O-benzoyl-6-deoxy-1-O-(N-trichloroacetimidoyl)-α/β-ᴅ-mannopyranoside 

(228). 

Hemiacetal 251 (1.55 g, 3.00 mmol) was dissolved in DCM (15 mL, 0.2 M), cooled to 0°C 

and trichloroacetonitrile (0.90 mL, 9.0 mmol; 3 eq) and K2CO3 (1.66 g, 12.0 mmol; 4 eq) 

were added successfully. After stirring overnight, the reaction mixture was filtered over Celite and 

concentrated in vacuo. Purification using silica gel column chromatography (2/8, → 1/1, Et2O/PE, v/v) 

yielded compound 228 as a yellow oil (1.71 g, 2.58 mmol, 86%). TLC Rf: 0.73 (1/4, EtOAc/PE, v/v); IR 

(neat, cm−1): 3345, 3019, 2106, 1731, 1677, 1602, 1452, 1262, 1091, 1068; 1H NMR (400 MHz, CDCl3) δ 

8.72 (s, 1H, NH), 8.00 - 7.94 (m, 4H, Harom), 7.89 - 7.85 (m, 2H, Harom), 7.54 - 7.42 (m, 2H, Harom), 7.42 - 

7.29 (m, 6H, Harom), 7.25 (t, J = 7.8 Hz, 2H, Harom), 6.89 (d, J = 3.6 Hz, 1H, H-1), 6.28 (t, J = 9.9 Hz, 1H, 

H-3), 5.72 (t, J = 9.9 Hz, 1H, H-4), 5.64 (dd, J = 10.2, 3.7 Hz, 1H, H-2), 4.54 - 4.45 (m, 1H, H-5), 3.56 - 

3.46 (m, 2H, H-6); 13C NMR (101 MHz, CDCl3) δ 165.6, 165.3, 165.2 (C=O), 160.3 (C=N), 133.7, 133.6, 

133.3, 129.9, 129.9, 129.7 (CHarom), 128.8 (Cq), 128.5, 128.4, 128.3 (CHarom), 92.9 (C-1), 71.9 (C-2), 70.6 (C-

5), 69.9 (C-3), 69.2 (C-4), 50.7 (C-6); HRMS [C29H23Cl3N4O8 + Na]+: 685.0465 found, 685.04442 calculated. 

N1, N3, N5-Tris(dodecan-12-ol)-benzene-1,3,5-tricarboxamide (220). 

To a co-evaporated solution of benzene-1,3,5-tricarbonyl trichloride (0.535 g, 2.04 mmol, 1 

eq) in anhydrous DCM (20 mL, 0.1 M) at 0°C under N2, was added dropwise (>4 h) a co-

evaporated solution of 12-amino-dodecan-1-ol (1.32 g, 6.56 mmol, 3.3 eq) and Et3N (0.94 

mL, 6.73 mmol, 3.3 eq) in anhydrous DCM (33 mL, 0.2 M). The mixture was stirred overnight after which 

the mixture was absorbed on silica and purified using silica gel column chromatography (1/19, 

MeOH/CHCl3, v/v) yielded compound 220 as a white solid (1.09 g, 1.44 mmol, 71%). TLC Rf: 0.73 (1/9, 

MeOH/CHCl3, v/v); IR (neat, cm−1): 3266, 2916, 1629, 1541, 1466, 1293, 1056; 1H NMR (400 MHz, 

MeOD) δ 8.34 (s, 3H, BTA-Harom), 3.51 (t, J = 6.6 Hz, 6H, CH2-O), 3.37 (t, J = 7.1 Hz, 6H, CH2-N), 1.66 

- 1.55 (m, 6H, CH2), 1.55 - 1.44 (m, 6H, CH2), 1.44 - 1.23 (m, 48H, CH2); 13C NMR (101 MHz, MeOD) δ 

168.7 (C=O), 136.9 (Cq), 129.7 (CHarom), 63.0 (CH2-O), 41.2 (CH2-N), 33.7, 30.8, 30.7, 30.7, 30.6, 30.5, 30.5, 

28.1, 27.0 (CH2); HRMS [C45H81N3O6 + H]+: 760.6223 found, 760.61981 calculated. 

12-N-Phthalimido-dodecan-1-ol (229). 

Synthesis and spectral data as described in previous literature.24  

12-azido-dodecan-1-ol (230). 

Synthesis and spectral data as described in previous literature.25  
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12-N-Phthalimido-dodecyl 4-O-(2,3,4,6-tetra-O-benzoyl-α-ᴅ-glucopyranosyl)-2,3,6-tri-O-

benzoyl-β-ᴅ-glucopyranoside (231). 

Acceptor 230 (38 mg, 0.11 mmol, 1.2eq) and donor 225 (116 mg, 95 µmol, 1eq) were 

combined and co-evaporated with toluene (3x) under N2 atmosphere, dissolved in 

anhydrous DCM (1.9 mL, 0.05 M) and stirred with activated molecular sieves (3Å) for 30 min. The reaction 

mixture was cooled to 0 ˚C, TMSOTf (3.4 µL, 19 µmol, 0.2eq) was added dropwise and the mixture was 

stirred at 4 ˚C overnight. The reaction was quenched with Et3N (0.1 mL), diluted in DCM, washed with 

NaHCO3 (sat aq. 1x), dried over MgSO4 (s), filtered and concentrated in vacuo. Purification using size 

exclusion (Sephadex LH20, 1/1, MeOH/DCM, v/v) yielded compound 231 as a white solid (130 mg, 94 

µmol, 99%). TLC Rf: 0.31 (3/2, Et2O/PE, v/v); IR (neat, cm−1): 1709, 1264, 1090, 1067, 1024, 705; 1H 

NMR (400 MHz, CDCl3) δ 8.14 - 8.07 (m, 2H, Harom), 8.02 - 7.96 (m, 2H, Harom), 7.91 - 7.80 (m, 6H, Harom), 

7.78 - 7.62 (m, 8H, Harom), 7.60 - 7.27 (m, 18H, Harom), 7.25 - 7.16 (m, 4H, Harom), 6.09 (t, J = 10.0 Hz, 1H, 

H-3′), 5.80 - 5.72 (m, 2H, H-3, H-1′), 5.65 (t, J = 9.8 Hz, 1H, H-4′), 5.31 (dd, J = 9.5, 7.6 Hz, 1H, H-2), 5.25 

(dd, J = 10.5, 3.9 Hz, 1H, H-2′), 4.91 (dd, J = 12.0, 2.4 Hz, 1H, H-6a′), 4.81 - 4.72 (m, 2H, H-1, H-6b′), 4.55 

- 4.42 (m, 2H, H-4, H-5′), 4.39 (dd, J = 12.3, 3.0 Hz, 1H, H-6a), 4.26 (dd, J = 12.3, 3.8 Hz, 1H, H-6b), 4.13 

- 4.06 (m, 1H, H-5), 3.87 (dt, J = 9.7, 6.2 Hz, 1H, CHH-O), 3.71 - 3.63 (m, 2H, CH2-N), 3.48 (dt, J = 9.6, 

6.7 Hz, 1H, CHH-O), 1.65 (dd, J = 14.3, 7.1 Hz, 2H, CH2), 1.47 (dq, J = 14.9, 6.6 Hz, 2H, CH2), 1.38 - 

1.25 (m, 4H, CH2), 1.21 - 0.93 (m, 12H, CH2); 13C NMR (101 MHz, CDCl3) δ 168.6, 166.3, 166.0, 165.8, 

165.5, 165.3, 165.2 (C=O), 134.0, 133.6, 133.5, 133.4, 133.3, 133.2, 133.1 (CHarom), 132.3 (Cq), 130.1, 130.0, 

129.9, 129.8, 129.7 (CHarom), 129.6, 129.5, 129.4, 129.0, 128.9, 128.8 (Cq), 128.7 (CHarom), 128.6 (Cq), 128.5, 

128.5, 128.3, 128.2, 123.3 (CHarom), 100.9 (C-1), 96.5 (C-1′), 75.1 (C-3), 73.3 (C-4), 72.9 (C5), 72.4 (C-2), 

71.0 (C-2′), 70.3 (CH2-O), 70.0 (C-3), 69.2 (C-5′, C-4′), 63.7 (C-6′), 62.6 (C-6), 38.2 (CH2-N), 29.6, 29.6, 29.5, 

29.5, 29.3, 29.3, 28.7, 27.0, 25.9 (CH2); HRMS [C81H77NO20 + H]+: 1384.51389 found, 1384.51117 

calculated. 

12-Azido-dodecyl 4-O-(2,3,4,6-tetra-O-benzoyl-α-ᴅ-glucopyranosyl)-2,3,6-tri-O-benzoyl-β-ᴅ-

glucopyranoside (232). 

Acceptor 230 (31.3 mg, 0.138 mmol, 1.2eq) and donor 225 (139.3 mg, 0.115 mmol, 

1eq) were combined and co-evaporated with toluene (3x) under N2 atmosphere, 

dissolved in anhydrous DCM (2.29 mL, 0.05 M) and stirred with activated molecular sieves (3Å) for 30 

min. The reaction mixture was cooled to 0 ˚C, a stock solution of TMSOTf in DCM (100 µL, 0.23 M ,23 

µmol, 0.2eq) was added dropwise and the mixture was stirred at 4 ˚C overnight. The reaction was quenched 

with Et3N (0.1 mL), diluted in DCM, washed with NaHCO3 (sat aq. 1x), dried over MgSO4 (s), filtered and 

concentrated in vacuo. Purification using size exclusion (Sephadex LH20, 1/1, MeOH/DCM, v/v) yielded 

compound 232 as a white solid (146 mg, 0.115 mmol, 99%). TLC Rf: 0.67 (3/2, Et2O/PE, v/v); IR (neat, 

cm−1): 2924, 2853, 2094, 1720, 1264, 1092, 1068, 1026, 703; 1H NMR (400 MHz, CDCl3) δ 8.10 (d, J = 7.5 

Hz, 2H, Harom), 7.99 (d, J = 7.4 Hz, 2H, Harom), 7.85 (t, J = 6.7 Hz, 4H, Harom), 7.78 - 7.62 (m, 6H, Harom), 
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7.62 - 7.27 (m, 18H, Harom), 7.24 - 7.15 (m, 4H, Harom), 6.08 (t, J = 10.0 Hz, 1H, H-3′), 5.83 - 5.71 (m, 2H, 

H-3, H-1′), 5.65 (t, J = 9.8 Hz, 1H, H-4′), 5.30 (dd, J = 11.1, 6.0 Hz, 1H, H-2), 5.25 (dd, J = 10.5, 3.8 Hz, 

1H, H-2′), 4.91 (d, J = 10.1 Hz, 1H, H-6a′), 4.79 - 4.68 (m, 2H, H-6b′, H-1), 4.54 - 4.35 (m, 3H, H-4, H-5′, 

H-6a), 4.26 (dd, J = 12.3, 3.6 Hz, 1H, H-6b), 4.13 - 4.03 (m, 1H, H-5), 3.86 (dt, J = 9.7, 6.3 Hz, 1H, CHH-

O), 3.54 - 3.42 (m, 1H, CHH-O), 3.24 (t, J = 7.0 Hz, 2H, CH2-N3), 1.57 (q, J = 7.3 Hz, 2H, CH2), 1.53 - 

1.40 (m, 2H, CH2), 1.40 - 0.95 (m, 16H, CH2); 13C NMR (101 MHz, CDCl3) δ 166.3, 166.0, 165.8, 165.5, 

165.3, 165.2 (C=O), 133.6, 133.5, 133.4, 133.3, 133.2, 133.1, 132.1, 131.7, 130.1, 130.0, 129.9, 129.8, 129.7 

(CHarom), 129.6, 129.5, 129.4, 129.1, 129.0, 128.9(Cq), 128.7 (CHarom), 128.6 (Cq), 128.5, 128.3, 128.2, 128.1, 

127.9, 114.4, 113.9 (CHarom), 100.9 (C-1), 96.5 (C-1′), 75.1 (C-3), 73.3 (C-4), 72.9 (C-5), 72.4 (C-2), 71.0 (C-

2′), 70.3 (CH2-O), 70.0 (C-3′), 69.2 (C-5′, C-4′), 63.7 (C-6′), 62.6 (C-6), 51.6 (CH2-N3), 29.6, 29.5, 29.3, 29.3, 

29.0, 26.8, 25.9 (CH2); HRMS [C73H73N3O18 + NH4]+: 1297.52278 found, 1297.52274 calculated. 

12-Amino-dodecyl 4-O-(α-ᴅ-glucopyranosyl)-β-ᴅ-glucopyranoside (233). 

232 (144 mg, 0.10 mmol) was dissolved in a mixture of MeOH/DCM (0.5 mL, 0.2 M, 

1/1, v/v) and NaOMe (0.010 mL, 5.4 M, 0.05 mmol, 0.5eq) was added dropwise. and 

the mixture was stirred for 2 h after which it was neutralized using Amberlite H+ resin, filtrated and 

concentrated in vacuo. This crude was dissolved in a mixture of H2O/t-BuOH/dioxane (2 mL, 0.05 M, 

1/1/1, v/v/v) and HCl (1 M, 1 drop) was added. The mixture was flushed with N2 gas, and PtO (scoop) 

was added. The mixture was flushed with H2 and was sonicated for 1 h. After which the mixture was filtered 

over a Whatman filter. Purification using size exclusion (Sephadex LH20, 1/9, H2O/MeOH, v/v) yielded 

compound 233 as a white powder after lyophilization (25 mg, 0.048 mmol, 48%). TLC Rf: 0.52 (3/7, NH3 

(aq.)/i-PrOH, v/v); IR (neat, cm−1): 3330, 2921, 2852, 1060, 1027, 992; 1H NMR (400 MHz, DMSO) δ 5.00 

(d, J = 3.8 Hz, 1H, H-1′), 4.14 (d, J = 7.8 Hz, 1H, H-1), 3.79 - 3.16 (m, 12H), 3.06 (t, J = 9.2 Hz, 1H), 3.02 

- 2.95 (m, 1H, H-2, H-3, H-4, H-5, H-6, H-2′, H-3′. H-4′, H-5′, H-6′, CH2-O), 2.57 (t, J = 7.0 Hz, 2H, CH2-

NH2), 1.56 - 1.45 (m, 2H, CH2), 1.36 (dd, J = 13.5, 6.9 Hz, 2H, CH2), 1.24 (s, 6H, CH2); 13C NMR (101 

MHz, DMSO) δ 102.7 (C-1), 100.8 (C-1′), 79.7, 76.5, 75.1, 73.5, 73.3, 73.0, 72.5, 69.9, 68.7 (C-2, C-3, C-4, 

C-5, C-2′, C-3′, C-4′, C-5′), 60.8 (CH2-O), 60.6 (C-6, C-6′), 40.9 (CH2-N), 31.6, 29.3, 29.0, 28.9, 26.3, 25.5 

(CH2); HRMS [C24H47NO11 + H]+: 526.32237 found, 526.32219 calculated. 

12-Azido-dodecyl 4-O-(2,3,4,6-tetra-O-benzoyl-β-ᴅ-glucopyranosyl)-2,3,6-tri-O-benzoyl-β-ᴅ-

glucopyranoside (234). 

Acceptor 230 (1.12 g, 4.90 mmol, 1.1eq) and donor 223 (5.47 g, 4.50 mmol, 1eq) 

were combined and co-evaporated with toluene (3x) under N2 atmosphere, dissolved 

in anhydrous DCM (45 mL, 0.1 M) and stirred with activated molecular sieves (3Å) for 30 min. The reaction 

mixture was cooled to 0 ˚C, TMSOTf (160 µL, 0.9 mmol, 0.2eq) was added dropwise and the mixture was 

stirred at 0 ˚C for 4 h. The reaction was quenched with Et3N (0.1 mL), diluted in DCM, washed with 

NaHCO3 (sat aq. 1x), dried over MgSO4 (s), filtered and concentrated in vacuo. Purification using silica gel 

column chromatography (1/9 → 7/13, Et2O/PE, v/v) yielded compound 234 as a white solid (4.89 g, 3.81 



Synthesis of glycosylated BTA-core-monomers for self-assembling supramolecular fibers 

164 

mmol, 85%). TLC Rf: 0.38 (3/2, Et2O/PE, v/v); IR (neat, cm−1): 2926, 2096, 1720, 1266, 1093, 1067, 1027, 

704; 1H NMR (400 MHz, CDCl3) δ 8.02 - 7.88 (m, 10H, Harom), 7.79 - 7.71 (m, 4H, Harom), 7.60 - 7.18 (m, 

21H, Harom), 5.78 (t, J = 9.4 Hz, 1H, H-3), 5.72 (t, J = 9.6 Hz, 1H, H-3′), 5.51 (dd, J = 9.8, 8.0 Hz, 1H, H-

2′), 5.44 - 5.33 (m, 2H, H-2, H-4′), 4.92 (d, J = 7.9 Hz, 1H, H-1′), 4.68 - 4.56 (m, 2H, H-1, H-6a), 4.45 (dd, 

J = 12.1, 4.4 Hz, 1H, H-6b), 4.23 (t, J = 9.5 Hz, 1H, H-4), 4.05 (dd, J = 11.8, 2.8 Hz, 1H, H-6a′), 3.84 - 3.75 

(m, 3H, H-5, H-5′, CHH-O), 3.72 (dd, J = 11.8, 5.7 Hz, 1H, H-6b′), 3.44 - 3.35 (m, 1H, CHH-O), 3.25 (t, J 

= 7.0 Hz, 2H, CH2-N3), 1.63 - 1.52 (m, 4H, CH2), 1.50 - 0.92 (m, 16H, CH2); 13C NMR (101 MHz, CDCl3) 

δ 165.9, 165.8, 165.7, 165.6, 165.3, 165.1, 164.9 (C=O), 133.5, 133.4, 133.2, 129.9, 129.9, 129.8 (CHarom), 

129.6, 129.5, 128.8, 128.7 (Cq), 128.6, 128.4, 128.4, 128.4 (CHarom), 101.1, 101.0 (C-1, C-1′), 76.7 (C-4), 73.1, 

72.9 (C-3, C-3′), 72.5 (C-5, C-5′), 72.0 (C-2, C-2′), 70.4 (CH2-O), 69.5 (C-4′), 62.7, 62.6 (C-6, C-6′), 51.6 

(CH2-N3), 29.5, 29.3, 29.0, 26.8, 25.8 (CH2); HRMS [C73H73N3O18 + NH4]+: 1297.52353 found, 1297.52274 

calculated. 

12-Azido-dodecyl 4-O-(β-ᴅ-glucopyranosyl)-β-ᴅ-glucopyranoside (252). 

Compound 234 (3.47 g, 2.70 mmol) was dissolved in a mixture of MeOH/DCM (13.5 

mL, 0.2 M, 1/1, v/v) and NaOMe (0.1 mL, 5.4 M, 0.54 mmol, 0.2eq) was added 

dropwise. and the mixture was stirred for 2 h after which it was neutralized using Amberlite H+ resin, 

filtrated and concentrated in vacuo to yield 252 as a white solid (1.38 g, 2.50 mmol, 93%). TLC Rf: 0.08 (1/9, 

MeOH/DCM, v/v); IR (neat, cm−1): 3421, 2920, 2850, 2094, 1087, 1025, 990; 1H NMR (400 MHz, MeOD) 

δ 4.39 (d, J = 7.8 Hz, 1H, H-1′), 4.26 (d, J = 7.8 Hz, 1H, H-1), 3.90 - 3.81 (m, 4H, H-6′, H-6a, CHH-O), 

3.68 - 3.61 (m, 1H, H-6b), 3.58 - 3.45 (m, 3H, CHH-O, H-3, H-4), 3.41 - 3.15 (m, 8H, H-3′, H-4′, H-5, H-

5′, H-2, H-2′, CH2-N3), 1.58 (dp, J = 14.4, 6.8 Hz, 4H, CH2), 1.42 - 1.25 (m, 16H, CH2); 13C NMR (101 

MHz, MeOD) δ 104.6 (C-1′), 104.2 (C-1), 80.7 (C-4), 78.1, 77.8, 76.4 (C-5, C-5′, C-3′), 76.4 (C-3), 74.9, 

74.8(C-2, C-2′), 71.3 (C-4′), 70.9 (CH2-O), 62.4, 61.8 (C-6, C-6′), 52.4 (CH2-N3), 30.8, 30.7, 30.7, 30.7, 30.6, 

30.6, 30.3, 29.9, 27.8, 27.1 (CH2); HRMS [C24H45N3O11 + NH4]+: 569.33907 found, 569.33923 calculated. 

12-Amino-dodecyl 4-O-(β-ᴅ-glucopyranosyl)-β-ᴅ-glucopyranoside (235). 

Azide 252 (57 mg, 0.10 mmol) was dissolved in a mixture of H2O/t-BuOH/dioxane 

(3 mL, 0.033 M, 1/1/1, v/v/v) and HCl (1 M, 2 drops) was added. The mixture was 

flushed with N2 gas, and PtO (1 scoop) was added. The mixture was flushed with H2 and was sonicated for 

1 h. After which the mixture was filtered over a Whatman filter. Purification using size exclusion (Sephadex 

LH20, 1/9, H2O/MeOH, v/v) yielded compound 235 as a white powder after lyophilization (54 mg, 0.10 

mmol, qnt). TLC Rf: 0.05 (3/7, MeOH/DCM, v/v); IR (neat, cm−1):3421, 3321, 2920, 2851, 2094, 1074, 

1027, 991; 1H NMR (400 MHz, DMSO) δ 7.86 (s, 2H, NH2), 5.26 (d, J = 4.9 Hz, 1H, 2-OH/2′-OH), 5.14 

- 5.02 (m, 3H, 3-OH, 3′-OH, 2-OH/2′-OH), 4.67 (s, 1H, 4′-OH), 4.61 (dt, J = 16.5, 5.7 Hz, 2H, 6-OH, 6′-

OH), 4.25 (d, J = 7.9 Hz, 1H, H-1/H-1′), 4.15 (d, J = 7.9 Hz, 1H, H-1/H-1′), 3.79 - 3.52 (m, 4H, H-6′, H-

6a, CHH-O), 3.46 - 3.32 (m, 2H, CHH-O, H-6b), 3.32 - 3.22 (m, 3H, H-4, H-5, H-5′), 3.21 - 3.11 (m, 2H, 

H-3, H-3′), 3.09 - 3.02 (m, 1H, H-4′), 3.02 - 2.93 (m, 2H, H-2, H-2′), 2.77 - 2.69 (m, 2H, CH2-N), 1.60 - 1.43 



CHAPTER 6 

165 

(m, 4H, CH2), 1.25 (s, 16H, CH2); 13C NMR (101 MHz, DMSO) δ 103.2, 102.5 (C-1, C-1′), 80.6 (C-4), 76.8, 

76.5 (C-3, C-3′), 75.1, 74.8 (C-5, C-5′), 73.3, 73.1 (C-2, C-2′), 70.0 (C-4′), 68.7 (CH2-O), 61.0 (C-6), 60.4 (C-

6′), 38.7 (CH2-N), 29.3, 29.0, 28.9, 28.9, 28.5, 27.0, 25.8, 25.5 (CH2); HRMS [C24H47NO11 + H]+: 526.32220 

found, 526.32219 calculated. 

12-Azido-dodecyl 4-O-(2,3,4,6-tetra-O-benzoyl-β-ᴅ-galactopyranosyl)-2,3,6-tri-O-benzoyl-β-ᴅ-

glucopyranoside (236). 

Acceptor 230 (106 mg, 466 µmol, 1.1eq) and donor 224 (515.0 mg, 424 µmol, 1eq) 

were combined and co-evaporated with toluene (3x) under N2 atmosphere, dissolved 

in anhydrous DCM (4.24 mL, 0.1 M) and stirred with activated molecular sieves (3Å) for 30 min. The 

reaction mixture was cooled to 0 ˚C, TMSOTf (15 µL, 85 µmol, 0.2eq) was added dropwise and the mixture 

was stirred at 0 ˚C for 2 h. The reaction was quenched with Et3N (0.1 mL), diluted in DCM, washed with 

NaHCO3 (sat aq. 1x), dried over MgSO4 (s), filtered and concentrated in vacuo. Purification using silica gel 

column chromatography (1/9 → 7/13, Et2O/PE, v/v) yielded compound 236 as a white foam (328.6 mg, 

257 µmol, 61%). TLC Rf: 0.39 (3/2, Et2O/PE, v/v); IR (neat, cm−1): 2927, 2855, 2095, 1724, 1259, 1090, 

1067, 1026, 705; 1H NMR (400 MHz, CDCl3) δ 8.06 - 7.93 (m, 10H, Harom), 7.90 (d, J = 7.3 Hz, 2H, Harom), 

7.73 (d, J = 7.4 Hz, 2H, Harom), 7.67 - 7.28 (m, 17H, Harom), 7.21 (t, J = 7.8 Hz, 2H, Harom), 7.14 (t, J = 7.7 

Hz, 2H, Harom), 5.80 (t, J = 9.5 Hz, 1H, H-3), 5.76 - 5.67 (m, 2H, H-2′, H-4′), 5.45 (dd, J = 9.7, 8.0 Hz, 1H, 

H-2), 5.36 (dd, J = 10.3, 3.3 Hz, 1H, H-3′), 4.86 (d, J = 7.9 Hz, 1H, H-1′), 4.67 (d, J = 7.9 Hz, 1H, H-1), 

4.60 (dd, J = 11.0, 1.5 Hz, 1H, H-6a), 4.48 (dd, J = 12.1, 4.2 Hz, 1H, H-6b), 4.25 (t, J = 9.5 Hz, 1H, H-4), 

3.92 - 3.78 (m, 3H, H-5′, H-5, CHH-O), 3.78 - 3.64 (m, 2H, H-6′), 3.49 - 3.38 (m, 1H, CHH-O), 3.25 (t, J 

= 7.0 Hz, 2H, CH2-N3), 1.58 (p, J = 7.0 Hz, 2H, CH2), 1.51 - 1.40 (m, 2H, CH2), 1.40 - 0.94 (m, 16H, CH2); 

13C NMR (101 MHz, CDCl3) δ 166.0, 165.7, 165.5, 165.3, 165.3, 164.9 (C=O), 133.7, 133.5, 133.4, 133.3, 

130.1, 129.9, 129.8, 129.8, 129.7 (CHarom), 129.7, 129.5, 129.0, 128.8 (Cq), 128.8, 128.7, 128.7, 128.4, 128.4 

(CHarom), 101.3 (C-1), 101.1 (C-1′), 76.2 (C-4), 73.1, 73.0 (C-3, C-5), 71.9, 71.9 (C-2, C-3′), 71.5 (C-5′), 70.5 

(CH2-O), 70.0, 67.6 (C-2′, C-4′), 62.6 (C-6), 61.2 (C-6′), 51.6 (CH2-N3), 29.6, 29.5, 29.5, 29.3, 29.3, 29.0, 26.8, 

25.8 (CH2); HRMS [C73H73N3O18 + NH4]+: 1297.52439 found, 1297.52274 calculated. 

12-Azido-dodecyl 4-O-(β-ᴅ-galactopyranosyl)-β-ᴅ-glucopyranoside (253). 

Compound 236 (305.7 mg, 0.24 mmol) was dissolved in a mixture of MeOH/DCM 

(1.2 mL, 0.2 M, 1/1, v/v) and NaOMe (0.025 mL, 5.4 M, 0.048 mmol, 0.2eq) was 

added dropwise. and the mixture was stirred for 2 h after which it was neutralized using Amberlite H+ resin, 

filtrated and concentrated in vacuo to yield 253 as a white solid (118.3 mg, 0.21 mmol, 89%). TLC Rf: 0.07 

(1/9, MeOH/DCM, v/v); IR (neat, cm−1): 3650, 3384, 2920, 2850, 2095, 1096, 1061, 770; 1H NMR (400 

MHz, DMSO) δ 4.22 - 4.13 (m, 2H, H-1′, H-1), 3.80 - 3.69 (m, 2H, CHH-O, H-6a), 3.63 - 3.22 (m, 13H, 

H-4, CHH-O, H-6b, H-6′, H-3, H-3′,CH2-N3, H-5, H-5′, H-4′,H-2′), 3.03 - 2.95 (m, 1H, H-2), 1.51 (q, J = 

6.4, 5.8 Hz, 4H, CH2), 1.25 (s, 16H, CH2); 13C NMR (101 MHz, DMSO) δ 103.9 (C-1′), 102.5 (C-1), 80.9, 

75.5, 75.0, 74.8 (C-2′/C-3/C-3′/C-4′/C-5/C-5′), 73.2 (C-2), 73.2, 70.5 (C-2′/C-3/C-3′/C-4′/C-5/C-5′), 68.7 
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(CH2-O), 68.1 (C-4), 60.5, 60.4 (C-6, C-6′), 50.6 (CH2-N3), 29.3, 29.1, 29.0, 29.0, 29.0, 28.6, 28.3, 26.2, 25.5 

(CH2); HRMS [C24H45N3O11 + H]+: 552.31251 found, 552.31269 calculated. 

12-Amino-dodecyl 4-O-(β-ᴅ-galactopyranosyl)-β-ᴅ-glucopyranoside (237). 

Azide 253 (70.5 mg, 0.13 mmol) was dissolved in a mixture of H2O/t-BuOH/dioxane 

(3 mL, 0.033 M, 1/1/1, v/v/v) and HCl (1 M, 2 drops) was added. The mixture was 

flushed with N2 gas, and PtO (scoop) was added. The mixture was flushed with H2 and was sonicated for 

1 h. After which the mixture was filtered over a Whatman filter. Purification using size exclusion (Sephadex 

LH20, 1/9, H2O/MeOH, v/v) yielded compound 237 as a white powder after lyophilization (67.9 mg, 0.13 

mmol, 99%). IR (neat, cm−1): 3381, 3245, 2919, 2850, 1097, 1062, 1020; 1H NMR (400 MHz, DMSO) δ 

7.94 (s, 2H, NH2), 4.22 - 4.18 (m, 1H, H-1′), 4.16 (d, J = 7.8 Hz, 1H, H-1), 3.78 - 3.68 (m, 2H, CHH-O, H-

6a), 3.64 - 3.22 (m, 11H, H-4, CHH-O, H-6b, H-6′, H-3, H-3′, H-5, H-5′, H-4′,H-2′), 2.98 (t, J = 8.1 Hz, 

1H, H-2), 2.80 - 2.68 (m, 2H, CH2-N), 1.58 - 1.44 (m, 4H, CH2), 1.36 - 1.16 (m, 16H, CH2); 13C NMR (101 

MHz, DMSO) δ 103.9 (C-1′), 102.5 (C-1), 80.8, 75.5, 75.0, 74.8, 73.3, 73.2, 70.6(C-2, C-2′, C-3, C-3′, C-4′, 

C-5, C-5′), 68.7 (CH2-O), 68.1 (C-4), 60.5, 60.3 (C-6, C-6′), 38.7 (CH2-N), 29.3, 29.1, 29.0, 29.0, 28.9, 28.6, 

27.0, 25.8, 25.5 (CH2); HRMS [C24H47NO11 + H]+: 526.32191 found, 526.32219 calculated. 

 

12-Azido-dodecyl-2,3,4,6-tetra-O-benzoyl-β-ᴅ-glucopyranoside (238). 

Acceptor 230 (403 mg, 1.77 mmol, 1.5eq) and donor 222 (874 mg, 1.18 mmol, 1eq) were 

combined and co-evaporated with toluene (3x) under N2 atmosphere, dissolved in 

anhydrous DCM (12 mL, 0.1 M) and stirred with activated molecular sieves (3Å) for 30 min. The reaction 

mixture was cooled to 0 ˚C, TMSOTf (43 µL, 236 µmol, 0.2eq) was added dropwise and the mixture was 

stirred at 0 ˚C for 3 h. The reaction was quenched with Et3N (0.1 mL), diluted in DCM, washed with 

NaHCO3 (sat aq. 1x), dried over MgSO4 (s), filtered and concentrated in vacuo. Purification using size 

exclusion (Sephadex LH20, 1/1, MeOH/DCM, v/v) followed by silica gel column chromatography (1/9 

→ 1/4, Et2O/PE, v/v) yielded compound 238 as a clear oil (634 mg, 0.786 mmol, 67%). TLC Rf: 0.39 

(3/2, Et2O/PE, v/v); IR (neat, cm−1): 2926, 2855, 2095, 1724, 1259, 1090, 1067, 1026, 705; 1H NMR (400 

MHz, CDCl3) δ 8.05 - 7.99 (m, 2H, Harom), 7.99 - 7.93 (m, 2H, Harom), 7.93 - 7.87 (m, 2H, Harom), 7.87 - 7.81 

(m, 2H, Harom), 7.57 - 7.27 (m, 12H, Harom), 5.91 (t, J = 9.7 Hz, 1H, H-3), 5.68 (t, J = 9.7 Hz, 1H, H-4), 5.53 

(dd, J = 9.7, 7.9 Hz, 1H, H-2), 4.84 (d, J = 7.9 Hz, 1H, H-1), 4.64 (dd, J = 12.1, 3.3 Hz, 1H, H-6a), 4.51 

(dd, J = 12.1, 5.2 Hz, 1H, H-6b), 4.21 - 4.11 (m, 1H, H-5), 3.92 (dt, J = 9.7, 6.3 Hz, 1H, CHH-O), 3.54 (dt, 

J = 9.6, 6.7 Hz, 1H, CHH-O), 3.25 (t, J = 7.0 Hz, 2H, CH2-N3), 1.54 (dh, J = 30.3, 7.9, 7.4 Hz, 4H, CH2), 

1.40 - 0.99 (m, 16H, CH2); 13C NMR (101 MHz, CDCl3) δ 166.3, 166.0, 165.3, 165.2 (C=O), 133.5, 133.3, 

133.3, 133.2, 129.9, 129.9, 129.9 (CHarom), 129.7, 129.5, 128.9, 128.9 (Cq), 128.5, 128.5, 128.4, 128.4 (CHarom), 

101.4 (C-1), 73.0 (C-3), 72.3 (C-5), 72.0 (C-2), 70.5 (CH2-O), 70.0 (C-4), 63.4 (C-6), 51.6 (CH2-N3), 29.6, 

29.6, 29.6, 29.5, 29.5, 29.3, 29.3, 29.0, 26.8, 25.9 (CH2); HRMS [C46H51N3O10 + Na]+: 828.34680 found, 

828.34667 calculated. 
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12-Azido-dodecyl-β-ᴅ-glucopyranoside (254). 

Glucoside 238 (600 mg, 0.70 mmol) was dissolved in a mixture of MeOH/DCM (3.5 mL, 

0.2 M, 1/1, v/v) and NaOMe (0.025 mL, 5.4 M, 0.14 mmol, 0.2eq) was added dropwise. and 

the mixture was stirred for 2 h after which it was neutralized using Amberlite H+ resin, filtrated and 

concentrated in vacuo. Purification using size exclusion (Sephadex LH20, 1/1, MeOH/DCM, v/v) yielded 

compound 254 as a white solid (150 mg, 0.382 mmol, 55%). TLC Rf: 0.33 (1/9, MeOH/DCM, v/v); IR 

(neat, cm−1): 3380, 3247, 2921, 2850, 2095, 1284, 1254, 1167, 1070, 1034, 994; 1H NMR (400 MHz, MeOD) 

δ 4.22 (d, J = 7.8 Hz, 1H, H-1), 3.92 - 3.80 (m, 2H, CHH-O, H-6a), 3.64 (dd, J = 11.8, 5.1 Hz, 1H, H-6b), 

3.51 (dt, J = 9.3, 6.8 Hz, 1H, CHH-O), 3.36 - 3.18 (m, 5H, CH2-N3, H-3, H-4, H-5), 3.14 (t, J = 8.4 Hz, 

1H, H-2), 1.66 - 1.49 (m, 4H, CH2), 1.43 - 1.22 (m, 16H, CH2); 13C NMR (101 MHz, MeOD) δ 104.3 (C-

1), 78.1 (C-3), 77.9 (C-4/C-5), 75.1 (C-2), 71.6 (C-4/C-5), 70.9 (CH2-O), 62.7 (C-6), 52.4 (CH2-N3), 30.8, 

30.7, 30.7, 30.7, 30.6, 30.3, 29.9, 27.8, 27.1 (CH2); HRMS [C18H35N3O6 + Na]+: 412.24191 found, 412.24181 

calculated.  

12-Amino-dodecyl-β-ᴅ-glucopyranoside (239). 

Glucose 254 (131 mg, 0.34 mmol) was dissolved in a mixture of H2O/t-BuOH/dioxane (6 

mL, 0.05 M, 1/1/1, v/v/v) and HCl (1 M, 2 drops) was added. The mixture was flushed 

with N2 gas, and PtO (1 scoop) was added. The mixture was flushed with H2 and was sonicated for 1 h. 

After which the mixture was filtered over a Whatman filter. Purification using size exclusion (Sephadex 

LH20, 1/9, H2O/MeOH, v/v) yielded compound 239 as a white powder after lyophilization (102 mg, 0.28 

mmol, 83%). TLC Rf: 0.05 (1/9, MeOH/DCM, v/v); IR (neat, cm−1): 3367, 2921, 2852, 1077, 989; 1H 

NMR (400 MHz, DMSO) δ 7.92 (s, 1H, NH), 7.51 - 7.14 (m, 2H, NH), 4.09 (d, J = 7.7 Hz, 1H, H-1), 3.78 

- 3.69 (m, 1H, CHH-O), 3.65 (d, J = 11.4 Hz, 1H, H-6a), 3.47 - 3.35 (m, 2H, H-6b, CHH-O), 3.14 (t, J = 

8.5 Hz, 1H, H-3), 3.10 - 2.99 (m, 2H, H-4, H-5), 2.93 (t, J = 8.3 Hz, 1H, H-2), 2.81 - 2.66 (m, 2H, CH2-N), 

1.59 - 1.43 (m, 4H, CH2), 1.24 (s, 16H, CH2); 13C NMR (101 MHz, DMSO) δ 103.0 (C-1), 76.9 (C-3, C-

4/C-5), 73.7 (C-2), 70.3 (C-4/C-5), 68.8 (CH2-O), 61.3 (C-6), 39.0 (CH2-N), 29.5, 29.2, 29.1, 29.0, 28.8, 

28.3, 27.1, 26.0, 25.8, 24.9 (CH2); HRMS [C18H37NO6 + H]+: 364.26926 found, 364.26936 calculated. 

N1, N3, N5-Tris-(dodecyl-12-O-[2,3,4,6-tetra-O-benzoyl-α-ᴅ-mannopyranosyl])-benzene-1,3,5-

tricarboxamide (240). 

Acceptor 220 (76 mg, 0.10 mmol, 1 eq) and donor 221 (296 mg, 0.40 mmol, 4 eq) were 

combined and co-evaporated with toluene (3x) under N2 atmosphere, dissolved in a 

mixture of anhydrous DCM/HFIP (4 mL, 0.025 M, 4/1, v/v) and stirred with 

activated molecular sieves (3Å) for 30 min. The reaction mixture was cooled to 0 ˚C, TfOH (9 µL, 0.1 

mmol, 1 eq) was added dropwise and the mixture was stirred at 0 ˚C for three hours. The reaction was 

quenched with Et3N (0.1 mL), diluted in DCM, washed with NaHCO3 (sat aq., 3x), dried over MgSO4 (s), 

filtered and concentrated in vacuo. Purification using size exclusion (Sephadex LH20, 1/1, MeOH/DCM, 

v/v) yielded compound 240 as a transparent solid (229 mg, 0.092 mmol, 92%). TLC Rf: 0.72 (Et2O); IR 
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(neat, cm−1): 2942, 2853, 1717, 1560, 1507, 1259, 1066, 1026, 705; 1H NMR (400 MHz, CDCl3) δ 8.34 (s, 

3H, BTA-Harom), 8.12 - 8.01 (m, 12H, Harom), 7.99 - 7.93 (m, 6H, Harom), 7.86 - 7.81 (m, 6H, Harom), 7.63 - 

7.33 (m, 30H, Harom), 7.27 (t, J = 8.2 Hz, 6H, Harom), 6.47 (t, J = 5.6 Hz, 3H, NH), 6.10 (t, J = 10.0 Hz, 3H, 

H-4), 5.93 (dd, J = 10.1, 3.3 Hz, 3H, H-3), 5.70 (dd, J = 3.2, 1.8 Hz, 3H, H-2), 5.09 (d, J = 1.5 Hz, 3H, H-

1), 4.69 (dd, J = 12.0, 2.4 Hz, 3H, H-6a), 4.49 (dd, J = 12.1, 4.5 Hz, 3H, H-6b), 4.45 - 4.38 (m, 3H, H-5), 

3.82 (dt, J = 9.5, 6.8 Hz, 3H, CHH-O), 3.57 (dt, J = 9.5, 6.7 Hz, 3H, CHH-O), 3.44 (q, J = 6.8 Hz, 6H, 

CH2-N), 1.75 - 1.65 (m, 6H, CH2), 1.65 - 1.55 (m, 6H, CH2), 1.45 - 1.23 (m, 48H, CH2); 13C NMR (101 

MHz, CDCl3) δ 166.3, 165.7, 165.6, 165.6, 165.6, 165.6 (C=O), 135.4 (Cq), 133.6, 133.3, 133.2, 130.0, 129.9, 

129.9 (CHarom), 129.5, 129.2, 129.1 (Cq), 128.7, 128.6, 128.4, 128.0 (CHarom), 97.8 (C-1), 70.8 (C-2), 70.3 (C-

3), 68.9 (CH2-O), 68.9 (C-5), 67.1 (C-4), 63.1 (C-6), 40.5 (CH2-N), 29.7, 29.7, 29.7, 29.5, 29.4, 27.1, 26.3 

(CH2); HRMS [C147H159N3O33 + H + NH4]2+: 1257.06660 found, 1257.06502 calculated. 

N1,N3,N5-Tris-(dodecyl-12-O-[2,3,4,6-tetra-O-benzoyl-β-ᴅ-glucopyranosyl])-benzene-1,3,5-

tricarboxamide (241). 

Acceptor 220 (0.99 g, 1.30 mmol, 1 eq) and donor 222 (4.82 g, 6.50 mmol, 5 eq) were 

combined and co-evaporated with toluene (3x) under N2 atmosphere, dissolved in a 

mixture of anhydrous DCM/HFIP (57 mL, 0.023 M, 4/1, v/v) and stirred with 

activated molecular sieves (3Å) for 30 min. The reaction mixture was cooled to 0 ˚C, TfOH (115 µL, 1.3 

mmol, 1 eq) was added dropwise and the mixture was stirred at 4 ˚C overnight. The reaction was quenched 

with Et3N (0.6 mL), diluted in DCM, washed with NaHCO3 (sat aq., 3x), dried over MgSO4 (s), filtered and 

concentrated in vacuo. Purification using size exclusion (Sephadex LH20, 1/1, MeOH/DCM, v/v) and silica 

gel column chromatography (3/7, Et2O/PE, v/v → 100% Et2O) yielded title compound 241 as a white 

solid (2.52 g, 1.01 mmol, 78%). TLC Rf: 0.51 (Et2O); IR (neat, cm−1): 2925, 2853, 1720, 1560, 1260, 1090, 

1067, 1026, 705; 1H NMR (400 MHz, CDCl3) δ 8.37 (s, 3H, BTA-Harom), 8.05 - 7.80 (m, 24H, Harom), 7.57 

- 7.24 (m, 36H, Harom), 6.61 (t, J = 5.3 Hz, 3H, NH), 5.92 (t, J = 9.7 Hz, 3H, H-3), 5.68 (t, J = 9.7 Hz, 3H, 

H-4), 5.53 (dd, J = 9.8, 7.9 Hz, 3H, H-2), 4.85 (d, J = 7.9 Hz, 3H, H-1), 4.64 (dd, J = 12.1, 3.2 Hz, 3H, H-

6a), 4.51 (dd, J = 12.1, 5.2 Hz, 3H, H-6b), 4.21 - 4.13 (m, 3H, H-5), 3.91 (dt, J = 9.7, 6.3 Hz, 3H, CHH-O), 

3.54 (dt, J = 9.7, 6.7 Hz, 3H, CHH-O), 3.43 (q, J = 6.7 Hz, 6H, CH2-N), 1.65 - 1.46 (m, 12H, CH2), 1.40 - 

0.95 (m, 48H, CH2); 13C NMR (101 MHz, CDCl3) δ 166.3, 165.9, 165.8, 165.3, 165.2 (C=O), 135.4 (Cq), 

133.5, 133.3, 133.3, 133.2, 129.9, 129.8 (CHarom), 129.8 (Cq), 129.7 (CHarom), 129.6, 129.4, 128.9, 128.9 (Cq), 

128.5, 128.4, 128.4, 128.4, 128.1 (CHarom), 101.4 (C-1), 73.0 (C-3), 72.2 (C-5), 72.0 (C-2), 70.5 (CH2-O), 69.9 

(C-4), 63.3 (C-6), 40.5 (CH2-N), 29.6, 29.6, 29.6, 29.5, 29.5, 29.5, 29.4, 29.3, 27.1, 25.8 (CH2); HRMS 

[C147H159N3O33 + 2H]2+: 1248.55472 found, 1248.55174 calculated. 
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N1, N3, N5-Tris-(dodecyl-12-O-[4-O-(2,3,4,6-tetra-O-benzoyl-β-ᴅ-glucopyranosyl)-2,3,6-tri-O-

benzoyl-β-ᴅ-glucopyranosyl])-benzene-1,3,5-tricarboxamide (242). 

Acceptor 220 (1.33 g, 1.75 mmol, 1 eq) and donor 223 (10.66 g, 8.77 mmol, 

5 eq) were combined and co-evaporated with toluene (3x) under N2 

atmosphere, dissolved in a mixture of anhydrous DCM/HFIP (76 mL, 0.023 

M, 4/1, v/v) and stirred with activated molecular sieves (3Å) for 30 min. The reaction mixture was cooled 

to 0 ̊ C, TfOH (155 µL, 1.75 mmol, 1 eq) was added dropwise and the mixture was stirred at 4 ̊ C overnight. 

The reaction was quenched with Et3N (0.5 mL), diluted in DCM, washed with NaHCO3 (sat aq., 3x), dried 

over MgSO4 (s), filtered and concentrated in vacuo. Purification using silica gel column chromatography 

(1/1, EtOAc/PE, v/v) followed by purification using size exclusion (Sephadex LH20, 1/1, MeOH/DCM, 

v/v) yielded compound 242 as a white powder (3.46 g, 0.88 mmol, 50%). TLC Rf: 0.75 (9/1, Et2O/PE, 

v/v); IR (neat, cm−1): 2924, 2853, 1684, 1670, 1654, 1636, 1617, 1497,1260, 1090, 1070, 1025, 705; 1H NMR 

(400 MHz, CDCl3) δ 8.35 (s, 3H, BTA-Harom), 8.01 - 7.89 (m, 30H, Harom), 7.79 - 7.71 (m, 12H, Harom), 7.60 

- 7.17 (m, 63H, Harom), 6.49 (t, J = 5.3 Hz, 3H, NH), 5.78 (t, J = 9.4 Hz, 3H, H-3), 5.72 (t, J = 9.6 Hz, 3H, 

H-3′), 5.51 (dd, J = 9.8, 7.9 Hz, 3H, H-2′), 5.43 - 5.33 (m, 6H, H-2, H-4′), 4.93 (d, J = 7.9 Hz, 3H, H-1′), 

4.69 - 4.55 (m, 6H, H-1, H-6a), 4.45 (dd, J = 12.1, 4.5 Hz, 3H, H-6b), 4.23 (t, J = 9.4 Hz, 3H, H-4), 4.05 

(dd, J = 11.9, 2.9 Hz, 3H, H-6a′), 3.87 - 3.67 (m, 12H, H-5, H-5′, CHH-O, H-6b′), 3.50 - 3.35 (m, 9H, CH2-

N, CHH-O), 1.66 - 1.52 (m, 6H, CH2), 1.51 - 1.39 (m, 6H, CH2), 1.39 - 0.93 (m, 48H, CH2); 13C NMR (101 

MHz, CDCl3) δ 165.9, 165.8, 165.7, 165.6, 165.3, 165.1, 164.9 (C=O), 135.4 (Cq), 133.5, 133.4, 133.2, 129.9, 

129.8, 129.8, 129.6 (CHarom), 129.5, 128.8, 128.7, 128.7 (Cq), 128.6, 128.6, 128.4, 128.4, 128.4, 128.1 (CHarom), 

101.1, 101.0 (C-1, C-1′), 76.6 (C-4), 73.1, 72.9 (C-3, C-3′), 72.5 (C-5, C-5′), 72.1, 72.0 (C-2, C-2′), 70.4 (CH2-

O), 69.5 (C-4′), 62.8 (C-6′), 62.6 (C-6), 40.5 (CH2-N), 29.6, 29.6, 29.5, 29.4, 29.3, 27.1, 25.8 (CH2); HRMS 

[C228H221D3N3O57 + 2H]2+: 1961.60894 found, 1961.76000 calculated. 

N1, N3, N5-Tris-(dodecyl-12-O-[4-O-(2,3,4,6-tetra-O-benzoyl-β-ᴅ-galactopyranosyl)-2,3,6-tri-O-

benzoyl-β-ᴅ-glucopyranoside])-benzene-1,3,5-tricarboxamide (243). 

Acceptor 220 (84 mg, 0.11 mmol, 1 eq) and donor 224 (674 mg, 0.55 mmol, 

5 eq) were combined and co-evaporated with toluene (3x) under N2 

atmosphere, dissolved in a mixture of anhydrous DCM/HFIP (4.8 mL, 0.023 

M, 4/1, v/v) and stirred with activated molecular sieves (3Å) for 30 min. The reaction mixture was cooled 

to 0 ˚C, TfOH (10 µL, 0.11 mmol, 1 eq) was added dropwise and the mixture was stirred at 4 ˚C overnight. 

The reaction was quenched with Et3N (0.1 mL), diluted in DCM, washed with NaHCO3 (sat aq., 3x), dried 

over MgSO4 (s), filtered and concentrated in vacuo. Purification using size exclusion (Sephadex LH20, 1/1, 

MeOH/DCM, v/v) yielded compound 243 as a white foam (425 mg, 0.108 mmol, 98%). TLC Rf: 0.80 

(9/1, Et2O/PE, v/v); IR (neat, cm−1): 2923, 2853, 1734, 1717, 1647, 1560, 1260, 1093, 1066, 1025, 704; 1H 

NMR (400 MHz, CDCl3) δ 8.35 (s, 3H, BTA-Harom), 8.04 - 7.93 (m, 30H, Harom), 7.92 - 7.88 (m, 6H, Harom), 

7.74 - 7.69 (m, 6H, Harom), 7.66 - 7.27 (m, 51H, Harom), 7.21 (t, J = 7.8 Hz, 6H, Harom), 7.14 (t, J = 7.8 Hz, 
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6H, Harom), 6.63 - 6.47 (m, 3H, NH), 5.80 (t, J = 9.5 Hz, 3H, H-3), 5.76 - 5.68 (m, 6H, H-2′, H-4′), 5.45 (dd, 

J = 9.8, 8.0 Hz, 3H, H-2), 5.37 (dd, J = 10.3, 3.4 Hz, 3H, H-3′), 4.87 (d, J = 7.9 Hz, 3H, H-1′), 4.68 (d, J = 

7.9 Hz, 3H, H-1), 4.63 - 4.56 (m, 3H, H-6a), 4.49 (dd, J = 12.2, 4.3 Hz, 3H, H-6b), 4.25 (t, J = 9.5 Hz, 3H, 

H-4), 3.89 (t, J = 6.5 Hz, 3H, H-5′), 3.86 - 3.77 (m, 6H, H-5, CHH-O), 3.77 - 3.63 (m, 6H, H-6′), 3.51 - 3.37 

(m, 9H, CH2-N, CHH-O), 1.66 - 1.53 (m, 6H, CH2), 1.53 - 1.39 (m, 6H, CH2), 1.39 - 0.92 (m, 48H, CH2); 

13C NMR (101 MHz, CDCl3) δ 166.0, 165.7, 165.7, 165.6, 165.5, 165.3, 165.3, 164.9 (C=O), 135.4 (Cq), 

133.7, 133.5, 133.5, 133.5, 133.4, 133.3, 133.2, 130.1, 129.9, 129.8, 129.8, 129.7 (CHarom), 129.6, 129.6, 129.5, 

129.5, 128.9, 128.8, 128.7 (Cq), 128.6, 128.4, 128.4, 128.3, 128.0 (CHarom), 101.3 (C-1), 101.1 (C-1′), 76.2 (C-

4), 73.1, 73.0 (C-3, C-5), 71.9, 71.9 (C-2, C-3′), 71.5 (C-5′), 70.5 (CH2-O), 70.0, 67.6 (C-2′, C-4′), 62.6 (C-6), 

61.2 (C-6′), 40.5 (CH2-N), 29.7, 29.6, 29.6, 29.5, 29.4, 29.4, 29.4, 29.3, 27.1, 25.8 (CH2); HRMS 

[C228H222D3N3O57 + H]2+: 1961.60487 found, 1961.76000 calculated. 

N1, N3, N5-Tris-(dodecyl-12-O-[4-O-(2,3,4,6-tetra-O-benzoyl-α-ᴅ-glucopyranosyl)-2,3,6-tri-O-

benzoyl-β-ᴅ-glucopyranosyl])-benzene-1,3,5-tricarboxamide (244). 

Acceptor 220 (100 mg, 0.132 mmol, 1 eq) and donor 225 (814 mg, 0.66 mmol, 

5 eq) were combined and co-evaporated with toluene (3x) under N2 

atmosphere, dissolved in a mixture of anhydrous DCM/HFIP (5.7 mL, 0.023 

M, 4/1, v/v) and stirred with activated molecular sieves (3Å) for 30 min. The reaction mixture was cooled 

to 0 ̊ C, TfOH (12 µL, 0.132 mmol, 1 eq) was added dropwise and the mixture was stirred at 4 ̊ C overnight. 

The reaction was quenched with Et3N (0.1 mL), diluted in DCM, washed with NaHCO3 (sat aq., 3x), dried 

over MgSO4 (s), filtered and concentrated in vacuo. Purification using size exclusion (Sephadex LH20, 1/1, 

MeOH/DCM, v/v) yielded compound 244 as a transparent glasslike solid (360 mg, 0.092 mmol, 70%). 

TLC Rf: 0.60 (19/1, Et2O/PE, v/v); IR (neat, cm−1): 1721, 1654, 1601, 1451, 1262, 1090, 1025, 705; 1H 

NMR (500 MHz, CDCl3) δ 8.29 (s, 3H, BTA-Harom), 8.04 (dd, J = 8.3, 1.3 Hz, 7H, Harom), 7.98 (dd, J = 8.4, 

1.3 Hz, 7H, Harom), 7.95 - 7.89 (m, 14H, Harom), 7.88 - 7.79 (m, 14H, Harom), 7.57 - 7.18 (m, 63H, Harom), 6.61 

(t, J = 5.6 Hz, 3H, NHCO), 6.17 (t, J = 9.9 Hz, 3H, H-3, H-3′), 5.96 (d, J = 3.8 Hz, 3H, H-1′), 5.72 (t, J = 

9.9 Hz, 3H, H-4′), 5.40 (dd, J = 10.4, 3.8 Hz, 3H, H-2′), 4.93 (dd, J = 9.0, 7.9 Hz, 3H, H-2), 4.83 (dd, J = 

11.9, 1.8 Hz, 3H, H-6a), 4.62 - 4.54 (m, 9H, H-5′, H-1, H-6b), 4.51 (dd, J = 12.4, 2.9 Hz, 3H, H-6a′), 4.41 

(dd, J = 12.4, 4.1 Hz, 3H, H-6b′), 3.99 (dd, J = 9.6, 8.5 Hz, 3H, H-4), 3.95 - 3.79 (m, 9H, H-3, H-5, CHH-

O), 3.49 - 3.35 (m, 9H, CHH-O, CH2-N), 1.62 - 1.52 (m, 6H, CH2), 1.52 - 1.38 (m, 6H, CH2), 1.38 - 0.99 

(m, 48H, CH2); 13C NMR (126 MHz, CDCl3) δ 166.5, 166.3, 166.2, 166.0, 165.8, 165.8, 165.3 (C=O), 135.2 

(Cq), 133.5, 133.4, 133.3, 133.3, 133.3, 133.1, 130.0, 129.9, 129.9, 129.8 (CHarom), 129.8, 129.7 (Cq), 129.7 

(CHarom), 129.5, 129.3, 129.2, 129.0 (Cq), 128.6, 128.5, 128.5, 128.4, 128.4, 128.1 (CHarom), 100.7 (C-1), 97.0 

(C-1′), 78.3 (C-4), 75.9 (C-3), 75.4 (C-2), 72.6 (C-5), 71.6 (C-2′), 70.2 (CH2-O), 70.2 (C-3′), 69.3 (C-4′), 69.0 

(C-5′), 63.8 (C-6), 62.9 (C-6′), 40.5 (CH2-N), 29.6, 29.5, 29.4, 29.3, 29.2, 27.1, 25.9 (CH2); HRMS 

[C228H221D3N3O57 + 2H]2+: 1961.60642 found, 1961.76000 calculated. 
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N1, N3, N5-Tris-(dodecyl-12-O-α-ᴅ-mannopyranoside)-benzene-1,3,5-tricarboxamide (213). 

Mannoside 240 (38 mg, 15 µmol) was dissolved in a mixture of dioxane, t-BuOH and 

MeOH (3 mL, 0.005 M, 1/1/1, v/v/v), a solution of NaOMe was added (3 drops) 

and the mixture was stirred overnight. Purification via RP-HPLC (linear gradient 15 - 

85 % B in A, 10 min, Gemini-NX 5µm C18, 110 Å, 250 x 12.0 mm, 5 mL/min) yielded title compound 213 

as a white powder after lyophilization (9.0 mg, 7.2 µmol, 48%). LC-MS: Rt = 6.83 min (0 - 90% ACN; 13 

min); IR (neat, cm−1): 3567, 3012, 1647, 1560, 1013, 952; 1H NMR (500 MHz, DMSO) δ 8.62 (t, J = 5.6 

Hz, 3H, NH), 8.35 (s, 3H, BTA-Harom), 4.57 (d, J = 1.5 Hz, 3H, H-1), 3.63 (dd, J = 11.6, 2.1 Hz, 3H, H-

6a), 3.61 - 3.55 (m, 6H, CHH-O, H-2), 3.46 - 3.40 (m, 6H, H-6b, H-3), 3.36 (t, J = 9.4 Hz, 3H, H-4), 3.32 

- 3.24 (m, 12H, H-5, CHH-O, CH2-N), 1.57 - 1.43 (m, 12H, CH2), 1.35 - 1.20 (m, 48H, CH2); 13C NMR 

(126 MHz, DMSO) δ 165.4 (C=O), 135.1 (Cq), 128.3 (CHarom), 99.7 (C-1), 73.9 (C-5), 71.0 (C-3), 70.4 (C-

2), 67.0 (C-4), 66.2 (CH2-O), 61.3 (C-6), 39.4 (CH2-N), 29.1, 29.0, 29.0, 28.9, 28.8, 26.5, 25.8 (CH2); 13C-

GATED (126 MHz, DMSO) δ 99.7 (d, J = 169 Hz, C-1); HRMS [C63H111N3O21 + NH4]+: 

1263.80652found, 1263.80483 calculated. 

N1, N3, N5-Tris-(dodecyl-12-O-β-ᴅ-glucopyranoside)-benzene-1,3,5-tricarboxamide (214). 

Glucoside 241 (1.47 g, 0.59 mmol) was dissolved in a mixture of dioxane, t-BuOH 

and MeOH (17 mL, 0.035 M, 3/5/10, v/v/v), a solution of NaOMe was added (10 

mL, 25% wt, 44 mmol, 75 eq) and the mixture was refluxed for three days. The 

mixture was quenched with Amberlite H+ and concentrated. After purification by RP-HPLC compound 

214 was isolated as a white powder after lyophilizing (305 mg, 0.24 mmol, 41%). LC-MS: Rt = 6.03 min (0 

- 90% ACN; 13 min); IR (neat, cm−1): 3307, 2922, 2852, 1641, 1540, 1435, 1077, 1023; 1H NMR (400 MHz, 

DMSO) δ 8.65 (t, J = 5.5 Hz, 3H, NH), 8.35 (s, 3H, BTA-Harom), 4.08 (d, J = 7.8 Hz, 3H, H-1), 3.74 (dt, J 

= 9.4, 6.8 Hz, 3H, CHH-O), 3.69 - 3.61 (m, 3H, H-6a), 3.48 - 3.33 (m, 6H, H-6b, CHH-O), 3.26 (q, J = 6.5 

Hz, 6H, CH2-N), 3.15 - 2.97 (m, 9H, H-3, H-4, H-5), 2.92 (t, J = 8.3 Hz, 3H, H-2), 1.58 - 1.44 (m, 12H, 

CH2), 1.37 - 1.19 (m, 48H, CH2); 13C NMR (101 MHz, DMSO) δ 165.4 (C=O), 135.1 (Cq), 128.3 (BTA-

CHarom), 102.9 (C-1), 76.8, 76.8 (C-3, C-4/C-5), 73.5 (C-2), 70.1 (C-4/C-5), 68.6 (CH2-O), 61.1 (C-6), 39.4 

(CH2-N), 29.3, 29.1, 28.9, 26.6, 25.6 (CH2); HRMS [C63H111N3O21 + H]+: 1246.78139 found, 1246.77828 

calculated. 

N1, N3, N5-Tris-(dodecyl-12-O-[4-O-(β-ᴅ-glucopyranosyl)-β-ᴅ-glucopyranoside])-benzene-

1,3,5-tricarboxamide (215). 

Compound 242 (3.46 g, 0.88 mmol) was dissolved in a mixture of water, 

MeOH, t-BuOH (65 mL, 1/6/6, v/v/v) to which KOH (15 mL, 1 M, aq., 15 

mmol, 17eq) was added dropwise after which the mixture was refluxed for 

three days after which it was neutralized with acetic acid. Purification usig C18 functionalized silica gel 

column chromatography (100% H2O → 1/1, H2O/ACN, v/v) yielded compound 215 as a white powder 

after lyophilizing (683 mg, 0.17 mmol, 19%). LC-MS: Rt = 5.82 min (5 - 100% ACN; 10 min); 1H NMR 
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(400 MHz, MeOD) δ 8.35 (s, 3H, BTA-Harom), 4.39 (d, J = 7.8 Hz, 3H, H-1′), 4.25 (d, J = 7.8 Hz, 3H, H-

1), 3.93 - 3.80 (m, 12H, H-6′, H-6a, CHH-O), 3.64 (dd, J = 11.8, 5.3 Hz, 3H, H-6b), 3.59 - 3.44 (m, 9H, 

CHH-O, H-3, H-4), 3.40 - 3.27 (m, 18H, CH2-N, H-5, H-5′, H-3′, H-4′), 3.25 - 3.18 (m, 6H, H-2, H-2′), 

1.58 (dd, J = 15.0, 6.7 Hz, 12H, CH2), 1.31 (d, J = 26.4 Hz, 48H, CH2); 13C NMR (101 MHz, MeOD) δ 

136.8 (Cq), 129.8 (CHarom), 104.6, 104.2 (C-1, C-1′), 80.7 (C-4), 78.1, 77.8 (C-3, C-3′), 76.4, 76.4 (C-5, C-5′), 

74.9, 74.8 (C-2, C-2′), 71.3 (C-4′), 70.9 (CH2-O), 62.4, 61.8 (C-6, C-6′), 41.2 (CH2-N), 30.7, 30.6, 30.5, 28.1, 

27.1 (CH2); HRMS [C81H141N3O36 + H]+: 1732.93776 found, 1732.93675 calculated. 

N1, N3, N5-Tris-(dodecyl-12-O-[4-O-(β-ᴅ-galactopyranosyl)-β-ᴅ-glucopyranoside])-benzene-

1,3,5-tricarboxamide (216). 

Lactoside 243 (153.1 mg, 39 µmol) was dissolved in a mixture of dioxane, t-

BuOH and MeOH (4 mL, 0.01 M, 1/1/1, v/v/v), a solution of NaOMe was 

added (3 drops) and the mixture was stirred overnight. Purification via RP-

HPLC (linear gradient 25 - 70 % B in A, 10 min, Gemini-NX 5µm C18, 110 Å, 250 x 12.0 mm, 5 mL/min) 

yielded title compound 216 as a white powder after lyophilization (8.9 mg, 5.1 µmol, 13%). LC-MS: Rt = 

6.02 min (10 - 90% ACN; 13 min); IR (neat, cm−1): 3565, 2921, 2852, 1647, 1064, 1024, 704; 1H NMR (500 

MHz, DMSO) δ 8.62 (t, J = 5.6 Hz, 3H, NH), 8.34 (s, 3H, BTA-Harom), 5.07 (t, J = 5.1 Hz, 6H, 2-OH, -

OH), 4.82 - 4.73 (m, 3H, -OH), 4.69 - 4.60 (m, 6H, -OH), 4.56 - 4.47 (m, 6H, 6-OH, 6′-OH), 4.19 (d, J = 

7.5 Hz, 3H, H-1′), 4.16 (d, J = 7.9 Hz, 3H, H-1), 3.78 - 3.69 (m, 6H, CHH-O, H-6a), 3.64 - 3.23 (m, 39H, 

CHH-O, H-6b, H-6′, H-4, H-3′, H-5, H-5′, H-2′, H-3, CH2-N), 3.02 - 2.95 (m, 3H, H-2), 1.57 - 1.45 (m, 

12H, CH2), 1.35 - 1.19 (m, 48H, CH2); 13C NMR (126 MHz, DMSO) δ 165.4 (C=O), 135.1 (Cq), 128.3 

(CHarom), 103.9 (C-1′), 102.5 (C-1), 80.8, 75.5, 75.0, 74.8, 73.2, 73.1, 70.5 (C-2, C-2′, C-3, C-3′, C-4′, C-5, C-

5′), 68.7 (CH2-O), 68.1 (C-4), 60.5 (C-6′), 60.4 (C-6), 39.7 (CH2-N), 29.3, 29.1, 29.0, 29.0, 29.0, 28.8, 26.5, 

25.5 (CH2); 13C-GATED (126 MHz, CDCl3) δ 103.9 (d, J = 160 Hz, C-1′), 102.5 (d, J = 159 Hz, C-1); 

HRMS [C81H141N3O36 + 2H]2+: 866.97174 found, 866.97202 calculated. 

N1, N3, N5-Tris-(dodecyl-12-O-[4-O-(α-ᴅ-glucopyranosyl)-β-ᴅ-glucopyranoside])-benzene-

1,3,5-tricarboxamide (217). 

Maltoside 244 (166.4 mg, 42 µmol) was dissolved in a mixture of dioxane, t-

BuOH and MeOH (4 mL, 0.01 M, 1/1/1, v/v/v), a solution of NaOMe was 

added (3 drops) and the mixture was stirred overnight. Purification via RP-

HPLC (linear gradient 29 - 66 % B in A, 10 min, Gemini-NX 5µm C18, 110 Å, 250 x 12.0 mm, 5 mL/min) 

yielded title compound 217 as a white powder after lyophilization (19.8 mg, 11.4 µmol, 27%). LC-MS: Rt = 

9.69 min (0 - 50% ACN; 13 min); IR (neat, cm−1): 3328, 2923, 2853, 1647, 1289, 1021, 912; 1H NMR (500 

MHz, DMSO) δ 8.63 (t, J = 5.6 Hz, 3H, NH), 8.36 (s, 3H, BTA-Harom), 5.01 (d, J = 3.9 Hz, 3H, H-1′), 4.15 

(d, J = 7.8 Hz, 3H, H-1), 3.75 (dt, J = 9.5, 6.8 Hz, 3H, CHH-O), 3.70 (d, J = 10.3 Hz, 3H, H-6a), 3.64 - 

3.60 (m, 3H, H-6a′), 3.59 - 3.34 (m, 18H, H-3, H-3′, CHH-O, H-6b, H-6b′, H-5′), 3.34 - 3.25 (m, 9H, CH2-

N, H-4), 3.25 - 3.19 (m, 6H, H-2′, H-5), 3.07 (t, J = 9.2 Hz, 3H, H-4′), 3.03 - 2.96 (m, 3H, H-2), 1.52 (dq, J 



CHAPTER 6 

173 

= 14.1, 6.8 Hz, 12H, CH2), 1.28 (d, J = 22.2 Hz, 48H, CH2); 13C NMR (126 MHz, DMSO) δ 165.4 (C=O), 

135.1 (Cq), 128.3 (CHarom), 102.7 (C-1), 100.8 (C-1′), 79.7 (C-4), 76.4 (C-3), 75.1 (C-5), 73.5 (C-5′), 73.3 (C-

3′), 73.0 (C-2), 72.5 (C-2′), 69.9 (C-4′), 68.7 (CH2-O), 60.8 (C-6′), 60.6 (C-6), 39.4 (CH2-N), 29.3, 29.1, 29.1, 

29.0, 28.8, 26.5, 25.5 (CH2); 13C-GATED (126 MHz, DMSO) δ 102.7 (d, J = 160 Hz, C-1), 100.8 (d, J = 

170 Hz, C-1′); HRMS [C81H141N3O36 + H]+: 1732.93655 found, 1732.93675 calculated. 

N1-(Dodecyl-12-O-[6-azido-6-deoxy-β-ᴅ-glucopyranoside])- N3,N5-bis-(dodecyl-12-O-β-ᴅ-

glucopyranoside)-benzene-1,3,5-tricarboxamide (218). 

Acceptor 220 (78 mg, 0.10 mmol, 1 eq) and donor 228 (112.4 mg, 0.17 mmol, 1.7 

eq) were combined and co-evaporated with toluene (3x) under N2 atmosphere, 

dissolved in a mixture of anhydrous DCM/HFIP (4 mL, 0.025 M, 4/1, v/v) and 

stirred with activated molecular sieves (3Å) for 30 min. The reaction mixture was 

cooled to 0 ˚C, TfOH (8.8 µL, 0.1 mmol, 1 eq) was added dropwise and the mixture was stirred at 0 ˚C for 

15 min after which a solution of donor 221 (222.2 mg, 0.30 mmol, 3 eq) in anhydrous DCM (0.6 mL, 0.5 

M) was added dropwise over 10 minutes. The reaction mixture was stirred for an additional 3 hours after 

which it was quenched by addition of Et3N (0.3 mL). The mixture was filtrated, concentrated in vacuo and 

purified using size exclusion (Sephadex LH20, 1/1, MeOH/DCM, v/v) yielding a mixture of compounds 

as a transparent solid (251 mg, 0.1 mmol, qnt). Based on 1H NMR the mixture contains an average of 0.3 

equivalent of migrated benzoyl, 1.6 equivalent of normal glucosides and 1.1 eq of azido glucose per BTA 

(based on bold integrals). 1H NMR (400 MHz, CDCl3) δ 8.38 (s, 3.00H, BTA-Harom), 8.05 – 7.77 (m, 21H, 

Harom), 7.57 – 7.23 (m, 34H, Harom), 6.72 (s, 3H, NH), 5.91 (dt, J = 11.9, 9.7 Hz, 2.68H, H-3, H-3*), 5.68 (t, 

J = 9.7 Hz, 1.67H, H-4), 5.57 – 5.48 (m, 2.76H, H-2, H-2*), 5.45 (t, J = 9.7 Hz, 1H, H-4*), 4.85 (d, J = 7.8 

Hz, 2.64H, H-1, H-1*), 4.64 (dd, J = 12.1, 3.2 Hz, 1.60H, H-6a), 4.51 (dd, J = 12.1, 5.2 Hz, 1.59H, H-6b), 

4.31 (t, J = 6.7 Hz, 0.56H, CH2-OBz), 4.21 – 4.13 (m, 1.63H, H-5), 4.03 – 3.87 (m, 3.96H, H-5*, CHH-

O-Glu), 3.62 – 3.50 (m, 4.01H, C-6a*, CHH-O-Glu), 3.42 (q, J = 6.7 Hz, 6.24H, CH2-N), 3.30 (dd, J = 

13.4, 2.3 Hz, 1.09H, C-6b*), 1.65 – 1.45 (m, 12H, CH2), 1.39 – 0.92 (m, 48H, CH2); 13C NMR (101 MHz, 

CDCl3) δ 166.2, 165.9, 165.9, 165.8, 165.4, 165.3, 165.2, 165.1 (C=O), 135.4 (Cq), 133.7, 133.5, 133.3, 133.3, 

133.3, 133.2, 133.2, 129.9, 129.9, 129.8, 129.8 (CHarom), 129.7, 129.6, 129.4, 129.4, 128.9, 128.9, 128.8, 128.6 

(Cq), 128.6, 128.5, 128.4, 128.4, 128.4, 128.1 (CHarom), 101.4 (C-1), 101.1 (C-1*), 74.2 (C-5*), 73.0, 72.7 (C-

3, C-3*), 72.2 (C-5), 72.0, 71.9 (C-2, C-2*), 70.5 (C-4*), 70.5, 70.3 (CH2-O-Glu), 69.9 (C-4), 65.2 (CH2-

OBz), 63.3 (C-6), 51.4 (C-6*), 40.5 (CH2-N), 29.6, 29.6, 29.6, 29.5, 29.5, 29.5, 29.4, 29.3, 27.1, 25.8, 25.8 

(CH2). This mixture of compounds (125 mg, ~51 µmol) was dissolved in a mixture of dioxane, t-BuOH 

and MeOH (2 mL, 0.01 M, 1/1/1, v/v/v), a solution of NaOMe was added (3 drops) and the mixture was 

stirred overnight. Purification via RP-HPLC (linear gradient 35 - 66 % B in A, 10 min, Gemini-NX 5µm 

C18, 110 Å, 250 x 12.0 mm, 5 mL/min) followed by a second RP-HPLC purification (linear gradient 36 - 

42 % B in A, 12 min, Vydac 219TP Diphenyl, 5 µm, 250 x 10.0 mm, 5 mL/min) yielded title compound 

218 as a white powder after lyophilization (6 mg, 4.7 µmol, 9%) (careful separation also allowed for the 

isolation of 214 as side product in 8.2 mg, 6.6 µmol, 13%). LC-MS: Rt = 6.62 min (10 - 90% ACN; 13 min); 
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LC-MS: Rt = 10.20 min (10 - 90% ACN; 21 min, Diphenyl) IR (neat, cm−1): 3370, 2922, 2852, 2097, 1641, 

1528, 1075, 1023; 1H NMR (500 MHz, DMSO) δ 8.64 (t, J = 5.4 Hz, 3H, NH), 8.35 (s, 3H, BTA-Harom), 

5.41 (s, 1H, -OH), 5.20 – 5.02 (m, 3H, -OH), 4.96 – 4.84 (m, 5H, -OH), 4.46 (t, J = 5.8 Hz, 2H, -OH), 4.19 

(d, J = 7.8 Hz, 1H, H-1*), 4.08 (d, J = 7.8 Hz, 2H, H-1), 3.73 (ddd, J = 15.6, 9.1, 6.9 Hz, 3H, CHH-O), 

3.65 (dd, J = 10.9, 4.9 Hz, 2H, H-6a), 3.47 – 3.30 (m, 8H, H-6b, CHH-O, H-6*, H-5*), 3.26 (q, J = 6.6 Hz, 

6H, CH2-NH), 3.17 – 2.98 (m, 8H, H-3, H-4, H-5, H-4*, H-3*), 2.97 (dd, J = 8.3, 3.6 Hz, 1H, H-2*), 2.92 

(td, J = 8.5, 4.7 Hz, 2H, H-2), 1.50 (dt, J = 14.1, 6.9 Hz, 12H, CH2), 1.36 – 1.16 (m, 48H, CH2); 13C NMR 

(126 MHz, DMSO) δ 165.4 (C=O), 135.1 (Cq), 128.3 (BTA-CHarom), 102.8 (C-1), 102.7 (C-1*), 76.8, 76.8 

(C-3, C-5), 76.3 (C-3*), 75.4 (C-5*), 73.4 (C-2), 73.3 (C-2*), 71.0 (C-4*), 70.1 (C-4), 68.6 (CH2-O), 61.1 (C-

6), 51.4 (C-6*), 39.3 (CH2-N), 29.3, 29.1, 29.0, 29.0, 28.8, 26.5, 25.6 (CH2); 13C-GATED (126 MHz, CDCl3) 

δ 102.8 (d, J = 159 Hz, C-1), 102.7 (d, J = 158 Hz, C-1*); HRMS [C63H110N6O20 + H]+: 1271.78499 found, 

1271.78477 calculated. 
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Chapter 7 

Summary and future prospects 

The adaptive immune system is able to efficiently and selectively battle pathogens and aberrant 

cells. Tailored immune responses have been exploited in many therapeutic approaches, combatting 

both infections and tumors. One of these approaches trains naïve immune cells using a vaccine 

strategy, in which antigens and adjuvants are administered to antigen-presenting cells (APCs). The 

adjuvant is a necessary component of a vaccine, as it stimulates the APC to mature, thereby 

upregulating the levels of antigen presentation and co-stimulatory factors. Adjuvants can be 

recognized by pathogen recognizing receptors (PRRs) present on APCs. Two sub-families of PRRs 

have been targeted extensively with synthetic ligands and vaccines: the toll-like receptors (TLRs) 

and C-type lectin receptors (CLRs). TLRs are often exploited for their ability to mature APCs, 

while CLRs are targeted for their capacity to endocytose pathogens. A subset of these CLRs (MR, 

DC-SIGN, and langerin) can recognize mannose based glycans and these receptors have been 

extensively studied and targeted with mannosylated constructs, as summarized in Chapter 1. 

Signaling pathways initiated by these CLRs often work in concert with those triggered by TLR 

activation, and it has been demonstrated that simultaneous targeting of these receptors can 

improve and prolong the immune response synergistically. The work presented in this thesis 

studies and exploits the activation of the immune system with antigen-adjuvant conjugates, 

equipped with well-defined mannosylated conjugates. 
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The affinity of mannosylated constructs for DC-SIGN, langerin, and the mannose receptor have 

been extensively studied. Due to the multimeric nature of the three CLRs, a large number of 

multivalent constructs has been designed and tested in a variety of assays. Because of the variation 

in structure and nature of the interaction assays, clear structure-activity relationship can be difficult 

to assess. Chapter 2 describes the synthesis of a systematic library that investigates the effect of 

the number of mannoside copies and the structure of these mannosides on binding affinity for 

DC-SIGN, langerin and the MR, and cell uptake by these receptors. It has previously been difficult 

to study the MR in vitro due to the lability of this receptor when isolated. To allow affinity studies 

with this receptor, selected members from the mannoside library have been decorated with a laser-

dye to enable the tracking of single molecules in a super-resolution microscopy assay. This 

approach allowed, for the first time, the determination of relative affinities for the MR in a natural 

setting. The affinity studies for all three CLRs have revealed a similar structure-activity trend, with 

an increasing number of mannosides leading to increased affinity, in line with previous reports. 

Affinity for the MR significantly increases when comparing constructs bearing 1 or 2 mannosides 

with that carrying 6 copies. The difference in affinity for DC-SIGN was neglectable for clusters 

bearing 3 or 6 mannoside copies. However, the type of mannosides in the clusters  had a large 

influence on the affinity for DC-SIGN, which shows a preference for α1,2-dimannosides. Since 

the affinity of the largest mannoside (an α1,3-α1,6-tri-mannoside) seemed to decrease when six 

instead of three copies were installed on the clusters, it would be relevant to test whether this was 

the result of the scaffold used. By synthesizing a scaffold containing six azido lysines which are all 

spaced with glycines similar to the n = 3 scaffold (255, Scheme 1), followed by CuAAC ligation of 

the propargyl mannosides, hexavalent mannoside clusters 256 could be synthesized. These clusters 

could be compared with their shorter analogs described in Chapter 2. Longer spacers between the 

mannosides and the lysine scaffold may also be explored. 

Langerin and the MR did not show a clear preference for the configuration of the mannosides in 

the clusters, as observed for DC-SIGN. Both di- and tri- mannosides showed comparable affinities 

for these receptors. Since the MR has multiple CRDs that can recognize mannosides, but only one 

domain that can bind sulfated galactosides, both ligands could be used to gain a deeper insight of 

the binding interactions with the MR. The results of this assay for example, indicated that the 

increase in binding affinity for mannosides with higher valency is most likely due to rebinding of 

the CRDs in close proximity rather than the binding of multiple CRDs simultaneously or even 

multiple receptors simultaneously. 
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Scheme 1: Synthesis of hexavalent clusters with similar spacing as the previously described 

n=3 & n=2 clusters.  

 

 

The simultaneous targeting of both TLR and CLR has been a promising approach to generate 

more effective vaccines. To improve the synthetic accessibility of conjugates targeting TLR7, 

Chapter 3 describes improvements in the synthesis of a TLR7 agonist which can be incorporated 

‘in-line’ during a solid-phase peptide synthesis (SPPS) campaign. The alterations made to the 

synthetic steps improved the workability of the synthetic route and allowed for the large scale 

preparation of a Boc-protected building block. Chapter 3 also describes the synthesis of 

bifunctional ligands that can bind both mannose-binding CLRs and TLR7. 

In Chapter 4, elements from the previous two chapters are combined in the synthesis of 

trifunctional conjugates that bear both a TLR7 ligand and mannoside clusters combined with a 

model gp100 antigen. The SPPS of the azido gp100 peptide required double couplings at elevated 

temperature and the addition of phenol to the cleavage cocktail to obtain sufficient quantities of 

product. For the introduction of the mannosides, both the simultaneous CuAAC of multiple 

propargyl mannosides and the conjugation of a pre-assembled mannoside clusters were planned. 

The pre-assembly of conjugatable mannoside clusters was easily achieved, whereas the synthesis 

of the gp100 peptide bearing six azides proved difficult. Therefore, the route requiring multiple 

simultaneous CuAAC events was abandoned. Evaluation of the conjugates showed that the 

addition of the TLR7 ligand improved the effectiveness of the conjugates. Conjugation to the 

hexavalent mannoside clusters further improved the activity of the gp100 conjugates. The synthetic 

route towards this gp100 platform allows for the conjugation of a carbohydrate cluster at a late 

stage of the synthesis, which allows for the generation of conjugates bearing different type of 

adjuvants. The presence of both an MHC-II and MHC-I epitope in the same peptide can be used 

to establish which combination of adjuvants would lead to optimal (cross-)presentation. The 
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platform allows for the variation of the ligands introduced via CuAAC (R2, Figure 1) and ligands 

introduced during SPPS on either the N-terminus, C-terminal lysine or both (R1, Figure 1). Instead 

of the TLR7 adjuvant, other TLR-ligands can be introduced, such as Pam3Cys targeting TLR2,1 

CPG like conjugates to target TLR9,2 or a poly-I:C ligand to target TLR3.3 Combining lipophilic 

conjugates such as Pam3Cys with hydrophilic carbohydrates such as the mannosides clusters can 

enhance the poor water solubility of the lipophilic peptides.4 Instead of (oligo)mannosides, the 

antigen can also be combined with other glycans or adjuvants. For example, the introduction of 

fucosylated glycans such as the Lewis antigens can skew the type of Th cell response.5,6 Another 

possibility would be to pivot the immune response from inflammatory towards anti-inflammatory. 

By the introduction of sialic acid-containing structures, sialic acid-binding immunoglobulin-type 

lectins (SIGLECs) can be targeted.7 Instead of targeting CLRs, an alternative would be the 

introduction of a muramyl dipeptide (MDP) which can lead to the engagement of the NOD2 

receptor.8  

Figure 1: Variations on the gp100 conjugates.  

 

 



CHAPTER 7 

181 

To improve the stability, and to allow the ‘inline’ introduction of mannoside clusters, Chapter 5 

describes the synthesis of a stabilized C-mannosyl functionalized Fmoc protected lysine building 

block, in which acid-labile para-methoxybenzyl (PMB) groups are used to mask the hydroxyl 

groups to prevent unwanted side reactions on these functionalities. This C-mannosyl building 

block was successfully used in SPPS to generate both small clusters and gp100 conjugates. The 

deprotection and cleavage from the resin required additional scavengers to prevent side reactions 

originating from the released PMB cations. The use of PMB groups could be combined with the 

use of a monomethoxy trityl (Mmt) protecting group, when the latter was removed with a mixture 

of acetic acid, trifluoroethanol, and dichloromethane. The C-mannoside clusters and conjugates 

bind with similar affinity to CLRs as their O-mannoside analogs, and also the antigen presentation 

of conjugates bearing the C-mannosides was comparable to their O-mannoside counterparts. The 

ability to introduce these clusters ‘in-line’ allowed for the synthesis of clusters with both CLR and 

TLR clusters on the same terminus. However, this configuration hampered the effectiveness of 

these constructs. A potential solution for this would be to use a self-immolative linker between 

the C-mannosides and TLR7 agonist.9 The use of the C-mannoside also allows for the introduction 

of an azide handle in the conjugates, which can be used for tracking of the antigens (e.g., 257, 

Figure 2).  

Figure 2: Second generation of C-mannosyl conjugates. 

 

 

Chapter 6 describes the synthesis of glycosylated benzene-1,3,5-tricarboxyamide (BTA) 

monomers, which can self-assemble into supramolecular fibers in an aqueous environment. Two 

synthetic strategies have been assessed, both suffering from solubility issues. Eventually, the 

assembly of the BTA monomers was successful by the condensation of glycosyl imidate donors 
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and a BTA-triol in an unusual solvent system, compromising a mixture of 1,1,1,3,3,3-

hexafluoroisopropanol (HFIP) and DCM. The nucleophilicity of the HFIP proved to be 

sufficiently low to prevent any significant competition during the condensation reactions. The 

glycosylations was met with side reactions such as the formation of ortho-esters and benzoyl 

migration. These side-products proved to be difficult to remove from the product mixture, but 

after cleavage of the benzoyl groups, the products and side-products could be separated via RP-

HPLC. Both the mannose and glucose BTAs were able to self-assemble in 2D fibers. Notably, the 

sugar residues induced the formation of fibers of opposite helicity. Since these two constructs 

differ at two positions in the carbohydrate appendage, it would be of interest to determine whether 

the helicity is caused by the configuration at C-2 or the stereochemistry of the anomeric bond. By 

synthesis of the 1,2-cis gluco and manno-isomers, this could be studied. A potential synthetic route 

towards these constructs can use donor 258 bearing acid-labile benzyl-like protecting groups (Nap 

or PMB, see Scheme 2). Activation of donor 258 by TMSI in the presence triphenyl oxide allows 

for cis-selective couplings with a primary alcohol such as 220.10 The obtained α-glucoside 259 could 

then be deprotected using HCl in HFIP to obtain target construct 260.11 For the β-mannoside 

BTA, a benzylidene protected mannoside imidate donor such as 261 could be used at low 

temperature to generate cis-mannoside 262.12 This mannoside could generate β-mannoside 263 by 

acidic deprotection. It will be of interest to establish whether these glycosylations tolerate the use 

of HFIP as a co-solvent. 
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Scheme 2: Synthetic route towards the BTA mannose and glucose stereoisomers. 
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The synthesis of a BTA monomer that bears two glucose and one 6-azido-6-deoxy-glucose residue 

is also described in Chapter 6. The azide handle in this monomer can be used for further decoration 

with reporter groups, adjuvants (e.g., 265), or epitopes (e.g., 264). For example, the co-assembly 

of mannosylated-BTA monomers (213) in combination with BTA cores functionalized with the 

gp100 epitope (266) and TLR7 agonist (267) could form a multivalent system that can target both 

CLRs and TLR7. By mixing the components in different ratios, many self-assembled polymers 

(268) can be evaluated (see Scheme 3).  
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Scheme 3: Assembly of BTA fibers that bear antigen, a TLR7 agonist and mannosides. 
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Samenvatting 

Het adaptieve immuunsysteem is in staat om efficiënt en selectief pathogenen en afwijkende cellen 

te bestrijden. Veel therapeutische behandelingen tegen infecties en tumoren maken gebruik van 

specifieke immuunreacties om zieke of vreemde cellen op te ruimen. Een van deze behandelingen 

traint naïeve immuun cellen tegen specifieke structuren (antigenen) welke tot expressie komen op 

het pathogeen of de zieke cel. Deze vaccinatiestrategie combineert een antigeen met een 

moleculaire structuur die kan worden herkend door een antigeen presenterende cel (APC) en die 

instaat is om deze cel te activeren, een zogenaamd adjuvans. Het adjuvans is een noodzakelijke 

component van een vaccin, omdat het de APCs stimuleert tot maturiteit waardoor de mate van 

antigen presentatie en de productie van co-stimulatoire factoren toenemen. Adjuvans kunnen 

worden herkend met behulp van pathogeen herkennende receptoren (PRRs) die aanwezig zijn/tot 

expressie komen op APCs. Twee subfamilies van de pathogeen herkennende receptoren zijn het 

aangrijpingspunt voor vele synthetische liganden en vaccins: de Toll-like receptoren (TLRs) en de 

C-type lectine receptoren (CLRs). TLRs worden vaak gebruikt voor hun capaciteit om APCs te 

matureren terwijl de CLRs worden gebruikt voor hun capaciteit om pathogenen te endocyteren. 

Een sub-set van deze CLRs, namelijk de mannose receptor (MR, CD206), DC-SIGN (CD-209) 

en langerin (CD-207), kunnen op mannose gebaseerde koolhydraten herkennen. Deze receptoren 

zijn uitgebreid bestudeerd en veelal het aangrijpingspunt voor gemannosyleerde constructen zoals 
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beschreven in Hoofdstuk 1. Signaleringsroutes geïnitieerd door deze CLRs werken vaak samen 

met door TLR geactiveerde signaleringsroutes en het is voorheen aangetoond dat het simultaan 

activeren van zowel een TLR als CLR de immuunrespons synergistisch kan verbeteren en 

verlengen. Het werk beschreven in dit proefschrift bestudeert en gebruikt de activatie van het 

immuunsysteem met behulp van antigeen-adjuvans conjugaten die zijn uitgerust met goed 

gedefinieerde gemannosyleerde conjugaten.  

De affiniteit van gemannosyleerde constructen voor DC-SIGN, langerin en de MR is uitgebreid 

getest. Omdat alle drie de receptoren een multimere structuur hebben, zijn er in het verleden een 

groot aantal multivalente constructen getest. Echter, door verschillen in de structuur en opzet van 

de test opstellingen, is het lastig om een duidelijke structuur-activiteit relatie te bepalen voor deze 

constructen. Daarom wordt in Hoofdstuk 2 de synthese van een systematische bibliotheek van 

verbindingen beschreven, die zowel het effect van het aantal mannoside kopieën als het effect van 

de mannoside structuur op de affiniteit voor DC-SIGN, MR en langerin bepaald, alsmede het 

effect op cel opname via de respectievelijke receptoren. Het is voorheen gebleken dat het 

bestuderen van de MR in vitro lastig is door de labiliteit van de geïsoleerde receptor. Om deze 

receptor toch te kunnen bestuderen, is een deel van de constructen in de hiervoor beschreven 

bibliotheek gefunctionaliseerd met een fluorescent label, dat gebruikt kan worden voor super-

resolutie microscopie om de constructen per molecuul te kunnen volgen. Hiermee kan voor het 

eerst de relatieve affiniteit voor de MR worden bepaald in een ‘natuurlijke’ omgeving. De resultaten 

van deze affiniteit studies zijn vergelijkbaar met eerder beschreven structuur-activiteit trends 

waarbij affiniteit toeneemt met het verhogen van het aantal mannoside kopieën. Affiniteit voor de 

MR wordt significant vergroot wanneer constructen met één of twee kopieën worden vergeleken 

met zes kopieën. Voor DC-SIGN zijn de verschillen tussen clusters met drie of zes mannoside 

kopieën verwaarloosbaar, maar de structuur van de gebruikte mannosides heeft een grote invloed 

op de affiniteit, met de hoogste affiniteit voor clusters uitgerust met α1,2-dimannosides. Voor 

zowel de MR als langerin is de voorkeur voor mannoside structuur niet zo duidelijk als voor DC-

SIGN, en zowel de di- als tri-mannosides vertonen vergelijkbare affiniteiten voor deze receptoren. 

Gezien het feit dat de MR verscheidene mannose herkennende bindingsdomeinen (CRDs) kent, 

maar slechts één domein heeft dat gesulfateerde galactosides kan herkennen, zijn beide liganden 

gebruikt om een beter begrip van de bindingsinteracties van de receptor te krijgen. Uit deze 

experimenten is het af te leiden dat het meer waarschijnlijk is dat de verhoogde affiniteit voor 

multivalente mannoside clusters wordt veroorzaakt door het her-binden van de naastgelegen 

CRDs in plaats van het tegelijk binden van verschillende CRDs op dezelfde receptor, of zelfs het 

binden van verschillende CRDs op verschillende receptoren.  
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Het simultaan gebruiken van zowel een TLR als CLR is een veelbelovende aanpak voor het creëren 

van meer effectieve vaccins. Om de synthetische toegankelijkheid van conjugaten die op TLR7 

gericht zijn te vergroten, wordt in Hoofdstuk 3 een verbetering in de synthese van een TLR7 

agonist beschreven. Dit ligand kan worden ingebouwd tijdens een vaste drager peptide chemie 

synthese (SPPS). De aanpassingen van de synthese stappen verbeteren de werkbaarheid van de 

route en maken het mogelijk om een tert-butyloxycarbonyl (Boc) beschermde TLR7-bouwsteen 

op grote schaal te produceren. Verder beschrijft hoofdstuk 3 de synthese van bi-functionele 

liganden die zowel kunnen binden aan mannose bindende CLRs als TLR7. 

In Hoofdstuk 4 worden elementen uit de voorgaande hoofdstukken gebruikt voor de synthese 

van tri-functionele conjugaten, die een TLR7-ligand en een mannose cluster combineren met een 

gp100 antigen. De SPPS van het azide gefunctionaliseerde gp100 peptide vereiste dubbele 

koppelingen bij verhoogde temperaturen en toevoeging van phenol aan de afsplitscocktail om 

voldoende hoeveelheden product te kunnen isoleren. Voor de introductie van de mannose clusters 

waren twee strategieën bedacht. De eerste strategie behelst het simultaan koppelen van meerdere 

propargyl mannosides met behulp van een koper gekatalyseerde “klik-reactie” (CuAAC), terwijl de 

tweede aanpak gebruik maakt van vooraf geassembleerde oligomannoside clusters. Waar de 

synthese van vooraf geassembleerde conjugeerbare mannoside clusters gemakkelijk werd 

gerealiseerd, bleek de uitvoering van de eerste strategie moeilijker en daarom werd deze route niet 

verder uitgewerkt. Evaluatie van de conjugaten liet zien dat de toevoeging van het TLR-ligand de 

effectiviteit van de conjugaten vergroot. De conjugatie van hexavalente clusters verbeterde de 

activiteit van de conjugaten verder. Een bijkomend voordeel van de ontwikkelde synthese route is 

dat dit gp100 platform het mogelijk maakt om een koolhydraat cluster in een laat stadium van de 

synthese te introduceren. Dit maakt het makkelijk om verschillende conjugaten te genereren met 

variërende adjuvantia. 

Om de stabiliteit van de mannoses te verbeteren en om de introductie van mannose clusters, 

middels een directe vaste drager synthese mogelijk te maken, beschrijft Hoofdstuk 5 de synthese 

van een C-mannose gefunctionaliseerde lysine bouwsteen. In deze verbinding worden de mannose 

hydroxyl groepen gemaskeerd met zuur-labiele para-methoxybenzyl (PMB) groepen om 

ongewenste neven reacties op deze functionele groepen te voorkomen. Deze C-mannosyl lysine 

bouwsteen werd succesvol toegepast in SPPS om zowel kleine clusters als gp100 conjugaten te 

genereren. Het afsplitsen en ontschermen van de peptiden van de vaste drager vereiste additionele 

scavengers om neven reacties te voorkomen van de PMB-kationen, die gegenereerd werden tijdens 

de ontscherming. De PMB-groepen konden worden gebruikt in combinatie met een tijdelijke 

monomethoxy trityl (Mmt) bescherm-groep, wanneer deze laatste selectief werd verwijderd met 
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een mengsel van azijnzuur, trifluoroethanol en dichloromethane. De C-mannose clusters en 

conjugaten binden CLRs met vergelijkbare affiniteit als hun O-mannoside tegenhangers. Ook de 

antigen presentatie van de C-mannoside conjugaten was vergelijkbaar met de O-analogen. De 

mogelijkheid om deze clusters direct te introduceren in de peptide antigenen middels een SPPS 

aanpak, maakte het mogelijk om constructen te maken waarbij de CLR- en TLR-liganden aan 

dezelfde kant van het peptide werden verbonden. Deze configuratie belemmerde echter de 

effectiviteit van de constructen.  

Hoofdstuk 6 omschrijft de synthese van geglycosyleerde benzene-1,3,5-tricarboxyamide (BTA) 

monomeren die in waterig milieu kunnen zelf-assembleren tot supramoleculaire vezels. Voor de 

synthese zijn twee strategieën beoordeeld en beide hadden te kampen met de geringe 

oplosbaarheid van de bouwstenen. Uiteindelijk zijn de BTA-monomeren succesvol geassembleerd 

met behulp van  condensatie van glycosyl imidaat donoren en een BTA-triol in een ongebruikelijk 

oplosmiddel systeem, bestaande uit een mengsel van 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) en 

dichloromethaan. De nucleofiliciteit van HFIP bleek voldoende laag te zijn om significante 

competitie tijdens de condensatiereactie te voorkomen. Tijdens deze reactie traden er echter andere 

nevenreacties op, die leidden tot de vorming van ortho-esters en migratie van benzoyl groepen. 

Deze bijproducten waren lastig te verwijderen uit het reactiemengsel, maar na het afsplitsen van 

de benzoyl groepen, konden de producten worden gezuiverd met behulp van HPLC. Zowel de 

mannose- en glucose-BTAs waren in staat om te zelf-assembleren tot 2D vezels, welke een 

tegengestelde heliciteit hadden. Ook omschrijft Hoofdstuk 6 de synthese van BTA-monomeren 

met twee glucose eenheden en één 6-azido-glucose functionaliteit. Het azide handvat in dit 

monomeer kan worden gebruikt voor verdere decoratie met functionele groepen zoals adjuvantia 

(bv. 265) of epitopen (bv. 264). Deze kunnen worden gebruikt voor bijvoorbeeld de co-assemblage 

van het gemannosyleerde BTA-monomer (213) in combinatie met gp100 gedecoreerde BTA-

monomeren (226) en een TLR7-agonist (267) zodat ze een multivalent systeem kunnen vormen, 

dat interacties kan aangaan met zowel CLRs als TLRs. Door de componenten in verschillende 

verhoudingen te mengen kunnen gemakkelijk verschillende zelf-assemblerende polymeren worden 

verkregen en vergeleken (zie Schema 1).  
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Schema 1: Opbouw van BTA vezels, die een antigen, TLR7 agonist en mannosides. 
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